high temperature chemistry for the analyses of accidents ... · high temperature chemistry for the...

18
Pure & Appl. Chern., Vol. 60, No. 3, pp. 323-340, 1988. Printed in Great Britain. 0 1988 IUPAC High temperature chemistry for the analyses of accidents in nuclear reactors Paul E. Potter Harwell Laboratory, Didcot, Oxon OX11 ORA, U.K. Abstract - This paper describes some of the demands which the analysis and prediction of the consequences of faults and accidents in nuclear reactor systems makes on our knowledge and understanding of the high temperature chemistry of the fuel and other materials. We illustrate these demands by describing, for a Pressurized Water Reactor, the chemistry of the fuel clad gap, of the evolution of degradation of the core, and of the reaction between the material of the degraded core and concrete. For a liquid metal cooled fast breeder nuclear reactor, we take examples from the chemistry of the reactions between liquid sodium and fuel, and aspects of the determination of the equation of state of the oxide fuel for temperatures up to ca. 5000K. INTRODUCTION In this paper we shall consider some of the demands which the analysis and prediction of the consequences of faults and accidents in nuclear reactor systems makes on our knowledge and understanding of the high temperature chemistry of some of the relevant materials. We shall discuss some chemical aspects of the analysis and consequences of (1) faults in which the engineered design features can be relied upon to ensure that the system can continue in operation or be readily shut down and of (2) accidents in which the ability to transfer heat from the nuclear core of the reactor to the coolant is lost. The types of reactor with which we shall be concerned are the pressurised water reactor (PWR) and the liquid sodium cooled fast breeder reactor (FBR). For a typical PWR with an electrical output of 823 MW(E), the amount of fuel - enriched uranium dioxide - will be ca. 80 tonnes, of Zircaloy cladding 16.5 tonnes, and of other materials such as stainless steel 6.5 tonnes. The average burn-up of the actinide elements will be between 2 and 3%. The coolant is water at 557-559K and at a pressure of ca. 15.8 MPa. We shall essentially be concerned with the chemistry of the PWR fuel - the 'so-called' rods of uranium dioxide clad in Zircaloy (zirconium with ca. 1.5 wt.% tin). We shall consider the evolution of the chemical constitution of the fuel under irradiation together with some effects of the radiation on the chemical speciation within the fuel clad gap and the implications regarding the compatibility between fuel and cladding material. The distribution of fission produtt elements obtained from the thermal fission of 235-uranium and 239-plutonium together with that for fast fission of 239-plutonium is shown in fig. I. The consequences of the failure of the cladding would result in the presence of some of the fission product elements and fuel in the water of the primary circuit. We need to consider such behaviour in the analysis of the consequences of design basis faults. In PWRs, there are safety provisions which would ensure that the core of the reactor is adequately cooled. The possibility that these provisions should fail to cool the core is very remote, but in such an event the core would heat up, the geometry of the core would be lost, and it might melt. Such a consequence has been defined as a 'degraded core accident' and the consequences of such an accident can be very damaging. Much of the informa- tion that we shall discuss has been obtained following the accident in the United States of America t o t h e PWR (Babcock and Wilcox) - Three Mile Island, Unit 2 in March 1979; much effort has been given to the prediction of the possible releases of radioactivity in such accidents. It should be 323

Upload: duongque

Post on 06-Apr-2018

222 views

Category:

Documents


1 download

TRANSCRIPT

Pure & Appl. Chern., Vol. 60, No. 3, pp. 323-340, 1988. Printed in Great Britain. 0 1988 IUPAC

High temperature chemistry for the analyses of accidents in nuclear reactors

P a u l E . P o t t e r

H a r w e l l L a b o r a t o r y , D i d c o t , Oxon O X 1 1 O R A , U . K .

A b s t r a c t - T h i s p a p e r d e s c r i b e s some o f t h e d e m a n d s w h i c h t h e a n a l y s i s and p r e d i c t i o n o f t h e c o n s e q u e n c e s o f f a u l t s a n d a c c i d e n t s i n n u c l e a r r e a c t o r s y s t e m s makes on o u r k n o w l e d g e a n d u n d e r s t a n d i n g o f t h e h i g h t e m p e r a t u r e c h e m i s t r y o f t h e f u e l a n d o t h e r m a t e r i a l s . We i l l u s t r a t e t h e s e d e m a n d s b y d e s c r i b i n g , f o r a P r e s s u r i z e d Water R e a c t o r , t h e c h e m i s t r y o f t h e f u e l c l a d g a p , of t h e e v o l u t i o n o f d e g r a d a t i o n o f t h e c o r e , a n d o f t h e r e a c t i o n b e t w e e n t h e m a t e r i a l o f t h e d e g r a d e d c o r e and c o n c r e t e . F o r a l i q u i d m e t a l c o o l e d f a s t b r e e d e r n u c l e a r r e a c t o r , w e t a k e e x a m p l e s f r o m t h e c h e m i s t r y o f t h e r e a c t i o n s b e t w e e n l i q u i d s o d i u m a n d f u e l , and a s p e c t s o f t h e d e t e r m i n a t i o n o f t h e e q u a t i o n o f s t a t e o f t h e o x i d e f u e l f o r t e m p e r a t u r e s up t o ca. 5000K.

INTRODUCTION

I n t h i s p a p e r w e s h a l l c o n s i d e r some o f t h e d e m a n d s w h i c h t h e a n a l y s i s a n d p r e d i c t i o n o f t h e c o n s e q u e n c e s o f f a u l t s a n d a c c i d e n t s i n n u c l e a r r e a c t o r s y s t e m s makes on o u r k n o w l e d g e a n d u n d e r s t a n d i n g o f t h e h i g h t e m p e r a t u r e c h e m i s t r y of some o f t h e r e l e v a n t m a t e r i a l s .

We s h a l l d i s c u s s some c h e m i c a l a s p e c t s o f t h e a n a l y s i s and c o n s e q u e n c e s o f ( 1 ) f a u l t s i n w h i c h t h e e n g i n e e r e d d e s i g n f e a t u r e s c a n b e r e l i e d upon t o e n s u r e t h a t t h e s y s t e m c a n c o n t i n u e i n o p e r a t i o n o r b e r e a d i l y s h u t down a n d o f ( 2 ) a c c i d e n t s i n w h i c h t h e a b i l i t y t o t r a n s f e r h e a t f r o m t h e n u c l e a r c o r e of t h e r e a c t o r t o t h e c o o l a n t i s l o s t .

The t y p e s o f r e a c t o r w i t h w h i c h w e s h a l l be c o n c e r n e d a r e t h e p r e s s u r i s e d w a t e r r e a c t o r (PWR) a n d t h e l i q u i d s o d i u m c o o l e d f a s t b r e e d e r r e a c t o r (FBR) . F o r a t y p i c a l PWR w i t h a n e l e c t r i c a l o u t p u t o f 8 2 3 MW(E), t h e amoun t o f f u e l - e n r i c h e d u r a n i u m d i o x i d e - w i l l be ca. 80 t o n n e s , o f Z i r c a l o y c l a d d i n g 1 6 . 5 t o n n e s , a n d o f o t h e r m a t e r i a l s s u c h a s s t a i n l e s s s t e e l 6 . 5 t o n n e s . The a v e r a g e b u r n - u p o f t h e a c t i n i d e e l e m e n t s w i l l be b e t w e e n 2 a n d 3 % . The c o o l a n t i s w a t e r a t 557-559K a n d a t a p r e s s u r e o f ca . 15 .8 MPa. We s h a l l e s s e n t i a l l y b e c o n c e r n e d w i t h t h e c h e m i s t r y o f t h e PWR f u e l - t h e ' s o - c a l l e d ' r o d s of u r a n i u m d i o x i d e c l a d i n Z i r c a l o y ( z i r c o n i u m w i t h c a . 1 . 5 w t . % t i n ) . We s h a l l c o n s i d e r t h e e v o l u t i o n o f t h e c h e m i c a l c o n s t i t u t i o n o f t h e f u e l u n d e r i r r a d i a t i o n t o g e t h e r w i t h some e f f e c t s o f t h e r a d i a t i o n o n t h e c h e m i c a l s p e c i a t i o n w i t h i n t h e f u e l c l a d g a p a n d t h e i m p l i c a t i o n s r e g a r d i n g t h e c o m p a t i b i l i t y b e t w e e n f u e l a n d c l a d d i n g m a t e r i a l . The d i s t r i b u t i o n o f f i s s i o n p r o d u t t e l e m e n t s o b t a i n e d f r o m t h e t h e r m a l f i s s i o n o f 2 3 5 - u r a n i u m and 2 3 9 - p l u t o n i u m t o g e t h e r w i t h t h a t f o r f a s t f i s s i o n o f 2 3 9 - p l u t o n i u m i s shown i n f i g . I. The c o n s e q u e n c e s o f t h e f a i l u r e o f t h e c l a d d i n g wou ld r e s u l t i n t h e p r e s e n c e of some o f t h e f i s s i o n p r o d u c t e l e m e n t s and f u e l i n t h e w a t e r o f t h e p r i m a r y c i r c u i t . We n e e d t o c o n s i d e r s u c h b e h a v i o u r i n t h e a n a l y s i s o f t h e c o n s e q u e n c e s o f d e s i g n b a s i s f a u l t s .

I n P W R s , t h e r e a r e s a f e t y p r o v i s i o n s w h i c h w o u l d e n s u r e t h a t t h e c o r e o f t h e r e a c t o r i s a d e q u a t e l y c o o l e d . The p o s s i b i l i t y t h a t t h e s e p r o v i s i o n s s h o u l d f a i l t o c o o l t h e c o r e i s v e r y r e m o t e , b u t i n s u c h a n e v e n t t h e c o r e w o u l d h e a t u p , t h e g e o m e t r y o f t h e c o r e w o u l d b e l o s t , a n d i t m i g h t m e l t . S u c h a c o n s e q u e n c e h a s b e e n d e f i n e d as a ' d e g r a d e d c o r e a c c i d e n t ' a n d t h e c o n s e q u e n c e s o f s u c h a n a c c i d e n t c a n b e v e r y d a m a g i n g . Much o f t h e i n f o r m a - t i o n t h a t w e s h a l l d i s c u s s h a s b e e n o b t a i n e d f o l l o w i n g t h e a c c i d e n t i n t h e U n i t e d S t a t e s o f America t o t h e PWR ( B a b c o c k a n d W i l c o x ) - T h r e e Mile I s l a n d , U n i t 2 i n March 1 9 7 9 ; much e f f o r t h a s b e e n g i v e n t o t h e p r e d i c t i o n o f t h e p o s s i b l e r e l e a s e s o f r a d i o a c t i v i t y i n s u c h a c c i d e n t s . It s h o u l d b e

323

324 P. E. POTTER

Fig. 1 The fission for 235U and 239Pu

yields

MASS NUMBER

remembered that the consequences of the accident at Three Mile Island were essentially limited to severe damage to the plant. In the United kingdom, the releases or source terms of radionuclides for various sequences of severe accidents of low probabilities for the proposed PWR (Westinghouse) at Sizewell have been estimated. It i s beyond the scope of this paper to discuss aspects of Probabilistic Safety Assessment (PSA); the methodology for the estimation of the probabilities of such events. An excellent description of this methodology has been given for the U.K. Sizewell PWR by Gittus (ref. 1 ) . The probability that the core of a modern PWR would melt and the reactor containment would fail is very low: 7 x lo'* per year.

