heat transfermycsvtunotes.weebly.com/uploads/1/0/1/7/10174835/unit-3_heat_an… · ' f •...

25
HEAT TRANSFER BY CONVECTION www.mycsvtunotes.in MYcsvtu Notes

Upload: others

Post on 30-Apr-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: HEAT TRANSFERmycsvtunotes.weebly.com/uploads/1/0/1/7/10174835/unit-3_heat_an… · ' f • Grashof number replaces the Reynolds number in the convection correlation equation. In free

HEAT TRANSFER BY CONVECTION

ww

w.m

ycs

vtu

note

s.in

M

Ycs

vtu

Note

s

Page 2: HEAT TRANSFERmycsvtunotes.weebly.com/uploads/1/0/1/7/10174835/unit-3_heat_an… · ' f • Grashof number replaces the Reynolds number in the convection correlation equation. In free

CONDUCTION

Mechanism of heat transfer through a solid or fluid in the absence any fluid motion.

CONVECTION

Mechanism of heat transfer through a fluid in the presence of bulk fluid motion

• Natural (free) Convection

• Forced Convection

(depending on how the fluid motion is initiated)

ww

w.m

ycs

vtu

note

s.in

M

Ycs

vtu

Note

s

Page 3: HEAT TRANSFERmycsvtunotes.weebly.com/uploads/1/0/1/7/10174835/unit-3_heat_an… · ' f • Grashof number replaces the Reynolds number in the convection correlation equation. In free

• Viscous-inviscid • Internal flow- External flow • Open-closed channel • Compressible- Incompressible • Laminar- Turbulent • Natural- Forced • Steady- Unsteady • One-,two-,three-

dimensional

www.mycsvtunotes.in

CLASSIFICATION OF FLUID FLOWS

MYcsvtu Notes

Page 4: HEAT TRANSFERmycsvtunotes.weebly.com/uploads/1/0/1/7/10174835/unit-3_heat_an… · ' f • Grashof number replaces the Reynolds number in the convection correlation equation. In free

VISCOSITY When two fluid layers move relative to each other, a

friction force develops between them and the slower layer tries to slow down the faster layer.

internal resistance to flow • cohesive forces between the molecules in liquid • molecular collisions in gases. Viscous flows: viscous effects are significant Inviscid flow regions: viscous forces are negligibly small

compared to inertial or pressure forces. measure of stickness or resistance to deformation

1. Kinematic viscosity 2. Dynamic viscosity

ww

w.m

ycs

vtu

note

s.in

M

Ycs

vtu

Note

s

Page 5: HEAT TRANSFERmycsvtunotes.weebly.com/uploads/1/0/1/7/10174835/unit-3_heat_an… · ' f • Grashof number replaces the Reynolds number in the convection correlation equation. In free

VISCOSITY DEPENDS ON

• TEMPERATURE • PRESSURE For liquids dependence of

pressure is negligible For gases kinematic viscosity

depends on pressure since its relation to density

www.mycsvtunotes.in

Dynamic viscosity

(kg/m.s or poise)

Kinematic viscosity,

m2/s or stroke

MYcsvtu Notes

Page 6: HEAT TRANSFERmycsvtunotes.weebly.com/uploads/1/0/1/7/10174835/unit-3_heat_an… · ' f • Grashof number replaces the Reynolds number in the convection correlation equation. In free

ww

w.m

ycs

vtu

note

s.in

Convection heat transfer

- Dynamic viscosity

- Thermal conductivity

- Density

- Specific heat

- Fluid velocity

- Geometry

- Roughness

- Type of fluid flow

MYcs

vtu

Note

s

Page 7: HEAT TRANSFERmycsvtunotes.weebly.com/uploads/1/0/1/7/10174835/unit-3_heat_an… · ' f • Grashof number replaces the Reynolds number in the convection correlation equation. In free

NEWTON’S LAW OF COOLING

ww

w.m

ycs

vtu

note

s.in

)(

TThAQ SSconv

h

(W)

Convection heat transfer coefficient (W/m2.0C)

The rate of heat transfer between a solid surface and a fluid

per unit surface area per unit temperature difference

MYcs

vtu

Note

s

Page 8: HEAT TRANSFERmycsvtunotes.weebly.com/uploads/1/0/1/7/10174835/unit-3_heat_an… · ' f • Grashof number replaces the Reynolds number in the convection correlation equation. In free

GENERAL THERMAL ANALYSIS

ww

w.m

ycs

vtu

note

s.in

)(

TThAQ SSconv

)( iep TTCmQ

MYcs

vtu

Note

s

Page 9: HEAT TRANSFERmycsvtunotes.weebly.com/uploads/1/0/1/7/10174835/unit-3_heat_an… · ' f • Grashof number replaces the Reynolds number in the convection correlation equation. In free

FORCED CONVECTION

ww

w.m

ycs

vtu

note

s.in

M

Ycs

vtu

Note

s

Page 10: HEAT TRANSFERmycsvtunotes.weebly.com/uploads/1/0/1/7/10174835/unit-3_heat_an… · ' f • Grashof number replaces the Reynolds number in the convection correlation equation. In free

