high-k devices by ald for semiconductor applications

38
© Fraunhofer Baltic ALD 2014 conference, Helsinki, May 12-13, 2014 Fraunhofer Institute for Photonic Microsystems Business Unit Center Nanoelectronic Technologies Dresden (IPMS-CNT) HIGH-K DEVICES BY ALD FOR SEMICONDUCTOR APPLICATIONS Jonas Sundqvist, Wenke Weinreich, Johannes Müller, Stefan Riedel, Konrad Seidel , Patrick Polakowski, Malte Czernohorsky

Upload: jonas-sundqvist

Post on 30-Jul-2015

141 views

Category:

Technology


6 download

TRANSCRIPT

© Fraunhofer

Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

Fraunhofer Institute for Photonic Microsystems

Business Unit Center Nanoelectronic Technologies Dresden (IPMS-CNT)

HIGH-K DEVICES BY ALD FOR SEMICONDUCTOR APPLICATIONS

Jonas Sundqvist, Wenke Weinreich, Johannes Müller, Stefan Riedel, Konrad Seidel , Patrick Polakowski, Malte Czernohorsky

© Fraunhofer

The first high-k devices by ALD for semiconductor applications

The first high-k known to be deposited by ALD on a silicon surface was TiO2 on Si(100) in 1969 by G.S. Sveshnikova et al in the former Sovjet Union[1]

During the 1990´s research by ALD took place in Finland to integrate high-k laminates (Ta2O5 : HfO2) into metal-insulator-metal (MIM) devices for capacitor applications. Some of this work was patented in Finland as early as 1992 by H. Kattelus et al [2]

[1] G.S. Sveshnikova, S.I. Kol´stov, V.B. Aleskovskii, Zh. Prikl. Khim. 43 (1970) 430-431 [2] H. Kattelus, M. Ylilammi, I. Suni, T. Ranta-Aho, Finnish Patent FI925459 (A) ― 1994-05-31 (1994).

© Fraunhofer

Introduction of high-k devices by ALD for semiconductor applications

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

Outline of recent developments at Fraunhofer CNT

TiN / ZrO2 based / TiN capacitors fabricated by ALD

ALD HfO2 Ferroelectric for emerging memory devices

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

Applications of capacitors

BEoL

100pF/mm²

1nF/mm²

10nF/mm²

100nF/mm²

1µF/mm²

10µF/mm²

RF filtering & matching

Bypassing, decoupling

Chargepumping & storage

RF transceivers

power

amplifiers

250nF/mm² in package

max.

20nF/mm² on CMOS

max.

Capacitance density

Source: CNT /

Yole development

DC/DC converters Sensors, Medical

GPUs, CPUS, Si-Interposer

ASICs

Micro- controller

Baseband

ICs

Audio filters

BEoL

FEoL

BEoL

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

𝑪 = 𝜺𝟎𝒌𝑨

𝒅

Bottom Electrode

Dielectric

2D 3D

3. Compress surface Area

• 3D integration

• Structures with high aspect ratio

2. Use High-k Materials

• Conventional: SiO2 (k=3.9)

• Ta2O5 (k=26)

• HfO2/ZrO2 (k<40)

• TiO2 (k=80), STO (>100)

1. Thickness tuning

• Operating conditions

• Reliability!

How to increase capacitance density?

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

𝑪 = 𝜺𝟎𝒌𝑨

𝒅

3. Compress surface Area

• 3D integration

• Structures with high aspect ratio

2. Use High-k Materials

• Conventional: SiO2 (k=3.9)

• Ta2O5 (k=26)

• HfO2/ZrO2 (k<40)

• TiO2 (k=80), STO (>100)

1. Thickness tuning

• Operating conditions

• Reliability!

9nm ZAZ 65 nm, UBM Techinsights

1 Stack capacitor

ZrO2-based 26 nm, Chipworks

How to increase capacitance density?

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

Focus of capacitor research at Fraunhofer CNT

RF filtering & matching

Bypassing & decoupling

BEoL

100pF/mm²

1nF/mm²

10nF/mm²

100nF/mm²

1µF/mm²

10µF/mm²

Chargepumping & storage

RF transceivers

power

amplifiers

250nF/mm² in package

max.

20nF/mm² on CMOS

max.