The accident in the Soviet Union in April, 1986 at Chernobyl was a degraded core accident in a boiling water, graphite moderated, pressure tube reactor (Unit 4 ) . The details of this accident and some preliminary analyses have been described in a recent publication of the International Atomic Energy Agency (ref. 2 ) . Some of the radionuclides which were considered in Nuclear Regulatory Commission's Reactor Safety Study - consequence analysis for Light Water Reactors are given in Table 1 (ref. 3) and provide the basis for detailed analysis of their species and fate.

For the liquid sodium cooled fast reactor (FBR) there are two basic designs. The liquid sodium coolant operates over a range of temperatures from 350' - 600'C. In the French, British and Soviet designs the pumps for the sodium in the primary circuits and the heat exchangers for the primary and secondary sodium circuits are located in one pool, whereas in the German design for SNR-300, there are three parallel heat transfer loop systems.

TABLE 1 . R a d i o n u c l i d e s w h i c h h a v e b e e n c o n s i d e r e d i n c o n s e q u e n c e a n a l y s i s f o r d e g r a d e d c o r e a c c i d e n t s i n l i g h t w a t e r r e a c t o r s ( r e f . 3 )

E l erne n t R a d i o n u c l i d e E l e m e n t Rad i o n u c l i d e

C o b a l t

K r y p t o n

Rub i d ium S t r o n t i um Y t t r ium Z i r c o n ium N i o b i u m M o l y b d e n u m T e c h n e t i u m R u t h e n i urn R h o d i u m T e 1 lur i u m

A n t i m o n y

5 8 ~ 0 , 6Oc0 I o d i n e 1 3 1 1 1 3 2 1 1 3 3 1 , 13G1, 1 3 i 1

8 5 K r , 8 5 m K r , X e n o n 1 3 3 x e , 1 3 5 x e 8 7 K r , 8 8 K r C a e s i u m 1 3 4 c s , 1 3 6 c s , 137cs

8 6 R b B a r i u m 14 'Ba 8 9 ~ r , 9 0 ~ r , 9 1 ~ r L a n t h a n u m l 4 O L a g o y , 91Y C e r i u m l 4 l ~ e , 1 4 3 ~ e , 1 4 4 ~ e 9 5 ~ r , 9 7 ~ r P r a s e o d y m i u m 1 4 3 P r 95Nb Neodymium l s 7 N d 99Mo N e p t u n i u m 2 3 9 N p 9 9 m T c P l u t o n i u m 2 3 8 P u , 2 3 9 P u , l o 3 R u , l o 5 R u , l o 6 R u 2 4 0 P u , 2 4 1 P u l o 5 R h Arne r i c i u m 2 4 1 A m 1 2 7 127mT, , l Z 9 T e , C u r i u m 2 4 2 c m , 244cm

1 Z 7 S b , '19Sb 15fk,, 1 3 2 ~ ~

Analyses of accidents in nuclear reactors 325

The f u e l i n t h e c o r e o f a f a s t r e a c t o r is e s s e n t i a l l y a s o l i d s o l u t i o n o f u r a n i u m d i o x i d e and p l u t o n i u m d i o x i d e . The f u e l is i n t h e f o r m o f p e l l e t s c l a d i n s t a i n l e s s s t e e l . The b r e e d e r e l e m e n t s c o n s i s t of p e l l e t s o f u r a n i u m d i o x i d e c l a d i n s t a i n l e s s s t e e l . F o r t h e p l a n n e d U K C o m m e r c i a l D e m o n s t r a t i o n F a s t B r e e d e r R e a c t o r (CDFR); t h e e l e c t r i c a l o u t p u t w i l l b e c a . 1 2 5 0 MW(E) and t h e t o t a l p l u t o n i u m i n v e n t o r y w i l l b e c a . 3 t o n n e s a n d t h a t o f u r a n i u m w i l l be c a . 2 4 t o n n e s . F o r t h i s s y s t e m much c o n s i d e r a t i o n h a s b e e n g i v e n t o t h e c o n s e q u e n c e s o f f a i l u r e o f t h e f u e l c l a d d i n g a n d t o t h e c o n s e q u e n c e s o f a s i g n i f i c a n t l o s s o f t h e c a p a b i l i t y t o r e m o v e h e a t . Here , w e s h a l l c o n s i d e r some a s p e c t s of t h e f a i l u r e o f t h e f u e l c l a d d i n g and loss o f c o o l a n t w h i c h c o u l d l e a d t o s e v e r e o v e r h e a t i n g of a c o r e .

We h a v e a l s o c a r r i e d o u t a n a l y s e s o f t h e s o u r c e term i n t h e p r i m a r y c o n t a i n m e n t o f CDFR f o r h y p o t h e t i c a l c o r e d e s c r i p t i v e a c c i d e n t s (HCDA) ( H o l l o w a y e t a1 ( r e f . 4 ) ) . I n a c c i d e n t s i n v o l v i n g l o s s o f c o o l a n t f l o w a n d w i t h no t r i p o f t h e r e a c t o r , b o i l i n g of t h e s o d i u m w o u l d o c c u r w i t h i n ca. 20 s e c o n d s o f i n i t i a t i o n a n d wou ld b e f o l l o w e d by v o i d i n g of t h e c e n t r a l c o r e . T h i s loss of t h e l i q u i d p h a s e o r v o i d i n g w o u l d c a u s e a n i n c r e a s e i n r e a c t i v i t y w h i c h w o u l d b e f o l l o w e d by d i s r u p t i o n o f t h e c o r e w i t h i n ca . 2 5 s e c s . The t e m p e r a t u r e s i n t h e c o r e c a n r e a c h c a . 5000K, a n d f o r t h i s r e a s o n t h e r e h a s b e e n v e r y much i n t e r e s t i n t h e f o r m u l a t i o n o f e q u a t i o n s o f s t a t e f o r t h e m a t e r i a l s o f t h e r e a c t o r c o r e u p t o v e r y h i g h t e m p e r a t u r e s . The m a t e r i a l s w h i c h h a v e b e e n c o n s i d e r e d a r e t h e f u e l , t h e c o o l a n t a n d s t a i n l e s s s t e e l . I n d e e d , t h e e x t e n s i v e s t u d i e s on t h e d e t e r m i n a t i o n o f t h e v a p o u r p r e s s u r e s o f u r a n i a and u r a n i a - p l u t o n i a s o l u t i o n s up t o t e m p e r a t u r e s a b o v e 5000K w i l l be d e s c r i b e d by Ohse ( r e f . 5 ) i n a n o t h e r p l e n a r y l e c t u r e t o t h i s c o n f e r e n c e . The i n g r e s s o f e n e r g y u n d e r some a c c i d e n t c o n d i t i o n s c a n b e v e r y r a p i d a n d t h e n t h e r m a l e q u i l i b r i u m i n t h e s y s t e m w o u l d n o t b e a t t a i n e d . T h e r e is c o n s i d e r a b l e i n t e r e s t i n t h e r o l e o f t h e v o l a t i l e f i s s i o n p r o d u c t e l e m e n t s , t h e n o b l e g a s e s a n d c a e s i u m i n t h e d e s c r i p t i o n o f f u e l a n d c o r e i n a c c i d e n t c o n d i t i o n s .

We s h a l l now d i s c u s s some s p e c i f i c a s p e c t s o f t h e b e h a v i o u r o f f u e l a n d f i s s i o n p r o d u c t e l e m e n t s i n b o t h t y p e s o f r e a c t o r s y s t e m d u r i n g f a u l t a n d a c c i d e n t c o n d i t i o n s .

PRESSURISED WATER REACTOR (PWR)

Chemistry of the PWR core T h e c h e m i c a l c o n s t i t u t i o n i n t h e f u e l c l a d g a p a n d t h e i n f l u e n c e o f r a d i a t i o n on t h e c h e m i c a l s t a t e o f t h e f i s s i o n p r o d u c t s may be o f s i g n i f i c a n c e i n u n d e r s t a n d i n g t h e m e c h a n i s m o f f a i l u r e o f t h e Z i r c a l o y c l a d by s t r e s s - c o r r o s i o n c r a c k i n g .

Where t h e c o o l i n g o f t h e f u e l r o d s i n t h e c o r e i s l o s t t h e Z i r c a l o y w i l l r e a c t w i t h s team t o p r o d u c e h y d r o g e n , f u r t h e r h e a t i n g w o u l d r e s u l t i n t h e r e a c t i o n b e t w e e n f u e l a n d Z i r c a l o y w i t h t h e c o r r e s p o n d i n g l o s s o f t h e i n t e g r i t y of t h e c l a d d i n g a n d l o s s o f t h e m o r e v o l a t i l e s p e c i e s o f t h e f i s s i o n p r o d u c t e l e m e n t s i n t o a n a t m o s p h e r e c o n t a i n i n g steam a n d h y d r o g e n . The s u r f a c e a r e a o f t h e p i p e w o r k o f t h e p r i m a r y c i r c u i t i s l a r g e a n d many o f t h e r e l e a s e d f i s s i o n p r o d u c t s p e c i e s c o u l d r e a c t o r d e p o s i t on t h e s u r f a c e s o f t h e p r i m a r y c i r c u i t a n d o t h e r s c o u l d f o r m a e r o s o l m a t e r i a l . Much a t t e n t i o n h a s b e e n g i v e n t o t h e b e h a v i o u r o f t h e v o l a t i l e f i s s i o n p r o d u c t e l e m e n t s , c a e s i u m , i o d i n e a n d t e l l u r i u m ( r e f s . 6 - 9 ) .

The r e s u l t o f t h e loss of c o o l a n t c o u l d f i n a l l y l e a d t o t h e m e l t i n g o f t h e c o r e i n c l u d i n g t h e s t r u c t u r a l members o f s t a i n l e s s s t e e l a n d I n c o n e l . S u c h a m i x t u r e wou ld b e a s o u r c e o f v o l a t i l e m a t e r i a l w h i c h c o u l d c o n d e n s e t o f o r m a e r o s o l p a r t i c u l a t e m a t e r i a l . T h e m a t e r i a l o f t h e m o l t e n c o r e c o u l d m e l t t h r o u g h t h e s t a i n l e s s s t e e l p r e s s u r e v e s s e l a n d r e a c t w i t h t h e c o n c r e t e o f t h e c o n t a i n m e n t v a u l t . I n a d d i t i o n t o t h e f u e l t h e r e a r e c o n t r o l r o d s - a n a l l o y o f s i l v e r , cadmium and i n d i u m c l a d i n s t a i n l e s s s t e e l a n d b u r n a b l e p o i s o n s - b o r o s i l i c a t e g l a s s c l a d i n s t a i n l e s s s t e e l .

The a n a l y s i s o f d e g r a d e d c o r e a c c i d e n t s r e q u i r e s a d e t a i l e d a s s e s s m e n t o f t h e l i k e l y c h e m i c a l c o n s t i t u t i o n o f t h e m a t e r i a l s o f t h e c o r e , p a r t i c u l a r l y t h e i r r a d i a t e d f u e l , i n t h e c o n d i t i o n s of t h e f a u l t o r a c c i d e n t and a n a n a l y s i s o f t h e f a t e o f t h e v a p o u r s p e c i e s many o f w h i c h w i l l c o n d e n s e a n d r e a c t w i t h s u r f a c e s o r f o r m a e r o s o l p a r t i c u l a t e m a t e r i a l . Some o f t h e i m p o r t a n t c h e m i c a l r e a c t i o n s a n d t h e t e m p e r a t u r e a t w h i c h t h e y o c c u r a r e shown i n T a b l e 2.

326 P. E. POTTER

TABLE 2 . Melting sequence and pattern of the degradation of a PWR core

Temperature of Phenomenon cladding surface ('C)

7 0 0 - 7 5 0

8 0 0

9 0 0

1 3 0 0 - 1 500

Above 1 5 0 0

1 8 5 0 - 1 9 5 0

Borosilicate starts to soften. Incipient melting of Ag-Cd-In alloy inside control rods.

