handbook - ip-20n basic training course t7.9 - copia

Upload: henry-javier-brito

Post on 06-Jul-2018

537 views

Category:

Documents


37 download

TRANSCRIPT

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    1/264

     

    COURSE HANDBOOKInstallation | Commissioning | System Configuration

    FibeAir IP-20N Basic Training Course

    Updated for SW Version T7.9

    Visit our Customer Training Portal at cts.ceragon.com or contact us at [email protected]

    Trainee Name: _________________

    Copyright 2014 Ceragon Networks Ltd. www.ceragon.com & cts.ceragon.com

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    2/264

     

    This page was intentionally left blank. 

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    3/264

    FibeAir IP‐20N Ceragon Training Course 

    CERAGON TRAINING

     PROGRAM

      –

     IP

    ‐20N

     Basic

     Training

     Course

     Sw

     7.9

     

    Table of  Content  

    Intro to Radio Systems …………………………………………………………………………………………………………  005 

    IP‐20N Overview…………………………………………………………………………………………………………………..  029 

    Radio Frequency Units  – RFUs …………………………………………………………………………………………….  059 

    First Login…………………………………………………………………………………………………………………………...  077 

    Shelf  Management………………………………………………………………………………………………………………  085 

    ACM & MSE….…………………………………………………………..………………………………………………………….  089 

    Radio Link Parameters…………..……………………………………………………………………………………………  101 

    Automatic Transmit Power Control ATPC……………………………………….…………………………………….  107 

    IP‐20N XPIC Configuration……………………………….………………………………………………………………….  113 

    Service Model in IP‐20N………………………….………………………………………………………………………….  121 

    Protection System Configuration………………………………………………………………………………………..  145 

    Multi Carrier ABC…………………………………………………………………………………………………………………  159 

    Licensing……………………………………………………………………………………………………………………………..  177 

    Native TDM …………………………………………………………………………………………………………………………  187 

    Configuration Management & Software Download……………………………………………………………  205 

    Troubleshooting…………………………………………………………………………………………………………………..  219 

    Header De‐Duplication…………………………………………………………………………………………………………  237 

    TCC Redundancy………………………………………………………………………………………………………………….  247 

    Cascading Port Configuration ……………………………………………………………………………………………..  257 

    Course Evaluation Form……………………………………………………………………………………………………….  263 

    3

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    4/264

     

    This page was intentionally left blank. 

    4

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    5/264

    Version 3

    Introduction to Radio Systems

    October 2014

    Proprietary and Confidential

     Agenda

    2

    • Radio Relay Principles

    • Parameters affecting propagations:

    • Dispersion

    • Humidity/gas absorption

    • Multipath/ducting

    •  Atmospheric conditions (refraction)

    • Terrain (flatness, type, Fresnel zone clearance, diffraction)

    • Climatic conditions (rain zone, temperature)

    • Rain attenuation

    • Modulation

    5

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    6/264

    Proprietary and Confidential

    Digital Transmission Systems

    3

    Proprietary and Confidential

    RF Signal

    Path Terrain

    f1

    f1’

    Radio Relay Principles

    •  A Radio Link requires two end stations

    •  A line of sight (LOS) or nLOS (near LOS) is required

    • Microwave Radio Link frequencies occupy 1-80GHz

    4

    6

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    7/264

    Proprietary and Confidential

    High and Low frequency station

    Local site

    High station

    Remote site

    Low station

    High station means: Tx(f1) >Rx(f1’)

    Tx(f1)=11500 MHz Rx(f1)=11500 MHz

    Rx(f1’)=11000 MHz Tx(f1’)=11000 MHz

    Low station means: Tx(f1’) < Rx(f1)

    Full duplex

    5

    Proprietary and Confidential

    Standard frequency plan patterns

    Frequency reuse:

    2,4V

    1,3V1,3H 1,3H 1,3H

    Reduced risk for overshoot

    Frequency shift:

    1,3V1,3H 2,4H

    Reduced risk for overshoot

    Only Low stations can interfere High stations

    1,3H

    Tx in upper part of band 

    Tx in lower part of band 

    1,3VLow High Low High

    6

    Tx Tx Tx

    TxTxTx

    TxTx

    TxTx

    Tx

    Tx

    7

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    8/264

    Proprietary and Confidential

    Preferred site location structure

    7

    Proprietary and Confidential

    RF Tx Filter Branching

    Network(*)Feeder 

    Z' B' C' D' A'

    Feeder 

    DBranching

    Network(*)

    C BRF Rx Filter 

     A

    Receiver 

    E

    Demodulator 

    Z

    Modulator 

    E'

    RECEIVER PATH

    TRANSMITTER PATH

    Transmitter Digital

    Line interface

    Digital

    Line interface Output

    signal

    Input

    signal

    Radio Principal Block Diagram

    8

    8

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    9/264

    Proprietary and Confidential

    RF Principals

    • RF - System of communication employing electromagnetic waves

    (EMW) propagated through space

    • EMW travel at the speed of light (300,000 km/s)

    • The wave length is determined by the frequency as follows -

    Wave Length

    • Microwave – refers to very short waves (millimeters) and typically

    relates to frequencies above 1GHz:

    300 MHz ~ 1 meter 

    10 GHz ~ 3 cm

    9

    c

    where c is the propagation velocity of electromagnetic

    waves in vacuum (3x108 m/s)

    Proprietary and Confidential

    RF Principals

    • We can see the relationship between colour, wavelength and amplitudeusing this animation

    10

    9

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    10/264

    Proprietary and Confidential

    Radio Spectrum

    11

    Parameters Affecting Propagation

    12

    10

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    11/264

    Proprietary and Confidential

    Parameters Affecting Propagation

    • Dispersion

    • Humidity/gas absorption

    • Multipath/ducting

    •  Atmospheric conditions (refraction)

    • Terrain (flatness, type, Fresnel zone clearance, diffraction)

    • Climatic conditions (rain zone, temperature)

    • Rain attenuation

    13

    Proprietary and Confidential

    Parameters Affecting Propagation – Dispersion

    • Electromagnetic signal propagating in a physical medium is degraded

    because the various wave components (i.e., frequencies, wavelengths)

    have different propagation velocities within the physical medium:

    • Low frequencies have longer wavelength and refract less

    • High frequencies have shorter wavelength and refract more

    14

    11

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    12/264

    Proprietary and Confidential

    Parameters Affecting Propagation Atmospheric Refraction

    • Deflection of the beam towards the ground due to different electrical

    characteristics of the atmosphere’s is called Dielectric Constant.

    • The dielectric constant depends on pressure, temperature &

    humidity in the atmosphere, parameters that are normally decrease

    with altitude

    • Since waves travel faster through thinner medium, the upper part of the

    wave will travel faster than the lower part, causing the beam to bend

    downwards, following the curve of earth

    15

    No Atmosphere

    With Atmosphere

    Proprietary and Confidential

    Wave in atmosphere

    16

    12

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    13/264

    Proprietary and Confidential

    Parameters Affecting Propagation – Multipath

    • Multipath occurs when there is more then one beam reaching the receiver

    with different amplitude or phase

    • Multipath transmission is the main cause of fading in low frequencies

    17

    Direct beam

    Delayed beam

    Proprietary and Confidential

    Parameters Affecting Propagation – Duct

    •  Atmospheric duct refers to a horizontal layer in the lower atmosphere with

    vertical refractive index gradients causing radio signals:

    • Remain within the duct

    • Follow the curvature of the Earth

    • Experience less attenuation in the ducts than they would if the ducts were not

    present

    18

    Duct Layer 

    Terrain

    Duct Layer 

    13

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    14/264

    Proprietary and Confidential

    Parameters Af fecting Propagation - Polarization andRain

    • Raindrops have sizes ranging from 0.1 millimeters to 9 millimetersmean diameter (above that they tend to break up)

    • Smaller drops are called cloud droplets, and their shape is spherical.

    •  As a raindrop increases in

    • size, its shape becomes more

    • oblate, with its largestcross-section facing the

    • oncoming airflow.

    19

    Large rain drops become

    Increasingly flattened on theBottom;

    very large ones are shaped

    like parachutes

    Proprietary and Confidential

    Parameters Affecting Propagation – Rain Fading

    • Refers to scenarios where signal is absorbed by rain, snow, ice

    •  Absorption becomes significant factor above 11GHz

    • Signal quality degrades

    • Represented by “dB/km” parameter which is related the rain

    density which represented “mm/hr”

    • Rain drops falls as flattened droplet

    V better than H (more immune to rain fading)

    20

    14

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    15/264

    Proprietary and Confidential

    Parameters Affecting Propagation – Rain Fading

    21

    Heavier rain >> Heavier Atten.

    Higher FQ >> Higher Attenuation

    Proprietary and Confidential

    Parameters Affecting Propagation – Fresnel Zone

    22

    Terrain

    Duct Layer0

    1st

    2nd

    3rd

    TX RX

    1. EMW propagate in beams

    2. Some beams widen – therefore, their path is longer 

    3. A phase shift is introduced between the direct and indirectbeam

    4. Thus, ring zones around the direct line are created

    15

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    16/264

    Proprietary and Confidential

    Parameters Affecting Propagation – Fresnel Zone

    • Obstacles in the first Fresnel zone will create signals that will be 0 to 90 degrees outof phase…in the 2nd zone they will be 90 to 270 degrees out of phase…in 3rd zone,

    they will be 270 to 450 degrees out of phase and so on…

    • Odd numbered zones are constructive and even numbered zones are destructive.

