handsout for 1 day seminar

93
1 FKA – UTM 2012 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Prof., Dr, Jean-Paul Lebet Swiss Federale Institute of Technology, Lausanne Introduction to composite bridges Conceptual design of composite bridges in Europe Erection of composite bridges Introduction to composite bridges Conceptual design of composite bridges in Europe Erection of composite bridges FKA – UTM 2012 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Prof., Dr, Jean-Paul Lebet Swiss Federale Institute of Technology, Lausanne Conceptual design of composite bridges in Europe Conceptual design of composite bridges in Europe 3 FKA – UTM 2012 4 FKA – UTM 2012

Upload: hazlan

Post on 08-Dec-2015

12 views

Category:

Documents


0 download

DESCRIPTION

Handsout for 1 Day Seminar

TRANSCRIPT

Page 1: Handsout for 1 Day Seminar

1

FKA – UTM 2012

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Prof., Dr, Jean-Paul Lebet Swiss Federale Institute of Technology, Lausanne

Introduction to composite bridges

Conceptual design of composite bridges in Europe

Erection of composite bridges

Introduction to composite bridges

Conceptual design of composite bridges in Europe

Erection of composite bridges

FKA – UTM 2012

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Prof., Dr, Jean-Paul Lebet Swiss Federale Institute of Technology, Lausanne

Conceptual design of composite

bridges in Europe

Conceptual design of composite

bridges in Europe

3FKA – UTM 2012 4FKA – UTM 2012

Page 2: Handsout for 1 Day Seminar

2

5FKA – UTM 2012

EPFL

6FKA – UTM 2012

7FKA – UTM 2012 8FKA – UTM 2012

Page 3: Handsout for 1 Day Seminar

3

9FKA – UTM 2012 10FKA – UTM 2012

Content

► Two beams bridges

► Box section bridges

► Truss bridges

► Arch bridges

► Cable stayed bridges

11FKA – UTM 2012

Pont sur la baie de Montreux, 1968SwitzerlandSpan length: 60 mBridge length: 275 m

Pont sur la baie de Montreux, 1968SwitzerlandSpan length: 60 mBridge length: 275 m

12FKA – UTM 2012

Bridge over la Chandelard, 1973SwitzerlandSpan length: 50 mBridge length: 245 m

Page 4: Handsout for 1 Day Seminar

4

13FKA – UTM 2012

14FKA – UTM 2012

15FKA – UTM 2012 16FKA – UTM 2012

Weathering steel

Page 5: Handsout for 1 Day Seminar

5

17FKA – UTM 2012

Weathering steel

18FKA – UTM 2012

19FKA – UTM 2012

Pont Napoléon, 1980Span length: 60 - 83 mSwitzerlandBridge length: 330 mCurvature in plan: R = 600 m

20FKA – UTM 2012

Pont Napoléon, 1980Span length: 60 - 83 mSwitzerlandBridge length: 330 mCurvature in plan: R = 600 m

Page 6: Handsout for 1 Day Seminar

6

21FKA – UTM 2012

Pont de Châtillon, F, 1988Span length: 50 mBridge length: 240 mCurvature in plan: R = 320 m

22FKA – UTM 2012

Viaduc de Monestier, F (2007)

23FKA – UTM 2012

Viaduc de Monestier, F (2007)

24FKA – UTM 2012

Viaduc de Monestier, F (2007)

Page 7: Handsout for 1 Day Seminar

7

25FKA – UTM 2012Launching procedure

Viaduc de Monestier, F (2007)

26FKA – UTM 2012

Viaduc de l’Elle, F (2008)

27FKA – UTM 2012

Viaduc de l’Elle, F (2008)

28FKA – UTM 2012

Viaduc de l’Elle, F (2008)

Page 8: Handsout for 1 Day Seminar

8

29FKA – UTM 2012

Pont sur la LosentzeSwitzerland, 1985

Two closed small boxes

30FKA – UTM 2012

Pont sur la Losentze Switzerland, 1985

31FKA – UTM 2012

Pont sur la LosentzeSwitzerland, 1985

32FKA – UTM 2012

Page 9: Handsout for 1 Day Seminar

9

33FKA – UTM 2012 34FKA – UTM 2012North American Steel Construction conference April 6 34

The Dala Bridge, Switzerland 1989

Legs erected vertically,

then inclined, pulling the main girders

35FKA – UTM 2012North American Steel Construction conference April 6 35

The Dala Bridge, Switzerland 1989

36FKA – UTM 2012North American Steel Construction conference April 6 36

The Dala Bridge, Switzerland 1989

Page 10: Handsout for 1 Day Seminar

10

37FKA – UTM 2012

slab

Studconnector

wind

supportcross

bracing

pile plan bracingfor erection

main beam

[mm] Span Support

width 300 à 700 300 à 1200

depth 15 à 40 20 à 100

depth 10 à 18 12 à 22

width 400 à 1200 500 à 1400

depth 20 à 70 40 à 120

Usual sizesFor continuous beams

With a span length : 30 – 80 m

38FKA – UTM 2012

Content

► Two beams bridges

► Box section bridges

► Truss bridges

► Arch bridges

► Cablestay bridges

39FKA – UTM 2012 40FKA – UTM 2012

Page 11: Handsout for 1 Day Seminar

11

41FKA – UTM 2012

Bois de rosset bridge, Switzerland 1990

42FKA – UTM 2012

Bois de rosset bridge, Switzerland 1990

43FKA – UTM 2012

Bois de rosset bridge, Switzerland 1990

44FKA – UTM 2012

Bois de rossetbridge,

Switzerland1990

Page 12: Handsout for 1 Day Seminar

12

45FKA – UTM 2012

Veveyse, Switzerland, 1969 (129 m)

46FKA – UTM 2012

Two long 130 m main spans

Height of the central piers: 100 m

Total length: 945 m

The Vaux viaduct, Switzerland 1999

47FKA – UTM 2012

Description of the Viaduct

40 56 56 56 56 56 56 62 62 62 130 6213016 45

945 m

R=1000 m

R=1000 m

N

Crane

Crane

Launching

Launching

48FKA – UTM 2012

diaphragms

13.46 m6.00 m 3.73 m3.73 m

4.28

-6.4

0 m

longitudinaland transversestiffeners

Section for the 130 m main spans

Description of the Viaduct

Page 13: Handsout for 1 Day Seminar

13

49FKA – UTM 2012

Section for the shorter spans

Description of the Viaduct

0.2

5 m

0.40

m

3.40

m

13.46 m6.00 m 3.73 m3.73 m

50FKA – UTM 2012

Erection Procedure

51FKA – UTM 2012

Verrières F (144 m), 2002

Span length: 80 – 144 m

Bridge length: 720 m

Piles height: 141 m

52FKA – UTM 2012

Content

► Two beams bridges

► Box section bridges

► Truss bridges

► Arch bridges

► Cablestay bridges

Page 14: Handsout for 1 Day Seminar

14

53FKA – UTM 2012

Tubular trusses

Railbridge Olten, Switzerland 2003Span Length: 44 m

54FKA – UTM 2012

Tubular trusses

Hagneck Bridge, Switzerland 2004

55FKA – UTM 2012

Hagneck Bridge, Switzerland 2004

56FKA – UTM 2012

Tubular trusses

Lully Bridge, Switzerland 1999

Page 15: Handsout for 1 Day Seminar

15

57FKA – UTM 2012

Lully Bridge, Switzerland 1999

58FKA – UTM 2012

59FKA – UTM 2012

Lully Bridge, Switzerland 1999

60FKA – UTM 2012

Three roses bridge, Basel, 2004

77  m 105  m 84  m

Page 16: Handsout for 1 Day Seminar

16

61FKA – UTM 2012

Three roses bridge, Basel, 2004

62FKA – UTM 2012

Pont d’Antrenas, France 1994

Tubular trusses

63FKA – UTM 2012

Sindelfingen Footbridge,

Germany 1989

Tubular trusses

64FKA – UTM 2012

Traun Bridge, Germany 2000

Tubular trusses

Page 17: Handsout for 1 Day Seminar

17

65FKA – UTM 2012

Nesenbachtal Bridge, Germany 2000

Tubular trusses

66FKA – UTM 2012

section en travée

Bern 26 m 26 m39 m 39 m 39 m 39 m

215 m

Zurich

Construction duration8 month

Tubular trusses

Dättwil Bridge 2001

67FKA – UTM 2012

Dättwil Bridge 2001

68FKA – UTM 2012

Dättwil Bridge 2001

Page 18: Handsout for 1 Day Seminar

18

69FKA – UTM 2012

Branson Bridge, Switzerland 2006

70FKA – UTM 2012

Branson, Fully, (60 m)

