high oil content hydrocyclone numerical flow...

15
High Oil Content Hydrocyclone Numerical Flow Simulation Gelmirez M. Raposo www.cfdoil.com.br www.cfdoil.com.br Gelmirez M. Raposo Carlos Alberto Capela Moraes Luiz Philipe Martinez Marins João Aguirre Angela O. Nieckele

Upload: trantram

Post on 08-Jul-2018

220 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: High Oil Content Hydrocyclone Numerical Flow Simulationcfdoil.com.br/2008/pdf/presentations/18_1_1530.pdf · High Oil Content Hydrocyclone Numerical Flow Simulation Gelmirez M. Raposo

High Oil Content Hydrocyclone

Numerical Flow SimulationGelmirez M. Raposo

www . c f d o i l . c om . b rw w w. c f d o i l . c o m . b r

Gelmirez M. Raposo

Carlos Alberto Capela Moraes

Luiz Philipe Martinez Marins

João Aguirre

Angela O. Nieckele

Page 2: High Oil Content Hydrocyclone Numerical Flow Simulationcfdoil.com.br/2008/pdf/presentations/18_1_1530.pdf · High Oil Content Hydrocyclone Numerical Flow Simulation Gelmirez M. Raposo

Topics

• Problem Description

• Methodology

• Goals

• Results

www . c f d o i l . c om . b r

• Conclusion and Next Steps

Page 3: High Oil Content Hydrocyclone Numerical Flow Simulationcfdoil.com.br/2008/pdf/presentations/18_1_1530.pdf · High Oil Content Hydrocyclone Numerical Flow Simulation Gelmirez M. Raposo

Problem Description

• Hydrocyclone: high oil content (10% to 15%)

– Equipment used

www . c f d o i l . c om . b r

– Experimental data

– Numerical simulation:

– turbulence models

– flow rates

Page 4: High Oil Content Hydrocyclone Numerical Flow Simulationcfdoil.com.br/2008/pdf/presentations/18_1_1530.pdf · High Oil Content Hydrocyclone Numerical Flow Simulation Gelmirez M. Raposo

Problem Description

• Experimental data

– Data acquired with LDV and PIV

• Made by Cenpes (Marins, 2007)

» Tangential and axial velocities profiles

www . c f d o i l . c om . b r

Page 5: High Oil Content Hydrocyclone Numerical Flow Simulationcfdoil.com.br/2008/pdf/presentations/18_1_1530.pdf · High Oil Content Hydrocyclone Numerical Flow Simulation Gelmirez M. Raposo

Problem Description

• Mathematical modeling

– Hypothesis

• Transient

• Isothermal flow

• Constant properties

www . c f d o i l . c om . b r

– Conservation of:

• Continuity

• Momentum

– Turbulence models

• Reynolds Stress Model (RSM)

• LES (Smagorinsky-Lilly subgrid model)

Page 6: High Oil Content Hydrocyclone Numerical Flow Simulationcfdoil.com.br/2008/pdf/presentations/18_1_1530.pdf · High Oil Content Hydrocyclone Numerical Flow Simulation Gelmirez M. Raposo

Methodology

• Finite Volume (Fluent and CFX)

– Transient scheme (second order)

– Inlets: mass flow rate known

– Outlet: mass split (0.35/0.65)

– Walls: no slip condition

www . c f d o i l . c om . b r

• Test Cases

– 2 turbulence models

– 3 meshesa: Complete model

b and c: Simplified model

– Walls: no slip condition

Mesh a b c

Element

type

hexaedral hexahedral

and prisma

hexahedral

and prisma

cells 2,827,684 1,035,484 1,252,404

quality -

equisize

Skew

quality>0.3 0 to 0.1 >

85% cells

0 to 0.1 >

96% cells

Page 7: High Oil Content Hydrocyclone Numerical Flow Simulationcfdoil.com.br/2008/pdf/presentations/18_1_1530.pdf · High Oil Content Hydrocyclone Numerical Flow Simulation Gelmirez M. Raposo

Methodologyb

a

www . c f d o i l . c om . b r

c

a

Page 8: High Oil Content Hydrocyclone Numerical Flow Simulationcfdoil.com.br/2008/pdf/presentations/18_1_1530.pdf · High Oil Content Hydrocyclone Numerical Flow Simulation Gelmirez M. Raposo

Methodology

• Set up’s

Turbulence model RSM LES

Software CFX FLUENT FLUENT

Mesh scheme a b and c c

Momentum and turbulence

discretization scheme

High Resolution QUICK QUICK

www . c f d o i l . c om . b r

Pressure discretization ---- PRESTO! PRESTO!