    • When building wireless links, we therefore need to be sure that these zones are keptfree of obstructions.

    • In wireless networking the area containing about 40-60 percent of the first Fresnelzone should be kept free.

    23

    Proprietary and Confidential

    Example: First condition

    24

    16

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    17/264

    Proprietary and Confidential

    RF Link Basic Components – Parabolic Reflector Radiation (antenna)

    25

    Proprietary and Confidential

    RSSI Curve for RFU-C

    1,9V

    1,6V

    1,3V

    -30dBm -60dbm -90dBm

    26

    17

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    18/264

    Proprietary and Confidential

    • Standard performance antennas (SP,LP)

    • Used for remote access links with low capacity. Re-using frequencies on adjacent links is notnormally possible due to poor front to back ratio.

    • High performance antennas (HP)

    • Used for high and low capacity links where only one polarization is used. Re-usingfrequencies is possible. Can not be used with co-channel systems.

    • High performance dual polarized antennas (HPX)

    • Used for high and low capacity links with the possibility to utilize both polarizations. Re-usingfrequencies is possible. Can be used for co-channel systems.

    • Super high performance dual polarized antennas (HSX)

    • Normally used on high capacity links with the possibility to utilize both polarizations. Re-usingfrequencies is possible with high interference protection. Ideal for co-channel systems.

    • Ultra high performance dual polarized antennas (UHX)• Normally used on high capacity links with high interference requirements. Re-using

    frequencies in many directions is possible. Can be used with co-channel systems.

    Main Parabolic Antenna Types

    27

    Proprietary and Confidential

    Passive Repeaters

    Plane

    reflector 

    Back-to-backantennas

    28

    18

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    19/264

    Proprietary and Confidential

    Link Calculation – Basic Example (in vacuum)

    Lfs

    TSL Ga Lfsl Ga Lw

    Lb

    Lf 

    RSL

    RSL=TSL+Ga‐Lfsl+Ga‐Lw‐Lb‐Lf 

    RSL  ‐ Received  Signal Level 

    TSL  – Transmitted Signal Level

    Lfsl ‐ Free‐space loss = 92.45 + 20 log x(distance in km x frequency in GHz)

    Lf   ‐ Filter loss

    Lb   ‐ Branching loss

    Lw   ‐  Waveguide loss

    Ga – Antenna gain

    29

    Proprietary and Confidential

     Atmospher ic attenuation

    ][  dBd  Aaa

        

    Starts to contribute to the total attenuation above approximately 15GHz

    Parameters in   a:

    Frequency

    Temperature

     Air pressure

    Water vapour 

    30

    19

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    20/264

    Proprietary and Confidential

    Objective examples

    • Typical objectives used in real systems

    • 99.999%• Month: 25.9 sec

    • Year: 5 min 12 sec

    • 99.995 %• Month: 2 min 10 sec

    • Year: 26 min

    • 99.99%• Month: 260 sec

    • Year: 51 min

    • Performance requirements generally higher than Availability.

    • ITU use worst month for Performance Average year for Availability

    31

    Modulation

    32

    20

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    21/264

    Proprietary and Confidential

    Modulation

    Modulation

     Analog

    Modulation

    Digital

    Modulation

     AM - Amplitude modulation ASK – Amplitude Shift Keying

    FM - Frequency modulation FSK – Frequency Shift Keying

    PM – Phase modulation PSK – Phase Shift Keying

    QAM – Quadrature Amplitude modulation

    33

    Proprietary and Confidential

    Modem

    1 0 1 1 0 1 1 0

    1 0 1 1 0 11 0

    Modem

    1 111 10 0 0

    0111 0 11

    F1F2F1 F1F2F1 F1

    Modem

    1 1 1 1 10 0 0

    1 0 1 1 0 1 1 0

    1800 phase shift

     ASK modulation changes the amplitude to the analog

    signale.”1” and “ 0” have different amplitude.

    FSK modulation is a method of represent the two

    binary states ”1” and ”0” with different

    spcific frequencies.

    PSK modulation changes the phase to the transmittedsignal. The simplest method uses 0 and 1800 .

    Digital modulation

    34

    21

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    22/264

    Proprietary and Confidential

    QAM Modulation

    • Quadrature Amplitude Modulation employs both phase modulation(PSK) and amplitude modulation (ASK)

    • The input stream is divided into groups of bits based on the numberof modulation states used.

    • In 8 QAM, each three bits of input, which provides eight values (0-7)alters the phase and amplitude of the carrier to derive eight uniquemodulation states

    • In 64 QAM, each six bits generates 64 modulation states; in 128QAM, each seven bits generate 128 states, and so on

    4QAM 2bits/symbol 256QAM 8bits/symbol

    8QAM 3bits/symbol 512QAM 9bits/symbol

    16QAM 4bits/symbol 1024QAM 10bits/symbol32QAM 5bits/symbol 2048QAM 11bits/symbol

    64QAM 6bits/symbol

    128QAM 7bits/symbol

    35

    Proprietary and Confidential

    Why QAM and not ASK or PSK for higher modulation?

    • This is because QAM achieves a greater distance between adjacent pointsin the I-Q plane by distributing the points more evenly

    • The points on the constellation are more distinct and data errors arereduced

    • Higher modulation >> more bits per symbol

    • Constellation points are closer >>TX is more susceptible to noise

    36

    22

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    23/264

    Proprietary and Confidential

    Constellation diagram

    • In a more abstract sense, it represents the possible symbols that may beselected by a given modulation scheme as points in the complex plane.

    Measured constellation diagrams can be used to recognize the type of

    interference and distortion in a signal.

    37

    Proprietary and Confidential

    8 QAM Modulation Example

    We have stream: 001-010-100-011-101-000-011-110

    Bit sequence Amplitude Phase (degrees)

    000 

    None

    001 

    None

    010 

    pi/2 

    (90°) 

    011 

    pi/2 

    (90°) 

    100 

    pi 

    (180°) 

    101 

    pi 

    (180°) 

    110 

    3pi/2 

    (270°) 

    111 

    2 3pi/2 

    (270°) 

    How does constellation diagram look?

    DIGITAL QAM (8QAM)

    38

    23

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    24/264

    Proprietary and Confidential

    4QAM VS. 16QAM

    4QAM 16QAM

    39

    Proprietary and Confidential

    2048 QAM

    40

    24

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    25/264

    Proprietary and Confidential

    2-PSK

    4-PSK

    8-PSK

    16-QAM

    64-QAM

    Bandwidth

    DecreasesModulation

    Complixity

    Increases

    Bandwidth vs. Modulation

    41

    Proprietary and Confidential

          P    o    w    e    r

    Noise

    Signal

    S/N

          P    o    w    e    r

    Noise

    S/N

    Signal

          P    o    w    e    r

    Noise

    S/N

    Signal

          P    o    w    e    r

    Noise

    S/N

    Signal

    • Example: S/N influence at QPSK Demodulator 

    • Each dot detected in wrong quadrant result in bit errors

    BER=10-3BER=10-6BER

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    26/264

    Proprietary and Confidential

    10-3

    10-4

    10-5

    10-6

    10-7

    10-8

    -75 -72 -69 -66Receiver input level [dBm]

    BER change ratio vs. Noise isdependent on Noise Power distribution

    and coding

    BER Impact on Transmission Quality

    BER

     

    43

    Proprietary and Confidential

    RSL Vs. Threshold

    Thermal Noise=10*log(k*T*B*1000)

    S/N=23dB for 128QAM (37 MHz)

    BER>10-6RSL (dBm)

    -20

    -30 Nominal Input Level

    -99

    -96 Receiver amplifies thermal noise

    -73 Threshold level BER=10-6

    Fading Margin

    K – Boltzmann constant

    T – Temperature in Kelvin

    B – Bandwidth

    Time (s)

    BER>10-6

    44

    26

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    27/264

    Thank you

    45

    27

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    28/264

     

    This page was intentionally left blank. 

    28

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    29/264

    Version 4

    IP-20N Overview

    November 2014

    Proprietary and Confidential

     Agenda

    2

    • IP-20N Product Highlights

    • Network topology wi th IP-20N

    • IP-20N Overview

    • 1U and 2U chassis

    • TCC – Traffic Control Card

    • RMC – Radio Modem Card• ELIC – Ethernet Line Interface Card

    • TDM Line cards

    • IVM – Inventory Module

    • PDC – Power Distribution Card

    • Fan Module and Air Filter 

    • RFU – Radio Frequency Unit

    • IP-20N Block Diagram

    29

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    30/264

    Proprietary and Confidential

    IP-10CIP-10EIP-10G

    Ethernet + Optional TDM

    IP-10Q

    Ethernet Only

    Compact

    All-OutdoorTerminal / 

    Single-Carrier

    Nodal

    Terminal / 

    Single-Carrier

    NodalAggregation

    FibeAir IP-10 Product Line - 2011

    Optimized for “Full GE”Multi-Carrier pipesUltra-high density

    Optimized Solution for Any Network

    3

    Proprietary and Confidential

    IP-10CIP-10EIP-10G

    Optimized for “Full GE”Multi-Carrier pipesUltra-high density

    Ethernet + Optional TDM

    IP-10Q

    Optimized Solution for Any Network

    Ethernet Only

    FibeAir IP-X0 Product Line - 2012 (Introducing IP-20N)