Fuel rods start to swell and burst and release some fission product species and fuel to the primary circuit.

Reaction between Zr and steam starts. Temperatures of fuel rods rise more rapidly.

First visible liquid formation due to ( 1 ) Inconel grid-Zircaloy eutectic reaction, and ( 2 ) U02-Zircaloy reaction or exposed internal clad

Reaction 2 can result in vaporisation of fission product species.

Further heating of exposed fuel results in the loss due to vaporisation of the volatile fission product species.

Zircaloy starts to melt; subsequent behaviour is governed by thickness of Zr02 layer. Thin oxide layer - Zr melting and Zr + U 0 2 reaction. Thick oxide layer - internal Zr surface may be protective and melting delayed.

surf aces.

2 4 0 0 - 2 6 5 0 * Zr02 and U02-ZrOg mixtures melt.

*At the highest temperatures vaporisation of the less volatile fission product species has to be considered.

Chemical constitution of irradiated PWR fuel The fuel for a PWR is essentially stoichiometric uranium dioxide. The conditions under which the fuel operates result in fuel centre temperatures of ca. 1200°C. At these temperatures, the irradiated fuel will be essentially a solid solution of the fission product elements in the fluorite structured lattice of the oxide. The average valency of the fission product elements and cations will be less than four and some oxidation of the U4+ ions to U5+ ions will occur resulting in an increase in the thermodynamic oxygen potential of the fuel matrix with increasing burn-up of the actinide atoms. Such an increase in oxygen potential would only occur providing that there be no transfer of oxygen from the fuel matrix to the Zircaloy cladding (ref. 10). During the conditions of normal operation, there will be a small amount of fission product elements in the fuel-cladding gap which will originate from athermal processes such as fission spikes and recoil and it will be due to power transients that there would be an enhancement of the amount of fission product species within the gap. The most volatile fission product elements are the noble gases, krypton and xenon which, like the added helium gas, probably remain chemically inert. Helium is added to improve the thermal conductivity within the gap. The other volatile fission product elements are caesium, rubidium, iodine, bromine, selenium and tellurium. We shall see that the presence of helium can play a significant role in the behaviour of iodine in a radiation field. We have calculated the variation with oxygen potential of the chemical constitution of the fuel- cladding gap (ref. ll), using the computer program SOLGASMIX (ref. 12) which calculates the phase assemblage of the system with the minimum value of the total Gibbs energy. For the assessment of the chemical constitution of Cs, I and Te (Rb, Br and Se have not been considered separately because their yields are low) in the presence of uranium dioxide (UO +x), the quantity of fission product elements taken is 1 percent of tieir total inventory at a temperature of 650'K. For this assessment of the chemical constitution of Cs, I and Te with U 0 2 , we need information about the thermodynamic quantities of the condensed and gaseous species phases which could be present. The compounds and gaseous species which have been considered are CsX(c) CsI(g), Cs212(g), Cs(c), Cs(g), Cs2(g), CsZTe(c) and Cs2Te(g). The ternary condensed phases considered were Cs2UOk, and CszU407. The data for these were mainly taken from a current assessment (refs. 13, 14). The model used for the U02+x phase was that developed by Lindemer and Besmann (ref. 15). In Fig. 2 we give the pressures in the gap

Analyses of accidents in nuclear reactors 327

Temperature 650K 1% invwltory in gap

Condensed Phases

U01.6. cs csI.csywl,w,.~.

I I I I ~ 0 2 0 0 1 1

I I I I L

900 700 500 300 -30'

-Go2 KJ rnol-'02

No radiation O r

- -5 ~

\ -10

Pressure CsI : 1.73 x lo-' PA Temperature : 713 K

Pressure I far SCC of Zircaloy

B

----_ I2 -- - - - - -- - -__ - -30

2 -35 ---_ -- --__ ---__ 8

I .--A. I

0 1 2 -5 -4 -3 -2 -1 Log (pressure cs / pa

Fig. 2. The chemical constitution Fig. 3. The thermal equilibrium of the fuel-clad gap of a PWR rod for the decomposition of CsI gas at at 650K. 713K.

and the plenum of the fuel rod for the major species, and also the condensed phases at increasing amounts of oxygen. The major point to note is that the potential of iodine increases with increasing oxygen potential ( -700 kJ.mol-l) but the pressure is considerably lower than that of CsI. The pressures of iodine are below those which would cause stress corrosion cracking of the Zircaloy cladding by these thermal reactions.

Under reactor operating conditions, we can expect gas concentrations to be greatly changed from those at thermal equilibrium because the large continuous input of radiation energy, largely in the form of fission fragment radiation tend to dissociate molecules into neutral atoms or into ions. This has been recognised by Konashi et a1 (refs. 16,17) and some expected features of the processes, such as the dependence of the presence of iodine atoms on the square root of the dose-rate in a mechanism containing recombination as the ultimate fate of transient species has been suggested by Kanno et a1 (ref. 18).

An important aspect of the behaviour not hitherto discussed is that we are dealing with a dilute mixture of other gases in helium, Helium is well known for greatly sensitising the radiolytic decomposition of minor components of its mixtures (ref. 11). This occurs by way of charge and energy transfer from its highly energetic ion He+ and metastable atomic states 23S and 2 ' 5 . All of these species will take part in inelastic collisions with gas phase molecules, including CsI and 12, easily dissociating them. The kinetic simulation of the chemistry was simplified by assuming that all He+ ions recombine with electrons efficiently to form excited metastable atoms. The reactions may be represented as follows where D is the dose rate in w.g-l.

He + He* rate constant 4.15 x D s - l ... (1) He + He+ + e- 9.95 x 10-7 D ~1 . . .(2) He* + e + He 1014 M-1 ,-A ... (3) He* + CsI + Cs + I + He loA1 M - l ... (4) He* + I2 + I + I + He ... (5) l o A 1 M - l s-l

The rate constants of reactions 1 and 2 ( k l and k2) were obtained from the G values (species per 100 eV) for He+ and He* which are 2.4 and 1.0 respectively (ref. 19) and we assume that the effect of radiation type (ref. 2 0 ) can be neglected. The rate constant kl is thu

kl = 4DG(He*) x 6.242 x 108/6.022 x

$4 I s the atomic weight of helium, 6.242 x 10l8 is the number of eV per J , 6 . 0 2 2 x is Avogadros number x 100.

328 P. E. POTTER

with G(H+) replacing G(He*) for k2. The total dose rate was 21.6 wg-l [1.6 wg-1 from neutron and gamma radiation and 20 wg-1 as an estimate for fission fragments]. The ionic recombination rate constant for reaction (3) is typical for its class (ref. 2 2 ) and taken to be temperature insensitive, as are the simple bimolecular rate constants for reactions ( 4 ) and (5). These reactions will modify the effect of the existing thermal equilibria; examples of the thermal reactions are

and Cs + I + He + CsI + He I + I + H e + 1 2 + H e

The combined effect of all the reactions will cause a new dynamic equilibrium to be established quickly where we expect the steady state concentrations of atoms to be greater than in the absence of radiation.

Burns et a1 (ref. 11) computed the influence of radiation on the equilibria in the gap using the FACSIMILE program (ref. 23) which formulates and solves numerically the necessary differential equations in species concentrations with respect to time when the reactions, rate constants, and starting concentrations are provided. For the example given, the mean gap temperature was 713 K and assumed the partial pressure o f CsI vapour to be that in equilibrium with the solid at 650 K, the assumed cladding surface tempera- ture, and we have made variations in the partial pressure of Cs. Fig. 3 , shows the variation of I and I2 pressures with partial pressure of Cs in the absence of radiation. Fig. 4 , shows how the computed partial pressures for reactants, except those of He and CsI which remain virtually constant vary with the Cs pressure in the radiation field. These calculated pressures of iodine are considerably greater than those quoted by Konashi et a1 (ref. 17) as the threshold for iodine to cause stress corrosion cracking of the Zircaloy clad. The effect of ionic reactions was also considered, for example, reactions such as

He* + CsI + He + Cs+ + I- (k = 10l1 M-l 8 - l )

The rate constants were estimated as typical of their types, which are charge transfer, dissociative positive ion - molecule reactions, dissociative and non-dissociative electron capture, and recombination with electrons or with negative i o n s .

Neutral species .............................................................. ......... ._.. He‘ -_ __._.. ..... ..... - - - -. - -

-----

.-. - Pressure I for SCC- ‘-. of Zircoioy

Pressure CSI : I 73 = 10.’ PA Temperature = 713 K

I

-L -3 -2 -1 0 1 2 Log (pressure cs/pal

Fig. 4 . The neutral gaseous species from the decomposition of CsI in the radiation field of the fuel-clad gap at 713K.

Neutral and ionic species O r

\ - g , Pressure Csl i 173 x 10.’ PA \

\ 2 -M 1 Temperature = 713 K

i \

-5 - L -3 -2 -1 0 1 2 \

Log (pressure cs/pal

Fig. 5. The neutral and ionic species from the decomposition of CsI in the radiation field of the fuel-clad gap at 713K.

The final effect of all these reactions is shown in Fig. 5 in which it is seen that the stronger tendency towards recombination in the condition where ionic dissociation is considered causes lower calculated concentrations of I, however the concentrations of I will again be greater than without the radiation field. In this work, wall effects and the participation of a number of other potential species and reactions are neglected. Species include Cs2 and Cs212 and reactions include those with Xe. As well as displacing the thermodynamic equilibria of the gas phase, it must be also conceded that the effect of such high radiation dose rates may also disturb condensed phase equilibria.

Analyses of accidents in nuclear reactors 329

Evolution of the degradation of the core The f u e l m a t r i x a n d t h e c l a d d i n g a r e b a r r i e r s t o t h e r e l e a s e o f f i s s i o n p r o d u c t e l e m e n t s t o b o t h t h e g a p a n d t h e c o o l a n t . I f t h e f u e l were t o h e a t up d u e t o loss of c o o l i n g t h e n b o t h f i s s i o n p r o d u c t e l e m e n t s w o u l d d i f f u s e f r o m t h e f u e l m a t r i x o n t o t h e g r a i n b o u n d a r i e s w h e r e t h e y w o u l d f o r m b u b b l e s . I n t e r l i n k i n g o f t h e b u b b l e s w o u l d r e s u l t i n l o s s o f t h e f i s s i o n p r o d u c t e l e m e n t s f r o m t h e f u e l . A c o n s i d e r a b l e a m o u n t o f work h a s b e e n c a r r i e d o u t on u n d e r s t a n d i n g t h e b e h a v i o u r o f t h e n o b l e g a s e s ; s u c h s t u d i e s h a v e b e e n r e v i e w e d by M a t z k e ( r e f . 2 4 ) ; some o f t h e v o l a t i l e e l e m e n t s c a e s i u m , i o d i n e and t e l l u r i u m w h i c h may n o t d i s s o l v e r e a d i l y i n t h e l a t t i c e o f t h e f u e l may b e f o u n d i n t h e b u b b l e s a n d w o u l d b e r e l e a s e d when t h e r e a r e p a t h s f o r r e l e a s e and t h e t e m p e r a t u r e s a r e s u f f i c i e n t l y h i g h . T h e r e h a v e b e e n many s t u d i e s o f t h e r e l e a s e o f C s , I a n d Te f r o m i r r a d i a t e d f u e l a n d s i m u l a t e d i r r a d i a t e d f u e l u p t o t e m p e r a t u r e s a b o v e 2O0O0C. O l a n d e r ( r e f . 2 5 ) h a s d i s c u s s e d t h e d i f f u s i o n o f t h e f i s s i o n p r o d u c t e l e m e n t s i n t h e U02 l a t t i c e i n a c o n t r o l l e d a t m o s p h e r e b e t w e e n 1 0 0 0 a n d 20OO0C. E x p e r i m e n t s h a v e b e e n c a r r i e d o u t on i r r a d i a t e d f u e l a n d m e a s u r e m e n t s h a v e b e e n made o f t h e v a r i a t i o n o f e x t e n t o f r e l e a s e o f f i s s i o n p r o d u c t s w i t h t e m p e r a t u r e a n d t i m e i n t o h y d r o g e n - s t e a m a t m o s p h e r e s ( r e f . 7 ) . S u c h d a t a a r e r e q u i r e d t o p r e d i c t t h e c o n s e q u e n c e s o f t h e loss of c o o l a n t and i n t e g r i t y o f t h e c l a d d i n g . T h e r e h a s b e e n much d i s c u s s i o n o f t h e c h e m i c a l f o r m i n w h i c h t h e f i s s i o n p r o d u c t s a r e r e l e a s e d i n t o t h e h y d r o g e n - s t e a m a t m o s p h e r e s .

