heavy flavor in medium

57
Heavy Flavor in Medium Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, TX USA JET Collaboration Summer School McGill University, Montreal (QC, Canada), 16.-18.06.12

Upload: melina

Post on 09-Jan-2016

21 views

Category:

Documents


0 download

DESCRIPTION

Heavy Flavor in Medium. Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, TX USA JET Collaboration Summer School McGill University, Montreal (QC, Canada), 16.-18.06.12. Review Articles. RR and H. van Hees, - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Heavy Flavor in Medium

Heavy Flavor in Medium

Ralf Rapp Cyclotron Institute +

Dept. of Physics & Astronomy Texas A&M University

College Station, TX USA

JET Collaboration Summer SchoolMcGill University, Montreal (QC, Canada), 16.-18.06.12

Page 2: Heavy Flavor in Medium

RR and H. van Hees, Heavy-Quark Diffusion as a Probe of the Quark-Gluon Plasma,Nova Publishers; arXiv:0803.0901[hep-ph]

RR, D. Blaschke and P. Crochet,Charmonia and Bottomonia in Heavy-Ion Collisions,Prog. Part. Nucl. Phys. 65 (2010) 209; arXiv:0907.2470[hep-ph]

RR and H. van Hees, Heavy Quarks in the Quark-Gluon Plasma,in Quark-Gluon Plasma 4 (R. Hwa and X.N. Wang, eds.), World Scientific (2010); arXiv:0903.2096[hep-ph]

Review Articles

Page 3: Heavy Flavor in Medium

1.) Introduction: Why Heavy Quarks in URHICs?

“Large” scale mQ >> QCD, T (Q = c, b):

• pair production essentially restricted to primordial NN collisions → well defined initial condition, flavor conserved

• thermal relaxation time increased by ~ mQ/T ~ 5-20 → incomplete thermalization, “memory” of re-interaction history

• simplifications in theoretical treatment → Brownian motion (elastic scattering) → access to soft interactions in QGP / hadronization (coalescence) → transport properties + contact to lattice QCD → potential-type interactions

Page 4: Heavy Flavor in Medium

1.2 Intro II: A “Calibrated” QCD Force

•1GeV/fm nonperturbative (gluonic condensate)

• V(r0)=0 => r0 ~ ¼ fm ~ (0.8GeV)-1

•Charm- + Bottomonium spectroscopy well described (effective potential theory, 1/mQ expansion)

• confining term crucial: EBCoul(J/) ~ 0.05 GeV vs. 0.6 GeV expt.

• Medium modifications ↔ QCD phase structure (de-/confinement)[Matsui+Satz ‘86]

V [½ GeV]

r [½ fm]

Page 5: Heavy Flavor in Medium

• strong medium effects, nonpert.:

F(r) > 0 for T ≤ 2Tc

• momentum transfer

• single heavy quark in QGP

1.3 Intro III: Heavy-Quark Interactions in Medium

2220

2 qqqq

Q Q|q|m/q~q Q

22

0

22th 2 TTm~p Q

QGP

• soft Q-Q and Q-medium interactions static + elastic

common description of quarkonia + heavy-quark transport

requires bound + scattering states, resummations

thermodynamic T-matrix approach (e.m. plasmas, nucl. matter)

- Q

Page 6: Heavy Flavor in Medium

1.4 Intro IV: Heavy-Quark Observables in URHICs

• Same force operative for quarkonia + heavy-quark transport?!

J/ Suppression Heavy-Quark Suppression+Flow

Page 7: Heavy Flavor in Medium

1.) Introduction

2.) One- and Two-Body Correlations Potential Models T-Matrix Approach

3.) Charmonia in the QGP Spectral Functions Tests with Lattice QCD

4.) Heavy-Flavor Transport Diffusion Approach Microscopic Interactions

5.) Heavy Ions I: Open Heavy Flavor

6.) Heavy Ions II: Quarkonia

7.) Conclusions

Outline

Page 8: Heavy Flavor in Medium

2.1 Quarkonium Correlators + Spectral Functions • Euclidean Correlation Function

• Correlator Ratio:

• Spectral Function

• Relation:

[Datta et al ‘04]

c

J/[Asakawa et al ’03, Iida et al ’06, Aarts et al ‘07, Jakovac et al ’07, …]

• computable in lattice-QCD with good precision

• Interpretation?!

