history matching real production and seismic data for the ...history matching real production and...

34
History matching real production and seismic data for the Norne field EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta, Dario Grana, Xiaodong Luo, Randi Valestrand, Geir Nævdal, Ivar Sandø

Upload: others

Post on 26-Apr-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

History matching real production and seismic datafor the Norne fieldEnKF Workshop 2018Rolf J. Lorentzen, Tuhin Bhakta, Dario Grana, Xiaodong Luo,Randi Valestrand, Geir Nævdal, Ivar Sandø

Page 2: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Introduction

• The full norne model is history matched using real production and seismic data

• Initial ensemble generated using Gaussian random fields

• Updates PORO, PERMX, NTG, MULTZ, MULTFLT, MULTREGT, KRW/KRG, OWC

• Clay content defined as VCLAY = 1 - NTG

• Sequential assimilation (production → seismic)

• Seismic data inverted for acoustic impedance at four points in time

• Iterative ensemble smoother, RLM-MAC, used (Luo et. al, SPE-176023-PA)

• Sparse representation using wavelets (data reduced by 86 %)

• Correlation based localization

Page 3: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Seismic data inversion and transformation

• Time shift correction:Alfonzo et al. 2017

• Linearized Bayesian approach:Buland and Omre, 2003: Sbase = Gybase + e

• Time to depth conversion:Provided Norne velocity model

• Upscaling:Petrel software

• Difference and averaging:∆z

op

Page 4: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Petro-elastic model

• Estimate mineral bulk and shear moduli:[Ks ,Gs ]← Hashin− Shtrikman(Kquartz,Gquartz,Kclay,Gclay,Vclay)

• Dry rock bulk and shear moduli (empirical):[Kdry,Gdry]← f (p, pini, φ)

• Fluid substitution:[Ksat,Gsat]← Gassman(Kdry,Gdry,Ks ,Gs)

• P-wave velocity and rock density:[vp, ρsat]← Mavko(Ksat,Gsat)zp = vp × ρsat

Page 5: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Sparse representation and image denoising

HHH

HHLLHL

LHH

LLL

LLH

HLH1. Transform seismic observations:

cS ← DWT(∆zop)

2. Estimate noise in each subband (MAD):σS = median(|cS −median(cS)|)/0.6745

3. Compute standard deviation for coefficients:σ̂S = std(cS)

4. Compute truncation value (Bayesian shrinkage):

TS =σ2S√

|σ2S−σ̂

2S |

5. Apply hard thresholding:cs → cs > TS , do = c(I)

Page 6: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Sparse representation and image denoising

HHH

HHLLHL

LHH

LLL

LLH

HLH1. Transform seismic observations:

cS ← DWT(∆zop)

2. Estimate noise in each subband (MAD):σS = median(|cS −median(cS)|)/0.6745

3. Compute standard deviation for coefficients:σ̂S = std(cS)

4. Compute truncation value (Bayesian shrinkage):

TS =σ2S√

|σ2S−σ̂

2S |

5. Apply hard thresholding:cs → cs > TS , do = c(I)

Page 7: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Sparse representation and image denoising

HHH

HHLLHL

LHH

LLL

LLH

HLH1. Transform seismic observations:

cS ← DWT(∆zop)

2. Estimate noise in each subband (MAD):σS = median(|cS −median(cS)|)/0.6745

3. Compute standard deviation for coefficients:σ̂S = std(cS)

4. Compute truncation value (Bayesian shrinkage):

TS =σ2S√

|σ2S−σ̂

2S |

5. Apply hard thresholding:cs → cs > TS , do = c(I)

Page 8: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Sparse representation and image denoising

HHH

HHLLHL

LHH

LLL

LLH

HLH1. Transform seismic observations:

cS ← DWT(∆zop)

2. Estimate noise in each subband (MAD):σS = median(|cS −median(cS)|)/0.6745

3. Compute standard deviation for coefficients:σ̂S = std(cS)

4. Compute truncation value (Bayesian shrinkage):

TS =σ2S√

|σ2S−σ̂

2S |

5. Apply hard thresholding:cs → cs > TS , do = c(I)

Page 9: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Sparse representation and image denoising

