hit finding and pad response function for the lctpc using ...alainb/abellerive_lctpc_posted_… ·...

37
1 Hit finding and pad response function for the LCTPC using resistive Micromegas A. Bellerive – ECFA LC April 27, 2013 On behalf of the LCTPC collaboration A. Bellerive, M. Dixit, and P. Hayman D. Attie, P. Colas, and W. Wang

Upload: others

Post on 20-Sep-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

1

Hit finding and pad response function for the LCTPC using

resistive Micromegas

A. Bellerive – ECFA LC April 27, 2013

On behalf of the LCTPC collaboration

A. Bellerive, M. Dixit, and P. Hayman

D. Attie, P. Colas, and W. Wang

Page 2: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

2

Outline • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse

– Electronic response – Definition of amplitude and time (Ai,ti) for a pad – Conceptual Pad Response Function (PRF)

• Determination of PRF parameters (calibration) – Parameterization of the PRF

• Results – Field distortions – Transverse resolution

• Summary

Page 3: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

TPC is the central tracker for International Linear Detector

– Large number of 3D points continuous tracking

– Good track separation and pattern recognition

• Low material budget inside the calorimeters (c.f. PFA)

– Barrel: ~5% X0 – Endplates: ~25% X0

• Two options for endplate readout: – GEM: 1.2×5.8 mm² pads – Resistive Micromegas: 3×7 mm² pads • Alternative: pixel readout with pixel size ~55×55 μm²

3 ILD

TPC Requirements : • Momentum resolution: δ(1/pT) < 9×10-5 GeV-1

• Single hit resolution 3.5T: σ(rφ) < 100 µm σ(z) < 500 µm • Tracking eff. for pT>1 GeV:

97% • dE/dx resolution ~5%

4.3m

3.6m

Cathode membrane Endplate MPGD Large Prototype

TPC

Time Projection Chamber (TPC) for ILD

Page 4: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

4

50-100 µm

40 kV/cm ~1000 µm

1 kV/cm

GEM

~100 µm

80 kV/cm

Micromegas (MM)

Technology choice for TPC readout: Micro Pattern Gas Detector • more robust than wires

• no E×B effect

• better ageing properties

• easier to manufacture

Avalanche

• fast signal & high gain

• low ion backdrift

• Gas Electron Multiplier (F. Sauli, 1997)

• 2 copper foils separated by kapton

• multiplication takes place in holes

• use of 2 or 3 stages

• MICROMEsh GAseous Structure

• metallic micromesh (typical pitch 50μm)

• supported by 50 μm pillars, multiplication between anode and mesh, high gain

• Gas Electron Multiplier

• 2 copper foils separated by kapton

• multiplication takes place in holes, with 2-3 layers needed

Micro Pattern Gas Detector (MPGD)

Page 5: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

5 1T PCMagnet Large Prototype TPC Endplate + 7 Micromegas modules

Readout Pad Size Electronics Groups

MPGDs

Double GEMs (Laser-etched) (~ 1 × 6 mm2

Pad)

ALTRO Asia

Triple GEMs (wet-etched) DESY

Micromegas (Resistive anode)

(~ 3 × 7 mm2

Pad) AFTER Saclay-Carleton

MPGD readout modules under studied

Page 6: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

Charge Dispersion

Resistive Anode

Resistive foil Isolated layer

Pads

PCB

Micromegas mesh

left middle right

Page 7: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

7

Charge dispersion

Micromegas + resistive anode

mesh

avalanche

electron

resistive foil glue

anode pads

- A high resistivity film bonded to a readout plane with an insulating spacer

- 2D continuous RC network defined by material properties and geometry.

- point charge at r = 0 & t = 0 disperses with time.

∂∂

+∂∂

=∂∂

rrrRCtρρρ 11

2

2

tRCr

et

RCtr 4

2

2),(

=⇒ ρ

1 2

3

Q

ρ(r,t) integral over pads

ns

M.S. Dixit et.al., NIM A518, 721 (2004) M.S. Dixit & A. Rankin, NIM A566, 281 (2006)