Capacitance density

Source: CNT /

Yole development

DC/DC converters Sensors, Medical

GPUs, CPUS, Si-Interposer

ASICs

Micro- controller

Baseband

ICs

Audio filters

BEoL

FEoL

BEoL

~20-40 nF

~250 nF

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

Integrated 3D capacitor fabrication using 300mm wafer processing

HIGH-K DIELECTRIC

Jusung Eureka 3000

ZrO2: TEMAZ / O3 (250°C)

Al2O3: TMA / O3 (250°C)

ZrO2-Al2O3-ZrO2 laminates (ZAZ)

METAL ELECTRODES

ASM A412TM Large Batch Furnace

TiN: TiCl4 / NH3

Bottom electrode (BE): ALD, 450°C

Top electrode (TE): pCVD, 400-500°C

35 nm TiN

10 nm TiN

Dielectric

BE

Si- Substrat

12-21 nm ZAZ

TE

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

Test chip patterning

Test Chip

3D MIM test module

CD/Pitch variation

Demonstrator module

4 mm² with ~80 million trenches

Planar test module

planar vs. 3D benchmark

Patterning

Litho: Vistec SB3050DW variable shaped e-beam direct write (50kV)

HM-Etch: AMAT Enabler CCP

Si-Etch: AMAT MERIE CCP

TiN-Etch: Wet chemistry (SC1)

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

Material optimisation of the dielectic

• Conformal ALD deposition in trench

• Decrease of surface roughness and defect density by lamination

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

• Failures at high temperatures

• Leakage and lifetime improvement by lowering TE to 400°C

TiN

– 5

00 °

C ZAZ

22 nm ZAZ

11 nm TiN

-3 -2 -1 0 1 2 310-11

10-10

10-9

10-8

10-7

10-6

10-5

15 nm ZAZ 450 °C 400 °C

18 nm ZAZ 450 °C 400 °C

Cu

rren

t D

en

sity

(A

/cm

²)

Voltage (V)

1.0 1.5 2.0 2.5 3.0 3.5100

101

102

103

104

105

106

107

108

109

Tim

e t

o B

reakd

ow

n (

s)

Electric Field (MV/cm)

10 years

15 nm ZAZ 400 °C 450 °C

18 nm ZAZ 400 °C 450 °C

Material optimisation of the metal nitride electrode

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

3D integration patterning of 3D structures in silicon

Resist

open

Silicon

etch

Starting Erosion

Pattern Collapse

AR 6:1

Pattern Collapse

127 136 145 155 CD

CD Variations for high-density Structures

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

3D integration patterning of 3D structures in silicon

• Pattern collapse decreases capacitance

• Fl 04 optimum setup

• Maximum capacitance of 240nF/mm2

Pattern Collapse

Aspect Ratio Increase

200

210

220

230

240

250

260

270

280

290

300

Flav

01

Flav

02

Flav

03

Flav

04

Flav

05

Flav

06

Flav

07

Flav

08

Flav

09

Flav

100

25

50

75

100

125

150

175

200

225

250

Pitch

Pit

ch (

nm

)

100

110

120

130

140

150

160

170

180

190

200

CD

(n

m)

CD

C (

nF/m

m2)

AR 6:1

AR 13:1

AR 15:1

AR 20:1

Pattern

collapse

Planar

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

Electrical characterisation - Aspect ratio 6:1

• 100 nF/mm2

• Reliability pass for 10 years (3.5V)

<3% • 100 nF/mm2

• Reliability pass for 10 years (3.5V)

<5% (273 ppm)

10-9 (A/µF)

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

Electrical characterisation - Aspect ratio increase

Flav04 Flav05 Flav06

• No impact of trench aspect ratio or array size on leakage and capacitance performance

• High wafer uniformity

-4 -3 -2 -1 0 1 2 3 41E-10

1E-9

1E-8

1E-7

1E-6 AR 13:1

AR 15:1

AR 20:1

4mm² Demo AR20:1

J (

A/µ

F)

Bias (V)

-3 -2 -1 0 1 2 3-1

0

1

2

3

dC

/C0 (

%)

Bias (V)

AR 13:1

AR 15:1

AR 20:1

Planar

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

Demonstrator:

Fl04, AR 20:1, ~80 Mil Trenches,

4 mm2

870 nF

Demonstartor and outlook

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

Ferroelectric HfO2

Dopant in HfO2 R Ion (Å) experiment ab initio

Al+3 0.39 active active

Gd+3 1.05 active active

Si+4 0.26 active active

Y+3 1.02 active active

Zr+4 0.84 active active

Sr+2 1.26 (like Ca+2) ?

Sc+3 / Ge+4 / Ce+4 0.87/0.39/0.97 active active

Ca+2 / Dy+3 / Er+3 1.12/1.03/1.00 active ?

La+3 1.16 active ?