Some of t h e c h e m i c a l c h a n g e s w h i c h o c c u r d u r i n g d e g r a d a t i o n o f t h e c o r e h a v e a l r e a d y b e e n l i s t e d i n T a b l e 2. We n o t e t h a t t h e r e a c t i o n w h i c h c a n r e s u l t i n t h e loss of i n t e g r i t y o f t h e c l a d d i n g s t a r t s a t 9 0 0 ° C , t h a t b e t w e e n Z i r c a l o y a n d steam a n d t h a t b e t w e e n u n o x i d i s e d Z i r c a l o y a n d U02 f u e l s t a r t s a t 1 3 0 0 - 1 5 0 0 ° C . I n t h e a b s e n c e o f d i r e c t c o n t a c t b e t w e e n U02 and Z i r c a l o y , o x y g e n c a n o n l y b e t r a n s p o r t e d f r o m t h e f u e l t o t h e c l a d d i n g t h r o u g h t h e g a s p h a s e . W i t h o u t e x t e r n a l l y a p p l i e d p r e s s u r e , no r e a c t i o n h a s b e e n o b s e r v e d b e t w e e n U02 a n d Z i r c a l o y a t t e m p e r a t u r e s up t o 1 5 0 0 ° C s i n c e t h e r e was no p h y s i c a l c o n t a c t b e t w e e n p e l l e t s and z i r c a l o y c l a d d i n g o f f u e l r o d s ; t h e minimum s o l i d u s t e m p e r a t u r e s i n t h e U-Zr-0 t e r n a r y p h a s e d i a g r a m a r e a t ca . 13OO0C ( r e f . 2 6 ) . A d e t a i l e d s t u d y o f t h e r e a c t i o n s b e t w e e n U02 a n d Z i r c a l o y h a s b e e n r e p o r t e d by Hofmann a n d K e r w i n - P e c k ( r e f . 2 7 ) . The s e q u e n c e o f r e a c t o r l a y e r s a t t h e i n t e r f a c e b e t w e e n t h e r e a c t a n t s w h i c h is o b s e r v e d a t room t e m p e r a t u r e is

U02 + u l a - z r ( o ) , + U - Z r l U - Z r l U - Z r + a -Zr ( 0 ) b l Z i r c a l o y ( 2 p h a s e ) ( 2 p h a s e ) ( 2 p h a s e )

a - Z r ( 0 ) a a n d a - Z r ( 0 ) b a r e a-Zr w i t h d i s s o l v e d o x y g e n i n two d i f f e r e n t 2 - p h a s e r e g i o n s s e p a r a t e d by a U - Z r a l l o y s i n g l e p h a s e r e g i o n .

In g e n e r a l t h e number of r e a c t i o n l a y e r s and t h e i r s e q u e n c e is t h e same f o r a l l t e m p e r a t u r e s a n d r e a c t i o n t imes. A v e r y e l e g a n t a n a l y s i s o f t h e U02-Zr c o u p l e i n terms o f t h e U-Zr-0 p h a s e d i a g r a m a n d t h e t r a n s p o r t p r o p e r t i e s o f t h e s y s t e m h a s b e e n g i v e n by O l a n d e r ( r e f . 2 8 ) . The a n a l y s i s was c a r r i e d o u t f o r 1 5 0 0 ° C a n d a c c o u n t e d f o r t h e u r a n i u m r i c h a l l o y s a n d w i c h e d b e t w e e n t h e two a - Z r ( 0 ) l a y e r s , t h e s e q u e n c e o f p h a s e s a n d t h e k i n e t i c s o f l a y e r g r o w t h . The d i f f u s i o n p a t h is shown i n F i g . 6 .

Some f u r t h e r work is r e q u i r e d on t h e U02-Zr02 s e c t i o n o f t h e p h a s e d i a g r a m . Some p r e l i m i n a r y a t t e m p t s h a v e b e e n made t o m o d e l t h e s e p h a s e r e l a t i o n s h i p s by I m o t o ( r e f . 2 9 ) t o g e t h e r w i t h some f u r t h e r e x p e r i m e n t a l s t u d i e s o f t h e p h a s e d i a g r a m by Yamanaka e t a1 ( r e f . 3 0 ) . A s i g n i f i c a n t f e a t u r e o f t h e s e r e a c t i o n s i s t h a t a n a p p r e c i a b l e amoun t o f U02 u p t o 9 v o l . % (Hofmann a n d K e r w i n - P e c k ( r e f . 2 8 ) ) c a n b e d i s s o l v e d by Z i r c a l o y - 4 . I n a f u e l r o d c o m p l e t e r e l e a s e o f t h e v o l a t i l e f i s s i o n p r o d u c t f r o m t h e m o l t e n f u e l r e g i o n c a n b e e x p e c t e d . The p r e s e n c e o f s i m u l a t e d f i s s i o n p r o d u c t e l e m e n t s C s , I a n d Te d i d n o t s i g n i f i c a n t l y i n f l u e n c e t h e r e a c t i o n o f U02 a n d Z i r c a l o y a l t h o u g h Te h a d r e a c t e d w i t h t h e Sn o f t h e Z i r c a l o y ( r e f . 2 7 ) .

A s t h e c o r e o f t h e r e a c t o r h e a t s up a n d t h e i n t e g r i t y o f t h e c l a d d i n g i s l o s t t h e v o l a t i l e f i s s i o n p r o d u c t s w i l l b e l o s t f r o m t h e f u e l a t a q u i t e e a r l y s t a g e o f t h e d e g r a d a t i o n . The v o l a t i l e f i s s i o n p r o d u c t s h a v e b e e n g i v e n e a r l i e r as C s , Rb, I , B r , T e a n d Se . Mos t o f t h e f i s s i o n p r o d u c t e l e m e n t s w i l l r e m a i n w i t h t h e c o r e d e b r i s ; as t h e f u e l h e a t s up p h a s e s o f t h e f i s s i o n p r o d u c t e l e m e n t s w i l l n u c l e a t e . The c o r e d e b r i s w i l l u l t i m a t e l y c o n s i s t o f two i m m i s c i b l e l i q u i d p h a s e s ; o n e a n o x i d e a n d t h e o t h e r a m e t a l l i c p h a s e . A d e t a i l e d k n o w l e d g e o f t h e s p e c i a t i o n o f t h e v o l a t i l e f i s s i o n p r o d u c t s i n m i x t u r e s o f steam and h y d r o g e n f o r t h e v a r i o u s

330 P. E. POTTER

Fig. 6. The diffusion path for the Fig. 7 . The gaseous species of Cs and Zr-U02 reaction on a section of the I in the hydrogen-steam mixtures at U-Zr-0 phase diagram at 1500'C 1300K. (ref. 28).

conditions of temperature, total pressure, and relative amounts of steam and hydrogen. The speciation of caesium and iodine in various mixtures of steam and hydrogen has been calculated and the variation of the partial pressure of the various species with the composition of the steam-hydrogen mixtures is shown in Fig. 7 for a temperature of 1300K and a total pressure of 70 bars (Potter et a1 (ref. 32)). The predominant Cs containing gaseous phases are CsOH, CsI and Cs; Cs2Te was not included in these calculations. The quantities of elemental I gas and HI gas under these conditions are very small. The Cs containing species will react or condense on surfaces and also form considerable quantities of material in the form of aerosol particles. The behaviour of caesium containing species with surfaces and in aerosol form has been a significant feature of many studies (refs. 6,8). The small quantities of gaseous I and HI would interact with structural materials. The quantification of the removal processes with these fission products is an important part of the research programme on severe accident analysis. A possible source of volatile iodine is the formation of gaseous HI by the reaction of CsI with boric acid (ref. 31), the boric acid is present in the primary coolant.

The behaviour of tellurium is complex and there are several aspects which need detailed examination. Previous assessments (ref. 32) have indicated that whilst tellurium would be present as CsZTe in the condensed phase, it would decompose into the elemental components when vaporization occurred; however, recent determinations of the vapour pressure up to 1000 K (ref. 3 3 ) suggest that Cs2Te vaporises congruently and that Cs2Te(gas) is the predominant species. Observations suggest that at higher temperatures some CsTe is found (refs. 34,35) and Cs is the predominant gas phase species (ref. 35). The speciation in the gas phase of elemental tellurium in mixtures of hydrogen and steam has been described (refs. 32,35) and the major species are T e 2 , Te, H2Te, and TeOH; TeOH is only significant at high oxygen potentials.

There have been studies of the reactions between tellurium and stainless steel in order to quantify the deposition processes which could occur within the primary circuit of the reactor. Oxidation of Zircaloy prevents the reaction of gaseous element tellurium species to form Zr tellurides. The thermodynamic tellurium potential for the formation of ZrTe2 (ref. 36) is higher than that for the formation of Cs Te (ref. 14). If reaction of elemental tellurium or of H2Te(gas) did form Zr tellurides, then subsequent oxidation would result in the Te becoming associated with the tin of the Zircaloy. Tin will not oxidise in the conditions which prevail during the degradation of the core; the reaction product SnTe vaporises congruently and it is suggested that this compound is the major Te gaseous species under some conditions.

Analyses of accidents in nuclear reactors 331

T h e r e a r e d a t a a v a i l a b l e on t h e p h a s e r e l a t i o n s h i p s o f t h e s y s t e m s C s - T e ( r e f s . 3 7 , 3 8 ) , Zr-Te ( r e f . 3 9 ) , Sn-Te ( r e f . 4 0 ) as w e l l as f o r t h e s y s t e m s Cr , N i a n d Fe w i t h Te ( r e f s . 4 1 - 4 5 ) . A d e t a i l e d a s s e s s m e n t o f t h e t h e r m o d y n a m i c d a t a and p h a s e e q u i l i b r i a o f t h e s e s y s t e m s i s , a t p r e s e n t , b e i n g c a r r i e d o u t by t h e a u t h o r .

I n a d d i t i o n t o t h e f i s s i o n p r o d u c t e l e m e n t s , cadmium f r o m t h e c o n t r o l r o d s w i l l v o l a t i l i z e a n d f o r m a e r o s o l m a t e r i a l a n d p r o v i d e a n a d d i t i o n a l l a r g e amoun t o f s u r f a c e on w h i c h m a t e r i a l v o l a t i l i z e d a t a s l i g h t l y l a t e r t i m e c o u l d c o n d e n s e .