Page 9: Heavy Flavor in Medium

• 2-body potential V at finite temperature?

2.2 Potential Models for Spectral Functions

• well established in vacuum (EFT, lattice)• Schrödinger equation in medium

• correlators: quark rescattering in continuum

[Satz et al ’01, Mocsy+ Petreczky ‘05, Alberico et al ’06, Wong ’07, Laine ’07, …]

V~F1 Potential [Mocsy+Petreczky ’05,‘08]

• good agreement with lQCD correlat.• J/ melting at ~1.2 Tc • continuum with K-factor

E]V̂mm

p̂[ QQQ

Q

00

22

Page 10: Heavy Flavor in Medium

• Lippmann-Schwinger equation

In-Medium Q-Q T-Matrix: -

2.3 Two-Body Scattering Equation

)'q,k;E(T)k,E(G)k,q(Vdkk)'q,q(V)'q,q;E(T QQ 02

[Mannarelli,Cabrera,Riek+RR ‘05,‘06,‘10]

• Q-Q propagator:

)k,zE(D)k,z(DT)T;k,E(G QQQQ

0-

)]E(f)(f)[E()(

)]E(f)(f[)E()(d)E(G

QQQQ

QQQQQQ

12

0ImQ-Q propagation

Q → Qscattering

zero mode!

-

• Vector channel (j0: density) → HQ number susceptibility

determined by zero mode! )E(

(-E/T)dE

T)T( V

cc

002

2

exp12

21

Page 11: Heavy Flavor in Medium

2.4 Single Heavy-Quark Spectral Fct. + Selfenergy

)k,()k(D

QQQ 1Im2Im-2Q

)(f)(T)k,( pq

pQqQ

• Quark-Induced HQ Selfenergy

• Selfconsistency problem!

• Spectral Function (propagator)

• Gluon-Induced HQ Selfenergy: - condensate-induced: nonperturbative, low T, positive - thermal Debye cloud: perturbative, large T, negative

Page 12: Heavy Flavor in Medium

2.5 Heavy-Quark Free Energy in Lattice QCD

F1(r,T) = U1(r,T) – T S1(r,T)

• Potential?! (a) Free energy F1 => weak QQ potential, small Q “selfenergy” F1(r=∞,T)/2

(b) Internal Energy U1 (U = ‹Hint›) => strong QQ potential, large Q “selfenergy” U1(r=∞,T)/2

→ compensation in E= 2mQ* - EB

• F, U, S thermodynamic quantities (0-point functions), potential: 4-point fct.

• Entropy: many-body effects [Kaczmarek+Zantow ’05]

-

-

Page 13: Heavy Flavor in Medium

• Corrections to static potential - Relativistic: magnetic “Breit” correction: VQ1Q2(r) → VQ1Q2(r) ( 1 – v1 · v2 ) (↔ Poincaré-invariance, pQCD)

- Retardation: 4-D → 3-D reduction of Bethe-Salpeter eq. (off-shell)

2.6 Field Theoretic Approach to Free Energy in QGP

[Brown et al ‘52, ‘05]

s ~ 0.3

Fa

v [G

eV

]

[Riek+RR ‘10]

• effective propagators: Coulomb + string

• fit 4 parameters to lattice-QCD data 222

2

22

2

00)m~k(

m

mk)k(D

D

G

D

s

[Megias et al ‘07]

Page 14: Heavy Flavor in Medium

2.7.1 Constraints I: Vacuum Spectroscopy Quarkonia D-Mesons

• no hyperfine splitting• (bare) masses adjusted to ground state • ~ ±50 MeV accuracy

Page 15: Heavy Flavor in Medium

Born Approximation compared to Perturbative QCD

2.7.2 Constraints II: High-Energy Scattering

• Breit correction essential

Page 16: Heavy Flavor in Medium

2.8 Brueckner Theory of Heavy Quarks in QGP

2-body potential QQ

T-matrix

QqT-matrix

Q → Q0-modes

Quarkselfenergy

QQ evolution (rate equation)

Q spectra + v2

(Langevin)

spectral fcts./eucl. correlat.