71FKA – UTM 2012

Branson Bridge, Switzerland 2006

72FKA – UTM 2012

Content

► Two beams bridges

► Box section bridges

► Truss bridges

► Arch bridges

► Cablestay bridges

Page 19: Handsout for 1 Day Seminar

19

73FKA – UTM 2012

St Triphon (90 m),

Switzerland, 1980

74FKA – UTM 2012

Landquartbrücke, Switzerland, 1990 (123 m)

75FKA – UTM 2012

Mornas, TGV French, 1999 (121 m)

76FKA – UTM 2012

Garde Adhémar, French, 1999 (135 m)

Page 20: Handsout for 1 Day Seminar

20

77FKA – UTM 2012Pont de l‘Europe, F, Orléans, 2000,(202 m) 78FKA – UTM 2012Pont de l‘Europe, Orléans (202 m)

79FKA – UTM 2012

Reggio Emilia, Italia Calatrava, 2008

221 m

80FKA – UTM 2012

Reggio Emilia, Calatrava, 2008

179 m

Page 21: Handsout for 1 Day Seminar

21

81FKA – UTM 2012The Gateshead Millennium Bridge, England, 2001 (105 m)

82FKA – UTM 2012

The Gateshead Millennium Bridge, England, (105 m)

83FKA – UTM 2012

Content

► Two beams bridges

► Box section bridges

► Truss bridges

► Arch bridges

► Cable stayed bridges

84FKA – UTM 2012

St-Maurice, Switzerland, 1986 (110 m)

Cable stayed bridges

Page 22: Handsout for 1 Day Seminar

22

85FKA – UTM 2012

Pont sur la Poya, Fribourg Switzerland, 2013Span length: 196 mBridge length: 851 m

Cable stayed bridges

86FKA – UTM 2012

Pont sur la Poya

87FKA – UTM 2012

Pont sur la Poya

88FKA – UTM 2012

Normandie, F (856 m), 1995

Page 23: Handsout for 1 Day Seminar

23

89FKA – UTM 2012

The Millau viaduct 200490FKA – UTM 2012

The Millau viaduct

91FKA – UTM 2012

The Millau viaduct

92FKA – UTM 2012

The Millau viaduct

Page 24: Handsout for 1 Day Seminar

24

93FKA – UTM 2012

The Millau viaduct

FKA – UTM 2012

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Prof., Dr, Jean-Paul Lebet Swiss Federale Institute of Technology, Lausanne

Erection of composite bridgesErection of composite bridges

95FKA – UTM 2012

Content

► Steel structureFrom the ground by craneLaunchingCantilever

► Concrete slabSlab cast in-situ,Slab launched in stages,Precast slab.

96FKA – UTM 2012

MONTAGE A LA GRUE DEPUIS LE SOL

From the ground by crane

Page 25: Handsout for 1 Day Seminar

25

97FKA – UTM 2012

From the ground by crane

98FKA – UTM 2012

From the ground by crane

99FKA – UTM 2012 100FKA – UTM 2012

LANCEMENT

By launching

Page 26: Handsout for 1 Day Seminar

26

101FKA – UTM 2012

By launching

102FKA – UTM 2012

By launching

103FKA – UTM 2012 104FKA – UTM 2012

By launching

Page 27: Handsout for 1 Day Seminar

27

105FKA – UTM 2012

By launching

106FKA – UTM 2012

By launching

107FKA – UTM 2012

By launching

108FKA – UTM 2012

By launching

Page 28: Handsout for 1 Day Seminar

28

109FKA – UTM 2012

ENCORBELLEMENT

Cantilever erection

110FKA – UTM 2012

111FKA – UTM 2012

Cantilever erection

112FKA – UTM 2012

Cantilever erection

Page 29: Handsout for 1 Day Seminar

29

113FKA – UTM 2012

Lifting of a span

114FKA – UTM 2012

Content

► Steel structureFrom the ground by craneLaunchingCantilever

► Concrete slabSlab cast in-situ,Slab launched in stages,Precast slab.

115FKA – UTM 2012

DALLE COULEE SUR PLACE AVEC COFFRAGE MOBILE

Slab cast in-situ

Slab cast in-situ

116FKA – UTM 2012

Slab cast in-situ

Page 30: Handsout for 1 Day Seminar

30

117FKA – UTM 2012

Slab cast in-situ

118FKA – UTM 2012

Slab cast in-situ

119FKA – UTM 2012

Slab cast in-situ

120FKA – UTM 2012

Slab cast in-situ

Page 31: Handsout for 1 Day Seminar

31

121FKA – UTM 2012

Slab cast in-situ

122FKA – UTM 2012

Slab cast in-situ

123FKA – UTM 2012

Slab cast in-situ

124FKA – UTM 2012

Prefabricated slab elements

Page 32: Handsout for 1 Day Seminar

32

125FKA – UTM 2012

Prefabricated slab elements

126FKA – UTM 2012

Prefabricated slab elements

127FKA – UTM 2012

Prefabricated slab elements

128FKA – UTM 2012

Prefabricated slab elements

Page 33: Handsout for 1 Day Seminar

33

129FKA – UTM 2012

Prefabricated slab elements

130FKA – UTM 2012

Prefabricated slab elements

131FKA – UTM 2012

Prefabricated slab elements

132FKA – UTM 2012

Prefabricated slab elements

Page 34: Handsout for 1 Day Seminar

34

133FKA – UTM 2012

Prefabricated slab elements

134FKA – UTM 2012

Prefabricated slab elements

135FKA – UTM 2012

Prefabricated slab elements

136FKA – UTM 2012

Prefabricated slab elements

Page 35: Handsout for 1 Day Seminar

35

137FKA – UTM 2012

Prefabricated slab elements

138FKA – UTM 2012

Prefabricated slab elements

139FKA – UTM 2012

Prefabricated slab elements

140FKA – UTM 2012

Prefabricated slab elements

Page 36: Handsout for 1 Day Seminar

36

141FKA – UTM 2012 142FKA – UTM 2012

Dättwil

Prefabricated slab elements

143FKA – UTM 2012

Lanching of the slab

144FKA – UTM 2012

Lanching of the slab

Page 37: Handsout for 1 Day Seminar

37

145FKA – UTM 2012

Lanching of the slab

146FKA – UTM 2012

Lanching of the slab

147FKA – UTM 2012

Lanching of the slab

148FKA – UTM 2012

Lanching of the slab

Page 38: Handsout for 1 Day Seminar

38

149FKA – UTM 2012

Lanching of the slab

150FKA – UTM 2012

151FKA – UTM 2012 FKA – UTM 2012

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Page 39: Handsout for 1 Day Seminar

04/09/2012

1

FKA – UTM 2012

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Prof., Dr, Jean-Paul Lebet Swiss Federale Institute of Technology, Lausanne

Design of composite bridges

Behaviour of composite bridges

Design of composite bridges according EC 4

Design of composite bridges

Behaviour of composite bridges

Design of composite bridges according EC 4

FKA – UTM 2012

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Prof., Dr, Jean-Paul Lebet Swiss Federale Institute of Technology, Lausanne

Behaviour of composite bridgesBehaviour of composite bridges

3FKA – UTM 2012

Measured according strain

Measured according vertical deformation

calculated

0.1

0.9

For practical design

Transverse distribution line of loads

4FKA – UTM 2012

According to the traditionnal design, normal stresses in thesteel girders can be as high as 60 à 80 N/mm2 in compression in cross sections over intermediate supports !