V a p o r i z a t i o n o f t h e f i s s i o n p r o d u c t s p e c i e s , s u c h a s t h o s e o f t h e a c t i n i d e s , l a n t h a n i d e s , Ba, S r a n d Ru, w i l l o c c u r f r o m m i x t u r e s o f m o l t e n f u e l , Z i r c a l o y a n d s t r u c t u r a l c o m p o n e n t s - t h e c o r e d e b r i s . The m o s t v o l a t i l e s p e c i e s o f t h e s e e l e m e n t s w o u l d b e t h e h y d r o x i d e s . F u r t h e r e x p e r i m e n t a l s t u d i e s on t h e g a s e o u s h y d r o x i d e s p e c i e s t o s u p p o r t t h e a s s e s s m e n t s o f t h e i r t h e r m o d y n a m i c p r o p e r t i e s ( r e f s . 4 6 , 4 7 ) a r e r e q u i r e d .

T h e r e a r e a n u m b e r o f g a s e o u s m o l e c u l e s s u c h as Cs2MoOq ( r e f . 4 8 ) , C s 2 C r 0 , + ( r e f s . 4 9 , 5 0 ) w h i c h c o u l d c o n t r i b u t e t o t h e r e l e a s e s o f C s a n d Mo; e v i d e n c e h a s a l s o b e e n p r e s e n t e d f o r t h e e x i s t e n c e o f t h e g a s e o u s m o l e c u l e C s 2 T e O g ( r e f . 5 1 ) . I t i s i m p o r t a n t t o e n s u r e t h a t a l l m a j o r s p e c i e s w h i c h c o u l d c o n t r i b u t e t o t h e loss of f i s s i o n p r o d u c t e l e m e n t s f r o m t h e c o r e d e b r i s a r e c h a r a c t e r i z e d a n d t h e i r t h e r m o d y n a m i c p r o p e r t i e s m e a s u r e d .

Interactions of core debris and concrete I f t h e d e b r i s f o r m e d f r o m t h e c o r e m a t e r i a l s were t o m e l t t h r o u g h t h e r e a c t o r p r e s s u r e v e s s e l , r e a c t i o n s o f t h i s d e b r i s w i t h t h e c o n c r e t e o f t h e c o n t a i n m e n t w o u l d o c c u r ( r e f . 5 2 ) . The c h e m i c a l c h a n g e s w h i c h o c c u r d u r i n g s u c h r e a c t i o n s a r e t h e d e c o m p o s i t i o n o f t h e c o n c r e t e g i v i n g b o t h wa te r v a p o u r a n d c a r b o n d i o x i d e ( r e f . 5 3 ) . The s p a r g i n g o r s t r e a m i n g o f t h e s e g a s e s t h r o u g h t h e m o l t e n m a t e r i a l c a n r e s u l t i n t h e f o r m a t i o n o f a e r o s o l s f r o m t h e d e b r i s . T h e s e r e a c t i o n s c o u l d b e a n i m p o r t a n t s o u r c e o f r a d i o - n u c l i d e s t o t h e c a v i t y and c o n t a i n m e n t a t m o s p h e r e s d u r i n g a s e v e r e a c c i d e n t i n a l i g h t wa te r r e a c t o r ( r e f s . 5 4 - 5 6 ) . As t h e b u b b l e s r i s e t h r o u g h t h e m o l t e n d e b r i s , t h e g a s w i t h i n them w i l l u n d e r g o a c h a n g e i n c o m p o s i t i o n d u e t o r e d u c t i o n o f C 0 2 ( g a s ) a n d H 2 0 ( g a s ) by some o f t h e m e t a l s ( e s p e c i a l l y a n y u n o x i d i s e d Z r ) a n d some g a s e o u s s p e c i e s w h i c h e v a p o r a t e f r o m t h e s u r f a c e o f t h e b u b b l e s w i l l a l s o b e f o u n d w i t h i n t h e s e b u b b l e s . T h e s e l a t t e r s p e c i e s c o u l d b e t h e m a i n s o u r c e f o r t h e f o r m a t i o n o f a e r o s o l m a t e r i a l ; when t h e b u b b l e s b r e a k t h r o u g h t h e s u r f a c e o f t h e p o o l many o f t h e g a s e o u s s p e c i e s w i l l c o n d e n s e t o f o r m a e r o s o l p a r t i c l e s . We a r e e n d e a v o u r i n g t o e s t i m a t e t h e a m o u n t o f a e r o s o l m a t e r i a l w h i c h c o u l d b e f o r m e d a n d i t s c h e m i c a l c o n s t i t u t i o n . The m o l t e n d e b r i s , l i k e t h a t w h i c h w o u l d b e p r e s e n t b e f o r e a n y m e l t i n g t h r o u g h t h e s t a i n l e s s s t e e l r e a c t o r p r e s s u r e v e s s e l , w o u l d c o n s i s t o f a n o x i d e p h a s e a n d a me ta l p h a s e . The c o n f i g u r a t i o n o f t h e m e l t c a n i n f l u e n c e t h e c o m p o s i t i o n o f t h e v a p o u r w i t h i n t h e b u b b l e s .

We h a v e c o n s i d e r e d d i f f e r e n t c o n f i g u r a t i o n s o f t h e d e b r i s ; t h e s e a r e two i m m i s c i b l e l i q u i d s ( l ) , ( s i m u l t a n e o u s l y i n e q u i l i b r i u m w i t h t h e g a s p h a s e , ( 2 ) w i t h a me ta l l a y e r a b o v e a n o x i d e l a y e r , a n d ( 3 ) w i t h a n o x i d e l a y e r a b o v e a me ta l l a y e r .

The o x i d e p h a s e c o n t a i n s t h e f u e l u r a n i a w i t h t h e o t h e r a c t i n i d e o x i d e s a n d t h e o x i d e s o f t h e f i s s i o n p r o d u c t e l e m e n t s , t h e s e a re S r O , B a O , a n d t h e l a n t h a n i d e o x i d e s t o g e t h e r w i t h z i r c o n i u m o x i d e w h i c h is f o r m e d m a i n l y f r o m t h e o x i d a t i o n o f t h e Z i r c a l o y c l a d d i n g .

The m e t a l l i c p h a s e c o n t a i n s t h e s t a i n l e s s s t e e l , t h e c o m p o n e n t s o f t h e c o n t r o l r o d s (Ag , Cd a n d I n ) , a n d t h e m e t a l l i c a n d m e t a l l o i d f i s s i o n p r o d u c t e l e m e n t s - Mo, Tc, Ru, Rh, Pd and some Te t o g e t h e r w i t h u n o x i d i s e d c l a d d i n g .

A d d i t i o n a l l y some d i s s o l u t i o n o f t h e o x i d e c o m p o n e n t s o f t h e c o n c r e t e i n t o t h e o x i d e o f t h e d e b r i s w o u l d o c c u r .

T h e r e may b e t i m e s d u r i n g t h i s i n t e r a c t i o n when t h e s p a r g i n g g a s b u b b l e s k e e p t h e two p h a s e s w e l l m i x e d , r e s u l t i n g i n g l o b u l e s o f o n e p h a s e s u s p e n d e d i n t h e o t h e r . T h i s l e a d s t o t h e c o n f i g u r a t i o n ( 1 ) a b o v e , w h e r e t h e b u b b l e s may b e s i m u l t a n e o u s l y i n c o n t a c t w i t h b o t h t h e m e t a l a n d t h e o x i d e p h a s e s . A t o t h e r t i m e s t h e two p h a s e s w i l l s e p a r a t e t o f o r m s t a b l e l a y e r s . The o r i e n t a t i o n o f t h e l a y e r s o x i d e a b o v e metal o r m e t a l a b o v e o x i d e w o u l d

332 P. E. PblTER

depend upon their relative densities. If the melt statifies at sufficiently early times, the density of the oxide layer will be dominated by urania which will be denser than the metallic layer - the oxide layer will be below the metallic layer - configuration ( 2 ) during the interaction of the debris with concrete. The amount of the less volatile species which would be released is dependent on the configuration of the molten pool; in general, the trend in the magnitude of the release of the fuel and fission products from the different configurations of the melt is ( 1 ) ( 3 ) ( 2 ) . The controlling factor in the vaporization process is oxygen potential.

The chemical constitution of the oxide layer would be continuously changed by the addition of the oxide components of the ablated concrete (in particular silica) resulting in an oxide layer of lower density than the metal; the configuration ( 3 ) above. The modelling of the vaporization of the species from the melt at various stages of the interaction was done with the code SOLGASMIX, and for the initial calculations, the three phases were considered as ideal solutions. Subsequently we have used the approach of Hastie and Bonnell (ref. 57) where association can be considered by introducing components which are the ternary phases formed in the solid phase, for example, BaZr03, and silicate phases. We have also simplified the systems by including only representative components; for example, La20g represents all the lanthanide oxides.

The oxide phases of concrete which we have included are CaO, K20, SiOz and FeO. The oxides from the decomposing concrete will be subsumed into the oxide phase of the debris. The initial inventory which we have taken is shown in Table 3. The conditions which we used in the calculations were taken from thermal hydraulic and heat transfer predictions for a particular accident sequence (ref. 5 8 ) . At 2733K the estimated temperature for the first hour of the reaction, ca. 9000 kg of silica are subsumed into the oxide phase and ca. 1000 kg of H 2 0 and ca. 250 kg of C 0 2 are released from the ablating concrete.

We have calculated the extent of vaporization for the different possible configurations of the molten phases after 1 hour at 2733K. Our calculations indicate that the extent of vaporization is the most significant in the first hour; the continuous dilution of the melt by the components of concrete and the decrease in the temperature of the melt with time are the major factors which lead to the decrease in vaporization. The results of these calculations show that, for each of the configurations, the more volatile fission product species such as those of Cs and Te would be released very rapidly.

The predominant gas phase species are shown in Table 4 for the configuration I - two immiscible liquids in equilibrium and well mixed.

Kinetic effects, including mass transport in the melt and in the bubbles have been discussed (ref. 5 4 ) ; and we showed that the equilibrium gas

TABLE 3 . Initial composition (moles) of the debris

Oxide phase

u o 2 3 . 0 1 0 5 S r O 2 7 . 0 x l o 4 SrO 7 . 0 x 1 0 2 *sio2 1 . 5 1 0 5 La203 1.0 x 1 0 3 * K ~ O 1 . 4 x i 0 4 pUo2 2.0 1 0 3 *CaO 5 . 5 x 1 0 4 c s z o 1 . 5 x 1 0 2 *FeO 1 . 4 x 10 '

Metallic phase

Mo 3 . 3 x l o 3 C r 1 . 3 1 0 5 Te 1 . 3 x l o 2 Fe 7 . 9 1 0 5 Z r 1 . 1 x l o 5 Ag 1.7 1 0 4

*Subsumed concrete in 1 hour at 2 7 3 3 K .

FABLE 4. Vaporization of species from molten debris at 2733K' and 1 bar total pressure in 1 hour

Debris configuration: two immiscible liquids in equilibrium well mixed

~

Element Amount in vapour Fraction of Dominant gase- phase (moles) initial amount ous species

cs Te S r La Mo U Pu Fe Cr Z r Ag Si K

3 1 3 . 7 9 3 . 3

2 1 7 . 1 1 0 5 . 5

1 0 . 7 1 3 4 . 0

4 2 2 5 0 . 0 1 3 0 8 0 . 0

1 3 . 8 9 0 2 4 .O

9 6 9 5 0 . 0 2 5 9 4 0 . 0

6 . 0 1 x 10-3

0 . 9 8 0 . 7 3 0 . 3 1 0 . 0 5

1 . 8 x 5 . 4 1 0 - 3 4 . 6 1 0 - 4 5 . 3 x 1 0 - 2

7 .7 10-5 0 . 1 0

0 . 5 3 0 . 6 4 0 . 9 1

cs Te S r La0 Mo

PuO, PuO(0H) U 0 2 , UO(0H)

Fe C r Z r O Ag sio

K , K O H

Analyses of accidents in nuclear reactors 333

composition will be attained in the rising bubbles with the exception of the most volatile component, caesium.