quark-no.susceptibility

latticedata

exp.data

Input Process Output Test

-

-

Page 17: Heavy Flavor in Medium

1.) Introduction

2.) One- and Two-Body Correlations Potential Models T-Matrix Approach

3.) Charmonia in the QGP Spectral Functions Tests with Lattice QCD: Eucl. Correlators, Susceptibility

4.) Heavy-Flavor Transport Diffusion Approach Microscopic Interactions

5.) Heavy Ions I: Open Heavy Flavor

6.) Heavy Ions II: Quarkonia

7.) Conclusions

Outline

Page 18: Heavy Flavor in Medium

J/ Dissociation Cross Section

3.1 Charmonium Widths in QGP

→ sensitive to binding energy (i.e., color screening)

)s()T;(f)(

kd disspk

p

g,q,qp

3

3

2

q q

[Grandchamp+RR ’01]

• EB ≥ T : gluo-dissociation

• EB < T : quasi-free dissociation

[Bhanot+Peskin ’79]

• J/ lifetime ~ 1-4 fm/c

J/ Dissociation Rates

s~0.25

Page 19: Heavy Flavor in Medium

3.1.2 Relation of Quarkonium Widths to EFT

• Landau damping

• Singlet-octet transition

q q

gluo-dissosciation [Bhanot+Peskin ‘85]

“quasi-free” dissosciation

Page 20: Heavy Flavor in Medium

• U-potential, selfconsist. c-quark width

• Spectral Functions - J/ melting at ~1.5Tc

- c melting at ~Tc

- c ~ 100MeV

• Correlator Ratios

- rough agreement with lQCD within uncertainties

3.2 Charmonia in QGP: T-Matrix Approach

[Mocsy+ Petreczky ’05+’08, Wong ’06, Cabrera+RR ’06, Beraudo et al ’06, Satz et al ’08, Lee et al ’09, Riek+RR ’10, …]

[Aarts et al ‘07]

Page 21: Heavy Flavor in Medium

• selfcons. c-quark width

• Spectral Functions - J/ melting at ~1.1Tc

- c melting at ≤ Tc

- c ~ 50MeV

• Correlator Ratios

- slightly worse agreement with lQCD

3.2.2 T-matrix Approach with F-Potential

[Riek+RR ’10]

[Aarts et al ‘07]

Page 22: Heavy Flavor in Medium

3.3 Charm-Quark Susceptibility in QGP

• sensitive to in-medium charm-quark mass • finite-width effects can compensate in-medium mass increase

[Riek+RR ‘10]

2→ →

→ 0 m « T

Page 23: Heavy Flavor in Medium

1.) Introduction

2.) One- and Two-Body Correlations Potential Models T-Matrix Approach

3.) Charmonia in the QGP Spectral Functions Tests with Lattice QCD

4.) Heavy-Flavor Transport Diffusion Approach Microscopic Interactions (pQCD, AdS/CFT, T-mat)

5.) Heavy Ions I: Open Heavy Flavor

6.) Heavy Ions II: Quarkonia

7.) Conclusions

Outline

Page 24: Heavy Flavor in Medium

4.1 Heavy-Quark Diffusion in Matter

• Boltzmann equation for HQ phase-space distribution fQ

• neglect external field, homogenous medium

• transition rate encodes microscopic interaction (scattering amplitude)

• expand transition rate in momentum transfer k ~ T << p ~ √2mQT

Page 25: Heavy Flavor in Medium

2

2

p

fD

p)pf(

tf

• Brownian Motion, long-time solution:

thermalization rate

diffusion coeff.

Fokker Planck Equation

Q[Svetitsky ’87, Mustafa et al ’98, Hees+RR ’04, Teaney+Moore ’04, Gubser ‘07, Peshier ’09, Gossiaux et al ’08, Alam et al ’09, …]

• Einstein relation

• transport coefficient(s)

Page 26: Heavy Flavor in Medium

4.2.1 Leading-Order Perturbative QCD

4.2 Elastic Heavy-Quark Scattering in the QGP

• gluon exchange regularized by Debye mass:

• dominated by forward scattering

• thermalization time -1= therm ≥ 20 fm/c long (T≤ 300MeV, s=0.4)

[Svetitsky ’88, Mustafa et al ’98, Molnar et al ’04, Zhang et al ’04, Hees+RR ’04, Teaney+Moore‘04]