Shrinkage effect

Free shrinkage

N corresponding

connected

Page 40: Handsout for 1 Day Seminar

04/09/2012

2

5FKA – UTM 2012

More elaborate calculation of shrinkage effects taking into account of teconcrete behaviour (cracks, creep)

Shrinkage effect

6FKA – UTM 2012

cs, inf [N/mm2]

Shrinkage effect – compression stresses in the lower flange contraintes over intermediate support

Calculation for twenty existing composite bridgesWith span length between 30 and 120 m (cs = 0.25 ‰)

-25 N/mm2

Design value

Shrinkage effect

7FKA – UTM 2012

measurements calculation according code

Temperature effect

8FKA – UTM 2012

0

1

2

3

4

5

15 20 25 30 35 40 45

température [°C]

haut

eur

[m]

[m

]

0h

2h2850

400

Tamb = 16°C

Temperature effect

Page 41: Handsout for 1 Day Seminar

04/09/2012

3

9FKA – UTM 2012

0

1

2

3

4

5

15 20 25 30 35 40 45

température [°C]

haut

eur

[m]

[m

]

0h

2h

4h2850

400

Tamb = 22°C

Temperature effect

10FKA – UTM 2012

0

1

2

3

4

5

15 20 25 30 35 40 45

température [°C]

haut

eur

[m]

[m

]

0h

2h

4h

6h

2850

400

Tamb = 26°C

Temperature effect

11FKA – UTM 2012

0

1

2

3

4

5

15 20 25 30 35 40 45

température [°C]

haut

eur

[m]

[m

]

0h

2h

4h

6h

8h

2850

400

Tamb = 29°C

Temperature effect

12FKA – UTM 2012

0

1

2

3

4

5

15 20 25 30 35 40 45

température [°C]

haut

eur

[m]

[m

] 0h

2h

4h

6h

8h

10h

2850

400

Tamb = 34°C

Temperature effect

Page 42: Handsout for 1 Day Seminar

04/09/2012

4

13FKA – UTM 2012

0

1

2

3

4

5

15 20 25 30 35 40 45

température [°C]

haut

eur

[m]

[m

]

0h

2h

4h

6h

8h

10h

12h

2850

400

Tamb = 35°C

Temperature effect

14FKA – UTM 2012

0

1

2

3

4

5

15 20 25 30 35 40 45

température [°C]

haut

eur

[m]

[m

]

0h

2h

4h

6h

8h

10h

12h

14h

2850

400

Tamb = 33°C

Temperature effect

15FKA – UTM 2012

0

1

2

3

4

5

15 20 25 30 35 40 45

température [°C]

haut

eur

[m]

[m

]

0h

2h

4h

6h

8h

10h

12h

14h

16h

2850

400

Tamb = 26°C

Temperature effect

16FKA – UTM 2012

0

1

2

3

4

5

15 20 25 30 35 40 45

température [°C]

haut

eur

[m]

[m

]

0h

2h

4h

6h

8h

10h

12h

14h

16h

18h

2850

400

Tamb = 21°C

Temperature effect

Page 43: Handsout for 1 Day Seminar

04/09/2012

5

17FKA – UTM 2012

0

1

2

3

4

5

15 20 25 30 35 40 45

température [°C]

haut

eur

[m]

[m

]

0h

2h

4h

6h

8h

10h

12h

14h

16h

18h

20h

2850

400

Tamb = 19°C

Temperature effect

18FKA – UTM 2012

0

1

2

3

4

5

15 20 25 30 35 40 45

température [°C]

haut

eur

[m]

[m

]

0h

2h

4h

6h

8h

10h

12h

14h

16h

18h

20h

22h

2850

400

Tamb = 18°C

Temperature effect

19FKA – UTM 2012

0

0.1

0.2

0.3

0.4

-4 -2 0 2 4

contraintes [N/mm2]

haut

eur

[m]

[m]

section 1

section 4

section 5

section 7

128 m

130 m

42 m

portées42 m

Max tension stresses in the concrete slab

max = 1.7 N/mm2

span

Temperature effect

20FKA – UTM 2012

Max compression stresses in the steel girder

0

1

2

3

4

5

-30 -20 -10 0 10 20

contraintes [N/mm2]

haut

eur

[m]

section 1

section 4

section 5

section 7

128 m

130 m42 m

portées42 m

Webmax ≈ -20 N/mm2

Lower flangemax ≈ - 5 N/mm2

Upper flangemax ≈ - 20 N/mm2

span

Temperature effect

Page 44: Handsout for 1 Day Seminar

04/09/2012

6

21FKA – UTM 2012

Measurements during Erection ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

22

Measurements

Example of vertical reaction results

0

1

2

3

4

5

6

0 10 20 30 40

Movement ofthe bridge

[m]

Reaction [MN]

calculated values

tolerancezone: ± 15 %

measured values

level adjustments

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

23

20 25-70

-60

-50

-40

-30

-20

-10

0

10

2

1

3

4

Ver

tic

al

str

es

se

s [

N/m

m2]

Bridge position [m]30

1

3

2

4

Example of vertical stress results

Measurements ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

24

2354 kN 4114 kN

16 mm 21 mm

max =2.0 mm

max =1.5 mm

1000

mm

South bridgeStage 5

South bridge stage 8Web lateral deformation

Measurements

Page 45: Handsout for 1 Day Seminar

04/09/2012

7

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

25

Temperature during concrete hydration

0

5

10

15

20

25

30

35

40

24.02 25.02 26.02 27.02 28.02 1.03 2.03 3.03 4.03

Date

Tem

pera

ture

[°C

] Concrete slabSteel girderTamb

25.5 h

5

8°C

28°C

<70 cm

Measurements ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

26

Slab cracking

Durability

Origin of tensile stresses

What to do

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

27

Slab cracking

After demolition, however no corrosionof the stud shear connectors

28FKA – UTM 2012

Slab cracking

Page 46: Handsout for 1 Day Seminar

04/09/2012

8

29FKA – UTM 2012

Durability of the slabSlab transverse cracking tolerated if:

- Good etancheity well put in place

- Good detailing of the slab well constructed

- crack opening lower than 0.4 mm

Longitudinal reinforcement: about 1,5% on intermediate support (conceptual design)

about 0.7% in span (minimum reinforcement)

But over all: compact concrete

Take measures to avoid cracking if they are “simple” need to know the orign of crackingVery very good durability need to introduce longitudinal prestressing in the concrete slab

30FKA – UTM 2012

Origin of tensile stresses

• Hydratation effects of the concrete slab

• Construction of the slab

• Direct actions (traffic,…)

• Indirect actions (shrinkage,…)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

31

Tensile stresses in the slab [N/mm2]Origin Span 30.0 m Span 80.0 m

Hydratation effects 0.6 1.8

Concreting end to end 1.8 2.7Surfacing 0.8 1.3Traffic 0.3 0.1Shrinkage 0.8 1.4

Tensile stresse are the highest during the construction of the slab (hydration and concreting) 60%

Origin of tensile stresses ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

32

Stresses due to hydratation t

= 0.9 N/mm2 –1.3

[ N/mm 2

–1.319.6

19.6

Moments dus à T

Système statique

1

3

2

stressesIn section 2 :

2.2

2.2–34.2

–34.2

Ec = 8 kN/mm2= +25°

Ec = 25 kN/mm2= -25°

Hydration effects

Page 47: Handsout for 1 Day Seminar

04/09/2012

9

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

33

Temperature during concrete hydration

0

5

10

15

20

25

30

35

40

24.02 25.02 26.02 27.02 28.02 1.03 2.03 3.03 4.03

Date

Tem

pera

ture

[°C

] Concrete slabSteel girderTamb

25.5 h

5

8°C

28°C

<70 cm

Measurements ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

34

Steps of concreting (slab cast in-situ)

Construction of the slab

1 2 3 4 5 6 7 8

direction of concreting

1 2 5 4 3 8 7 6

direction de concreting

Concreting end to end

Concreting “piano”

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

35

Steps of concreting end to end

2t=2.7 /mmN

4500

1 5 6 7 82 3 4TRANSVERSE CRACKING

Span: 80 m

Construction of the slab ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

36

Span 80.0 m

13’000

4’500

c = 2.7 N/mm2End to end

c = - 0. 5N/mm2Piano

Tensile stresses in the slabSpan 30.0 m

12’500

1’900

2c = 1.8N/mm

End to end

2c = - 0.2 N/mm

Piano

Construction of the slab

Page 48: Handsout for 1 Day Seminar

04/09/2012

10

FKA – UTM 2012

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Prof., Dr, Jean-Paul Lebet Swiss Federale Institute of Technology, Lausanne