HHH

HHLLHL

LHH

LLL

LLH

HLH1. Transform seismic observations:

cS ← DWT(∆zop)

2. Estimate noise in each subband (MAD):σS = median(|cS −median(cS)|)/0.6745

3. Compute standard deviation for coefficients:σ̂S = std(cS)

4. Compute truncation value (Bayesian shrinkage):

TS =σ2S√

|σ2S−σ̂

2S |

5. Apply hard thresholding:cs → cs > TS , do = c(I)

Page 10: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Ensemble smoother

mi+1j = mi

j + S im(S i

d)T [S id(S i

d)T + γ iCd ]−1 × [do + εj − d ij ]

↓ TSVD

mi+1j = mi

j + K̃ i∆d̃ ij

∆d̃ ij ∈ Rp×1, p ≤ N: Projected (“effective”) data innovation.

Page 11: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Correlation based localization

1. Compute sample correlation between parameters (k) and “effective” measurements (l):ρkl ∈ RNm×p

2. Transform all correlations for each observation (ρl), and return high-frequencycoefficients:cHl ← DWT(ρl)

3. Estimate noise in coefficients (MAD):σl = median(|cH

l −median(cHl )|)/0.6745

4. Compute truncation value (universal rule):λl = max(

√2 ln n(ρl)σl)

5. Compute truncation matrix:ξkl = 1, if|ρkl | ≥ λl , 0 otherwise

6. Updated Kalman gain matrix (see also Luo and Bhakta, 2017):K̂ = ξ ◦ K̃

Page 12: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Correlation based localization

1. Compute sample correlation between parameters (k) and “effective” measurements (l):ρkl ∈ RNm×p

2. Transform all correlations for each observation (ρl), and return high-frequencycoefficients:cHl ← DWT(ρl)

3. Estimate noise in coefficients (MAD):σl = median(|cH

l −median(cHl )|)/0.6745

4. Compute truncation value (universal rule):λl = max(

√2 ln n(ρl)σl)

5. Compute truncation matrix:ξkl = 1, if|ρkl | ≥ λl , 0 otherwise

6. Updated Kalman gain matrix (see also Luo and Bhakta, 2017):K̂ = ξ ◦ K̃

Page 13: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Correlation based localization

1. Compute sample correlation between parameters (k) and “effective” measurements (l):ρkl ∈ RNm×p

2. Transform all correlations for each observation (ρl), and return high-frequencycoefficients:cHl ← DWT(ρl)

3. Estimate noise in coefficients (MAD):σl = median(|cH

l −median(cHl )|)/0.6745

4. Compute truncation value (universal rule):λl = max(

√2 ln n(ρl)σl)

5. Compute truncation matrix:ξkl = 1, if|ρkl | ≥ λl , 0 otherwise

6. Updated Kalman gain matrix (see also Luo and Bhakta, 2017):K̂ = ξ ◦ K̃

Page 14: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Correlation based localization

1. Compute sample correlation between parameters (k) and “effective” measurements (l):ρkl ∈ RNm×p

2. Transform all correlations for each observation (ρl), and return high-frequencycoefficients:cHl ← DWT(ρl)

3. Estimate noise in coefficients (MAD):σl = median(|cH

l −median(cHl )|)/0.6745

4. Compute truncation value (universal rule):λl = max(

√2 ln n(ρl)σl)

5. Compute truncation matrix:ξkl = 1, if|ρkl | ≥ λl , 0 otherwise

6. Updated Kalman gain matrix (see also Luo and Bhakta, 2017):K̂ = ξ ◦ K̃

Page 15: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Correlation based localization

1. Compute sample correlation between parameters (k) and “effective” measurements (l):ρkl ∈ RNm×p

2. Transform all correlations for each observation (ρl), and return high-frequencycoefficients:cHl ← DWT(ρl)

3. Estimate noise in coefficients (MAD):σl = median(|cH

l −median(cHl )|)/0.6745

4. Compute truncation value (universal rule):λl = max(

√2 ln n(ρl)σl)

5. Compute truncation matrix:ξkl = 1, if|ρkl | ≥ λl , 0 otherwise

6. Updated Kalman gain matrix (see also Luo and Bhakta, 2017):K̂ = ξ ◦ K̃

Page 16: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Correlation based localization