Page 27: Heavy Flavor in Medium

4.2.2 Effective Resonance Model• Postulate D-meson resonances in “sQGP” close to Tc

cc

_q

_q

• parameters: mD , GD

[van Hees+RR ’04]

• 3-4 times faster thermalization than LO-pQCD (therm ~ 5 fm/c ~ QGP)• falling 3-momentum dependence

D

Page 28: Heavy Flavor in Medium

4.2.3 Perturbative QCD with Running Coupling

[Peshier ‘07]

• QCD coupling run to D ~ gT rather than 2T

• reduced Debye mass

[Gossiaux+ Aichelin ‘08]

• factor ~10 increase in heavy-quark drag coefficient• perturbative regime? Need to resum large diagrams…• full NLO calculation gives similar effect

22

51

D~

[Caron-Huot+Moore ‘08]

Page 29: Heavy Flavor in Medium

4.2.4 AdS/CFT-QCD Correspondence

[Gubser ‘07]

pdtdp 2

2 SYMc

CFT/ADS Tm

cCFT/ADS m

T)..(2

5012

• match energy density (d.o.f = 120 vs. ~40) and coupling constant (heavy-quark potential) to QCD

3-momentum independent

[Herzog et al, Gubser ‘06]

≈ (4-2 fm/c)-1 at T=180-250 MeV

Lat-QCD

TQCD ~ 250 MeV

Page 30: Heavy Flavor in Medium

4.2.5 Thermodynamic T-Matrix

• meson/diquark resonances for T < 1.5 Tc

• resummation suppresses repulsive channels (alternating sign in Born series of T-matrix)

[Riek+RR ‘10]

Page 31: Heavy Flavor in Medium

4.2.5.2 Thermalization Rate from T-Matrix

• thermalization 4 (2) times faster using U (F) as potential than pert. QCD

• momentum dependence essential (nonpert. effect ≠ K-factor!)

[Riek+RR ‘10]

c [

1/fm

]

Page 32: Heavy Flavor in Medium

4.3 Summary: Charm-Quark Transport in QGP

• AdS/CFT ~ Coulomb, marked T-dependence, p-independent

• T-matrix thermalization 4 (2) times faster for U (F) than pert. QCD

• running coupling (not shown) similar to AdS/CFT

Thermalization Rate

c (

p=0)

[1/

fm]

T [GeV]

Page 33: Heavy Flavor in Medium

4.4 Thermal Relaxation of Charm in Hadron Matter

• pion gas: - consistent with unitarized HQET - factor 10 smaller than Heavy-Meson PT

• substantial contributions from resonance gas

• employ D-hadron scattering amplitudes from effective Lagrangians

[He,Fries+RR ‘11] D

[fm

-1]

[Cabrera et al ‘11]

[Laine ‘11]

Page 34: Heavy Flavor in Medium

4.4.2 D-Meson Relaxation Rate in Hadron Matter

• thermal relaxation time in hadron resonance-gas as low as D ≈ 10fm/c

• chemical off-equilibrium below Tch significant

• expect ~20% effect from hadronic phase at RHIC/LHC

D [fm-1]

Page 35: Heavy Flavor in Medium

2.8 Brueckner Theory of Heavy Quarks in QGP

2-body potential QQ

T-matrix

QqT-matrix

Q → Q0-modes

Quarkselfenergy

QQ evolution (rate equation)

Q spectra + v2

(Langevin)

spectral fcts./eucl. correlat.

quark-no.susceptibility

latticedata

exp.data

Input Process Output Test

-

-

Page 36: Heavy Flavor in Medium

4.5 Summary of Charm Diffusion in Matter

• Shallow minimun around Tc ?!

• Quark-Hadron Continuity?!• 20% reduction by non-perturbative HQ-gluon scattering

Hadronic Matter vs. QGP vs. Lattice QCD (quenched)

[He et al ’11, Riek+RR ’10, Ding et al ‘11, Gavai et al ‘11]

AdS/CFT

Page 37: Heavy Flavor in Medium

1.4 Intro IV: Heavy-Quark Observables in URHICs

• Same force operative for quarkonia + heavy-quark transport?!

