hints elfos for_slide_sahre

47
SOLUTION·PROCESSED (SPIN)ELECTRONICS e - Instituto de Ciencia Molecular · Universitat de València (Spain) Unité Mixte de Physique CNRS/Thales · Palaiseau (France) S. Tatay 1

Upload: seta667

Post on 17-Jul-2015

226 views

Category:

Science


1 download

TRANSCRIPT

SOLUTION·PROCESSED (SPIN)ELECTRONICS

e-

Instituto de Ciencia Molecular · Universitat de València (Spain) Unité Mixte de Physique CNRS/Thales · Palaiseau (France)

S. Tatay

1

WHAT’S a SOLUTION?

2

IUPAC

•  A liquid or solid phase containing more than one substance.

• PHASE: An entity of a material system which is uniform in chemical composition and physical state.

•  The materials that are transferred come from a liquid phase.

SOLUTION PROCESSED

WHY?

3

WHY?

We must

We’ve know how

Needs no

training

It’s cheap

It’s practic

Cy3

4

YES, WE CAN

NO, WE CANNOT

Alq3 MPc

VAPOR PHASE LIMITATIONS: To Alq3 and BEYOND

Mn12O12(CH3COO)16(H2O)4

Ru(bpy)3

Mn12 PEDOT:PSS

CAN WE EVAPORATE?

LAYER

ELECTRODE

ELECTRODE

SEMICONDUCTING or ISOLATING

small molecules

ELECTRONICS and SPINTRONICS

5

An

for ORGANIC DEVICE

CONDUCTING FERROMAGNETIC

metals and LSMO

CONDUCTING

metals and oxides

polymers

SEMICONDUCTING

polymers molecules

ELECTRONICS to SPINTRONICS

6

ELECTRODE

The

Metals &

Oxides

Ferromagnetic metals

from

Ferromagnetic metals

OR LSMO

Metals &

Oxides

TOP

BOTT

OM

7

ELECTRODE

The

Ferromagneticmetals

(La,Sr)MnO3 (LSMO)

Top electrode Yes No Tc > r.t. Yes No

P = 100 % No Yes Air stable No Yes

AVOID OXIDATION?

8

ELECTRODE

The

how to

Glove box Capped metals

HOW TO AVOID OXIDATION?

9

GLOVE BOX

Tatay et al. Unpublished results (CNRS Thales, UVEG)

SPUTTERING AIR SPUTTERING

Co Au

Sputtering (In situ)

Co Co Au

Co

Glove Box (GB)

Co

CoOx

Co

Au Co

Air

Co

HOW TO AVOID OXIDATION?

10

Working in a GLOVE BOX

GB! Air!

Co Au Sputtering

(In situ) Co

Au Air Co

Au Glove Box (GB)

30K

Tatay et al. Unpublished results (CNRS Thales, UVEG)

HOW TO AVOID OXIDATION?

11 Dlubak et al. ACS Nano 6 (2012) 10930 (CNRS Thales)

867 864 861 858 855 852 849

Intensity  [a.  u

.]

Binding  Energy  [eV]

CVD growth + 7 days in air

Oxidized surface

CAPPING of the SURFACE

HOW IS MADE?

12

PHYSICAL

CHEMICAL

UNDER VACUUM

HOW IS MADE?

13

PHYSICAL

CHEMICAL

IN SOLUTION

14

ELECTRODES

THIN FILMS

MONOLAYERS

ISOLATED

MOLECULES

The MATERIALS

15

ELECTRODES

THIN FILMS

MONOLAYERS

ISOLATED MOLECULES

The MATERIALS and the TECHNIQUES

Chemical solution deposition

Metals Oxides

Electro- and electroless plating Lift-off tehcniques

Polymers Molecules

Spin coating Doctor blade Spray coating

Langmuir-Blodgett Self-assembled monolayers

Drop casting

CHEMICAL

PHYSICAL

16

ELECTRODES

17

ALTERNATIVES to VPD ELECTRODES

ELECTROPLATING

M1 M2

Cathode Anode

M22+

SO42-

+ -

e-

+ Red Ox

ELECTROLESS PLATING

M1 M2

18

ALTERNATIVES to VPD ELECTRODES

ELECTROPLATING

Tada and col. Appl. Phys. Lett. 98 (2011) 053110

Ni(SO3NH2)2 / H3BO3

Electroplating

Break junction

19

ALTERNATIVES to VPD ELECTRODES

ELECTROLESS PLATING

Mbindyo et al. J. Am. Chem. Soc. 124 (2002) 4020

70 nm

Au(I) +

formaldehyde

Molecular junction

HS-(CH2)15-COOH

Sn(II) / Ag(I) + NH3

20

ALTERNATIVES to VPD ELECTRODES

ELECTROLESS PLATING

70 nm

Wire

Bckg.