The effectiveness of the concrete to contain the debris has been discussed in detail in terms of the heat transfer behaviour; however, the changes in chemical constitution which occur during the cooling of the pool may influence the characteristics of heat transfer. In order to understand such changes it is necessary to have a knowledge of the phase relationships between U 0 2 and Zr02 with the major constituents of concrete namely CaO, MgO, S i 0 2 , A1203 and Fe oxides. There are still uncertainties in the phase diagrams which make the assessments of the phase relationships of higher order systems imprecise. There are, however, observations on urania concrete reactions which can be used to give information about the phase relationships. An example of this type of information (ref. 59) has been provided in which the solubilities of both U O and Zr02 in silicate melts were measured under oxidising conditions in tie temperature range 1473-1823K. The study was aimed at assessing the potential of silicate rocks as sacrificial barrier materials. An important conclusion was that dissolved zirconia and urania will precipitate out and settle to the bottom of a silicate melt during cooling. Further assessments of the experimental observations of the reactions between simulated debris in terms of the phase relationships of the lower order systems are required. Some further experimental determinations of the phase diagrams for U 0 2 and Zr02 with the oxides of concrete may be needed. We have already noted the importance of having sound thermodynamic data for the gaseous hydroxides.

FAST BREEDER REACTOR (FBR) In this part of the paper we shall be concerned with two areas of research concerned with design basis faults and core disruptive accidents. The first topic is of relevance to both design basis faults and core disruptive accidents and considers the reaction of the fuel with the coolant and the second topic is concerned with thermodynamic quantities of the oxide fuel up to conditions of high temperature and pressure.

Reactions between coolant and fuel in FBR The chemical changes which can occur on failure of the cladding of fuel pins and the consequences of such failures for the contamination of the primary circuit by fuel and fission product species have been recently reviewed (ref. 60).

In an operating fast reactor fuel pin, migration of oxygen, fuel and fission product species can occur due to the steep temperature gradients which prevail (centre temperature 20OO0C, surface temperature ca. 800'C). As a result of the temperature gradients the more volatile fission product elements will be found in the colder regions of the fuel pin such as the fuel clad gap and their quantities and chemical constitution will depend on the conditions of the irradiated fuel. The possible chemical constitution of the fission product elements in fuel and breeder pins is given in Table 5. The chemical constitution of the fuel clad gap would depend on the composition of the fuel and the extent of burn-up of the heavy atoms. In addition to the compounds Cs uranoplutonates, Cs2Te, and CsI, caesium chromates can also be formed from the cladding.

When the cladding is breached, any sodium which enters the pin could react both with the matrix of the fuel, a solid solution of urania-plutonia containing dissolved fission product cations, and with the compounds in the fuel-clad gap. Such reactions can lead to the contamination of the primary circuit. Reactions with the urania of the breeder pins have also to be considered. The reactions of liquid sodium with urania, urania-plutonia solid solutions with which we shall be concerned involve the formation of the compounds Na3U04, Na3U -xPux04; their formation could result in considerable swelling of tke pellets of fuel or breeder with the further opening of the breached region of the cladding and greater exposure of the surfaces of the fuel to liquid sodium.

We shall now discuss some aspects of the reactions between liquid sodium and urania and urania-plutonia solid solutions. An isothermal section of the ternary phase diagram is shown in Fig 8, and the equilibrium phase field of major interest is that containing U 0 2 ( s ) , Na(1,O in solution), and Na3U04(s)*. The overall reaction involving hyperstoichiometric urania can be represented by

3xNa(l,O in solution) + 2U02+x(s) + xNa3U04 + (2-x)U02~oo(s)

* ( s ) and (1) represent the solid and liquid state

334 P. E. POTTER

T A B L E 5 . T h e c h e m i c a l s t a t e o f f i s s i o n p r o d u c t s i n i r r a d i a t e d u r a n i a b r e e d e r a n d u r a n i a - p l u t o n i a s o l i d s o l u t i o n f u e l

F i s s i o n p r o d u c t e l e m e n t s L i k e l y c h e m i c a l s t a t e

K r , Xe E l e m e n t a l s t a t e .

Y , La-Eu a n d a c t i n i d e s O x i d e s w h i c h d i s s o l v e i n h o s t m a t r i x .

Ba, S r

B r , I

Rb, C s

S e , T e

Z r , Nb

O x i d e s w h i c h c a n d i s s o l v e t o a l i m i t e d e x t e n t i n t h e f u e l a n d a l s o f o r m s e p a r a t e p h a s e s B a l - x S r x [ Z r l - w - y - z M o W Y U P u , 1 0 3 .

S i n g l e p h a s e h a l i d e s o l u t i o n . C s l -xRbx Br ldy Iy

Br I a n d c o m p o u n d s a n a l o g o u s t o Cs2U04 :nd ' ; i 2 8 O 3 . 5, e g ( C S ~ - ~ R ~ ~ ) p ( u l - y P ~ y ) o 4

S i n g l e p h a s e c h a l c o g e n i d e s o l u t i o n . (CS1-xRbx)2 S r l - , ,Tey .

Some d i s s o l u t i o n i n h o s t m a t r i x , s e e a l s o Ba, S r g r o u p .

Mo, T c , Ru, Rh, Pd U s u a l l y s i n g l e p h a s e a l l o y , s o m e t i m e s two p h a s e . Some Mo c a n o x i d i s e t o Moo2 a n d a l s o f o r m a compound a n a l o g o u s t o CspMo04 - ( Csl-xRbx)MoO,, .

Ag, Cd , In, S n , Sb F i s s i o n y i e l d s l o w ; a l l o y e d .

0

L- 1 800 800 lo00

Temperature I K

Fig. 8. A section of the Na-U-0 Fig. 9 . The experimentally determined phase diagram. variation of Go2 with temperature for

sodium-urania and sodium-urania- plutonia.

and the equilibrium reaction is

3Na(1,0 in solution) + U02(s) + O 2 (dissolved in oxide or sodium) 2 Na3U04

The threshold 0:U ratio for the reaction is very close to 2.00 and the threshold oxygen concentration in sodium is 1 wppm at 1073K (ref. 61).

The equilibrium thermodynamic oxygen potential (GEq) for the reaction is given by 2

"q = AfG0[Na3UO4(s)I - AfGo[U02(s)] - 3G[Na(l)l 2

where AfG0[Na3UO4(s) ] of Na3U04 and U02 respectively and E[Na(l)] is the partial molar Gibbs

and AfGo[UO,(s)] are the Gibbs energies of formation

Analyses of accidents in nuclear reactors 335

energy of liquid sodium which, because of the small quantities of oxygen present, can be taken as zero. The values for Geq were obtained from measurements with an EMF cell; the cell was basetlon a thoria-yttria electrolyte and the EMF was measured with a slurry of Na(l), U02 and Na3U04 at one electrode and a mixture of In and In203 as the reference electrode. The oxygen potential can be expressed by

G (J.mol-102) = -949787 + 253.1T 02

for which the estimated uncertainty, including the error in the value for AfG0[In2O3(s)] agreement with an earlier determination (ref. 63).

It should be noted that for the reaction between sodium and hyperstoichiometric urania (U02+x) different mechanisms occur at low and high temperatures. The more destructive reaction between sodium and pellets of urania can possibly be attributed to the formation of the low-density product sodium monoxide (Na20) within the grain boundaries at temperatures less than 400'C. As the temperature is raised ( 4 5 0 ° C ) the thermodynamically more stable sodium uranate (Na3U04) is formed. It was also shown that the pellets of stoichiometric urania do not undergo a destructive reaction when in contact with sodium which contains a significant amount of oxygen. A layer of reaction product tends to be loosely held to the surface of the pellet and consists of a high proportion of the phase Na3U04.

For the urania-plutonia solid solutions the overall reaction can be expressed by

is 2.7 kJ.mol-102 (ref. 62). These data are in good

3(y-z)Na(l,O dissolved) + (2+y)Ul-x3Pux302-z(s)

We showed earlier (ref. 61) that when the three condensed phases Uk-xAPux 0 ( s ) , Na3U1-x2Pux 0 4 ( s ) and Na(1) given in the overall reaction a ov in terms of the separate reactions for the uranium and plutonium components of the system. The equilibrium reaction for the uranium component is:

arb $nYequilibrium, thea the equilibrium reactions can be considered

3Na(1,0 dissolved) + U02(dissolved in PuO{2-(y/x) ) + 02(dissolved) Na3U04(dissolved in Na3Pu04)

The valency of plutonium in the oxide solid solution is 2[2-(y/x)]. The oxygen potentials in the phase field of the quaternary system could be expressed in terms of those for the analogous phase field in the ternary system (ref. 61), namely

'Na3U04 Ge82(quaternary system) = CEq(ternary system) + RT In

2 auo

where aNa3UOr and a are the thermodynamic activities of Na3U04 and U02 in the respective solid solutions. It would be expected that, in practice, the values of cgq would be almost identical, and our experimental data for the two different compositions of the solid solution and for the urania system (Fig. 9) show this.

Our determinations of the threshold Pu valency from measurements of the lattice parameters of the oxide phase in equilibrium with liquid sodium and sodium uranoplutonate together with measurements of the extent of swelling of oxide pellets on reaction with liquid sodium (ref. 64) indicate that the threshold Pu valency could decrease with increase in temperature of reaction and with increase in Pu concentration. The analysis of these data also indicate that further measurements of the relationship between the composition of urania-plutonia solid solution and its thermodynamic oxygen potential. The dissolution of the fission product cations will influence the extent and rate of the reaction of sodium with irradiated fuel (ref .65).

UO2

2

336 P. E. POTTER

Analysis of severe accidents in fast breeder reactors In the introduction we briefly discussed possible severe accidents in a fast breeder reactor. We have examined the loss of flow accident in the proposed British CDFR (ref. 4) and consider the chemical composition of the released fission products with the sodium vapour which forms a rising bubble. When the bubble breaks the surface of the liquid any leak in, for example, the outer seal of the rotating shield would be very small; the condensable species would be those of Cs, Na, I and Te. The role of fission product species in the disassembly of a fast reactor core needs further examination and much attention has been given to examining disassemblies which are driven by the vapour pressure of the fuel. There has been much effort devoted to the prediction and the measurement of thermodynamic quantities for the oxide fuels up to temperatures of 5000K and above. An equation of state (EOS) of the oxide fuel is required which links the important quantities of energy, temperature, pressure and volume. Considerable effort to this end has been expounded (refs. 67-70) using techniques of extrapolation from experimental measurements usually below the liquidus temperature. Although the fuel for a fast reactor is a solution of urania and plutonia, most of the studies on techniques of extrapolation have been carried out on stoichiometric UO . Attempts to predict properties of UOP at temperatures greater than the melting point (3120f20K) have stimulated many experimental studies on the liquid, particularly the determination of vapour pressure.