• LAMINAR FLOW

Smooth streamlines

Highly- ordered motion

(highly viscous fluids in small pipes)

• TURBULENT FLOW

Velocity fluctuations

Highly-disordered motion

• TRANSITIONAL FLOW

www.mycsvtunotes.in MYcsvtu Notes

Page 11: HEAT TRANSFERmycsvtunotes.weebly.com/uploads/1/0/1/7/10174835/unit-3_heat_an… · ' f • Grashof number replaces the Reynolds number in the convection correlation equation. In free

www.mycsvtunotes.in

REYNOLDS NUMBER

Flow Regime:

Geometry

Surface roughness

Flow velocity

Surface temperature

type of fluid

Ratio of the inertial forces to

viscous forces in the fluid

D

v

D mm Re

m

D

/v

Mean flow velocity

Characteristic length of

the geometry

Kinematic viscosity

MYcsvtu Notes

Page 12: HEAT TRANSFERmycsvtunotes.weebly.com/uploads/1/0/1/7/10174835/unit-3_heat_an… · ' f • Grashof number replaces the Reynolds number in the convection correlation equation. In free

• Critical Reynolds number (Recr) for flow in a round pipe

Re < 2300 laminar

2300 ≤ Re ≤ 4000 transitional

Re > 4000 turbulent

• Note that these values are approximate.

• For a given application, Recr depends upon • Pipe roughness

• Vibrations

• Upstream fluctuations, disturbances (valves, elbows, etc. that may disturb the flow)

www.mycsvtunotes.in

Definition of Reynolds number

MYcsvtu Notes

Page 13: HEAT TRANSFERmycsvtunotes.weebly.com/uploads/1/0/1/7/10174835/unit-3_heat_an… · ' f • Grashof number replaces the Reynolds number in the convection correlation equation. In free

• For non-round pipes,

• the hydraulic diameter Dh = 4Ac/P Ac = cross-section area

P = wetted perimeter

www.mycsvtunotes.in

HYDRAULIC DIAMETER

MYcsvtu Notes

Page 14: HEAT TRANSFERmycsvtunotes.weebly.com/uploads/1/0/1/7/10174835/unit-3_heat_an… · ' f • Grashof number replaces the Reynolds number in the convection correlation equation. In free

ww

w.m

ycs

vtu

note

s.in

Velocity

No-slip condition

MYcs

vtu

Note

s

Page 15: HEAT TRANSFERmycsvtunotes.weebly.com/uploads/1/0/1/7/10174835/unit-3_heat_an… · ' f • Grashof number replaces the Reynolds number in the convection correlation equation. In free

THERMAL BOUNDARY LAYER

ww

w.m

ycs

vtu

note

s.in

Flow region over the surface in which the temperature variation in the direction normal to the surface

Velocity profile influences temperature profile

MYcs

vtu

Note

s

Page 16: HEAT TRANSFERmycsvtunotes.weebly.com/uploads/1/0/1/7/10174835/unit-3_heat_an… · ' f • Grashof number replaces the Reynolds number in the convection correlation equation. In free

VELOCITY

in rectangular

www.mycsvtunotes.in

),,( zyx

),,( zr

One

dimensional

flow in a

circular pipe

A flow field is best characterized by the velocity distribution, and velocity may vary in three dimension

in cylinderical coordinates

In which direction does the velocity change in

this figure???

MYcsvtu Notes

Page 17: HEAT TRANSFERmycsvtunotes.weebly.com/uploads/1/0/1/7/10174835/unit-3_heat_an… · ' f • Grashof number replaces the Reynolds number in the convection correlation equation. In free

NUSSELT NUMBER

ww

w.m

ycs

vtu

note

s.in

(Dimensionless number)

k

hLNu c

Thq conv

L

Tkq

cond

Nuk

hL

LTk

Th

q

q

cond

conv

/

MYcs

vtu

Note

s

Page 18: HEAT TRANSFERmycsvtunotes.weebly.com/uploads/1/0/1/7/10174835/unit-3_heat_an… · ' f • Grashof number replaces the Reynolds number in the convection correlation equation. In free

PRANDTL NUMBER • Boundary layer theory

ww

w.m

ycs

vtu

note

s.in

k

C pPr

Pr<<1 heat diffuses very quickly in liquid metals, tbl thicker

Pr>>1 heat diffuses very slowly in oils relative to momentum, tbl thinner than vbl

k

C

heatofydiffusivitmolecular

momentumofydiffusivitmolecularp

Pr

MYcs

vtu

Note

s

Page 19: HEAT TRANSFERmycsvtunotes.weebly.com/uploads/1/0/1/7/10174835/unit-3_heat_an… · ' f • Grashof number replaces the Reynolds number in the convection correlation equation. In free