    Compact

    All-OutdoorTerminal / 

    Single-Carrier

    Terminal / 

    Single-Carrier

    Aggregation

    Nodal

    IP-20N

    Ultra-high density/modularity

    4

    30

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    31/264

    Proprietary and Confidential

    FibeAir IP-20 Product Family

    5

    IP‐20Platform

    IP-20LH

    IP-20A= IP20N + RFU-A

     Avail able on ly fo r US & NA mark et

    IP-20N 1RU & 2RU

    IP-20G

    IP-20S

    IP-20C

    IP-20E

    Proprietary and Confidential

    2RU chassis, Up to 10 RFUs

    Full redundancy  option (No SPoF)

    1RU chassis, Up to 5 RFUs

    FibeAir IP-20N Product Overview

    6

    Unified architecture wi th

    common cards• Traffic/Control cards (TCC)

    • Radio interface cards (RMC)oNon-XPIC

    oXPICo 1024 QAM

    • Line cards (LIC)oEth – 4 x 1GE

    o TDM – 16 x E1/DS1 LIC

     – 1 x STM-1/OC3 LIC

    - 1 x ch STM-1

    o LIC-X-E4-Elec./Opt

    Ultra-high flexibility/modularity

    Optimized foot-print, density, scalability & availability

    Purpose built for Nodal deployments

    31

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    32/264

    Proprietary and Confidential

    FibeAir IP-20N – Product Highlights

    7

    • Optimized nodal solution

    • Multi-Carrier ABC• 1x Up to 8+0 MC‐ABC (Up to 1Gbps)• 1+1/2+2 MC‐ABC/HSB (Up to 1Gbps)

    •Mixed Nx1+0/1+1 & 1x ABC (4+0)

    • Rich packet p rocessing feature-set

    • High Availability n ode

    • Support for m ulti-operator scenarios

    • Highest capacity, scalability and spectral efficiency

    • High precision, flexible packet Synchronization solution

    • Best-in-class TDM migration soluti on using PWE3 (Circuit Emulation)

    • Support Ceragon’ s current and f uture RFUs

    • Purpose built for suppor ting resilient and adaptive multi-carrier radio links scaling to GEcapacity

    • Future-proof with maximal investment protection

    Proprietary and Confidential

    FibeAir IP-20N – Carrier Ethernet TransportMain features

    • Flexible transport

    • Flexible service classification

    • Full E-Line, E-LAN suppor t

    • Hierarchical QoS

    • Superb (hardware based) service level OAM and SLA assurance mechanisms

    • MSTP

    • Enhanced

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    33/264

    Proprietary and Confidential

    Network Topology Example (Tree)

    9

    Proprietary and Confidential

    Network Topology Example (Ring)

    10

    33

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    34/264

    Proprietary and Confidential

    IP‐20N

    IP‐20N

    IP‐20N

    IP‐20G

    Network Topology Example (Tree)

    11

    C

    C

    C

    C

    C

    C

    C

    1+1

    C RFU-C

    2+0

    1+1

    C

    IP‐10G

    C

    C

    IP‐20G

    C

    C

    1+0

    1+02+0IP‐10G

    C

    C

    1+0

    C

    2+0

    C

    C

    1+0

    IP‐20N

    C

    Proprietary and Confidential

    IP‐20N

    IP‐20N

    Edge

    Router

    Edge

    Router

    10GE Fiber

     Ring

    IP‐20N

    IP‐20N

    IP‐20G   IP‐20G IP‐20N

    IP‐20N

    IP‐10G

    IP‐20N

    IP‐20N

    IP‐20N

    IP‐10G

    Reference Integrated CET solution

    12

    IP‐20N

    1+0

    C

    C

    C

    C

    C

    C

    C

    C

     4+0

     Microwave Ring

    1+0C

    E1s

    EthE1s

    Eth

    E1s

    Eth

    E1s

    EthE1s

    Eth

    C

    C

    C

    E1s

    Eth

    E1s

    Eth

    C

    C

    E1s

    Eth

    2+2

    1+1

    2+2

    C   C

    C

    C

    C

    C

    C   C

    1+1

    C RFU-C

    4+0

    4+0

    4+0

    4+0

    4+0

    C

    1+0Eth

    C

    IP‐20C

    E1s

    Eth

    E1s

    Eth

    34

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    35/264

    IP-20N Overview

    13

    Proprietary and Confidential

    IP-20N – 2RU Chassis

    14

    10 x Universal slots for:

    - Radio interface cards (RMC)

    - Ethernet line cards (4 x GE)

    - TDM line cards

    Fans trayFilter tray

    (optional)

    2 x Slots for 

    power distribution

    cards (PDC)

    2 x Slots for 

    Main traffic and

    control cards (TCC)

    1 2

    3 4 5 6

    7 8 9 10

    11 12

    35

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    36/264

    Proprietary and Confidential

    Slots Numbering

    15

    2

    12

    6

    10

    5

    9

    4

    8

    3

    7

    11

    1

    Slots Numbering starts from bottom left

    2

    6543

    1

    50

    51

    51

    Proprietary and Confidential

    Card types allowed per slot – 1RU

    16

    Slot

    Number 

    SlotNumber

     Allowed Card Type Notes

    1 TCC

    2 RMC

    Ethernet – LIC-X-E4-Elec (4x GE)

    Ethernet – LIC-X-E4-Opt (4x GE)

    TDM– LIC-T16 (16x E1)TDM– LIC-T155 (1x ch-STM-1)

    3-6 RMC

    TDM– LIC-T16 (16x E1)

    TDM– LIC-T155 (1x ch-STM-1)

    TDM –LIC-STM1/OC3-RST

    36

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    37/264

    Proprietary and Confidential

    Card types per slot – 2RU

    17

    SlotNumber

     Allowed Card Type Notes

    1 TCC

    2,12 RMC

    Ethernet – LIC-X-E4-Elec (4x GE)

    Ethernet – LIC-X-E4-Opt (4x GE)

    TDM– LIC-T16 (16x E1)

    TDM– LIC-T155 (1x ch-STM-1)

    3 - 10 RMC

    TDM– LIC-T16 (16x E1)

    TDM– LIC-T155 (1x ch-STM-1)

    TDM –LIC-STM1/OC3-RST

    11 TCC

    Proprietary and Confidential

    Recommendations

    18

    It is recommended to place the same type of cards in adjacent pairs, as follows:

    • Slots 3 and 4

    • Slots 5 and 6

    • Slots 7 and 8 (2RU only)

    • Slots 9 and 10 (2RU only)

    The reason for this is that for certain features, connectivity is supported in the backplane

    between these slot pairs

    For example 2+2 HSB SD configu ration wit h XPIC:

    • 1+1 or 2+2 are supported in release 7.9

    • When combining HSB SD and XPIC, the HSB SD protection group and the

    XPIC group cannot be identical. A valid combination would be:

    XPIC Group #1: Slot 3 and 4

    XPIC Group #2: Slot 5 and 6

    Radio Protection Group #1: Slot 3 and 5

    Radio Protection Group #2: Slot 4 and 6

    37

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    38/264

    Proprietary and Confidential

    Traffic – Ethernet Matrix

    19

    Slot 7 Slot 8 Slot 9 Slot 10

    Slot 3 Slot 4 Slot 5 Slot 6

    TCC Slot 1 Slot 2

    Slot 12TCC Slot 11

    SGMII to TCC primary

    SGMII to TCC backu p

    Proprietary and Confidential

    Supported Configurations in T7.9

    20

    Configuration Notes

    1+0

    1+0 IF Combining   Requires RMC‐B and 1500HP

    2+0 Single Polarization   Requires Multi‐Carrier ABC or LAG.

    2+0 Dual Polarization (XPIC)   Requires Multi‐Carrier ABC.

    3+0   Requires Multi‐Carrier ABC or LAG.

    4+0 Single Polarization   Requires Multi‐Carrier ABC or LAG.

    4+0 Dual Polarization (XPIC)   Requires Multi‐Carrier ABC.

    4+0 IF Combining   Requires Multi‐Carrier ABC and 

    1500HP.

    4+0 IF Combining and XPIC   Requires Multi‐Carrier ABC and 

    1500HP.

    5+0 Single

     Polarization   Requires

     Multi

    ‐Carrier

     ABC

     or

     LAG.

    6+0 Single Polarization   Requires Multi‐Carrier ABC or LAG.

    7+0 Single Polarization   Requires Multi‐Carrier ABC or LAG.

    8+0 Single Polarization   Requires Multi‐Carrier ABC or LAG.