1. Compute sample correlation between parameters (k) and “effective” measurements (l):ρkl ∈ RNm×p

2. Transform all correlations for each observation (ρl), and return high-frequencycoefficients:cHl ← DWT(ρl)

3. Estimate noise in coefficients (MAD):σl = median(|cH

l −median(cHl )|)/0.6745

4. Compute truncation value (universal rule):λl = max(

√2 ln n(ρl)σl)

5. Compute truncation matrix:ξkl = 1, if|ρkl | ≥ λl , 0 otherwise

6. Updated Kalman gain matrix (see also Luo and Bhakta, 2017):K̂ = ξ ◦ K̃

Page 17: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Measurement operator

The observation operator G comprises several steps summarized as:

1. running the reservoir simulator using mj to compute dynamic variables (pressure andsaturation)

2. running the PEM to compute the acoustic impedance, zp,j , at all survey times

3. compute differences and average over formation layers to get ∆zp,j

4. applying the DWT to get cj

5. using the leading indices I to get dj = cj(I)

Page 18: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Measurement operator

The observation operator G comprises several steps summarized as:

1. running the reservoir simulator using mj to compute dynamic variables (pressure andsaturation)

2. running the PEM to compute the acoustic impedance, zp,j , at all survey times

3. compute differences and average over formation layers to get ∆zp,j

4. applying the DWT to get cj

5. using the leading indices I to get dj = cj(I)

Page 19: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Measurement operator

The observation operator G comprises several steps summarized as:

1. running the reservoir simulator using mj to compute dynamic variables (pressure andsaturation)

2. running the PEM to compute the acoustic impedance, zp,j , at all survey times

3. compute differences and average over formation layers to get ∆zp,j

4. applying the DWT to get cj

5. using the leading indices I to get dj = cj(I)

Page 20: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Measurement operator

The observation operator G comprises several steps summarized as:

1. running the reservoir simulator using mj to compute dynamic variables (pressure andsaturation)

2. running the PEM to compute the acoustic impedance, zp,j , at all survey times

3. compute differences and average over formation layers to get ∆zp,j

4. applying the DWT to get cj

5. using the leading indices I to get dj = cj(I)

Page 21: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Measurement operator

The observation operator G comprises several steps summarized as:

1. running the reservoir simulator using mj to compute dynamic variables (pressure andsaturation)

2. running the PEM to compute the acoustic impedance, zp,j , at all survey times

3. compute differences and average over formation layers to get ∆zp,j

4. applying the DWT to get cj

5. using the leading indices I to get dj = cj(I)

Page 22: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Generate initialensemble

Assimilateproduction data

Compute datadj = G(mj),j = 1 . . .N

Compute taperingmatrix ξcorr

Update parame-ters m1, . . . ,mN

Computewavelet coeff.

co = DWT(∆zop)

Find indices forleading coeff. (I)

Compute noise(Cd) and datado = co(I)

Iter

ate

Figure: Workflow for assimilating seismic data.

Page 23: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Norne field

• Grid size:46 x 112 x 22(113344)

• Active cells:44927

• Wells:9 injectors,27 producers

• Production: 3312days

Page 24: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,
Page 25: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Initial Production Seismic

Page 26: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Initial Production Seismic

Page 27: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Initial Production Seismic

Page 28: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Initial Production Seismic

Page 29: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Top: real data. Middle: production. Bottom: seismic.

Page 30: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Initial Production Seismic

Page 31: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Initial Production Seismic

Page 32: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Initial Production Seismic

Page 33: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Summary / Conclusions

• A workflow for history matching real production and seismic data is presented

• Clay content and other petrophysical parameters updated

• Data match improved for both production and seismic data

• Updated static fields are geologically credible

• Potential for simulating infill wells or EOR strategies

Page 34: History matching real production and seismic data for the ...History matching real production and seismic data for the Norne eld EnKF Workshop 2018 Rolf J. Lorentzen, Tuhin Bhakta,

Acknowledgments

We thank

• Schlumberger and CGG for providing academic software licenses to ECLIPSE andHampsonRussell, respectively.

• Main financial support from Eni, Petrobras, and Total, as well as the Research Councilof Norway (PETROMAKS2).

• Partial financial support from The National IOR Centre of Norway.