J/ Suppression Heavy-Quark Suppression+Flow

Page 38: Heavy Flavor in Medium

1.) Introduction

2.) One- and Two-Body Correlations Potential Models, T-Matrix Approach

3.) Charmonia in the QGP Spectral Functions, Eucl. Correlators, Susceptibility

4.) Heavy-Flavor Transport Diffusion Approach Microscopic Interactions

5.) Heavy Ions I: Open Heavy Flavor

Bulk Evolution, Hadronization Langevin Simulations, Observables

6.) Heavy Ions II: Quarkonia

7.) Conclusions

Outline

Page 39: Heavy Flavor in Medium

4.) Heavy-Quark Diffusion in Heavy-Ion Collisions

4.1 Bulk-Medium Evolution • updated ideal 2+1D hydrodynamics (based on AZHYDRO ) - lattice EoS, initial flow, compact initial conditions,

partial chemical equilibrium in hadronic phase

- multistrange / bulk freezeout at Tch ~ 160MeV / Tfo ~ 110MeV

- v2 saturates at Tch, good light-/strange-hadron phenomenology

[He et al ’11]

[Kolb+Heinz ’03]

Page 40: Heavy Flavor in Medium

4.2 Hadronization of Charm Quarks• Fragmentation: c → D + X, incompatible with thermalization

• Coalescence: c + q → D → Resonance Recombination Model

- 4-mom. conservation, correct thermal equilibrium limit - implement on hydro hypersurface with full space-mom. correl.

[Ravagli +RR ’07]

• Conceptual Consistency: same interaction (T-matrix) underlying diffusion + hadronization!

~pd

dNM3

)p,r(v TT

2

Page 41: Heavy Flavor in Medium

4.3 Dynamical Scheme for Heavy Quarks in URHICs[He et al ’11]

• Conceptual Consistency

- diffusion ↔ hadronization: strong coupling (non-pert.) → resonance correlations → recombination weak coupling (perturb.) → fragmentation

- diffusion ↔ bulk medium: strong coupling → hydrodynamics , weak coupling → transport

• initial cond. (pp + Ncoll , Cronin)

• c-quark diffusion in QGP liquid (T-matrix)

• c + q → D resonance recombination

• D-meson diffusion in hadron liquid

c D

Page 42: Heavy Flavor in Medium

4.4.1 Heavy-Flavor Transport I: e± Spectra at RHIC

• hadronic resonances at ~Tc ↔ quark coalescence • connects 3 “pillars” of RHIC: hydro + strong coupl. + coalescence

[Teaney+Moore ’04, Mustafa ’05, Hees et al ’05, Gossiaux et al ’09, Akamatsu et al ‘09, Alam et al ’10, Beraudo et al ’10, …]

e± Decays from c/b Langevin in Hydro

Hadronic Diffusion

[He et al ‘11]

(T-matrix interaction)

Page 43: Heavy Flavor in Medium

4.4.2 HF Transport II: D-Meson at RHIC

• D-meson flow-bump?!• hadronization (resonance recomb.) acts as extra interaction• v2 imparted from hadronic phase significant (20-30%)

Nuclear Modification Factor Elliptic Flow

[He et al ‘12]

Page 44: Heavy Flavor in Medium

4.4.3 HF Transport III: Ds-Meson

• Predicts meson-RAA > 1 !

• requires QGP diffusion, coalescence + strangeness enhancement

• quantitative measure of hadronic phase: D vs Ds

Nuclear Modification Factor Elliptic Flow

[He et al ‘12]

Page 45: Heavy Flavor in Medium

4.5 HF Transport at LHC

• pQCD diffusion calculations with running coupling + red. D

• consistent description of suppression and flow challenging

• importance of a good low-pt measurement

Nuclear Modification Factor Elliptic Flow

Page 46: Heavy Flavor in Medium

1.) Introduction

2.) One- and Two-Body Correlations

3.) Charmonia in the QGP Spectral Functions, Eucl. Correlators, Susceptibility

4.) Heavy-Flavor Transport Diffusion Approach, Microscopic Interactions

5.) Heavy Ions I: Open Heavy Flavor Bulk Evolution, Hadronization Langevin Simulations, Observables

6.) Heavy Ions II: Quarkonia Rate Equation + Medium Effects Charmonium + Bottomonium Observables