Sn+4 0.55 ? active

Ti+4 0.42 inactive inactive

C+4 0.29 inactive inactive

Ta+5 0.42 (inactive) ?

literature references : dopant stabilizes cubic or

tetragonal phase

results from studies : intemediate FE-Phase

ferroelectricity ALD 3D capability

confirmed +++

confirmed +

confirmed +++

confirmed +

confirmed +++

confirmed +

promising + / +++ / +

promising + / + / +

promising +

promising ++

likely absent ++

absent n/a

likely absent ++

© Fraunhofer

3D integration of ferroelectric HfO2

Koyanagi, M. et. al, IEDM (1978)

SEM cross section of a memory-cell array of 1-Mbit DRAM in trial production

memory cell measures 4 μm by 8 μm

1st 3D DRAM Capacitor cell at 1Mbit

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

3D integration of ferroelectric HfO2

McAdams et al., IEEE JSSC, 39, 2004

PZT based FRAM

1 µm

65 nm, UBM Techinsights

ZrO2 based DRAM

1 µm

Stack capacitor

Current PZT based FRAM stagnates at 4Mbit

Current DRAM´s at 4Gbit

Enabling FRAM to higher storage densities with 3D FE-HfO2

26 nm, Chipworks

ZrO2 based DRAM

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

3D integration of ferroelectric HfO2

McAdams et al., IEEE JSSC, 39, 2004

PZT based FRAM

1 µm

65 nm, UBM Techinsights

ZrO2 based DRAM

1 µm

Stack capacitor

Current PZT based FRAM stagnates at 4Mbit

Current DRAM´s at 4Gbit

26 nm, Chipworks

ZrO2 based DRAM

"To continue scaling for more advanced DRAM, Samsung refined its des ign and manufacturing technologies and came up with a modified double patterning and atomic layer deposition. Samsung’s modified double patterning technology marks a new milestone, by enabling 20nm DDR3 production using current photolithography equipment and establishing the core technology for the next generation of 10nm-class DRAM production. Samsung also successfully created ultrathin dielectric layers of cell capacitors with an unprecedented uniformity, which has resulted in higher cell performance.“ [Samsung Press Release 18.3.2014]

© Fraunhofer

3D integration of ferroelectric HfO2

Source: Globalfoundries Road Map Press Release Source: Koo et al., IEDM 2006

FinFET FinFEFET ? 3D-FRAM (PZT replacement)

? FE-HfO2 ?

keeping FE-HfO2 based FEFETs compatible to future logic based on FINFETs requires 3D-capability

the lack of 3D-scaling potential represents one of the major drawbacks of capacitor-based ferroelectric memories (1T/1C FRAM vs. DRAM)

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

3D integration of ferroelectric HfO2

conventional ferroelectrics vs. FE-HfO2:

Koo et al., IEDM (2006)

PZT trench capacitor

- aspect ratio ~ 2:1 -

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

3D integration of ferroelectric HfO2

conventional ferroelectrics vs. FE-HfO2:

Koo et al., IEDM (2006)

PZT trench capacitor

- aspect ratio ~ 2:1 -

no FE-phase achieved

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

3D integration of ferroelectric HfO2

conventional ferroelectrics vs. FE-HfO2:

Koo et al., IEDM (2006)

PZT trench capacitor

- aspect ratio ~ 2:1 -

no FE-phase achieved

3D-MIM

vehicle developed at CNT:

J. Müller et al., IEDM (2013)

our material choice:

ferroelectric Al:HfO2

excellent ALD-precursors for 3-D step coverage available

reasonable planar Pr values

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

3D integration of ferroelectric HfO2

conventional ferroelectrics vs. FE-HfO2:

Koo et al., IEDM (2006)

PZT trench capacitor

- aspect ratio ~ 2:1 -

no FE-phase achieved

J. Müller et al., IEDM (2013)

FE-HfO2 trench capacitors

- aspect ratio 13:1 -

excellent SC of Al:HfO2 achieved

FE-phase active

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

3D integration of ferroelectric HfO2

3D FE-HfO2 electrical data

-3 -2 -1 0 1 2 3

-300

-200

-100

0

100

200

300

E-Field [MV/cm]

planar

1k array

3k array

10k array

30k array

100k trench

pola

riz

ati

on

C/c

m2]

(poje

cte

d a

rea A

*B

)