Page 8: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

8

Pulse shape origin Transverse diffusion

Longitudinal diffusion

Intrinsic rise time

Preamplifier effect

Resistive foil + glue

)2

exp(2

1)( 2

2

tt

ttLσπσ−

=

)2

exp(2

1)( 2

2

xx

xxTσπσ−

=

riseTttR =)(

1=0=

for riseTt <<0

for riseTt >for 0<t

−=

rf tt

tttH exp1exp)( for 0>t

0= for 0<t

+−

=

thyx

thtyx

t 4)(exp1),,(

222

πσρ

RCh /1=

track

mesh

pads

T(x)

x

Transverse diffusion

Longitudinal diffusion

Induction gap

Preamplifier Response

Resistive foil + glue

Page 9: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

9

Pulse shape origin Transverse diffusion

Longitudinal diffusion

Intrinsic rise time

Preamplifier effect

Resistive foil + glue

)2

exp(2

1)( 2

2

tt

ttLσπσ−

=

)2

exp(2

1)( 2

2

xx

xxTσπσ−

=

riseTttR =)(

1=0=

for riseTt <<0

for riseTt >for 0<t

−=

rf tt

tttH exp1exp)( for 0>t

0= for 0<t

+−

=

thyx

thtyx

t 4)(exp1),,(

222

πσρ

RCh /1=

track

mesh

pads

L(t)

t

Transverse diffusion

Longitudinal diffusion

Induction gap

Preamplifier Response

Resistive foil + glue

Page 10: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

10

Pulse shape origin Transverse diffusion

Longitudinal diffusion

Intrinsic rise time

Preamplifier effect

Resistive foil + glue

)2

exp(2

1)( 2

2

tt

ttLσπσ−

=

)2

exp(2

1)( 2

2

xx

xxTσπσ−

=

riseTttR =)(

1=0=

for riseTt <<0

for riseTt >for 0<t

−=

rf tt

tttA exp1exp)( for 0>t

0= for 0<t

+−

=

thyx

thtyx

t 4)(exp1),,(

222

πσρ

RCh /1=

track

mesh

pads

R(t)

t Trise

1

0

Transverse diffusion

Longitudinal diffusion

Induction gap

Preamplifier Response

Resistive foil + glue

Page 11: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

11

Pulse shape origin Transverse diffusion

Longitudinal diffusion

Intrinsic rise time

Preamplifier effect

Resistive foil + glue

)2

exp(2

1)( 2

2

tt

ttLσπσ−

=

)2

exp(2

1)( 2

2

xx

xxTσπσ−

=

riseTttR =)(

1=0=

for riseTt <<0

for riseTt >for 0<t

for 0>t

0= for 0<t

+−

=

thyx

thtyx

t 4)(exp1),,(

222

πσρ

RCh /1=

H(t)

t Trise

1

0

Transverse diffusion

Longitudinal diffusion

Induction gap

−=

rf tt

tttH exp1exp)(Preamplifier Response

Resistive foil + glue

Your function

Page 12: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

Qi = ∫ ρi(r) dr

12

M.S. Dixit & A. Rankin, NIM A566, 281 (2006)

Pulse shape origin Transverse diffusion

Longitudinal diffusion

Intrinsic rise time

Preamplifier effect

Resistive foil + glue

)2

exp(2

1)( 2

2

tt

ttLσπσ−

=

)2

exp(2

1)( 2

2

xx

xxTσπσ−

=

riseTttR =)(

1=0=

for riseTt <<0

for riseTt >for 0<t

−=

rf tt

tttH exp1exp)( for 0>t

0= for 0<t

+−

=

thyx

thtyx

t 4)(exp1),,(

222

πσρ

RCh /1=

Qi

ρ(r,t) integral over pads

Transverse diffusion

Longitudinal diffusion

Induction gap

Preamplifier Response

Stand alone simulation

Page 13: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

Raw Charge Shape versus Shaped Pulse

Figure: N. Shiell

Page 14: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

Raw Charge Shape versus Shaped Pulse

from Eric Delagnes etal at Saclay

Page 15: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

Stand-Alone Calculation

CRUCIAL TO CHARACTERIZE DETECTOR PARAMETERS

Page 16: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

NEED INPUT OF DESIGN ENGINEER AND ELECTONIC EXPERT

Stand-Alone Calculation

Page 17: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

Shaped Pulse (for different shaping time)

Page 18: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

Pad Amplitude

Page 19: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

Pad Amplitude 1) Use the maximum as the amplitude Single Point Maximum(SPM) Ai = max pulse height P(i)