Design of composite bridges

according EC 4

Design of composite bridges

according EC 4

38FKA – UTM 2012

Main selected features

• General presentation and scope of EC’s related to steel and composite bridges

• Structural analysis

• Cross-section analysis at ULS and SLS

• Fatigue

39FKA – UTM 2012

Eurocodes (EN)

EN 1990 basis of design

EN 1991 actions

EN 1992 concrete

EN 1993 steel

EN 1994 composite

EN 1995 timber

EN 1996 masonry

EN 1997 geotechnic

EN 1998 seismic

EN 1999 aluminium

EN 1991 : actions

EN1991-1-1 densities… EN1991-1-3 snow EN1991-1-4 wind EN1991-1-5 thermal actions EN1991-1-6 execution EN1991-1-7 accidental actions EN1991-2 traffic

Page 49: Handsout for 1 Day Seminar

04/09/2012

11

EN 1992 : concrete

EN 1992-1-1 general rules

EN 1992-2 bridges

42FKA – UTM 2012

Partie 2

bridges

Partie7.1

pylons

Partie7.2

chimneys

Partie 6

Cranes

Partie4.2

tanks

Partie4.3

Pipelines

Partie 5

pilingapplications

Partie 1.1

General rulesbuilding

Partie 1.2

fire

Partie 1.3

sheetings

Partie 1.4

Stainless steel

Partie 1.5

Plated elements

Partie 1.6

shells

Partie 1.7

Plated elements loaded transv.

Partie 1.8

joints

Partie 1.9

Fatigue

Partie 1.10

Brittle fracture

Partie 1.11

cables

Partie 4.1

Silos

Partie 1.12 S500 to S690

Eurocode 3 : steel structures

EN 1994 : composite structures

EN 1994-2 general rules and bridges

Based on EN 1994-1 and EN 1993 - 2

44FKA – UTM 2012

Structural analysis

linear(material)

non linear

steel

concrete

Page 50: Handsout for 1 Day Seminar

04/09/2012

12

45FKA – UTM 2012

Elastic

Plastic (buildings, bridges in span)

Structural analysis ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

46

Classes of steel cross-sections

Cl.1

Cl.2Cl.3

Cl.4

Mpl

Mel

1 3 6

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

47Cl.1 Cl.3 / 4

All the sections class 1 : plastic analysis (not for bridges)

Some sections class 2 : elastic analysis up to Mpl,Rd

Some sections class 3 : elastic analysis up to Mel,Rd

Large composite bridges (in general)

Classes of steel cross-sections ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

48

Class of webs

Page 51: Handsout for 1 Day Seminar

04/09/2012

13

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

49

Class of flanges

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

50

Class of a cross section

Corresponds to the largest class of all the elements

A composite section is generally class 1 under positive moment due to the location of the PNA (the web is in tension)

Actual design

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

51

Cracking of concrete in a composite bridge

If under characteristic combination 2fctm c cracked global analysis

EI1EI2

EI1

Cracked zone

Structural Analysis ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

52

Example of cracked zones in a composite bridge 60-80-60 m

17 %15,6 % 23 % 17,7 %

ctm2f 6, 4MPa

-12

-10

-8

-6

-4

-2

0

2

4

6

8

0 20 40

60

80 100 120

140

160 180

200

Structural Analysis

Page 52: Handsout for 1 Day Seminar

04/09/2012

14

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

53

Alternative if– No prestressing (tendons or jacking on supports)

– lmin/lmax>0.6

EI1EI2

EI1

Imin Imax

0.15Imax

Structural Analysis

Cracking of concrete in a composite bridge

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

54

Elastic calculation of bending moments

Elastic verification of sections– Over support (local buckling of compressed web)– In span

Plastic verifications of sections also possible– In span

Actual design - ULS

Actual design

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

55

• Redistribution due to plastification at mid-span is neglected except if :– Class 1 or 2 at mid-span (if MEd > Mel,Rd )– Class 3 or 4 on support– Lmin/Lmax < 0.6

• Non-linear elastic analysis or• Linear elastic analysis with MEd < 0.9 Mpl,Rd in

sagging moment regions

Cl.1/2

Cl.3 / 4

M

Linear elastic analysis of a composite bridge and plastic strength in span ÉCOLE POLYTECHNIQUE

FÉDÉRALE DE LAUSANNE

56

Max bending in span Max bending over support

Elastic calculation of bending moments

Actual design

Page 53: Handsout for 1 Day Seminar

04/09/2012

15

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

57

Load Model (road)

Design Load Model (SIA 261 <> Eurocode 1)

SIA 261 §10.3.1

Qi, qi et qr = 0.9

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

58

Transverse distribution line of loads

Transverse distributionline of loads

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

59

beff

bv

A

B C

DJ L

MNO

Deformation due to shear

Effectives width ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

60

Equivalent spans Le for slab effectives width

Effectives width

Actual design

Page 54: Handsout for 1 Day Seminar

04/09/2012

16

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

61

Effectives width of concrete slab

b1 b1 b2

be1 be2

beff

b0

eei i

Lb min( ; b )

8

0eff i eib b b with e

iei

L0,55 0,025 1

b end supports

i 1 elsewhere

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

62

Elastic calculation of bending moments Elastic verification of sections

– Over support (local buckling of compressed web)

Check - ULS

Elastic design procedure over support

fy/a

s fys/s

fy/a

Steel sectionLoad during erection

Steel + reinforcement sectionLoad on composite sections

Localbuckling

partial factor = 1,05

partial factor = 1,15

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

63

Check – ULS in span

ResistingSteel alone

Resistingcomposite

unpropped during erection

propped during erection

Dead loadSteel concrete

Perm. loadSurfacing traffic

~ 6 = Ea/Ec~ 18

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

64

Modular ratio used in a composite section

L 0 L tn n . 1

Value of t0 : t0 = 1 day for shrinkage

t0 = a mean value in case of concrete cast in several stages

a0

cm

En

E t 0t t creep coefficient given by EC2 : and

L is given by : Permanent loads

shrinkageImposed deformations

1,10,551,5

Page 55: Handsout for 1 Day Seminar

04/09/2012

17

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

65

Elastic calculation of bending moments Elastic verification of sections

– In span

PNA

ENA

Elastic resistance (for class 1, 2, 3)

fck/c

fy/a

compression

traction

partial factor = 1,5

partial factor = 1,05

Taking into account The load history and duration

Check - ULS ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

66

Elastic calculation of bending moments Plastic verifications of sections

– In span

Mpl,Rd

+

- -

+

xp

c = cu a ≥ y0,85 fck/a

fyd = fy/a

beff

h

a

Shrinkage and load history are neglected

partial factor = 1,5

partial factor = 1,05

Check - ULS

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

67

Plastic verifications of sections in span?

q

Q

Applicable only if L1/L2 ≥ 0.6L1 L2

Verification:

MEd ≤ red Mpl,Rd

red = 0.95

red = 0.90

Without load onsteel section aloneWith load onsteel section alone

M

Mpl

el

Mg

pl= 5 el

Actual design - ULS ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

68

Longitudinal shear v

Design of the connexion

Page 56: Handsout for 1 Day Seminar

04/09/2012

18

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

69

Design of the connexion in the elasto-plastic region of the span

Bending moment

Shear force

longitudinal shear

Elasto-plastic region

FA FB

Design of the connexion

Longitudinalshear in elasto-plasticregion

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

70

Design of the connexion in the elasto-plastic region of the span

Design of the connexion

FB

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

71

Design of the connexion in the elasto-plastic region of the span

Design of the connexion

bending

Elasto-plasticregion

Longitudinalshear

Stud resistance

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

72

Resistance of stud shear connectors

hd

21uRk

dP 0,8 f4

2 2cmRk ck

P 0,29 d f E

1 2Rk Rk RkP min(P ;P )

and

h0,2. 1d

ifh3 4d

1If not

RdP75.0

25.1Rk

Rd

PP At U.L.S.

At S.L.S.