    1+1 HSB Protection

    1+1 HSB Protection with BBS Space 

    Diversity

    Requires Multi‐Carrier ABC

    2+2 HSB Protection   Requires Multi‐Carrier ABC

    2+2 HSB Protection with BBS Space 

    Diversity

    Requires Multi‐Carrier ABC

    2+2 HSB Protection with XPIC   Requires Multi‐Carrier ABC

    2+2 HSB Protection with BBS Space 

    Diversity and XPIC

    Requires Multi‐Carrier ABC

    2+2 HSB Protection with IF 

    Combining and XPIC

    Requires Multi‐Carrier ABC and 

    1500HP

    38

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    39/264

    TCC – Traffic control card

    21

    Proprietary and Confidential

    Traff ic Control Card (TCC)

    22

    • Main functions:

    • TCC-B – doesn’t support Multi-Carrier ABC, HSB support

    • TCC-B-MC – required for Multi-Carrier ABC configurations, HSB BBS SD support• 1x Up to 8+0 MC‐ABC (Up to 1Gbps)• 1+1/2+2 MC‐ABC/HSB (Up to 1Gbps)• Mixed Nx1+0/1+1 & 1x ABC (4+0)

    • Network processor with 16 ports

    • 10 Gbps switching capacity

    • 6,25 Mpps (Mega packet per second) switching capacity

    • Shelf control and management• Ethernet traffic management and switching

    • Clock unit

    Industrial SD card 1GB class 6

    Ceragon SD cards with Cera OS:

    1

    11

    39

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    40/264

    Proprietary and Confidential23

    Ethernet Switch16 ports – 10Gbps

    CPUMNG port 1

    MNG port 2

    Line Interface 1Gb SGMII / (2.5Gb)

    Line Interface 1Gb SGMII / (2.5Gb)

    1Gb SGMII / (2.5Gb)

    1Gb SGMII / (2.5Gb)

    1Gb SGMII / (2.5Gb)

    1Gb SGMII / (2.5Gb)

    1Gb SGMII / (2.5Gb)

    Radio Card

    Ethernet Card

    2

    3 4 5 6

    7 8 9 10

    12

    Proprietary and Confidential

    TCC Indicators & Connectors

    24

    Handle

    SYNC

    Port

    External

     Alarms

    Port

    Serial

    Port

    Management

    Ports

    Gigabit

    Electrical Ports

    Gigabit Optical

    Ports

    Handle

     Activity

    LED

    1

    11

    1

    40

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    41/264

    Proprietary and Confidential

    TCC card – Interfaces pin out

    25

    RMC – Radio Modem Card

    26

    41

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    42/264

    Proprietary and Confidential

    Radio Modem Cards (RMC)

    27

    • RMC-A

    • Based on Ceragon’s well known SoC modem

    • Supports up to 256QAM

    • FibeAir IP-10 Series support across a link

    • RMC-B

    • Based on Ceragon’s new SoC modem

    • Supports up to 1024QAM

    • Supports XPIC and non XPIC (same Hardware)

    • Supports Header De-Duplication

    RMC A RMC B

    XPIC No Yes

    Multi‐Carrier ABC No Yes

    Modem type PVG modem Mars modem

    Modulation 256 QAM + ACM 1024 QAM with Premium 

    RFU + ACM

    FD and SD Yes Yes

    IP20 communication with 

    IP10 across a link  Yes No

    2

    3 4 5 6

    7 8 9 10

    12

    Proprietary and Confidential

    Radio Modem Cards (RMC) and RFUs combinations

    28

    Combination  Multi  – Carrier 

    ABC

    XPIC & Header

    De‐ Duplication

    Max available 

    Modulation

    IP‐20N 

    communication 

    with IP‐10 across a 

    radio link

    IP‐20N 

    communication 

    with IP‐20G

    RMC‐A & RFU 

    standard  No No 256 QAM Yes No

    RMC‐A & RFU 

    premium  No No 256 QAM Yes No

    RMC‐B & RFU 

    standard

      Yes Yes 256 QAM No Yes

    RMC‐B & RFU‐

    premium  Yes Yes 1024 QAM No Yes

    2

    RMC-A RMC-B RFU-C/Ce

    42

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    43/264

    Proprietary and Confidential

    Radio Modem Cards (RMC-E)

    29

    RMC-E is used for IP-20LH wit h Evolution radio .

    This c ard has Radio Interface and STM-1 RST Interface

    2

    3 4 5 6

    7 8 9 10

    12

    Proprietary and Confidential

    RMC Indicators & Connectors

    30

    Handle

    IF Connector 

     ACT

    LED

    RFU

    LED

    LINK

    LED

    Handle

    Color ACT LINK RFU

    off    No power No power No power

    green   OK, active mode Link OK no alarms RFU is OK

    yellow   OK, standby mode  Minor or warning

    alarm

    Minor or warning

    alarm

    red   failure  Critical or major 

    alarm

    Critical or major 

    alarm

    2

    3 4 5 6

    7 8 9 10

    12

    43

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    44/264

    ELIC – Ethernet Line Interface Cards

    31

    Proprietary and Confidential

    Ethernet Line Interface Card

    Electrical LIC-XE4-Elec

    32

    • LIC-XE4-Elec

    • Supports 4 GBE ports (one combo)

    • Works only on slots 2 and 12

    • MDI/MDIX support

    • Cascading ports (port 3 & 4)

    2

    12

    44

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    45/264

    Proprietary and Confidential

    LIC-XE4-Elec

    Indicators & Connectors

    33

    Handle Handle

     ACT

    LED

    Gigabit Electrical Ports

    Color ACT Left LED for port Right LED for port SFP LED

    off    No power Interface is disabled

    Interface is disabled 

    or the interface 

    operates at 

    100BaseT mode

    Cable not connected, 

    link not ok, interface 

    is disabled

    green   OK, no alarms

    the interface is 

    enabled and link is 

    OK (Blinking = traffic 

    activity)

    Interface operates at 

    1000BaseT mode, 

    Blinking means 

    operates at 10BaseT 

    mode

    Interface is enabled 

    and link is OK, 

    blinking means traffic 

    activity

    red  Card failure or

    hardware failure  ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

    SFP

    LEDSFP

    Slot

    2

    12

    Proprietary and Confidential

    Ethernet Line Interface Card

    Optical L IC-XE4-Opt

    34

    • LIC-XE4-Opt

    • Supports 4 GBE ports (firs port is combo)

    • Total 4x SFP

    • Works only on slots 2 and 12

    • Cascading ports (port 3 & 4)

    2

    12

    45

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    46/264

    Proprietary and Confidential

    LIC-XE4-Opt

    Indicators & Connectors

    35

    Handle Handle

     ACT

    LED

    Gigabit Optical Ports

    Color ACT Left LED for port Right LED for port SFP LED

    off    No power Interface is disabled

    Interface is disabled 

    or the interface 

    operates at 

    100BaseT mode

    Cable not connected, 

    link not ok, interface 

    is disabled

    green   OK, no alarms

    the interface is 

    enabled and link is 

    OK (Blinking = traffic 

    activity)

    Interface operates at 

    1000BaseT mode, 

    Blinking means 

    operates at 10BaseT 

    mode

    Interface is enabled 

    and link is OK, 

    blinking means traffic 

    activity

    red  Card failure or

    hardware failure  ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

    SFP

    LEDGigabit

    Electrical port

    2

    12

    TDM Line cards

    36

    46

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    47/264

    Proprietary and Confidential

    LIC-T16 (16xE1/DS1)

    Line Interface Card

    37

    • TDM-LIC

    • 16 E1/T1s

    • 1588 client clock and boundary clock as a future option

    2

    3 4 5 6

    7 8 9 10

    12

    Proprietary and Confidential

    LIC-T16 (16xE1)- Indicators & Connectors

    38

    Handle Handle

     ACT LED

    16 x E1/ DS1 Connector 

    E1/DS1LED

    Color ACT Sync Left LED for 

    port

    Sync Right LED for 

    port

    E1/DS1 LED

    off    No power

    The interface is 

    disabled or no signal is 

    being received 

    The interface is 

    disabled 

    The interface is 

    disabled

    green   OK, no alarmsIndicates whether a valid 

    signal is being received 

    when enabled

    Indicates whether the 

    interface is configured to 

    export a clock 

    No alarms

    red  Card failure or

    hardware failure  ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐   Any alarms

    SYNC Connector 

    2

    3 4 5 6

    7 8 9 10

    12

    47

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    48/264

    Proprietary and Confidential

    LIC-T16 (16xE1)

    Connector and Synchronization Interface

    39

    2

    3 4 5 6

    7 8 9 10

    12

    Proprietary and Confidential

    TDM LIC-T155 (1x ch-STM-1)

    40

    • TDM-LIC

    • 1 STM-1/OC3

    • 1588 client clock and boundary clock as a future option

    • The 1 x ch-STM-1 interface uses an optical SFP connector.

    2

    3 4 5 6

    7 8 9 10

    12

    48

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    49/264

    Proprietary and Confidential

    TDM LIC-T155 (1x ch-STM-1)

    Indicators & Connectors

    41

    Handle Handle

     ACT

    LED

    STM-1/OC3 SFP

    STM-1/OC3

    LEDSYNC

    Connector 

    Color ACT Sync Left LED for 

    port

    Sync Right LED for 

    port

    STM1/OC3

    off    No 

    power

    The interface is 

    disabled 

    or 

    no 

    signal 

    is 

    being received 

    The interface is 

    disabled 

    The interface is 

    disabled

    green   OK, no alarmsIndicates whether a valid 

    signal is being received 

    when enabled

    Indicates whether the 

    interface is configured to 

    export a clock 

    No alarms

    red  Card failure or

    hardware failure  ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐   Any alarms

    2

    3 4 5 6

    7 8 9 10

    12

    Proprietary and Confidential

    TDM LIC-STM-1/OC3-RST

    42

    2

    3 4 5 6

    7 8 9 10

    12

    49

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    50/264

    Inventory Module (IVM)

    43

    Proprietary and Confidential

    Mandatory Cards - IVM

    44

    • Single card for 1RU and 2RU chassis.

    • 2 x E2PROM on sing le board (function as 2 separated cards).

    • Installed at the back of the chassis

    • Holds the chassis:

    • License.

    • Node MAC address (48 MACs per unit).

    • Serial number.