Pressure coupling Coupled SIMPLE SIMPLE

Pressure strain correlation 2nd order 2nd order -----

Inlet set up 3.7% turbulent

intensity and

automatic

turbulent length

scale

10% turbulent

intensity and 4.8 m

turbulent length

scale

-----

Near-wall modeling “Scalable” wall

function

Non equilibrium wall

function

Standard wall

function

Page 9: High Oil Content Hydrocyclone Numerical Flow Simulationcfdoil.com.br/2008/pdf/presentations/18_1_1530.pdf · High Oil Content Hydrocyclone Numerical Flow Simulation Gelmirez M. Raposo

Goals

• Establish a reliable way to model

hydrocyclones:

– Design mesh saving computational cost

– Turbulence model performance for each

situation

www . c f d o i l . c om . b r

situation

– Geometrical and operational parameters

influence

Page 10: High Oil Content Hydrocyclone Numerical Flow Simulationcfdoil.com.br/2008/pdf/presentations/18_1_1530.pdf · High Oil Content Hydrocyclone Numerical Flow Simulation Gelmirez M. Raposo

Results

0

5

10

15

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

tangencial velocity

Axial position

180 mm

www . c f d o i l . c om . b r

-5

0

5

10

15

20

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

radial position, m

axial velocity, m/s

radial position, m

LDV

RSM (Mesh a)

RSM (Mesh c)

LES (Mesh c)

Page 11: High Oil Content Hydrocyclone Numerical Flow Simulationcfdoil.com.br/2008/pdf/presentations/18_1_1530.pdf · High Oil Content Hydrocyclone Numerical Flow Simulation Gelmirez M. Raposo

Results

0

5

10

15

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

tangencial velocity

Axial position

220 mm

www . c f d o i l . c om . b r

-5

0

5

10

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

radial position, m

axial velocity, m/s

radial position, m

LDV

RSM (Mesh a)

RSM (Mesh c)

LES (Mesh c)

Page 12: High Oil Content Hydrocyclone Numerical Flow Simulationcfdoil.com.br/2008/pdf/presentations/18_1_1530.pdf · High Oil Content Hydrocyclone Numerical Flow Simulation Gelmirez M. Raposo

Results

0

2

4

6

8

10

12

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

tangencial velociy, m/s Axial position 180 mm

RSM (Mesh c)

www . c f d o i l . c om . b r

-2-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

radial position, m

-2

-1

0

1

2

3

4

5

6

7

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

radial position, m

axial velociy, m/sLDV

Flow rate (m3/h)

6.2

5.5

Page 13: High Oil Content Hydrocyclone Numerical Flow Simulationcfdoil.com.br/2008/pdf/presentations/18_1_1530.pdf · High Oil Content Hydrocyclone Numerical Flow Simulation Gelmirez M. Raposo

Results

Axial position 180mm

LES (Mesh c)

0

2

4

6

8

10

12

14

16

tangencial velociy, m/s

www . c f d o i l . c om . b r

-2

0

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

radial position, m

tangencial velociy, m/s

-4

-2

0

2

4

6

8

10

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

radial position, m

axial velociy, m/s

LDV

Flow rate (m3/h)

6.2

5.5

Page 14: High Oil Content Hydrocyclone Numerical Flow Simulationcfdoil.com.br/2008/pdf/presentations/18_1_1530.pdf · High Oil Content Hydrocyclone Numerical Flow Simulation Gelmirez M. Raposo

Conclusion

• Modelling

– Geometry, inlet simplifications

– Turbulent intensity and length scale

• Good agreement with experimental data

– LES, over predicted tangential velocity peak

www . c f d o i l . c om . b r

– LES, over predicted tangential velocity peak

– RSM mesh a, good agreement with axial velocity

– RSM mesh b, worst results

– RSM mesh c, reasonable results between effort

and precision

• Changing flow rate does not modify core size

Page 15: High Oil Content Hydrocyclone Numerical Flow Simulationcfdoil.com.br/2008/pdf/presentations/18_1_1530.pdf · High Oil Content Hydrocyclone Numerical Flow Simulation Gelmirez M. Raposo

Next Steps

• Improve performance by modifying the geometry

• Multiphase simulation

• Acquire more experimental data (PUC-Rio)

• Flow measurement

www . c f d o i l . c om . b r

• Velocity profiles

• Pressure

• Turbulent quantities