Q

ρ(r,t) integral over pads

ns

time

time

time

Pul

se h

eigh

t P

ulse

hei

ght

Pul

se h

eigh

t

method used here

Page 20: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

Pad Amplitude 2) Maximum of Parabola Quadratic Fit Method (QFM) Ai = max of parabola P(i)

Qi

ρ(r,t) integral over pads

ns

time

time

time

Pul

se h

eigh

t P

ulse

hei

ght

Pul

se h

eigh

t

Method use pre-2011

Page 21: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

Pad Amplitude 3) Integrate above threshold Re-integration method (RM) Ai = Sum P(i)

Qi

ρ(r,t) integral over pads

ns

time

time

time

Pul

se h

eigh

t P

ulse

hei

ght

Pul

se h

eigh

t

Method use in 2011

Page 22: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

22

(mm) Xtrack

PRF

Pad Response Function (PRF)

For a given Xtrack (known position) the PRF is defined to be unity

1.0

Ai k

Page 23: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

• Only two parameters (simpler model) • Easier to work with • Better fits to data

(mm)

Pad Response Function (model)

new (used here)

Page 24: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

MPGD CERN Sept 10-11, 2007

Alain Bellerive 24

PRF versus Z

anode pads

mesh

Direct signal

avalanche

electron

Micromegas

z / cm x

rela

tive

ampl

itude

15.7 cm

6 < z < 7cm 8 < z < 9cm

10< z < 11cm 12 < z < 13cm 14 < z < 15cm

4 < z < 5cm 2 < z < 3cm 0 < z < 1cm

xpad-xtrack / mm

TPC PRF

Width PRF

Page 25: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

25

Single Module LCTPC (MM)

Period: 2008-2011 2011 data Single module

Page 26: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

26

Transverse Resolution MM

2011 data Single module

Source: Nicholi Shiell M.Sc. Thesis Carleton University

Page 27: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

7-module LCTPC (MM)

Period 2012-2013 2013 data 7-module

Page 28: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

28

Pads PCB +

Micromegas

Cooling system

Front-End Mezzanine

Front-End Card (FEC)

Resistive MM: Module Design

Page 29: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

Pads PCB +

Micromegas

Cooling system

Front-End Mezzanine

Front-End Card (FEC)

29

Fully integrated Module

Resistive Micromegas Detector

FEC

FEM

Resistive MM: Module Design

Page 30: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

30

Analysis Framework: MarlinTPC • MarlinTPC (LCIO) is the global effort to develop a single analysis code package for all the different prototype TPCs being developed. • It is far from complete, but it has a solid foundation • Furthermore, not sustainable to rely on stand alone code with hardcoded geometry, stand alone track-fit algorithm, calibration constants, etc… • MarlinTPC processors: calibration for PRF determination, bias corrections and resolution determination (transverse and longitudinal)

Page 31: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

31

Event Display: MarlinTPC

2D or 3D display software available

Online monitor

Offline monitor

Page 32: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

32

Multi-track Pattern Recognition Kalman Filter within MarlinTPC – LCIO geometry

Acknowledment: Bo Li Keisuke Fujii Martin Killenberg

Page 33: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

33

Single-track events for calibration PRF calculation – bias – resolution study

Page 34: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

34

Field Distortions (E x B effect)

B=0T

After alignment

B=1T

B=0T

Page 35: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

35

Transverse Resolution MM 2013 data 7 module

eff

d

NzC ⋅

+=2

20σσ

B=1 T Cd = 94.2 µm/√cm (Magboltz) Per row

Page 36: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

36

Transverse Resolution Micromegas (MM) versus GEM

100 μm

Page 37: Hit finding and pad response function for the LCTPC using ...alainb/ABellerive_LCTPC_posted_… · • Intro: LCTPC Collaboration and MPGD • Charge dispersion and Signal Pulse –

37

Summary

A. Bellerive – ECFA LC May 29, 2013

• A lot of experience has been gained in building and operating Micromegas TPC panels.

• The characteristics of the Micromegas modules, such as the uniformity, spatial resolution, stability have been studied in detail.

• 7 modules have been successfully tested with full integration of the electronics at the same time. The modules have been manufactured and characterized in a quasi-industrial process.

• Thanks to the resistive technology, the measured resolution is about 60 microns at zero drift distance with 3 mm wide pads. This meets ILC requirements of 100 μm single hit resolution in rφ (over 2 m drift).