    50

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    51/264

    Proprietary and Confidential

    IVM – Inventory Module

    45

    The IVM contains pre-programmed information that defines the chassis and its slots,

    including:

    • Module types that can be inserted into the chassis, per slot

    • Product and card names

    • Internal MAC addresses

    • Serial number  

    • Hardware versions

    • Licensed features and capacities

    The IVM stores information in a 8 KB (64 kb) EEPROM. A 2RU IP-20N IVM contains

    two EEPROMs. If a redundant TCC configuration is used, each EEPROM is

    dedicated to a specific TCC

    IVM

    EEPROM

    TCC 2

    EEPROM

    TCC 1

    PDC – Power Distribution Card

    46

    51

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    52/264

    Proprietary and Confidential

    Mandatory Cards – PDC

    Power Distr ibution Card

    47

    • Monitors the inputs signal

    • Drives the -48V signal

    • Converts the -48V signal to other power levels

    • Different card for 1RU chassis and 2RU chassis

    • 2U chassis uses two PDC card for redundancy

    • 1U chassis uses dual input for redundancy

    Proprietary and Confidential

    Power Distribution Card

    •  A 2RU IP-20N can use two PDC cards for redundancy. Each PDC provides 48Vpower to all modules in the chassis via the backplane, on different lines.

    •  A diode bridge in the modules prevents power spikes and unstable power from thetwo power sources.

    • Voltage range: -40,5 VDC to -60 VDC

    • The maximum rating of the overcurrent protection shall be 3 Amp per link, while themaximum current rating is 9A for 1RU and 17Amp for 2RU

    • The power source must be grounded

    • If the voltage goes below -38V, the LED displays Red. When the voltage returns to -40V or higher, the Red indication goes off and the Green indication reappears.

    48

    Standard PDC Interface Dual - Input PDC Interfaces

    52

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    53/264

    Proprietary and Confidential

    Power consumption specification

    49

    Fans Module & Air Filter 

    50

    53

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    54/264

    Proprietary and Confidential

    Mandatory Cards – Fans

    51

    • Four fans inside the fans module

    • Powered up from -48VDC from the backplane

    • Different module for 1RU and 2RU chassis

    Proprietary and Confidential

    Filter Tray - optional

    52

    • IP-20N offers a filter as optional

    equipment. If a filter tray is not

    ordered, the IP-20N chassis is

    delivered with a blank filter slot

    cover.

    54

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    55/264

    IP-20N Block diagram

    53

    Proprietary and Confidential

       I   P  -   2   0   N

      –   B   l  o

      c   k   D   i  a  g  r  a  m

    54

    55

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    56/264

    Proprietary and Confidential

    Traffic Path vs Internal Shelf Management Path

    55

    Proprietary and Confidential

    Traffic Path vs Internal Shelf Management Path

    56

    56

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    57/264

    Thank You

    57

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    58/264

     

    This page was intentionally left blank. 

    58

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    59/264

     Apr il 2014

    Radio Frequency Units

    V1

    1

    Proprietary and Confidential

     Agenda

    2

    • Radio Frequency uni ts for IP-20N

    • RFU Selection Guide

    • RFU-C

    • 1500HP / RFU – HP

    • Split Mount Configuration and Branching

    • New Outdoor Circulator Block OCB

    • Split Mount Configurations

    • Green mode

    59

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    60/264

    Proprietary and Confidential

    Radio Frequency units

    3

    • Standard Power • FibeAir RFU-C

    • High Power • FibeAir 1500HP

    • FibeAir RFU-HP

    • The following RFUs can be installed in a split-mount configuration:• FibeAir RFU-C (6–42 GHz)

    • FibeAir 1500HP RFU-HP (6–11 GHz)

    • RFU-HP (6–8 GHz)

    • The following RFUs can be installed in an all-indoor configuration:• FibeAir 1500HP/RFU-HP (6–11 GHz)

    • The IDU and RFU are connected by a coaxial cable RG-223 (up to 100 m/300 ft),Belden 9914/RG-8 (up to 300 m/1000 ft) or equivalent, with an N-type connector(male) on the RFU and a TNC connector on the RMC in the IP-20N chassis.

    Proprietary and Confidential

    Ultra High Power (Max 33 dbm)

    6-8 GHz

    3.5-56Mhz Ch. Bandwidth

    Low Loss Chaining

    QPSK-1024QAM

    Reduced Power Consumption Mode (Green Mode)

    Standard Power (Max 24 dbm)

    6-38 GHz

    3.5-56Mhz Ch. Bandwidth

    QPSK-1024QAM

    Very Compact

    4

    FibeAir ® Radio Frequency Units

    FibeAir RFU-C

    FibeAir RFU-HP -1RX

    High Power (Max 33 dbm)

    6-11 GHz

    3,5-56Mhz Ch. Bandwidth

    QPSK-1024QAM

    Low Loss Chaining

    Dual RX with IFC (Single Rx available for 11GHz)

    FibeAir 1500-HP/SD

    60

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    61/264

    Proprietary and Confidential

    RFU Selection Guide

    5

    Character  1500HP/RFU‐HP

    (6  – 11 GHz)

    RFU‐C

    (6  – 42 GHz)

    RFU‐Ce

    (6  – 42 GHz)

    Installation Type

    Split Mount   √ √ √

    All‐Indoor   √  

    Configuration

    1+0/2+0/1+1/2+2   √ √ √

    N+1   √  

    N+0 ( N>2)   √  

    SD support   √ (IFC, BBS)   √ (BBS)   √ (BBS)

    Power Saving Mode  Adjustable Power 

    Consumption  √

    Modulation QPSK to 256 QAM   √ √ √

    512 to 1024 QAM   √     √

    RFU-HP does not support 56 MHz channels.IFC at 40MHz is supported only for the 11GHz frequency band.

    RFU – C

    6

    61

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    62/264

    Proprietary and Confidential

    RFU – C 6-42GHz

    • Standard RFU – C• Support up to 256 QAM modulation

    • RMC-A or RMC-B

    • Premium RFU-Ce• Support up to 1024 QAM modulation

    • RMC-B is required

    • Main Features of RFU-C:

    • Frequency range – Operates in the frequency range 6 – 42 GHz

    • More power in a smaller package - Up to 26 dBm for extended distance, enhancedavailability, use of smaller antennas

    • Configurable Modulation – QPSK – 1024 QAM

    • Configurable Channel Bandwidth – 3.5 MHz – 56MHz

    • Compact, lightweight form factor - Reduces installation and warehousing costs

    • Supported configurations:

    •   1+0  – direct and remote mount 

    •   1+1  – direct and remote mount 

    •   2+0  – direct and remote mount 

    •   2+2  – remote mount

    •   4+0  – remote mount

    • Eff icientand easy

    7

    Proprietary and Confidential

    Example of RFU-C direct 1+1 mount configurations

    1+1 direct

    8

    62

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    63/264

    Proprietary and Confidential

    Orthogonal Mode Transducer (OMT) Installation for 2+0

    Configuration

    9

    Switch to the circular adaptor(removing the

    existing rectangular transition,

    swapping the O-ring, andreplacing on the circular

    transition).

    Proprietary and Confidential

    OMT Installation Example

    10

    Note: RFUs are at sub 11GHz band

    63

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    64/264

    1500HP / RFU–HP

    11

    Proprietary and Confidential

    Main Features of 1500HP/RFU-HP

    • Frequency range:

    • 1500HP 2RX: 6-11GHz

    • 1500HP 1RX: 11GHz

    • RFU-HP: 6-8GHz

    • Frequency source – Synthesizer 

    • Installation type – Split mount – remote mount, all indoor (No direct mount)

    • Diversity – Optional inno vative IF Combining Space Diversity for improved system gain (for 1500HP), aswell as BBS Space Diversity (all models)

    • High transmit power – Up to 33dBm in all indoor and split mount in stallations

    • Configurable Modulation – QPSK – 1024 QAM

    • Configurable Channel Bandwidth –

    • 1500HP 2RX (6-11 GHz): 10-30 MHz

    • 1500HP 1RX (11 GHz): 10-30 MHz

    • 1500HP 1RX (11 GHz wide): 24-40 MHz

    • RFU-HP 1RX (6-8GHz): 3.5-56 MHz

    • System Configuration s – Non-Protected (1+0), Protected (1+1), Space Diversity, 2+0/2+2 XPIC, N+0, N+1

    • XPIC and CCDP – Built-in XPIC (Cross Polarization Interference Canceller) and Co-Channel Dual Polarization(CCDP) feature for double transmission capacity, and more bandwidth efficiency

    • Power Saving Mode option - Enables the microwave system to automatically detect when link conditions allow itto use less power (for RFU-HP)

    • Tx Range (Manual/ATPC) – Up to 20 dB dynamic range

    •  ATPC (Automati c Tx Power Con tro l)

    • RF Channel Selection – Via EMS/NMS

    • NEBS – Level 3 NEBS compliance

    12

    64

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    65/264

    Proprietary and Confidential

    1500 HP 2RX in 1+0 SD Configuration

    13

    Proprietary and Confidential

    1500 HP 1RX in 1+0 SD Configuration

    14

    65

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    66/264

    Proprietary and Confidential

    RFU-HP 1RX in 1+0 SD Configuration

    15

    Proprietary and Confidential

    HP Comparison Table

    16

    Feature 1500HP 2RX 1500HP 1RX RFU‐HP Notes

    Frequency Bands Support   6L,6H,7,8,11GHz 6L,6H,7,8,11GHz 6L,6H,7,8GHz

    Channel Spacing Support  Up to 30 MHzUp to 30 MHz

    11 GHz version for 40 MHz

    Up to 60 MHz

    Split‐Mount   √ √ √  All are compatible with OCBs 

    from both generations

    All‐Indoor   √ √ √   All are compatible with ICBs

    Space Diversity   BBS and IFC BBS BBS   IFC

     ‐ IF

     CombiningBBS ‐ Base Band Switching

    Frequency Diversity   √ √ √

    1+0/2+0/1+1/2+2   √ √ √

    N+1   √ √ √

    N+0 ( N>2)   √ √ √

    High Power   √ √ √

    Remote Mount Antenna   √ √ √

    Power Saving Mode   ‐‐ ‐‐ √Power consumption changes 

    with TX power

    1500 HP (11 GHz ) 40 MHz bandwidth does not support IF Combining. For this frequency, space diversity is only available via BBS.