Design of the connexion

Page 57: Handsout for 1 Day Seminar

04/09/2012

19

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

73

Verification at SLS

Limitation of stresses– As in EN1992-2 and EN1993-2 (fy in the steel

part)

Limitation of crack widths– As in EN1992-2 with tension stiffening

(wk=0.3mm in general)

– Using a simplified method

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

74

Fatigue verification in EC3

Calculation of E,2 under a fatigue loading

Influence of the type of influence line Influence of the type of traffic Influence of the number of lanes

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

75

Fatigue verification in EC3

verificationpartial factor for loading = 1,0

Category of detail

Actual design

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

76

Fatigue SN curves in EC3

C

Fatigue verification in EC3

Actual design

Page 58: Handsout for 1 Day Seminar

04/09/2012

20

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

77

C for each detail

Fatigue verification in EC3

Actual design FKA – UTM 2012

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Page 59: Handsout for 1 Day Seminar

04/09/2012

1

FKA – UTM 2012

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Prof., Dr, Jean-Paul Lebet Swiss Federale Institute of Technology, Lausanne

Innovative design of steel-concrete composite bridges

Innovative design method

Innovative connection

LTB

Innovative design of steel-concrete composite bridges

Innovative design method

Innovative connection

LTB

UTM – 2012 2

Innovative design method for steel-concrete composite plate girder bridges

• Introduction, context

• Basis of the new design method

• Step by step procedure

• Conclusion, exemple

UTM – 2012 3

Introduction, context

• Current analysis of steel-concrete composite bridges: EER and EE or EP

• Need to consider:• Loading history• Shrinkage and creep of concrete

• Long and tiresome calculations for an illusory precision

Cl.1Cl.3 / 4Cl.1

UTM – 2012 4

Introduction, context

0

100

200

300

400

0 25 50 75 100

FB1 [mm]

F [kN]

Deformationcapacity

Under negative bending moment, slender composite beams show some deformation capacity

This deformation capacity is called

Available rotation capacity av

of the composite beam in the support region

Page 60: Handsout for 1 Day Seminar

04/09/2012

2

UTM – 2012 5

• How to use the available rotation capacityover support ?o To redistribute bending moments from supports

to span

o When span region in elasto-plastique domain, to redistribute bending moments from span to supports

• Requiers some rotation capacity fromcross-sections over supports

Required rotation capacity req

• Verification:

over support

Basis of the new design method

req av

UTM – 2012 6

av

Mref

Mel,Rd

Rdelref MM ,9.0

0.9 takes into account of the load history

Available rotation capacity av

M

Basis of the new design method

UTM – 2012 7

Available rotation capacity av

av is a function of:

Shear force if VEd > 0.8 VRd

Slendernesses of the web and of the compressed flange

Position of the neutral axis

Steel grade

Basis of the new design method

UTM – 2012 8

Available rotation capacity av

E

f

kt

bf y

w

w

cr

yp

05.1

5.05.0'

5.05.0 si

'p

Cla

ss 1

2'

75.15

p

vc

FEM results

63 mrad

010203040506070

0.0 0.5 1.0 1.5 2.0

av [mrad]

Existing composite bridges

4m

rad

< a

v<

24 m

rad

Basis of the new design method

Page 61: Handsout for 1 Day Seminar

04/09/2012

3

UTM – 2012 9

Required rotation capacity req

req = req,1 + req,2

req,1: redistribution of bending moments from

intermediate supports to the span

req,2 : use of elasto-plastique domain

in span

Basis of the new design method

UTM – 2012 10

Required rotation capacity req,1

Ed

EdrEd

M

MM

,

l [m]

req,1 [mrad]

req,1

M

- Ed

0

10

20

30

40

50

60

70

20 30 40 50 60 70 80 90 100

= 0.1 = 0.2 = 0.3

Basis of the new design method

UTM – 2012 11

Required rotation capacity req,2

pl

Edr

M

M ,

req,2

M +r,Ed

pl,span

0

10

20

30

40

50

60

70

20 30 40 50 60 70 80 90 100

0.95 0.9

0.85 0.8

0.75 0.7

= 0.95= = 0.75

= 0.90= = 0.70

0.800.85

req,2 [mrad]

l [m]

Basis of the new design method

UTM – 2012 12

Required rotation capacity req

= 0.3

= 0.2

= 0.1

= 0.0

req = req,1 + req,2

pl

Edr

M

M ,

Ed

EdrEd

M

MM

,0

10203040506070

0.70 0.80 0.90 1.00

req [mrad]

Basis of the new design method

Page 62: Handsout for 1 Day Seminar

04/09/2012

4

UTM – 2012 13

Existing bridges

Allow to find hidden bearing capacity(evolution of the traffic loading)

Design method applicable with otherassumptionso Larger deflection

o Use of updated load models

Allow to take into account of longitudinal stiffeners on the web

Basis of the new design method

UTM – 2012 14

0

20

40

60

80

0.0 0.5 1.0 1.5 2.0

av [mrad]

Existing bridges

'p

Influence of a longitudinal stiffener

2'

75.15

p

vc

Without stiffener

av,sup = 40 – 46 VEd / VRd si h1 = 0.2 hw

av,sup = 28 – 31 VEd / VRd si h1 = 0.3 hw

stiffener

0

20

40

60

80

0.0 0.5 1.0 1.5 2.0

av [mrad]

UTM – 2012 15

1. PRELIMINARY DESIGN

2. PRELIMINARY CONDITIONS

3. RESISTANCE OF CROSS-SECTIONS

4. AVAILABLE ROTATION CAPACITY

5. BENDING MOMENTS

6. REQUIRED ROTATION CAPACITY

7. PLASTIC MOMENT UTILIZATION RATIO

8. VERIFICATIONS

Step by step procedure to apply the new design method

UTM – 2012 16

1. PRELIMINARY DESIGN

2. PRELIMINARY CONDITIONS

3. RESISTANCE OF CROSS-SECTIONS

4. AVAILABLE ROTATION CAPACITY

5. BENDING MOMENTS

6. REQUIRED ROTATION CAPACITY

7. PLASTIC MOMENT UTILIZATION RATIO

8. VERIFICATIONS

Step by step procedure

Page 63: Handsout for 1 Day Seminar

04/09/2012

5

UTM – 2012 17

Step by step procedure

Shear force:

Distance between lateral supports of the compressed flange (lateral torsional buckling):

RdEd VV 80.0

y

fcD f

EbL

3225.0

1. PRELIMINARY DESIGN

2. PRELIMINARY CONDITIONS

3. RESISTANCE OF CROSS-SECTIONS

4. AVAILABLE ROTATION CAPACITY

5. BENDING MOMENTS

6. REQUIRED ROTATION CAPACITY

7. PLASTIC MOMENT UTILIZATION RATIO

8. VERIFICATIONS

UTM – 2012 18

Over support:

M

Mrefav

elref MM 9.0

1. PRELIMINARY DESIGN

2. PRELIMINARY CONDITIONS

3. RESISTANCE OF CROSS-SECTIONS

4. AVAILABLE ROTATION CAPACITY

5. BENDING MOMENTS

6. REQUIRED ROTATION CAPACITY

7. PLASTIC MOMENT UTILIZATION RATIO

8. VERIFICATIONS

Step by step procedure

UTM – 2012 19

In span:

M

Mpl

1. PRELIMINARY DESIGN

2. PRELIMINARY CONDITIONS

3. RESISTANCE OF CROSS-SECTIONS

4. AVAILABLE ROTATION CAPACITY

5. BENDING MOMENTS

6. REQUIRED ROTATION CAPACITY

7. PLASTIC MOMENT UTILIZATION RATIO

8. VERIFICATIONS

Step by step procedure

UTM – 2012 20

E

f

kt

bf y

w

w

cr

yp

05.1

5.05.0'

010203040506070

0.0 0.5 1.0 1.5 2.0

av [mrad]

av

5.05.0 si

'p

Cla

ss 1

2'

75.15

p

vc

1. PRELIMINARY DESIGN

2. PRELIMINARY CONDITIONS

3. RESISTANCE OF CROSS-SECTIONS

4. AVAILABLE ROTATION CAPACITY

5. BENDING MOMENTS

6. REQUIRED ROTATION CAPACITY

7. PLASTIC MOMENT UTILIZATION RATIO

8. VERIFICATIONS

Step by step procedure

Page 64: Handsout for 1 Day Seminar

04/09/2012

6

UTM – 2012 21

Ed

EdrEd

M

MM

,

Max. bending moment over the support:

M +r,Ed

M -Ed

M -r,EdM

- Ed

1. PRELIMINARY DESIGN

2. PRELIMINARY CONDITIONS

3. RESISTANCE OF CROSS-SECTIONS

4. AVAILABLE ROTATION CAPACITY

5. BENDING MOMENTS

6. REQUIRED ROTATION CAPACITY

7. PLASTIC MOMENT UTILIZATION RATIO

8. VERIFICATIONS

Step by step procedure

UTM – 2012 22

M +Ed

Max. bending moment in the span:1. PRELIMINARY DESIGN

2. PRELIMINARY CONDITIONS

3. RESISTANCE OF CROSS-SECTIONS

4. AVAILABLE ROTATION CAPACITY

5. BENDING MOMENTS

6. REQUIRED ROTATION CAPACITY

7. PLASTIC MOMENT UTILIZATION RATIO

8. VERIFICATIONS

Step by step procedure

UTM – 2012 23

Ed

EdrEd

M

MM

,

l [m]

req,1 [mrad]

0

10

20

30

40

50

60

70

20 30 40 50 60 70 80 90 100

= 0.1 = 0.2 = 0.3

req,1

av ≥ req req,1 req,2 req,2

req,2 < 0 (req,1 too large) step 1

req,2 ≥ 0 following step

1. PRELIMINARY DESIGN

2. PRELIMINARY CONDITIONS

3. RESISTANCE OF CROSS-SECTIONS

4. AVAILABLE ROTATION CAPACITY

5. BENDING MOMENTS

6. REQUIRED ROTATION CAPACITY

7. PLASTIC MOMENT UTILIZATION RATIO

8. VERIFICATIONS

Step by step procedure

UTM – 2012 24

av

= 0.3 = 0.2

= 0.1 = 0.0pl

Edr

M

M ,

0

10

20

30

40

50

60

70

0.70 0.80 0.90 1.00

req [mrad]1. PRELIMINARY DESIGN

2. PRELIMINARY CONDITIONS

3. RESISTANCE OF CROSS-SECTIONS

4. AVAILABLE ROTATION CAPACITY

5. BENDING MOMENTS

6. REQUIRED ROTATION CAPACITY

7. PLASTIC MOMENT UTILIZATION RATIO

8. VERIFICATIONS

Step by step procedure

Page 65: Handsout for 1 Day Seminar

04/09/2012

7

UTM – 2012 25

RdplEd MM ,

RdplEdr MM ,,

Verification over the support (indirect):

Verification in the span:

avreq

1. PRELIMINARY DESIGN

2. PRELIMINARY CONDITIONS

3. RESISTANCE OF CROSS-SECTIONS

4. AVAILABLE ROTATION CAPACITY

5. BENDING MOMENTS

6. REQUIRED ROTATION CAPACITY

7. PLASTIC MOMENT UTILIZATION RATIO

8. VERIFICATIONS

Step by step procedure

UTM – 2012 26

Conclusion

Example

Appui Travée

UTM – 2012 27

Conclusion

Analysis ElementCross-sections

supportCross-sections

in spanCross-sections

area [%]Benefit

EER, EESupport,span

Upper fl.webLower fl.

1000× 12022 × 2560

1200 × 120

700 × 4014 × 2700800 × 60

Support : 100Span : 100 -

EER, supportEP, span

Upper fl.webLower fl.

1000× 12022 × 2560

1200 × 120

700 × 4014 × 2720800 × 40

Support : 100Span : 86

14 %span

New method

Upper fl.webLower fl.

1000× 10022 × 2600

1250 × 100

700 × 4014 × 2720800 × 40

Support : 88Span : 86

12 % support14 % span

UTM – 2012 28

Conclusion

The new design method makes it possible to carry out a calculation of structural safety nearer to the behaviour of the structure and more precise

The advantages which result from this are numerous and are related to the plastic design of the structures:

The history of the loading and the visco-elastic behaviour of the concrete can be neglected at ULS

Better optimization of the cross-sections of the beams

Very interesting Method for the verification of the safety of existing bridges

Page 66: Handsout for 1 Day Seminar

04/09/2012

8

TUM 2012

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Innovative Steel Concrete Connection for Composite BridgesInnovative Steel Concrete Connection for Composite Bridges

Prof., Dr, Jean-Paul Lebet, ICOMSwiss Federale Institute of Technology, Lausanne

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

30TUM 2012

Contents

► Introduction

► New connection

► Resistance of the connection

► Design model

► Fatigue

► Conclusions

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

31TUM 20121. Introduction

Joints

Needs: durability, short duration of on-site work

Steel – concrete composite solutions with concrete precast elements

Context ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

32TUM 2012

Rapid and durable connection with prefabricated slab

Context

Page 67: Handsout for 1 Day Seminar

04/09/2012

9

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

33TUM 2012

Connexion ?Joints ?

Needs: durability, short duration of on-site work

Context ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

34TUM 2012

Context

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

35TUM 2012

Glued joints

Context ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

36TUM 2012

Précontrainte

Joints

Connection

Welding on site

Context

Page 68: Handsout for 1 Day Seminar

04/09/2012

10

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

37TUM 2012

Preliminary push-out tests with cement paste on differentconnection types

Precast concrete slab

Steel beam

connection types

Cement paste

New steel-concrete connection ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

38TUM 2012

HR

HP

HH

R

HR

Embossed steel plate and bonding layer HRPerfobond and bonding layer HPBonding layer HHStud connectors DEmbossed steel plate RPerfobond P

Load

[kN

]

Slip [mm]

push-out tests

New steel-concrete connection

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

39TUM 2012

Precast concrete slab

Steel beam

Cement paste

Embossed steel plate

Bonding layer

New connection definitionLongitudinal rib (rough concrete)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

40TUM 2012

New connection definition

Page 69: Handsout for 1 Day Seminar

04/09/2012

11

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

41TUM 2012

Connection behaviour - Confinement

ec-4

ec-6

Uplift u perpendicular to sheared interfaces

Opening of cracks

Uplift 2u [mm]

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

42TUM 2012

Slip s Force v

Normal stresses Shear sresses v = b x

Slip s Uplift u

Uplift u Normal stresses

s, v

Embossed steel plate

Cement paste

Concrete slab

Connection behaviour - Confinement

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

43TUM 2012

Effet of the uplift u1

2conf,1 conf,3 slab 1 3 imp,2

1( ) ( ) ( )

bs s k u u

b

Deformed positionInternal stresses

,2

Connection behaviour - Confinement ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

44TUM 2012

Slab rigidity crackdeformed position

Connection behaviour - Confinement

Page 70: Handsout for 1 Day Seminar

04/09/2012

12

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

45TUM 2012

Numerical model

Numerical modelconfinement effect-modelling of the relationship between the confinement stress, σ and the uplift, u

Connection behaviour - Confinement

cracking of concrete

yielding of middle reinforcement

no further increase

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

46TUM 2012

Interfaces’ behaviourDirect shear tests

Interface behaviour

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

47TUM 2012

Interfaces’ behaviour

Ribbed steel Concrete UHPFRC

Interface behaviour ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

48TUM 2012

Failure criteria max -

Interface behaviour

Page 71: Handsout for 1 Day Seminar

04/09/2012

13

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

49TUM 2012

2 ( ) N/mmu c

Failure criteria for the three interfaces

Failure criteria

Interface behaviour ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

50TUM 2012

2( )( )