Accurate data for the vapour pressure of fuel are required at temperatures of up to ca. 5000K. Conventional techniques cannot be employed at such high temperatures because of the lack of a material for containment which is compatible with the liquid oxide. Some measurements on the liquid have been carried out using a transpiration technique (ref. 71); in these experiments the containment was tungsten and measurements were made in the temperature range 3175-3390K; at the highest temperature the composition of the liquid at the end of the experiment was U01,94. In order to overcome the problems of materials compatibility a number of non-stationary pulse heating techniques have been developed. These dynamic pulse heating techniques require high speed diagnostics and high spatial and temporal resolution. Measurements have been made of vapour pressure up to ca. 5000K using laser beam heating; both Nd-YAG and COP lasers have been employed (refs. 72-77). Recently a heating technique using a COP laser has been employed to measure the boiling point of liquid U 0 2 as a function of pressure of an inert gas, xenon (ref. 78). Electron beam heating was employed to determine the relationship between enthalpy and pressure (refs. 79-81). Fission heating has also been used (refs. 82-84). Most of these data are for the vaporiza- tion of uranium dioxide, but there are also some data for urania-plutonia solutions. Data have been published for the variation of pressure with temperature in the temperature interval (3700-4090K) (ref. 73), for U Puo,201.96 and pressure-enthalpy relationships for Uo.77Puo,2302 (refs.

In order to ccnvert the data for the dependence of pressure on enthalpy to that of pressure on temperature a knowledge of the specific heat (Cp) of the liquid is required. Experimental determinations of the enthalpy content of liquid UO have been made between the melting point (3120K) and 3520K (ref. 85), whicg gave a constant value for Cp (135.8 J.K-l.mol-l). estimates of the variation of Cp with temperature which indicate that it could decrease with temperature (refs. 66,83). The relationship used by Breitung and Reil (refs. 83,84) to convert the pressure-enthalpy data was

88;81).

There are

Cp = 149.39 - 5.91 x T J.K-l.mo1-l

The vapour pressure data are given for the temperature interval 4800-7500K. Breitung and Reil (refs. 83,84) a best estimate relation for pressure and temperature over the range 3120-85OOK give,

l o g P/Mpa = 23.7989 f 0.1505 - 29605'5 - 4.7583 log (T/K) (T/K)

It is suggested (refs. 83,84) that the data obtained using the laser heating technique in which a Nd-YAG laser was used gave slopes which were higher than those of the other data. Ohse et a1 (ref. 86) indicated that there was a discrepancy between the vapour pressure obtained by using models for the variation of oxygen potential with temperature and those from the measurements using a Nd-YAG laser. The discrepancy between the calculated pressure and measured rate of evaporation into a vacuum is believed to be due to an enhanced rate of evaporation caused by thermionic emission, a process involving surface and space charge effects.

Analyses of accidents in nuclear reactors 337

There are several extrapolations of the vapour pressure data into the liquid region using models for the calculation of oxygen potentials for urania and urania-plutonia solid solutions. Ohse et a1 (ref. 86) give the variation of Go, with temperature for liquid U02 o o based on an extrapolation and assuming equipartition of the enthaipy of fusion between the uranium and oxygen components. The relationship given is

~ 0 ~ ( U 0 ~ ~ ~ ~ , l i q u i d ) / J . m o l - ~ O , = -707000 + 138T(K);

no variation of specific heat is included. The partial pressures of all the gaseous species above the system can be calculated using the data for the Gibbs energies of formation of the gaseous species and condensed phase. The total equilibrium vapour pressure is given by

log Ptot/MPa = -2.717 - -+ 1.925 log T. T(K)

The predicted vapour pressures are close to those given by the equation representing the experimental data.

A solution to the problem of the apportionment of the enthalpy and entropy of fusion between the partial molal quantities for uranium and oxygen for urania and between uranium-plutonium and oxygen for urania-plutonia solution has been accomplished by Green and Leibowitz (ref. 87). The extrapolation is based on the model for the solid of Blackburn (ref. 88). From these data and the Gibbs energies of the condensed phases and gaseous species, the variation of total pressure with temperature and composition has been derived.

The measured parameters must ideally be fitted to a self consistent set, which forms the equation of state of the nuclear fuel. An excellent survey of the data for the critical point of UO, up to 1979 has been compiled by Ohse et a1 (ref. 89). The methods used to predict these data were the Principle of Corresponding States (ref. go), the Law of Rectilinear Diameters (refs. 91,92), the Theory of Significant Structures (ref. 93) and a Perturbed Hard Sphere Model (ref. 70). A detailed comparison of the application of these approaches to the prediction of the critical constants and the formation of equations of state has been described by Browning et a1 (ref. 66). Fischer (ref. 67) has recently included the treatment of non-congruent evaporation into a model using Significant Structures Theory; the predicted critical temperature is ca. 10500K, but will depend on the 0:U ratio; this temperature is significantly higher than previous assessments. This methodology could be applied to the prediction of the critical parameters of the mixed oxide.

CONCLUSIONS

We have examined and described some of the information concerning the high temperature thermodynamic properties and phase equilibria which are required for the analysis of design basis faults and severe accidents in nuclear reactors and the prediction of their consequences. Examples are taken from both pressurised water and fast breeder nuclear reactors.

Acknowledgements The author is grateful to Drs. W.G. Burns and M.H. Rand for many fruitful discussions. This paper was prepared during the tenure of a Visiting Professorship at the Institute of Physical Chemistry, University of Vienna.

REFERENCES (1) J.H. Gittus, Degraded core analsis for the pressurised water reactor.

A review lecture, 29 Jan. 1987, London, The Royal Society (1986). (2) INSAG, Summary report on the post-accident review meeting on the

Chernobyl accident, Safety Series No. 75 - INSAG-I, I.A.E.A., Vienna, (1986).

probabilistic risk assessments for nuclear power plants, Nuclear Regulatory Commission, NUREG/CR-2300 (1983).

( 4 ) N.J., Holloway, G.J. Vaughan, M. Mignanelli, J. Harding and P.E.

(3) NRC, PRA procedures guide - a guide to the performance of

Potter, Science and Technology of Fast Reactor Safety,-BNES London, ~ . 1 0 3 . (1986).

I .

(5) R.W. Ohse, Pure and Applied Chemistry, to be published.

338 P. E. POTTER

R . R . H o b b i n s , D . J . O s e t e k , a n d D.L. H a g r m a n , S o u r c e term e v a l u a t i o n f o r a c c i d e n t c o n d i t i o n s , I . A . E . A . V i e n n a , p.45 (1986). M.F. O s b o r n e , J .L . C o l l i n s , R .A. L o r e n z a n d R.V. S t r a i n , =, p . 8 9 , (1986). G . W . P a r k e r , C . E . C r e e k , a n d A.L. S u t t o n J r . =, p.155, (1986). B . R . B o w s h e r , S. D i c k i n s o n , R.A. J e n k i n s , A.L. N i c h o l s a n d J . S . O g d e n , =, p.267, (1986). M . G . A d a m s o n , E . A . A i t k e n , S.K. E v a n s a n d J . H . D a v i e s , , T h e r m o d y n a m i c s o f N u c l e a r M a t e r i a l s , 1974, I . A . E . A . , V i e n n a , V o l . I , p . 5 9 , (1975). W . G . B u r n s , E.H.P. C o r d f u n k e , P.A.V. J o h n s o n , P.E. P o t t e r , G. P r i n s a n d M . H , R a n d , F u e l Rod I n t e r n a l C h e m i s t r y a n d F i s s i o n P r o d u c t s B e h a v i o u r , I . A . E . A . , V i e n n a , IWGFPT/25, (1986). G . E r i k s s o n , Chem. S c r . , 8, 100, (1975). P.E. P o r t e r a n d M . H . R a n d . u n p u b l i s h e d a s s e s s m e n t s , (1986). E . H . C o r d f u n k e , R . J . M . K o n i n g s a n d G . P r i n s , u n p u b l i s h e d a s s e s s m e n t , (1986). T . B . L i f l d e m e r a n d T.M. B e s m a n n , J . N u c l . Mater . , 130, 473, (1985). K. K o n a s h i , T . Y a t o a n d H. K a n e k o , x, 116, 86, (1983). K . K o n a s h i , K. K a m i m u r a a n d Y . Y o k o u c h i , z, 125, 224, (1984). M . K a n n o , M . Y a m a w a k i a n d T. Y o n e c k a , i b i d 1 3 0 7 3 5 , (1985). W.P. J e s s e a n d J . S a d a u s k i s , P h y s . Rev-&T755, (1955). R . L . P l a t z m a n , I n t . 3. o f R a d i a t i o n a n d I s o t o p e s , 10, 116, (1961). S.H. S h a n n a n d D . R . O l a n d e r , J . N u c l . Mater . , 113, 234, (1983). C . E . K l o t s a n d V . E . A n d e r s o n , J . P h y s . Chem. , 2, 265 (1967). E . M . C h a n c e , A . R . C u r t i s , I . P . J o n e s a n d C . R . K i r b y , UKAEA R e p o r t A E R E - R 8775, (1977). H j . M a t z k e , R a d i a t i o n E f f e c t s , 53, 219, (1980). D.R. O l a n d e r , Ceramics i n F i s s i o n a n d F u s i o n , P a p e r p r e s e n t e d a t t h e W o r l d C o n g r e s s on H i g h T e c h . Ceramics ( 6 t h C I M T E C ) , M i l a n , I t a l y , (1986). P. H o f m a n n a n d C . P o l i t i s , J . N u c l . Mater . , 87, 375 (1979). P. H o f m a n n a n d D . K . K e r w i n - P e c k , R e p o r t K f K - 3 5 5 2 , (1983). D . R . O l a n d e r , 3 . N u c l . Ma te r . , 115, 271 (1983). S. I m o t o , P a p e r p r e s e n t e d a t t h e W o r l d C o n g r e s s o n H i g h T e c h . C e r a m i c s ( 6 t h CIMTEC), M i l a n , I t a l y , (1986). S. Y a m a n a k a , M . K a t s u r a , S . I m o t o a n d M. M i y a k e , P a p e r p r e s e n t e d a t t h e 2 n d I n t e r n a t i o n a l C o n f e r e n c e o n t h e b a s i c a n d a p p l i e d c h e m i s t r y o f f - t r a n s i t i o n ( l a n t h a n i d e a n d a c t i n i d e ) a n d r e l a t e d e l e m e n t s , L i s b o n . (1987). B . R . B o w s h e r , D . M . B r u c e a n d S . D i c k i n s o n , P r o c e e d i n g s o f CSNI S p e c i a l i s t s ' W o r k s h o p o n I o d i n e C h e m i s t r y i n R e a c t o r S a f e t y , ( A . M . D e a n e a n d P .E . P o t t e r e d s . ) , UKAEA R e p o r t AERE-R 11974, (1986). P.E. P o t t e r , M . H . R a n d a n d C . B . A l c o c k , J . N u c l . Mater . , 130, 139 (1985). E.H.P. C o r d f u n k e , J . K l e v e r l a a n a n d W . O u w e l t j e s , T h e r m o c h e m i c a A c t a , 102, 387 (1986). -. F. G a r i s t o , J. P a q u e t t e , N . H . S a g e r t , D.F. T o r g e r s o n , A . C . V i k i s a n d D . J . W r e n , P a p e r p r e s e n t e d a t c o n f e r e n c e - Water C h e m i s t r y o f N u c l e a r S y s t e m s 4 , BNES, L o n d o n , V o l . 2, t o b e p u b l i s h e d , (1987).

a n d S o u r c e T e r m R e s e a r c h , (M.F. H u e b n e r e d . ) ANS, p.40-1, (1985). (35) I . J o h n s o n , D . V . S t e i d l a n d C . E . J o h n s o n , F i s s i o n P r o d u c t B e h a v i o u r

( 3 6 ) G . K . J o h n s o n , J . Chem. T h e r m o d y n . , 17, 751, (1985). (37) K . A . C h u n t o n o v , A . N . K u z n e t s o v , V . M . F e d o r o v a n d S.P. Y a t s e n k o ,

A k a d . N a u k . N e o r g . Mat., 18, 1108, (1982); E n g l i s h t r a n s l a t i o n : I n o r g a n i c M a t e r i a l s , 18, 937, (1982).