    66

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    67/264

    Split Mount Configuration and Branching

    Proprietary and Confidential

    Split Mount Configuration and Branching Network

    18

    • Outdoor Circulator Block OCB – The Tx and the Rx pathcirculate together to the main OCB port. When chaining

    multiple OCBs, each Tx signal is chained to the OCB Rx

    signal and so on (uses S-bend section). For more details,refer to 1500HP/RFU-HP OCBs

    • Indoor Circulator Block ICB – All the Tx signals arechained together to one Tx port (at the ICC) and all the Rx

    signals are chained together to one Rx port (at the ICC). TheICC circulates all the Tx and the Rx signals to one antenna

    port.

    67

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    68/264

    Proprietary and Confidential19

    Split Mount Configuration and Branching Network

     All- Indoor Vertical Branching Split-Mount Branching and All Indoor Compact

    New OCB

    20

    68

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    69/264

    Proprietary and Confidential21

    New OCB – Outdoor Circulator Block

    The OCB has the follow ing main purposes:

    1. Hosts the circulators and the attached filters.

    2. Chain and accumulate radio signal ( multiple carriers )

    3. Routes the RF through the filters and circulators.4. Allows RFU connection to the Main and Diversity antennas.

    Proprietary and Confidential

    New OCB Components

    22

    • RF Filters - are used for specific frequency channels and Tx/Rx separation. The filters are attached to the OCB,and each RFU contains one Rx and one Tx filter. In a Space Diversity using IF combining configuration, each RFU

    contains two Rx filters (which combine the IF signals) and one Tx filter. The filters can be replaced without

    removing the OCB. The RF filter is installed with every conf iguration.

    • DCB - Diversity Circulator Block An external block which is added in Space Diversity configurations. DCB isconnected to the diversity port and chains two OCBs.

    • Coupler Kit is used for 1+1 Hot Standby configurations. (loss 1.6 /6dB)

    • Symmetrical Coupler Kit is used for: (loss of 3/3 dB) • W hen chaining adjacent channels (only 28/30 MHz) • 1+1Hot Standby configurations with a symmetrical loss of 3dB in each direction Note: CPLRs loss tolerance is ±0.7

    dB

    • U Bend The U Bend connects the chained DCB (Diversity Circulato r Block) in N+1/N+0 configurations.

    • S Bend The S Bend connects the chained OCB (Outdoor Circulator Block) in N+1/N+0 configurations.

    • Pole Mount Kit The Pole Mount Kit is used to fasten up to five OCBs and the RFUs to the pole. The kit enablesfast and easy installation.

    69

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    70/264

    Proprietary and Confidential

    1+1 and 2+2 HSB Configuration

    23

    Proprietary and Confidential

    N+0/N+1 Configuration

    24

    70

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    71/264

    Proprietary and Confidential

    2+0 XPIC

    25

    Proprietary and Confidential

    Split mount applications

    26

    71

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    72/264

    Proprietary and Confidential

    Split mount applications 4+0

    S-Bend

    27

    Proprietary and Confidential

    Split mount applications 4+0 SD

    S-Bend

    U-Bend

    DCB DCB

    28

    72

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    73/264

    Proprietary and Confidential

    Green ModeSignificant Power Consumption Reduction

    29

    • Minimal power consumption required in 99.9% of the time

    • Green Mode enables:

    • Reduction of consumed power by automatically reducing Tx power 

    • Quick increase in Tx Power in case of fading.

    • No traffic impact

    Power Consumption 

    Level

    Max. Tx Power

    (@ 128QAM)

    Power Consumption

    High 31dBm 80W

    Mid  27dBm 56W

    Low 21dBm 41W

    Automatic TX Power control for optimal power 

    consumption

    Proprietary and Confidential

    Green Mode (RFU-HP)Significant Power Consumption Reduction

    30

    80W

    56W

    41W

    31dBm

    27dBm

    21dBm

    73

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    74/264

    Proprietary and Confidential

    Power Consumption VS. Monitored TSL

    31

    Power State  Monitored TX 

    Power

    Consumed 

    power [W]

    HIGH 31dBm 80 Watt

    MEDIUM 27dBm 56 Watt

    LOW 21dBm 41 Watt

    * X

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    75/264

    Proprietary and Confidential

    GREEN MODE

    33

    RX: ‐37dBm

    Green level: ‐50dBm

    Set   “Green 

    Mode”  enable

    Set   “Green RSL”   limit [dBm]

    0 dB5 dB15 dB10 dB

    RX: ‐42dBm

    Green level: ‐50dBm

    RX: ‐47dBm

    Green level: ‐50dBm

    RX: ‐52dBm

    Green level: ‐50dBm

    When fading occurs, both transmitters

    compare the monitored RSL with the Green

    Level (Ref.). As long as RSL> Ref. there is no

    need to increase the TSL.

    setting the Green RSL to

    -50dBm doesn’t degrade fademargin, as the mechanism will

    increase TX power if

    necessary.

    Proprietary and Confidential

    GREEN MODE

    34

    15 dB

    RX: ‐52dBm

    Green level: -50dBm

    RX: ‐50dBm

    Green level: -50dBm

    When RSL drops below the Green Ref. level,

    we must increase the TSL to maintain the

    fade margin and avoid low sensitivity

    Set   “Green Mode”  enable

    Set   “Green RSL”   limit [dBm]

    setting the Green RSL to

    -50dBm doesn’t degrade fade

    margin, as the mechanism will

    increase TX power if

    necessary.

    75

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    76/264

    Thank You

    76

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    77/264

    October, 2014 v2

    First login

    Ceragon Training Services

    Proprietary and Confidential

     Agenda

    2

    • CLI and Web login

    • General commands

    • Get IP address

    • Set IP address

    • Set to default

    77

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    78/264

    Proprietary and Confidential

    Connecting to the Unit

    3

    CLI

    Web/Telnet

    Default Username/password is admin/admin

    Baud rate = 115200

    Data bits: 8

    Parity: None

    Stop bits: 1

    Flow Control: None

    IP address = 192.168.1.1

    Proprietary and Confidential

    General commands

    4

    Press twice the TAB key for optional commands in actual directoryUse the TAB key to auto-comp lete a syntax

    Use the arrow keys to navigate through recent commands

    Question mark to list helpful commands

    78

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    79/264

    Proprietary and Confidential

    Get IP address

    5

    CLI Command:

    “platform management ip show ip-address”

    Proprietary and Confidential

    Changing Management IP Address

    6

    • CLI Command:

    “ platform management ip set ipv4-address subnet

    gateway ”

    • Example

    • Webexpand Platform branch, then Management branch and cl ick on IP, setaccordingly and click Apply button

    79

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    80/264

    Proprietary and Confidential

    Set to default

    7

    • CLI Command:

    “ platform management set-to-default”

    Please note that IP address after Set to Factory Default will be not changed!!!

    Proprietary and Confidential

    Other CLI commands

    8

    • For any CLI commands please follow our Web Manual

    • Open Index html fi le

    • Find out in Topics submenu required configuration

    80

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    81/264

    Web Management

    9

    Proprietary and Confidential

    First Web login

    10

    Default IP address is 192.168.1.1 /24

    Default Username/password is admin/admin

    81

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    82/264

    Proprietary and Confidential

    Set to factory default

    11

    1

    2

    3

    Please note that IP address after Set to Factory Default will be not changed!!!

    Proprietary and Confidential

    IP address sett ings

    12

    1

    2 – select IPv4 or IPv6

    3

    82

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    83/264

    Proprietary and Confidential

    Web configuration manual

    13

    • For any CLI commands please follow our Web Manual

    • Open Index html fi le

    • Find out in Topics submenu required configuration

    Thank You

    83

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    84/264

     

    This page was intentionally left blank. 

    84

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    85/264

    Version 2

    Shelf Management

    October 2014

    Proprietary and Confidential

    Connecting to the Unit

    2

    CLI

    Web

    Default Username/password is admin/admin

    IP address = 192.168.1.1

    Baud rate = 115200

    Data bits: 8

    Parity: None

    Stop bits: 1

    Flow 

    Control: 

    None

    85

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    86/264

    Proprietary and Confidential

    Chassis Configuration Window

    3

    Navigation Tree Configuration Area

    Selection Area

    Proprietary and Confidential

    Configuring the Chassis (1/2)

    4

    86

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    87/264

    Proprietary and Confidential

    Configuring the Chassis (2/2)

    5

    Proprietary and Confidential

    Questions?

    6

    87

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    88/264

    Thank You

    88

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    89/264

    Version 3

     ACM – Adaptive Coding and Modulation

    MSE – Mean Square Error 

    November 2014

    Proprietary and Confidential

     Agenda

    2

    •  Adapt ive Coding and Modulation

    • Using MSE with ACM

    • What is MSE?