(1 )

uSu uu a uSu max Su

u s s s s u s s s

u u u e s s

independent of the normal stress, σ

Interface behaviour

Kinematic law u - s

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

51TUM 2012

elk

plk

/

el el

u pl el el u

u afr u fr u

k s s s

k s s s s s τ s s s s

e s s

1 2

du s τ s C +C

ds

Constitutive law - s

Interface behaviour ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

52TUM 2012

Experimental investigation and modelisationdirect shear tests on small scale specimens

static loading

Embossed steel-cement grout interface

Interface behaviour

Page 72: Handsout for 1 Day Seminar

04/09/2012

14

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

53TUM 2012

u3

3

s3

s

s

= 1

= 1

= 2

= 2

s

u

u

1 s1

s

s2

conf

u2

2

max,1

max,2

2

1

Failure criteria

Kinematical law s - u

Constitutive law - s

confinement

Interface behaviour ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

54TUM 2012

s

u

Interface 2

Interface 1 Interface 3

Interface 4

Mechanical Model of the connexion

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

55TUM 2012

Experimental work with large scale specimens and analytical study

static push-out tests on large scale speciments

55

Connection behaviour ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

56TUM 2012

Connection behaviourmodel validation

Page 73: Handsout for 1 Day Seminar

04/09/2012

15

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

57TUM 2012

Longitudinal shear force versus slip, comparison between a fatigue and static test (push-out)

Connection behaviourFatigue ÉCOLE POLYTECHNIQUE

FÉDÉRALE DE LAUSANNE

58TUM 2012

Cyclic loading of interfaces – final results

embossed steel-cement grout interface

Connection behaviourFatigue

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

59TUM 2012

59

cyclic loading

Safe fatigue failure criterion for the new connection:

No failure due to cyclic loading occurs in the connection as long as theaccumulated slip under maximum applied longitudinal shear force isinferior to the slip which corresponds to failure for static loading.

Vmax,N us s

1 connu

fVmax,1

bs

Ns

The resistance of the connection to longitudinal shear under cyclic loadingcan be assessed by the structural performance for static loading !

Connection behaviourFatigue ÉCOLE POLYTECHNIQUE

FÉDÉRALE DE LAUSANNE

60Institute of Steel Structures - Xi’an University of Architecture & Technology

Composite beams behaviour

4. Comportement des poutres mixtes

Connections by adherence exhibit a limited ductility !

Beam behaviour ?, elastic, plastic, connection failure ?

4 to 8 metres

3 x 1000 kN

Page 74: Handsout for 1 Day Seminar

04/09/2012

16

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

61TUM 2012

Composite beams behaviour

Connections by adherence exhibit a limited ductility !

However full plastic resistance of the cross-section can be reached

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

62TUM 2012

Test of a composite beam under fatigue load and ultimate

P=275 (1-sin3.14t) KN

2P/3P/3

Pmax = 550 KNPmin = 140 KN

vmax= 537 KN/mvmin = 137 KN/m

Composite beams behaviour

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

63TUM 2012

Test of a composite beam

major results

Composite beams behaviour ÉCOLE POLYTECHNIQUE

FÉDÉRALE DE LAUSANNE

64TUM 2012

50 m long injection test of the connection

Page 75: Handsout for 1 Day Seminar

04/09/2012

17

UTM – 2012 65

Lateral torsional buckling in bridge design

Design according european normalisation

New research

UTM – 2012 6666

LTB in bridge design (new research)

UTM – 2012 67

a) Canal bridge Mitelland. (Germany, 1982)

b) Highway bridge Kaiserslautern. (Germany, 1954)

c) Saint-Ilpize bridge. (France 2004)

LTB in bridge design (new research)

UTM – 2012 68

The method for instability problem

Critical stress for the first mode corresponding to the studied instability

Yield strength

cr

yf

Reduced slenderness

Theory

y

cr

f

Theory / Tests

Reduction curve f 1,0Verification

y

EdM1

f

Partial factor : M1 1,1 Statistical analysis / Tests

Simplified method

LTB in bridge design - usual verifications

Page 76: Handsout for 1 Day Seminar

04/09/2012

18

UTM – 2012 69

Critical load for column buckling

2cr

cr 2

N 1 EI

L

NEd

NEd

L

2 2cr

cr2 2

N1 EI 1 1 EI2 EIc

L l

NEd

NEd

L

ll

l

Note : These formulae assume that I and are constant over the whole length L.

(Euler’s formula)

(Engesser’s formula)

with c = Cd / l

(springs supposed to be uniformly distributed)

LTB in bridge design - usual verifications

UTM – 2012 70

• deformable section (because of a very slender web)

• variation of the flange thicknesses

• variation of the bending moment My

• transverse distribution of the traffic loads, so benefit effet of the less loaded girders

•the transverse frames introduce discrete lateral elastic support

• « typical » method - rarely usable

• 3D model would be necessary (2 girders + transverse frames)

• second order elastic analysis for better taking into account the imperfections (equivalent geometric, or geometric + residual stresses)

LTLT

Particularities of bridge girders

Consequences

LTB in bridge design - usual verifications

UTM – 2012 71

General method from EN1993-2, 6.3.4.1

• ultimate amplification factor

yfult,k

Ed

minf

Ed is the ULS stress in the mid-plane of the flange in compression.

• critical amplification factor

crcr,op

Ed

cr is the stress in the mid-plane of the flange in compression, corresponding to the first mode for LTB.

• slenderness

ult,kop

cr,op

• reduction factor

op 22op

11,0

2

op op1

1 0,22

with

• Verification:

ult,kop

M1

1,0 with M1 1,1

LTB in bridge design - usual verifications

UTM – 2012 72

7000

28

00

11

006

001

100

IPE 600

B

BC

A A

C

280

0

7000

15

00

A A

B

B

Transverse frames in spans Transverse frames on supports

60,00 m 80,00 m 60,00 m

a = 8 m a = 7,5 ma = 7,5 m

Elastic lateral support with a rigidity of the transverse frame Cd = 20,3 MN/m

calculated by assuming:• hinges at the interface steel/concrete• extensibility of the slab neglected

Fixe lateral support(by comparison with transverse frames in the spans)

The bridge

LTB in bridge design - usual verifications

Page 77: Handsout for 1 Day Seminar

04/09/2012

19

UTM – 2012 73

60,00 m 80,00 m 60,00 m

C0 P1 P2 C3

280

0

272

0

269

0

264

0

256

0

269

0

272

0

264

0

269

0

264

0

256

0

264

0

269

0

272

0

bfi = 1200 mm

tfi (mm) = 40 55 80120

80 55 40 55 80120

80 55 40

Acier S355

LTB in bridge design - usual verifications

UTM – 2012 74

-120

-100

-80

-60

-40

-20

0

20

40

60

0 50 100 150 200

Abscisse x (m)

Mo

men

t E

LU

dév

erse

men

t (M

N.m

)

poutre n°1 - la plus sollicitée

poutre n°2

Dead loads (construction phases, cracked elastic analysis, shrinkage)

Traffic loads (udl and TS with unfavourable transverse distribution for the girder n°1)

TS = 409,3 kN/axleudl = 26,7 kN/m

LTB during service life on support P1 (lower flange in compression)

+

LTB in bridge design - usual verifications

UTM – 2012 75

ANE

hw,c

hw,c 3*

sup

inf

-20

-10

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180 200

Abscisses (m)

Eff

ort

no

rmal

(M

N)

Poutre n°1 la plus sollicitéeh tA b t w,c w

eff f f 3

t bI

3f f

12

Use of Engesser’s formula with:

• isolated central span (L=80m) considered on an elastic soil with uniform rigidity c = Cd /a

• use of the maximum thickness on support

• use of the maximum normal force on support

crit 2N EIc

crit 191,9 MNN

crit 1154,8 MPa

LTB in bridge design - usual verifications

UTM – 2012 76

NormFasc. 61 titre V

1978

SIA 161

1990

SIA 263

2003

EN 1993-2, 6.3.4.2

2007

Conditions for the function LT

n = 2,25

Welded section

=> Curve c

Welded section

h/bf = 2800/1200 > 2

=> Curve d

0,904 0,980 0,840 0,776

1,0 1,1 1,05 1,1

266,7 MPa-9,6 %

262,8 MPa-10,9 %

236 MPa-20,0 %

208,1 MPa-29,5 %

Ok? YES YES NO NO

LT

yLT

crit

0,505 0,4f

M1

Ed 249,25 MPa (first order on support P1)

LT y

RdM1

f

LTB in bridge design - usual verifications

Page 78: Handsout for 1 Day Seminar

04/09/2012

20

UTM – 2012 77

Mode cr,op Description of the observed deformed shape

1 8,86

Anti symmetric waves with a buckling length Lf = 20 m around P1

2 10,26

Anti symmetric waves with a buckling length Lf = 20 m around P2

3 17,49

Quasi symmetric waves with a buckling length Lf = 20 m around P1

• bar model with a unique girder (Af + Aw,c/3)

• variable inertia and normal force

• discrete elastic lateral support, with rigidity Cd

a = 8 ma = 7,5 m a = 7,5 m

x

uy

60 m 60 m80 m

EN 1993-2, 6.3.4.1

LTB in bridge design - usual verifications

UTM – 2012 78

-400

-300

-200

-100

0

100

200

300

400

0 20 40 60 80 100 120 140 160 180 200

Co

ntr

ain

tes

dan

s le

pla

n m

oye

n d

e la

sem

elle

in

f (M

Pa)

yfult,k

f

295118

249 25min ,

,

f

ult,k

op

cr,op

1,180,365 0,2

8,86

2op opLT LT

11 0,2 0,63

2

op 22opLT LT

10,875 1,0

ult,kop

M1

1,0360,94 1,0

1,1

NO

• the section where cr,op is maximum can be located in another place in comparison with the section where ult,k is minimum.