7.) Conclusions

Outline

Page 47: Heavy Flavor in Medium

reaction rate equilibrium limit ( -width) )m,m,dp/dN( cTc

5.1 Transport Approach to Quarkonium Evolution

J/ D

D-

J/c- c

)NN(d

dN eq

[PBM et al ’01, Gorenstein et al ’02,Thews et al ’01, Grandchamp+RR ’01, Ko et al ’02, Cassing et al ’03, Zhuang et al ’05, …]

J/ + g c + c + X←→ -• Regeneration in QGP + HG:

detailed balance:

mc*

B

• Input from Thermodynamic T-Matrix (weak/strong binding)

• Rate Equation:

Page 48: Heavy Flavor in Medium

5.2 Inputs and Parameters• Input

- J/ (c, ’), c-c production cross sections, b feeddown [p-p data]

- “Cold Nuclear Matter”: shadowing, nuclear absorption, pt broadening [p/d-A data, theo. est.]

- Thermal fireball evolution: thermalization time (↔ initial T0),

expansion rate, lifetime, Tc , freezeout …

[A-A hadron data, hydrodynamics]

• Parameters

- strong coupling s controls diss

- schematic c-quark off-equilibrium effects: N

eq ()~ Ntherm() · [1-exp(-/c

eq)]

-

q q

Page 49: Heavy Flavor in Medium

5.3 Inclusive J/ in Thermal Media at SPS + RHIC

• 2 parameters (s~0.3, charm relax. ceq = 6(3) fm/c)

• different composition in two scenarios

U-Potential F-Potential• thermal rate equation through QGP / Tc / HG for J/, c’

• spectral properties ↔ , N

eq

• formation time effects

• bottom feeddown[Zhao+RR ‘10]

)NN(d

dN eq

Page 50: Heavy Flavor in Medium

5.3.2 J/ pT Spectra + Elliptic Flow at RHIC

• small v2 limits regeneration, but does not exclude it

[Zhao+RR ‘08]

• strong binding (U potential)

• high pT: - formation time ( ) - bottom feeddown …

[Karsch+Petronzio ’87, Blaizot+Ollitrault ‘87]

Page 51: Heavy Flavor in Medium

5.4 J/ at LHC

• regeneration component increases, still net suppression• appreciable uncertainty from “shadowing”• good consistency of transport approaches • statistical model requires strong shadowing

[Zhao+RR ‘11]

Mid-Rapidity Forward Rapidity

Page 52: Heavy Flavor in Medium

5.4.2 J/ at LHC II: pt-Spectra + v2

• confirms composition of regeneration + primordial

[Zhao+RR ‘11]

Fireball/T-matrix Hydro/Gluo-Diss

[Zhuang at al ‘12]

Page 53: Heavy Flavor in Medium

5.4.3 J/ at LHC III: High-pt – ATLAS+CMS

• underestimate for peripheral (expected from RHIC) (spherical fireball reduces surface effects …)

[Zhao+RR ‘11]

Page 54: Heavy Flavor in Medium

5.5 at RHIC and LHC

• sensitive to color-screening + early evolution times

RHIC →

LHC →

[Grandchamp et al ’06, Emerick et al ‘11]

Weak Binding Strong Binding

Page 55: Heavy Flavor in Medium

6.) Conclusions

• Low-momentum HQ interactions elastic + nonperturbative → quarkonia + HQ transport ↔ thermodynamic T-matrix

• Versatile constraints + observables - heavy-quark diffusion + susceptibilities - quarkonia dissolution + euclidean correlator ratios

heavy-ion data lattice “data”

• Open problems: - input potential (neither U nor F?), correlations near Tc - radiative scattering (high pt), finite q …

• Heavy-Quark Phenomenology: - consistency diffusion - hadronization; hadronic phase - consistency of RAA and v2, importance of “low” pt - Ds enhancement? …

Page 56: Heavy Flavor in Medium

• dashed lines: gluo-dissociation

• solid lines: quasifree dissociation

• similar to full NLO calculation

3.1.3 Momentum Dependence of Inelastic Width

_

[Zhao+RR ‘07] [Park et al ‘07]

Page 57: Heavy Flavor in Medium

4.3 J/ at Forward Rapidity at RHIC

[Zhao+RR ‘10]