    • Link Commissioning with MSE

    • Triggering ACM with MSE

    •  ACM Benefits

    •  ACM and 1+1 HSB

    89

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    90/264

    Proprietary and Confidential3

     Adaptive Coding and Modulat ion (ACM)• In ACM mode, the radio will select the highest possible link capacity based on received signal quality.

    • When the signal quality is degraded due to link fading or interference, the radio will change to a more robust

    modulation and link capacity is consequently reduced.

    • When signal quality improves, the modulation is automatically increased and link capacity is restored to the original

    setting. The capacity changes are hitless (no bit errors introduced).

    • During the period of reduced capacity, the traffic is prioritized based on Ethernet QoS - and TDM priority - settings.

    • In case of congestion the Ethernet or TDM traffic with lowest priority is dropped. TDM capacity per modulation

    state is configurable as part of the TDM priority setting.

    3

    Proprietary and Confidential

    Hitless and Errorless switching

    4

    90

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    91/264

    Using MSE with ACM

    Proprietary and Confidential

    MSE - Definition

    6

    MSE is used to quantify the difference between an estimated

    (expected) value and the true value of the quantity being

    estimated

    MSE measures the average of the squared errors:

    MSE is an aggregated error by which the expected value differs

    from the quantity to be estimated.

    The difference occurs because of randomness or because the

    receiver does not account for information that could produce a

    more accurate estimated RSL

    91

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    92/264

    Proprietary and Confidential

    To simpli fy….

    7

    Imagine a production line where a machine needs to insert

    one part into the other 

    Both devices must perfectly match

    Let us assume the width has to be 10mm wide

    We took a few of parts and measured them to see how

    many can fit in….

    Proprietary and Confidential

    The Errors Histogram(Gaussian probability dis tribution functi on)

    8

    To evaluate how accurate our machine is, we need to know how many

    parts differ from the expected value

    9 parts were perfectly OK

    10mm 12mm 16mm6mm 7mm

    width

    Quantity

    3

    2

    3

    1

    9 Expected value

    92

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    93/264

    Proprietary and Confidential

    The difference from Expected value…

    9

    To evaluate the inaccuracy (how sever the situation is) we

    measure how much the errors differ from expected value

    10mm 12mm 16mm6mm 7mm

    width

    Quantity

    Error = + 6 mm

    Error = - 3 mm

    Error = + 2 mm

    Error = 0 mm

    Error = - 4 mm

    Proprietary and Confidential

    Giving bigger differences more weight than smaller

    differences

    10

    We convert all errors to absolute values and then we square them

    The squared values give bigger differences more weight than smaller differences,

    resulting in a more powerful statistics tool:

    16cm parts are 36 ”units” away than 2cm parts which are only 4 units away

    10mm 12mm 16mm6mm 7mm

    width

    Quantity

    + 6 mm = 36

    -3 mm = 9

    + 2 mm = 4

    Error = 0 mm

    - 4 mm = 16

    93

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    94/264

    Proprietary and Confidential

    Calculating MSE

    11

    To evaluate the total errors, we sum all the squared errors and take the average:

    16 + 9 + 0 + 4 + 36 = 65, Average (MSE) = 13

    The bigger the errors (differences) >> the bigger MSE becomes

    width

    Quantity

    + 6 mm = 36

    -3 mm = 9

    + 2 mm = 4

    Error = 0 mm

    - 4 mm = 16

    Proprietary and Confidential

    Calculating MSE

    12

    When MSE is very small – the “Bell” shaped histogram is closer to perfect

    condition (straight line): errors = ~ 0

    10mm

    width

    Quantity

    MSE determines how narrow / wide the “ Bell” is

    94

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    95/264

    Proprietary and Confidential

    MSE in digital modulation (Radios)

    13

    Let us use QPSK (4QAM)

    as an example:

    QPSK = 2 bits per symbol

    2 possible states for I signal

    2 possible states for Q signal

    = 4 possible states for the

    combined signal

    The graph shows the expected

    values (constellation) of the

    received signal (RSL)

    0001

    1011

    I

    Q

    Proprietary and Confidential

    MSE in digital modulation (Radios)

    14

    The black dots represent the

    expected values (constellation)

    of the received signal (RSL)

    The blue dots represent the

    actual RSL

     As indicated in the previous

    example, we can say that the

    bigger the errors are – the

    harder it becomes for the

    receiver to detect & recover the

    transmitted signal

    0001

    1011

    I

    Q

    95

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    96/264

    Proprietary and Confidential

    MSE in digital modulation (Radios)

    15

    MSE would be the average

    errors of e1 + e2 + e3 + e4….

    When MSE is very small the

    actual signal is very close tothe expected signal

    0001

    1011

    I

    Q

    e1

    e2

    e3e4

    Proprietary and Confidential

    MSE in digital modulation (Radios)

    16

    When MSE is too big, the

    actual signal (amplitude &

    phase) is too far from theexpected signal

    0001

    1011

    I

    Q

    e1

    e2

    e3e4

    96

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    97/264

    Proprietary and Confidential

    Commissioning with MSE in EMS

    17

    When you commission your

    radio link, make sure your MSE

    is small

     Actual values may be read

    -34dB to -35dB

    Bigger values will result in loss

    of signal

    Proprietary and Confidential

    MSE and ACM

    18

    When the errors is too big, we need

    a stronger error correction

    mechanism (FEC)

    Therefore, we reduce the number

    of bits per symbol allocated for data

    and re-assign the extra bits forcorrection instead

    For example – 

    256QAM has great capacity but

    poor immune to noise

    64QAM has less capacity but much

    better immune for noise

     ACM – Adaptive Code Modulation

    97

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    98/264

    Proprietary and Confidential

    Triggering ACM with MSE

    19

    When ACM is enabled, MSE values are analyzed on each side of the link

    When MSE degrades or improves, the system applies the required

    modulation per radio to maintain service

    Profile Mod MSE Down-Threshold MSE Up-Threshold

    0 QPSK -18

    1 8PSK -16 -19

    2 16QAM -17 -23

    3 32QAM -21 -26

    4 64QAM -24 -29

    5 128QAM -27 -32

    6 256QAM -30 -34

    7 512QAM -32 -37

    8 1024 QAM SFEC -35 -38

    9 1024 QAM WFEC -36 -41

    10 2048QAM -39

     Applicable for both 28/56MHz , 2048 QAM will be supported in 7.9

    The values are typical and sub ject to change in relation to the frequency and RFU

    type. For more details please contact your Ceragon representative

    Proprietary and Confidential

     ACM & MSE: An example…

    20

    It is easier to observe the hysteresis of changing the ACM profile with

    respect to measured MSE.

     As you can see, the radio remains @ profile 8 till MSE improves to -38dB:

    MSE-39 -36 -35 -32 -30 -27 -24 -21

    Profile 10 Profile 9 Profile 8 Profile 7 Profile 6 Profile 5 Profile 4 Profile 3

    -41

    -38

     ACM

    Profile

    -37

    -34

    Downgrade

    2048 QAM

    Downgrade

    1024 QAM 1024 QAM 512 QAM 256 QAM 128 QAM 64 QAM 32 QAM

    98

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    99/264

    Proprietary and Confidential

     ACM & MSE: An Example

    21

    When RF signal degrades and MSE passes the upgrade point (MSE @ red point), ACM will

    switch back FASTER to a higher profile (closer to an upgrade point) when MSE improves.

    When RF signal degrades and MSE does not pass the upgrade point (green point) –  ACM

    waits till MSE improves to the point of next available upgrade point ( takes longer time to

    switch back to the higher profile).

     MSE‐39  ‐36  ‐35

    Profile 10  Profile 9   Profile 8

    ‐41  ‐38 

     ACM

     Profile

    Proprietary and Confidential

     ACM Benefits

    22

    • The advantages of IP-20N’s dynamic ACM include:

    • Maximized spectrum usage

    • Increased capacity over a given bandwidth

    • 8 to 10 modulation/coding work points (~3 db system gain for eachpoint change)

    • Hitless and errorless modulation/coding changes, based on signalquality

    •  Adaptive Radio Tx Power per modulation for maximal sys tem gain perworking point

    •  An in tegrated QoS mechanism that enables intell igent congestionmanagement to ensure that high p riority traffic is not affected during

    link fading

    99

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    100/264

    Proprietary and Confidential

     ACM and 1+1HSB

    23

    • When ACM is activated together with 1+1 HSB protection , it isessential to feed the active RFU via the main channel of the coupler(lossless channel), and to feed the standby RFU via the secondarychannel of the coupler (-6db attenuated channel). This maximizessystem gain and opt imizes ACM behavior for the follow ing reasons:

    • In the TX direction, the power will experience minimal attenuation.

    • In the RX direction, the received signal will be minimally attenuated.Thus, the receiver will be able to lock on a higher ACM profile(according to what is dictated by the RF channel conditions).

    • The follow ing ACM behavior should be expected in a 1+1 or 2+2configuration:

    • In the TX direction, the Active TX will follow the remote Active RX ACMrequests (according to the remote Active Rx MSE performance).

    • The Standby TX might have the same profile as the Active TX, or mightstay at the lowest profile (profile-0). That depends on whether theStandby TX was able to follow the remote RX Active unit’s ACMrequests (only the active remote RX sends ACM request messages).

    • In the RX direction, both the active and the standby carriers follow theremote Active TX profile (which is the only active transmitter).