Drop casting

Molecular junction

Mbindyo et al. J. Am. Chem. Soc. 124 (2002) 4020

21

ALTERNATIVES to VPD ELECTRODES

LOFO: Vilan et al. Adv. Funct. Mater. 12 (2002) 795 PALO: Shimizu et al. Adv. Mater. 18 (2006) 1499 Haick at al. Acc. Chem. Res. 41 (2008) 359

PALO: Polymer-assisted Lift-Off

LOFO: Lift-Off Float-On

LIFT-OFF ASSISTED APPROACHES Layer to contact Contacted Layer

Pre-patterned Electrode

‘’ ‘’ ‘’

22

ALTERNATIVES to VPD ELECTRODES

lift-off assisted approaches: PALO

CH3(CH2)nCOOH by Langmuir-Blodgett

n = 16

Shimizu et al. Adv. Mater. 18 (2006) 1499

polymer support""

Molecular junction

ALTERNATIVES to VPD ELECTRODES

23

CHEMICAL SOLUTION DEPOSITION (CSD)

Liquid Solution

Liquid Film

Crystalline Film

Deposition Drying Burning/ Densification

r.t. > 400 oC

GENERAL: Schwartz et al. R. C. Chem. 7 (2004) 433 ELECTRONICS: Zilberberg et al. J. Mater. Chem. C 1 (2013) 4796

ALTERNATIVES to VPD ELECTRODES

24

CHEMICAL SOLUTION DEPOSITION (CSD)

MoO3 powder Excess NH3 or H2O2 Polyethylene glycol and 2-ethoxyethanol UV/O3 curing Acton et al. ACS Appl. Mater. Interfaces 5 (2013) 6024

TPBi

OLED

25

THIN FILMS

26

SPIN-COATING

Deposition Spinning Drying

DEPOSITION OF THIN FILMS

27

DEPOSITION OF THIN FILMS

SPIN-COATING

10 to 100 µm

Akkerman et al. Nature 441 (May 2006) 69 Haick et al. Acc. Chem. Res. 41 (2008) 359

PEDOT:PSS

Molecular junction

28

SPIN-COATING

Majumdar et al. J. Alloys Comp. (2006) 423 Majumdar et al. Appl. Phys. Lett. 89 (2006) 22114

LSMO

RRP3HT (100nm)

Co (10nm)

1.3 mm2

RRP3HT

RRP3HT

P3HT

DEPOSITION OF THIN FILMS

Spin valve

29

DOCTOR BLADE

T oC

Displacement

Substrate

DEPOSITION OF THIN FILMS

Evaporation

T oC

Substrate

Evaporation

Nozzle

SPRAY COATING

Malinkiewicz et al. RSC Adv. 2 (2012) 3335 Girotto et al. Adv. Funct. Mater. 21 (2011) 64

30

MONOLAYERS

31

DEPOSITON OF MONOLAYERS

LANGMUIR-BLODGETT

Compression

Evaporation

LANGMUIR-BLODGETT

32

DEPOSITON OF MONOLAYERS

LANGMUIR-BLODGETT (LB)

33

Deposition

DEPOSITON OF MONOLAYERS

34

LANGMUIR-BLODGETT (LB)

BEDT-TTF

Stearic Acid (SA) 120 x 120 µm2

SA/BEDT-TTF 2LB (3.7 nm)

NiFe (22 nm) CoFe (15 nm)

CoFe (30 nm)

DEPOSITON OF MONOLAYERS

Tai et al. Appl. Phys. Express 5 (2012) 063006

Tunnel magnetic junction

35

SELF-ASSEMBLED MONOLAYERS (SAMs)

DEPOSITON OF MONOLAYERS

SELF-ASSEMBLED MONOLAYERS (SAMs)

36

DEPOSITON OF MONOLAYERS

37

SELF-ASSEMBLED MONOLAYERS

Tatay et al. ACS Nano 6 (2012) 8753 (CNRS Thales) Galbiati et al. Adv. Mater. 24 (2012) 6429 (CNRS Thales)

DEPOSITON OF MONOLAYERS

Tunnel magnetic junction

38

ISOLATED MOLECULES

39

DEPOSITION OF ISOLATED MOLECULES

DROP CASTING

Evaporation

Deposition

40

DROP CASTING Electrodes: Ti(10)/Pd(100)

TbPc2*

Candini et al. Nano Lett. 11 (2011) 2634

DEPOSITION OF ISOLATED MOLECULES

41

DROP CASTING

Hueso et al. Nature 445 (January 2007) 410

DEPOSITION OF ISOLATED MOLECULES

42

DROP CASTING

TbPc2*

Urdampilleta et al. Nat. Mater.10 (July 2011) 502

Electrodes: Pd (50 nm)

DEPOSITION OF ISOLATED MOLECULES

43

A COMBO

44

ITO/Glass

ZnO (30 nm) PCBM (45 nm) Dye (30 nm)

MoO3 (30 nm)

Ag (70 nm)

CSD: Spin coating ZnAc/ZnCOOH 400ºC

Spin coating Doctor Blade

Malinkiewicz et al. RSC Adv. 2 (2012) 3335 (UVEG)

9 mm2

A SOLUTION·DEPOSITION COMBO PCMB Solar Cell

45

N965

LSMO

F8BT

N965

Prima et al. Unpublished results (UVEG)

LSMO

F8BT (60 nm)

Co (25 nm)

Au (35 nm) MoO3 (3nm)

N965: LB

F8BT

6.5 V

Spin coating

A SOLUTION·DEPOSITION COMBO

ZnO: CSD

Spin-OLED

46

ELECTRODES

THIN FILMS

MONOLAYERS

ISOLATED MOLECULES

SUMMARY

Chemical solution deposition

Metals Oxides

Electro- and electroless plating Lift-off tehcniques

Polymers Molecules

Spin coating Doctor blade Spray coating

Langmuir-Blodgett Self-assembled monolayers

Drop casting

47

CONCLUSION Most of the materials used for organic electronics applications are not compatible with the standar

ultrahigh vacuum techniques used in organic spintronic

and that is a PROBLEM

A doubtful or difficult matter requiring a

solution

The Concise Oxford Dictionary (1995)