1k 10k 100k

0

4

8

12

gain

facto

r

trench count

P-E characteristics for different trench arrays related to the number of trenches for the projected planar area

calculated gain factor related to increase of the capacitor area

Increase of arrays = increase of projected polarization

maximum gain factor for 100k arrays of ~10

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

3D integration of ferroelectric HfO2

3D FE-HfO2 electrical data

-3 -2 -1 0 1 2 3

-30

-20

-10

0

10

20

30

E-Field [MV/cm]

planar

1k array

3k array

10k array

30k array

100k array

pola

riz

ati

on

C/c

m2]

1k 10k 100k

60

80

100n

orm

to

pla

nar P

r

[%]

trench count

Normalized polarization (real capacitor area)

relative polarization in relation to the planar capacitor value

almost same P-E behavior for all trench arrays stable FE-Phase for whole trench

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

3D integration of ferroelectric HfO2

3D FE-HfO2 electrical data Endurance up to 2*109 cycles for saturated polarization @ 2.5MV/cm

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

3D integration of ferroelectric HfO2

Renewed scaling potential

FE-HfO2 trench capacitor array

minimal Pr penalty for 3D-integration

J. Müller et al., IEDM (2013)

no significant loss of FE-Phase stability observed compared to planar structures

area gain factor completly transfered to gain in polarisation per planar area

-4 -2 0 2 4-400

-200

0

200

400

electric field (MV/cm)

po

lari

zati

on

C/c

m2)

(pro

ject

ed a

rea A

*B)

2D vs. 3D

x10

A B

3D

A B

2D

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

Ease of manufacturing of 3D FE-HfO2

PZT-based eDRAM

~ 10:1 ~ 2:1

Samsung Intel

Koo et al. IEDM (2006)

Non-Volatile

Brain et al. VLSI (2013)

Volatile J. Müller et al., IEDM (2013)

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

Ease of manufacturing of 3D FE-HfO2

PZT-based FE-HfO2 eDRAM

our work

Non-Volatile

~ 10:1 13:1 ~ 2:1

Samsung Intel

Brain et al. VLSI (2013)

Volatile J. Müller et al., IEDM (2013)

Koo et al. IEDM (2006)

Non-Volatile

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer

Conclusions

Capacitors for both SiP and SoC systems developed with optimized electrical properties by barrier layers, doping and reduced deposition temperature for top electrode

220 nF/mm2 capacitors for buffer application with operation voltage of 3.5 V by 3D structures and high-k dielectrics with a 10 years reliability pass at continuous 3.5 V

Possible scaling towards >1µF/mm² and for various voltage ranges

Ferroelectric HfO2 by ALD is 3D capable and scalable with DRAM and eDRAM technology

All high-k devices meet a BEOL, <400°C thermal budget.

Jonas Sundqvist, Baltic ALD 2014 conference, Helsinki, May 12-13, 2014

© Fraunhofer high-k Workshop 2014 Jonas Sundqvist

Intel’s e-DRAM Shows Up In The Wild

http://electroiq.com/chipworks_real_chips_blog/2014/02/07/intels-e-dram-shows-up-in-the-wild/

When Intel launched their Haswell series chips last June, they stated that the high-end systems would have embedded DRAM, as a separate chip in the package; and they gave a paper at the VLSI Technology Symposium [1] that month, and another at IEDM [2].

© Fraunhofer

Gate First

Ease of Manufacturing FeFET as Embedded Memory Solution for HKMG:

high-k Workshop 2014 Jonas Sundqvist

SiO2

silicon

2D Fe-HfO2

metal electrode

fill metal

© Fraunhofer

Gate First Gate Last

Ease of Manufacturing FeFET as Embedded Memory Solution for HKMG:

high-k Workshop 2014 Jonas Sundqvist

SiO2

silicon

3D Fe-HfO2

metal electrode

fill metal

SiO2

silicon

2D Fe-HfO2

metal electrode

fill metal

© Fraunhofer

Gate First Gate Last FinFET

Ease of Manufacturing FeFET as Embedded Memory Solution for HKMG:

high-k Workshop 2014 Jonas Sundqvist

SiO2

silicon

3D Fe-HfO2

metal electrode

fill metal

SiO2

silicon

2D Fe-HfO2

metal electrode

fill metal

SiO2

silicon

3D Fe-HfO2

metal electrode

fill metal

© Fraunhofer

Gate First Gate Last FinFET

Ease of Manufacturing FeFET as Embedded Memory Solution for HKMG:

high-k Workshop 2014 Jonas Sundqvist

SiO2

silicon

3D Fe-HfO2

metal electrode

fill metal

SiO2

silicon

2D Fe-HfO2

metal electrode

fill metal

SiO2

silicon

3D Fe-HfO2

metal electrode

fill metal