    Thank You

    100

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    101/264

    Version 3

    Radio Link Parameters

    October 2014

    Proprietary and Confidential

     Agenda

    2

    • MRMC

    • TX & RX Frequencies

    • Link ID

    • RSL

    • MSE

    • Current ACM Profile

    101

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    102/264

    Proprietary and Confidential

    High and Low frequency station

    Local site

    High station

    Remote site

    Low station

    High station means: Tx(f1) >Rx(f1’)

    Tx(f1)=11500 MHz Rx(f1)=11500 MHz

    Rx(f1’)=11000 MHz Tx(f1’)=11000 MHz

    Low station means: Tx(f1’) < Rx(f1)

    Full duplex

    3

    Proprietary and Confidential

    IDU   ODU   IDUODU) ))TSL   RSL

    Radio Link Parameters

    4

    To Establish a radio link, we need configure fo llowing parameters:

    1. MRMC – Modem scripts (ACM or fixed capacity, channel & modulation)

    2. TX / RX frequencies – set on every radio

    3. Link ID – must be the same on both ends4. Max. TSL – Max. allowed Transmission Signal [dBm]5. Unmute Transceiver – Transceiver is by default muted (is not transmitting)

    -------------------------------------------------------------------------------------------------------

    To verify a radio link, we need control following parameters:

    1. RSL – Received Signal Level [dBm] – nominal input level is required

    2. MSE- Mean Square Error [dB]3. Current ACM profile

    102

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    103/264

    Proprietary and Confidential

    Modulation RFU‐C with RMC‐A RFU‐C Premium with 

    RMC‐B

    QPSK Profile 0 Profile 0

    8QAM Profile 1 Profile 1

    16QAM Profile 2 Profile 2

    32QAM Profile 3 Profile 3

    64QAM Profile 4 Profile 4

    128QAM Profile 5 Profile 5

    256QAM (strong FEC) Profile 6 N/A

    256QAM (weak FEC) Profile 7 Profile 6

    512QAM N/A Profile 7

    1024QAM (Strong FEC) N/A Profile 8

    1024QAM (Light FEC) N/A Profile9

    MRMC – Multi Rate Mult i Coding Prof iles

    5

    Proprietary and Confidential

    MRMC Scripts – 1st step

    6

    Changing script automatically resets dedicated RMC card

    1

    2

    3

    N – normal script

    X – XPIC script

    103

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    104/264

    Proprietary and Confidential

    Radio Parameters settings

    7

    2nd step

    3th step

    4th step

    5th step

    Proprietary and Confidential

    To avoid pointing the antenna to a wrong direction (when both links share the same

    frequency), LINK ID can be used to alert when such action is take.

    “Link ID Mismatch”

    # 101

    # 101

    # 101

    # 102“Link ID

    Mismatch”

    LINK ID – Antenna Alignment Process

    8

    104

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    105/264

    Proprietary and Confidential

    Both IDUs of the same link must use the same Link ID

    Otherwise, “Link ID Mismatch” alarm will appear in Current Alarms Window

    “Link ID Mismatch”

    # 101

    # 101

    # 101

    # 102“Link ID

    Mismatch”

    LINK ID – Antenna Alignment Process

    9

    Proprietary and Confidential

    Questions?

    10

    105

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    106/264

    Proprietary and Confidential

    Radio Link Setup Exercise

    11

    Thank You

    106

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    107/264

    Version 1

     Automatic Transmit Power Control - ATPC

    October 2014

    Proprietary and Confidential

     Agenda

    2

    • Why ATPC?

    • How does ATPC works?

    •  ATPC Vs. MTPC

    •  ATPC Configuration

    107

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    108/264

    Proprietary and Confidential

     ATPC – Automat ic Transmit Power Control

    3

    The quality of radio communication between low Power devices varies

    significantly with time and environment.

    This phenomenon indicates that static transmission power, transmission range,

    and link quality, might not be effective in the physical world.

    • Static transmission set to max. may reduce lifetime of Transmitter 

    • Side-lobes may affect nearby Receivers (image)

    Main Lobe

    Side Lobe

    Proprietary and Confidential

     ATPC – Automat ic Transmit Power Control

    1. Enable ATPC on both sites

    2. Set Input reference level (min. possible RSL to maintain the radio link)

    3. ATPC on both ends establish a Feedback Channel through the radio link (1byte)

    4. Transmitters will reduce Output power to the min. possible level

    5. Power reduction stops when RSL in remote receiver reaches Ref. input level

    6. ATPC is strongly recommended with XPIC configuration

    ATPC 

    module

    Radio 

    Transceiver 

    Radio 

    Receiver

    Radio 

    Receiver

    Signal 

    Quality 

    Check

    Site A Site B

    TSL Adjustments

    Radio

    Feedback

    Ref. RSL

    Monitored RSL

    RSL

    required

    change

    4

    108

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    109/264

    Proprietary and Confidential

     ATPC – Example when ATPC is OFF

    MTPC

    TSL A = 30dBm

    RSL A = ?

    MTPC

    TSL B = 30dBm

    RSL B = ?

    RSL A = -30dBm (TSL B + FSL) RSL B = -30dBm (TSL A + FSL)

    FSL= -60 dBSite A Site B

    5

    Proprietary and Confidential

     ATPC – Example when ATPC is ON (One si te ATPC, second si te MTPC)

     ATPC

    IRLB (Input Ref. level on Site B) = -50dBm

    TSL A = ?

    RSL A = ?

    MTPC

    TSL B = 30dBm

    RSL B =?

    RSL A = -30dBm (TSL B + FSL)

    RSL B = -50dBm (TSL A + FSL)TSL A = 10dBm (IRLB-FSL)

    You want -50dBm on Site B, so what is TXA in Site A?

    FSL= -60 dBSite A Site B

    6

    109

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    110/264

    Proprietary and Confidential

     ATPC – Example when ATPC is ON (ATPC on both sites)

     ATPC

    IRLB (Input Ref. level on Site B) = -50dBm

    TSL A = ?

    RSL A = ?

    RSL A = -50dBm (TSLB + FSL) RSL B = -50dBm (TSL A + FSL)

    TSL A = 10dBm (IRLB - FSL)

     ATPC

    IRLA (Input Ref. level on Site A) = -50dBm

    TSL B = ?

    RSL B = ?

    TSL B = 10dBm (IRLA-FSL)

    FSL= -60 dBSite A Site B

    7

    Proprietary and Confidential

     ATPC – Example when ATPC is ON (ATPC on both si tes), ATPC range

    FSL= -60 dBSite A Site B

     ATPC

    IRLB (Input Ref. level on Site B) = -60dBm

    TSL A = ?

    RSL A = ?

    RSL A = -50dBm (TSL B + FSL) RSL B = -50dBm (TSL A + FSL)

    TSL A = 10dBm (IRLB-FSL)

     ATPC

    IRLA (Input Ref. level on Site A) = -50dBm

    TSL B = ?

    RSL B = ?

    TSL B = 10dBm (IRLA - FSL)

    RSL B is -50dBm because typical ATPC range for TX level is 20dB (depend on RFU type)!!!

    It means that TSL A can’t be 0dBm because possible min is 10dBm (Max is 30dBm)

    8

    Max TSL is 30dBm

     ATPC range is 20dBMax TSL is 30dBm

     ATPC range is 20dB

    110

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    111/264

    Proprietary and Confidential

     ATPC Configuration

    9

    Thank You

    10

    111

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    112/264

     

    This page was intentionally left blank. 

    112

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    113/264

    Version 3

    IP- 20N XPIC Configuration

    November 2014

    Proprietary and Confidential

     Agenda

    2

    • System Spectrum Utilization

    • ACAP

    • ACCP

    • CCDP

    • Co-channel System

    • IP-20N & XPIC

    • XPIC Recovery mechanism

    • XPIC Settings

    113

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    114/264

    Proprietary and Confidential

    BW

     V 

    H

    System Spectrum Utilization

     ACAP (Adjacent Channel Alternating Pol.)

    CCDP (Co-Channel Dual Polarisation)

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    BW

     V 

    H

    1 2 3 4 5 6 7 8 9 10  ACCP (Adjacent Channel Common Pol.)

    BW

     V 

    H

    1 2 3 4 5

    6 7 8 9 10

    3

    Proprietary and Confidential

    CCDP frequency plan

    4

    Vertical and Horizontal Polarization are using the same frequency

    V

    H

    1

    2

    V

    H

    1

    2

    114

  • 8/18/2019 Handbook - IP-20N Basic Training Course T7.9 - Copia

    115/264

    Proprietary and Confidential5

    Co-channel Systems

    • The XPIC improvement factor is typically 26 dB.

    • Two channels are using the same frequency but different polarization

    • RMC-B and XPIC script is required

    • The XPIC mechanism utilizes the received signals from the V and H modems to extract the V and H signals

    and cancel the cross polarization interference due to physical signal leakage between V and H polarizations.

    • The H+v signal is the combination of the desired signal H (horizontal) and the interfering signal V (in lower

    case, to denote that it is the interfering signal). The same happens with the vertical (V) signal reception=

    V+h. The XPIC mechanism uses the received signals from both feeds and, manipulates them to produce the

    desired data

    • IP-20N’s XPIC reaches a BER of 10e-6 at a co-channel sensitivity of 5 dB. The improvement factor in an

    XPIC system is defined as the SNR@threshold of 10e-6, with or without the XPIC mechanism.

    Proprietary and Confidential

    Conditions for XPIC

    6