PARALLEL FLOW OVER FLAT PLATES

ww

w.m

ycs

vtu

note

s.in

5105Re

cr

cr

x

53/15.0 105RePrRe664.0 LLk

hLNu

75

3/18.0

10Re105

60Pr6.0PrRe037.0

L

Lk

hLNu

laminar

turbulent

MYcs

vtu

Note

s

Page 20: HEAT TRANSFERmycsvtunotes.weebly.com/uploads/1/0/1/7/10174835/unit-3_heat_an… · ' f • Grashof number replaces the Reynolds number in the convection correlation equation. In free

NATURAL CONVECTION

ww

w.m

ycs

vtu

note

s.in

M

Ycs

vtu

Note

s

Page 21: HEAT TRANSFERmycsvtunotes.weebly.com/uploads/1/0/1/7/10174835/unit-3_heat_an… · ' f • Grashof number replaces the Reynolds number in the convection correlation equation. In free

CONVECTIVE HEAT TRANSFER COEFFICIENT

ww

w.m

ycs

vtu

note

s.in

2

3)(

CsL

LTTgGr

PrLL GrRa

n

LC CRa

k

hLNu

Grashof number

Rayleigh number

Prandtl number

Nusselt number

Table 20-1

viscosity

Coefficient of volume expansion

MYcs

vtu

Note

s

Page 22: HEAT TRANSFERmycsvtunotes.weebly.com/uploads/1/0/1/7/10174835/unit-3_heat_an… · ' f • Grashof number replaces the Reynolds number in the convection correlation equation. In free

Free Convection

MY

csvtu

Note

s w

ww

.mycs

vtu

note

s.in

A free convection flow field is a self-sustained flow driven by the

presence of a temperature gradient. (As opposed to a forced

convection flow where external means are used to provide the

flow.) As a result of the temperature difference, the density field

is not uniform also. Buoyancy will induce a flow current due to

the gravitational field and the variation in the density field. In

general, a free convection heat transfer is usually much smaller

compared to a forced convection heat transfer. It is therefore

important only when there is no external flow exists.

hot

cold

T r T r

Flow is unstable and a circulatory

pattern will be induced.

Page 23: HEAT TRANSFERmycsvtunotes.weebly.com/uploads/1/0/1/7/10174835/unit-3_heat_an… · ' f • Grashof number replaces the Reynolds number in the convection correlation equation. In free

Basic Definitions

MY

csvtu

Note

s w

ww

.mycs

vtu

note

s.in

Buoyancy effect:

Warm, r

Surrounding fluid, cold, r

Hot plate Net force=(r- r)gV

The density difference is due to the temperature difference and it can be

characterized by ther volumetric thermal expansion coefficient, b:

1 1 1( )P

T T T T

T

r rr rb

r r r

r b

Page 24: HEAT TRANSFERmycsvtunotes.weebly.com/uploads/1/0/1/7/10174835/unit-3_heat_an… · ' f • Grashof number replaces the Reynolds number in the convection correlation equation. In free

Grashof Number and Rayleigh Number

MY

csvtu

Note

s w

ww

.mycs

vtu

note

s.in

Define Grashof number, Gr, as the ratio between the buoyancy force and the

viscous force: 33

2 2

( )Sg T T Lg TLGr

bb

• Grashof number replaces the Reynolds number in the convection correlation

equation. In free convection, buoyancy driven flow sometimes dominates the

flow inertia, therefore, the Nusselt number is a function of the Grashof number

and the Prandtle number alone. Nu=f(Gr, Pr). Reynolds number will be

important if there is an external flow. (see chapter 11.5, combined forced and

free convection.

• In many instances, it is better to combine the Grashof number and the

Prandtle number to define a new parameter, the Rayleigh number, Ra=GrPr.

The most important use of the Rayleigh number is to characterize the laminar

to turbulence transition of a free convection boundary layer flow. For

example, when Ra>109, the vertical free convection boundary layer flow over

a flat plate becomes turbulent.

Page 25: HEAT TRANSFERmycsvtunotes.weebly.com/uploads/1/0/1/7/10174835/unit-3_heat_an… · ' f • Grashof number replaces the Reynolds number in the convection correlation equation. In free

Example

MY

csvtu

Note

s w

ww

.mycs

vtu

note

s.in

Determine the rate of heat loss from a heated pipe as a result of natural (free)

convection.

Ts=100C

T=0°C D=0.1 m

Film temperature( Tf): averaged boundary layer temperature Tf=1/2(Ts+T )=50 C.

kf=0.03 W/m.K, Pr=0.7, =210-5 m2/s, b=1/Tf=1/(273+50)=0.0031(1/K)

3 36

2 5 2

1/ 62

9 /16 8/ 27

2

( ) (9.8)(0.0031)(100 0)(0.1)Pr (0.7) 7.6 10 .

(2 10 )

0.387{0.6 } 26.0 (equation 11.15 in Table 11.1)

[1 (0.559 / Pr) ]

0.03(26) 7.8( / )

0.1

( ) (7.8)( )(

S

D

f

D

S

g T T LRa

RaNu

kh Nu W m K

D

q hA T T

b

0.1)(1)(100 0) 244.9( )

Can be significant if the pipe are long.

W