• ult,k can be minimum in the section where the flange thickness changes.

LTB in bridge design - usual verifications

UTM – 2012 79

Field of bridges

Different curves for LTB in bridges

LTB in bridge design - usual verifications

UTM – 2012 80

-200

-150

-100

-50

0

50

100

150

200

250

300

0 20 40 60 80 100Str

esse

s (M

Pa

)

First order stressesSecond order stresses - mode 1Total stresses - mode 1

C0 P1

0 20 40 60 80 10

First order stressesSecond order stresses - mode 3Total stresses - mode 3

P1C0

• definition of the equivalent geometric imperfection (shape + amplitude e0 = L/150)

• calculation by EF with an elastic analysis

• zoom on the area of P1

Second order elastic analysis

LTB in bridge design - usual verifications

Page 79: Handsout for 1 Day Seminar

04/09/2012

21

UTM – 2012 81

Mode 1 1 3 3

e0 Lf/150 Lf/300 Lf/150 Lf/300

max (MPa) 74,58 37,57 50,44 25,41

in the section x (m) 64,5 64,5 50 50

total max (MPa) 271,00 247,76 278,81 262,52

in the section x (m) 62,5 60 (P1) 60 (P1) 60 (P1)

Always verified : max yf 295 MPaf YES

• II is mainly due to the first iteration of the second order analysis (quasi proportional to the value of e0).

• e0 should be defined following the value of the reduced slenderness parameter.

el0

We 0,76 0,2

A use (so 25 mm instead of L/150 = 133 mm)

Second order elastic analysis

LTB in bridge design - usual verifications

UTM – 2012 82

There is a need for a “simplified” more accurate design method for bridge design

UTM – 2012 83

Methodology

LTB in bridge design (new research)

UTM – 2012 84

Residual stresses

• Longitudinal residual stresses at a macroscopic scale in thick

steel plates

• Origin: rolling, cutting and welding process

• Self-equilibrated system (∑M = 0 and ∑F = 0)

• Several models already exist but not for bridge sections

ECCS, n°33, 1984

(ECCS, n°22, 1976) (Flame-cutting, Welding)

LTB in bridge design (new research)

Page 80: Handsout for 1 Day Seminar

04/09/2012

22

UTM – 2012 85

Principle of the sectioning method

Initials measurements Li

Finals measurements Lf

Strain: Stresses:

LTB in bridge design (new research)

UTM – 2012 86

Specimens fabrication

• Flame-cutting set up and temperature measurements

1

2

3

LTB in bridge design (new research)

UTM – 2012 87

Expérimentaux sur contraintes résiduelles• Fabrication des éprouvettes d’oxycoupage

871. Introduction 2. Le projet 3. Travaux réalisés 4. Suite des travaux 5. Finances

UTM – 2012 88

Specimens fabrication

• Geometry of welding and pass sequencing

730

FC

FC

2600

60 730

Section View A-A

A

A

Plan view

Web PL20mm, S355J2 2600 x 180 x 20 mm

Flange PL60mm, S355N 2600 x 730 x 60 mm

20

180

Weld direction,

Speed 6.66 mm/s

T2b

Rolling direction

Temperaturemeasuring zones

1 12 2

3 3web

flange

123

1 23

Submerged Arc Welding process (SAW)

LTB in bridge design (new research)

Page 81: Handsout for 1 Day Seminar

04/09/2012

23

UTM – 2012 89

Specimens fabrication

• Welding set up and temperature measurements

LTB in bridge design (new research)

UTM – 2012 90

90

UTM – 2012 91

Preparation of the specimens

• Design of sectioning

13@20mm 13@20mm

2@25mm

60

5@10

mm

730

280 30 2805 55

6@10mm

70

6@10mm

70

1@15mm 1@15mm

9@20mm

60

5@10

mm

730

50 2005 55

6@10mm

70

6@10mm

70

1@15mm 1@15mm

70

6@10mm

1@15mm

6@10

mm

6@10

mm

2@17

.5m

m

9@20mm

200 70

6@10mm

1@15mm

Welding Specimens

Flame-cutting Specimens

LTB in bridge design (new research)

UTM – 2012 92

Preparation of the specimens

• Cutting steps2. Band saw

1. Circular saw

LTB in bridge design (new research)

Page 82: Handsout for 1 Day Seminar

04/09/2012

24

UTM – 2012 93

Preparation of the specimens

• Specimens after cutting

LTB in bridge design (new research)

UTM – 2012 94

Measuring techniques

b) Curvature deformationa) Longitudinal deformation

250 mm

“Needle comparator”“Deformeter”

LTB in bridge design (new research)

UTM – 2012 95

4. RESULTS AND DISCUSSION

LTB in bridge design (new research)

UTM – 2012 96

Temperature measurements

LTB in bridge design (new research)

Page 83: Handsout for 1 Day Seminar

04/09/2012

25

UTM – 2012 97

Flame-cutting residual stresses distribution for the 615 mm width plates

LTB in bridge design (new research)

UTM – 2012 98

Flame-cutting residual stresses distribution for the 730 mm width plate

LTB in bridge design (new research)

UTM – 2012 99

LTB in bridge design (new research)

Flame-cutting residual stresses distribution resume

FKA – UTM 2012

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Page 84: Handsout for 1 Day Seminar

04/09/2012

1

FKA – UTM 2012

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Prof., Dr, Jean-Paul Lebet Swiss Federale Institute of Technology, Lausanne

THE “VIADUCT DE MILLAU”THE “VIADUCT DE MILLAU”

North American Steel Construction conference, April 2

The Millau viaduct

3 4

Page 85: Handsout for 1 Day Seminar

04/09/2012

2

Viaduc de Millau

6

The Millau viaduct

Narrow and winding access roads

Height above ground

Long and innovative bridge

7

The Millau viaduct

8

The Millau viaduct

Page 86: Handsout for 1 Day Seminar

04/09/2012

3

9

The Millau viaduct

10

From North, 717 m

From south (descending), 1743 m

The Millau viaduct

Launching principle

11

The Millau viaduct

12

Page 87: Handsout for 1 Day Seminar

04/09/2012

4

13 14

The Millau viaduct

Translators used for the launching

15

The Millau viaductPrincipe of the launching

Avant-bec

Palée provisoire T1

Pile P1

Tablier du pont

Systèmes de lançage

Page 88: Handsout for 1 Day Seminar

04/09/2012

5

Step 0 – Initial position

Cinematic of the launching

Step 1 – up

Cinematic of the launching

Step 2 – Translation

Cinematic of the launching

Step 3 – Down

Cinematic of the launching

Page 89: Handsout for 1 Day Seminar

04/09/2012

6

Step 4 – Back to initial position

Cinematic of the launching

Page 90: Handsout for 1 Day Seminar

04/09/2012

7

28

The Millau viaduct

Page 91: Handsout for 1 Day Seminar

04/09/2012

8

29

The Millau viaduct

30

31 32

Page 92: Handsout for 1 Day Seminar

04/09/2012

9

33 34

35

The Millau viaduct

36

Page 93: Handsout for 1 Day Seminar

04/09/2012

10

37

Thank you for your attention