(38) M . G . A d a m s o n a n d J . E . L e i g h t y , J. N u c l . Mater . , 114, 327 (1983). (39) H. S o d e c k , H . M i k l e r a n d K . L . K o m a r e k , M o n a t s h . C h e m i e , 110, 1 ,

(1979). U . K a t t n e r , H . L . L u k a s a n d G . P e t z o w , 3. L e s s Common M e t a l s , 114, 129, (1985). H . I p s e r , K . O . K l e p p a n d K . L . K o m a r e k , M o n a t s h . C h e m i e , 111, 761 (1980). H. I p s e r , K . L . K o m a r e k a n d K . O . K l e p p , J . L e s s Common M e t a l s , 92, 265 (1983). M . E l t e n b e r g , K.L. K o m a r e k a n d E. M i l l e r , J . S o l i d S t a t e Chem., 1, H . I p s e r a n d K . L . K o m a r e k , , 105, 1344, (1974). H. I p s e r , K.L. K o m a r e k a n d H. M i k l e r , - M o n a t s h C h e m i e , 105, 1322 (1974). O.H. K r i k o r i a n , H i g h Temp. H i g h P r e s s , 14, 1363, (1982). D . D . J a c k s o n , R e p o r t UCRL-71132, (1970). I . J o h n s o n , J . P h y s . Chem., 2, 722, (1975).

583, (1978).

Analyses of accidents in nuclear reactors 339

( 4 9 )

( 5 9 ) ( 6 0 )

N . D . S o k o l o v a , O . G . V o l o b u e v a n d G.F. V o r o n i n , I z v . Akad . N a u k , N e o r g . Mat., 2, 1 4 3 8 , ( 1 9 7 9 ) ; E n g l i s h t r a n s l a t i o n I n o r g . M a t . , 2,

V . V e n u g o p a l , R. P r a s a d a n d D . D . S o o d , J . N u c l . Mater . , 130, 1 1 5 , ( 1 9 8 5 ) . B . R . B o w s h e r , R . A . Gomme a n d J . S . O g d e n , P r o c e e d i n g s of a Workshop on

1 1 3 3 , ( 1 9 7 9 ) .

C h e m i c a l r e a c t i v i t y o f o x i d e f u e l a n d f i s s i o n p r o d u c t r e l e a s e , B e r k e l e y N u c l e a r L a b o r a t o r y , C E G B , ( A p r i l 1 9 8 7 ) . t o b e p u b l i s h e d . D . A . P o i e r s , T h e r m o d y n a m i c s - o f N u c l e a ; M a t e r i a l s , 1 9 7 9 , - I . A . E . A . , V i e n n a , Vo l . 2 , p . 3 5 1 , ( 1 9 8 0 ) . M. P e e h s a n d K. H a s s m a n n , u, p . 3 6 7 , ( 1 9 8 0 ) . P.N. S m i t h , A . T . D . B u t l a n d , P.E. P o t t e r , M.A. M i g n a n e l l i a n d G . J . R o b e r t s , S o u r c e t e rm e v a l u a t i o n f o r a c c i d e n t c o n d i t i o n s , I . A . E . A . V i e n n a . ~ . 3 5 5 . ( 1 9 8 6 ) . , . , . D . C u b i c c i o t t i a n d B . R . S e h g a l , N u c l e a r T e c h n o l o g y , 65, 2 6 6 , ( 1 9 8 4 ) . D . C u b i c c i o t t i , J . N u c l . Mater . , 2, 3 , ( 1 9 8 5 ) . J . W . H a s t i e a n d D . W . B o n n e l l , H i g h T e m p e r a t u r e S c i e n c e , 19, 2 7 5 , ( 1 9 8 3 ) . A . T . B u t l a n d , M . A . M i g n a n e l l i , P.E. P o t t e r a n d P.N. S m i t h , CSNI W o r k s h o p o n C o r e D e b r i s , S p e c i a l i s t s ' C o n c r e t e I n t e r a c t i o n s , E . P . R . I . S p e c i a l R e p o r t NP-5054-SR, ( 1 9 8 7 ) . H . R . W e s t l i c h , J . N u c l . Mater . , 110, 224 ( 1 9 8 2 ) . M.A. M i g n a n e l l i a n d P.E. P o t t e r , p a p e r p r e s e n t e d a t a n I . A . E . A . S p e c i a l i s t s ' m e e t i n g on f i s s i o n a n d c o r r o s i o n p r o d u c t b e h a v i o u r i n p r i m a r y c i r c u i t s o f LMFBRs, K a r l s r u h e , ( 1 9 8 7 ) , IWGFR t o b e p u b l i s h e d . M.G. Adamson , M.A. M i g n a n e l l i , P .E . P o t t e r a n d M.H. R a n d , J . N u c l . M a t e r . , 27, 2 0 3 , ( 1 9 8 1 ) . M.A. M i g n a n e l l i a n d P.E. P o t t e r , L i q u i d Metal E n g i n e e r i n g a n d T e c h n o l o g y , B N E S , L o n d o n , p . 1 1 7 , ( 1 9 8 4 ) . M . G . Adamson, E . A . A i t k e n , R.W. C a p u t i , P.E. P o t t e r a n d M.A. M i g n a n e i l i , T h e r m o d y n a m i c s o f - N u c l e a r M a t e r i a l s , 1 9 7 9 , I . A . E . A . , V i e n n a , p . 5 0 3 , ( 1 9 8 0 ) . M.A. M i g n a n e l l i a n d P.E. P o t t e r , J . L e s s Common M e t a l s , 121, 6 0 5 , ( 1 9 8 5 ) . M . A . M i g n a n e l l i a n d P.E. P o t t e r , J . N u c l . Mater . , 125, 1 8 2 , ( 1 9 8 4 ) . P. B r o w n i n g , M . J . G i l l a n a n d P.E. P o t t e r , UKAEA r e p o r t A E R E - R 8 1 2 9 , ( 1 9 7 7 ) . E . A . F i s c h e r , R e p o r t KfK-3583 , ( 1 9 8 3 ) . E .A . F i s c h e r , B N E S C o n f e r e n c e o n S c i e n c e a n d T e c h n o l o g y o f F a s t R e a c t o r S a f e t y , G u e r n s e y , P a p e r 8 2 , ( 1 9 8 6 ) . I . A . E . A . R e p o r t IWGFR/26 ( I n t e r n a t i o n a l W o r k i n g G r o u p on F a s t R e a c t o r s ) ( P . E . P o t t e r , C h a i r m a n ) , V i e n n a , ( 1 9 7 8 ) . L . M i s t u r a , J. M a g i l l a n d R.W. O h s e , J . N u c l . M a t e r . , = , 9 5 , ( 1 9 8 5 ) . G . T . Reedy a n d M . G . C h a s a n o v , J . N u c l . M a t e r . , 42, 3 4 1 , ( 1 9 7 2 ) . J -F . B a b e l o t , G . D . Brumme, P.R. K i n s m a n a n d R.W. O h s e , Atomwirtschaft-Atomtechnik, 12, 3 8 7 , ( 1 9 7 7 ) . M. B o b e r , H-U. Ka row a n d K. S c h r e t z m a n n , T h e r m o d y n a m i c s o f N u c l e a r M a t e r i a l s , 1 9 7 4 . I . A . E . A . , V i e n n a , V o l . I , p . 2 9 5 , ( 1 9 7 5 ) . M. B o b e r , W . B r e i t u n g , H-U. Karow a n d K . S c h r e t z m a n , R e p o r t KfK-2366 , ( 1 9 7 6 ) . R.W. O h s e , J -F . B a b e l o t , A. F r e z z o t t i , K . A . Long a n d J . M a g i l l , High T e m p e r a t u r e s , H i g h P r e s s u r e s , 12, 5 3 7 , ( 1 9 8 0 ) . R.W. O h s e . P.G. B e r r i e . H . G . B o n e n s b e r n e r a n d E . A . F i s c h e r . T h e r m o d y n a m i c s o f N u c l e a r M a t e r i a l s 1 9 7 4 , I . A . E . A . V i e n n a , ' p . 3 0 7 , ( 1 9 7 5 ) . H . C . T s a i , A. C o v i n g t o n a n d D . R . O l a n d e r , R e p o r t LBL-6016, ( 1 9 7 6 ) . M. B o b e r , J. S i n g e r a n d H. T r a p p , BNES C o n f e r e n c e on S c i e n c e a n d T e c h n o l o g y o f F a s t R e a c t o r S a f e t y , G u e r n s e y , p a p e r 8 4 , ( 1 9 8 6 ) . D . A . B e n s o n , R e p o r t SAND 77-04-29 , ( 1 9 7 7 ) . D . A . B e n s o n , E . G . B e r g e r o n , T h e r m o d y n a m i c s o f N u c l e a r M a t e r i a l s 1 9 7 9 , I . A . E . A . V i e n n a , V o l . 1 , p . 9 3 , ( 1 9 8 0 ) . K . O . R e i l , D i s s e r t a t i o n , U n i v e r s i t y o f N e w M e x i c o , A l b e r q u e r q u e , N . M . , U . S . A . , ( 1 9 7 7 ) . R . L i m o n , G . S u t r e n , P. C o m b e t t e a n d F. B a r b r y , P r o c . ANS/ENS T o p i c a l M e e t i n g on R e a c t o r S a f e t y A p s e c t s o f F u e l B e h a v i o u r , Sun V a l l e y , I d a h o , U . S . A . , CEA-CONF-5816, ( 1 9 8 1 ) . W . B r e i t u n g a n d K . O . R e i l , R e p o r t KfK 3 9 3 9 , ( 1 9 8 5 ) . W . B r e i t u n g a n d K . O . R e i l , B N E S C o n f e r e n c e on S c i e n c e a n d T e c h n o l o g y o f F a s t R e a c t o r S a f e t y , G u e r n s e y , p a p e r 8 7 , ( 1 9 8 6 ) . R . A . H e i n , P.N. F l a g e l l a a n d J . B . Conway, J . Amer. Ceram. S O C . , 51, 2 9 1 , ( 1 9 6 8 ) .

340 P. E. POTTER

( 8 6 ) R.W. O h s e , J-F. B a b e l o t , C . C e r c i g n a n i , J - P , H i e r n a u t , M . Hoch , G . J . H y l a n d a n d J. M a g i l l , 3 . N u c l . M a t e r . , x, 1 6 5 ( 1 9 8 5 ) .

( 8 7 ) D . W . G r e e n and L. L e i b o w l t z , J. N u c l . Mater., E, 1 8 4 , ( 1 9 8 2 ) . ( 8 8 ) P . E . B l a c k b u r n , J. N u c l . Mater. , 46, 2 4 4 , ( 1 9 7 3 ) . ( 8 9 ) R.W. O h s e , J-F. B a b e l o t , C . C e r c i g n a n i , P . R . K i n s m a n , K.A. Long ,

J. M a g i l l and A. S c o t t i , J. N u c l . Mater. , 8 0 , 2 3 2 , ( 1 9 7 9 ) . ( 9 0 ) L . R i e d e l , Chem. I n g . T e c h . , 26, 8 3 , ( 1 9 5 4 r ( 9 1 ) L. C a i l l e t e t a n d E . M a t h i a s , Compt . Rend . P a r i s , 102, 1 2 0 2 , ( 1 8 8 6 ) . ( 9 2 ) L . C a i l l e t e t and E . M a t h i a s , i b i d , 1 0 4 , 1 5 6 3 , ( 1 8 8 7 ) . ( 9 3 ) H. E y r i n g , M.S. J h o n , S i g n i f i c a n t L i q u i d S t r u c t u r e s , W i l e y , N e w Y o r k ,

( 1 9 6 9 ) .