how to bacillus subtilis ii

35
How to Bacillus subtilis II Team iGEM UANL-FCB 2020

Upload: others

Post on 07-Jul-2022

14 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: How to Bacillus subtilis II

 

 

How to Bacillus subtilis II Team iGEM UANL-FCB 2020 

 

 

 

 

 

 

 

 

Page 2: How to Bacillus subtilis II

 

 

 This manual is intended to provide an easy introduction to work with Bacillus subtilis                           

and its genetic network to future iGEM teams. iGEM team 2016 Bonn and Freiburg                           

previously developed a manual which addresses some topics related to the                     

experimental work with Bacillus subtilis , including some useful tips and protocols. We                       

tried to complement this previous work creating How to Bacillus subtilis II. Here, we                           

will address some aspects of the genetic network that controls the fate of Bacillus                           

subtilis cells, a guide on how to perform genome integration in this bacteria, and a brief                               

resume of useful tools you should have into consideration. We will also include a                           

systematic review of previous iGEM projects developed on Bacillus subtilis . 

 

We hope this manual will be useful for future igemers, in particular if you have never                               

worked before with B. subtilis . 

 

 

 

 

Team iGEM FCB-UANL 2020 

 

 

1

Page 3: How to Bacillus subtilis II

Index 

Bacillus subtilis overview 4 

Characteristics regarding the species 4 Characteristics regarding the genus 4 Bacillus Subtilis’s ID 5

Quorum sensing and population subspecialization 6 

The start of the genetic network: Quorum sensing 6 System ComQXPA in detail 7

Subpopulation types 8 

Motile bacillus 8 Understanding motility and mobility in bacteria 8

What does bacterial motility serve for? 8 Which Bacillus are motile? 9 Genes involved in B. Subtilis motility 9

Surfactin producer cells 10 Regulating Surfactin 10 Bacillus subtilis as an antibiotic producer 11

Biofilm producer cells 11 Cannibal cells 12 Exoprotease producer cells 13 Sporulating cells 14

B. subtilis plasmids 16 

Replicative plasmids 16 Integrative plasmids 16

Useful tools for Bacillus subtilis 18 

Genetic elements for Bacillus subtilis 18 Names 18 Bacillus SEVA siblings 20 Subtiwiki 20 BsubCyc 22 Bacillus Genetic Stock Center 22

Previous iGEM Bacillus subtilis Projects 24

2

Page 4: How to Bacillus subtilis II

2016 24 2017 25 2018 27 2019 29

References 31

  

      

  

 

 

 

 

 

 

 

 

 

 

3

Page 5: How to Bacillus subtilis II

Bacillus subtilis overview Characteristics regarding the species 

Bacillus subtilis ( B. Subtilis) (Fig. 1) is one of the most common bacteria in the world,                               often referred to as ubiquitous, although it is found predominantly on soils. This                         organism, described by German scientist F. Cohn in 1872, consists of a rod-shaped and                           spore-forming Gram-positive bacterium. Since the discovery of the strain 168 in 1958                       by Spizizen, an immense amount of research regarding this organism has been                       conducted over half a century. B. Subtilis serves as a model for study of spore                             formation and low GC% Gram-positive bacteria (Piggot, P., 2009). 

 

Figure 1. Electron microscopy images of B. subtilis. Taken by Thierry meyiheuc. The                         image is reproduced from Chastanet and Carballido-Lopez (2012). 

This organism has the capacity to grow in nutrient media and in chemically defined salt                             media as well. On chemical-based media, simple sugars like glucose and malate                       provide sources of carbon and ammonium salts or certain amino acids as sources of                           nitrogen. B. subtilis strain 168 , on which most studies are performed, is a tryptophan                           auxotroph (trpC2) and therefore requires the addition of tryptophan to the growth                       media, even those containing acid-hydrolyzed proteins such as casein (Harwood, C.                     2013).   

Characteristics regarding the genus 

The genus Bacillus has around 318 described species due to recent taxonomic changes,                         which attracted attention from the public because of its economic and medical                       importance (Elshaghabee, F. 2017). Efforts have been made to differentiate pathogenic                     and probiotic species, some of them include phylogenetic discrimination, which has                     allowed the proper identification of strains for further usage. 

4

Page 6: How to Bacillus subtilis II

The pathogenic characteristics depends over strain and variety specific production of                     several extracellular factors (phospholipase, cereulide, enterotoxin Hbl,             non-haemolytic toxin [Nhe], etc.) having role in cellular membrane disruption and                     induction of necrotic enterocolitis cytotoxin (Elshaghabee, F. 2017). Probiotic species,                   as many studies indicate, has an increased number of health benefits including                       immune modulation on Lactobacillus and lowering of plasma triglycerides. 

Bacillus Subtilis ’s ID 

As previously stated, B. Subtilis is very easy to find on soils and in laboratories, thus its                                 taxonomic identification has been studied for many years now, Table 1 provides a                         summary of B. Subtilis taxonomic information. The genome sequence of B. subtilis 168                         was completed in June 1997. This strain is a tryptophan auxotrophic mutant derived                         from the original B. subtilis ATCC 6051 which was isolated from boiled hay infusion by                             Cohn in 1872 (Wipat, A. 1998). 

Scientific Classification 

Domain  Bacteria 

Phylum  Firmicutes 

Class  Bacilli 

Order  Bacillales 

Family  Bacillaceae 

Genus  Bacillus 

Species  B. Subtilis 

Table 1. Taxonomic information of B. subtilis. Information extracted from Bergey’s manual of systematic                           bacteriology: volume 3: The Firmicutes. 

One of the most important aspects of B. Subtilis ’s taxonomy is being part of the phylum                               of Firmicutes , which differentiates from E. Coli , which is part of the phylum of                           

5

Page 7: How to Bacillus subtilis II

Proteobacteria . The discriminatory factor between these phyla is the spore formation ,                     Firmicutes can form endospores and are mostly Gram-positive, whereas                 Proteobacteria species do not form spores and are completely Gram-negative. 

Firmicutes’ spores contain enough energy for germination and can adapt to quickly                       respond to substrate availability and formation of a vegetative cell able to replicate.                         Therefore, B. Subtilis and other firmicutes can easily outgrow other organisms after                       transfer to microbiological media, explaining their ubiquitous characteristic (Parkes, R.                   2009).   

 

Quorum sensing and population subspecialization Bacillus subtilis cells can differentiate into different kinds of cellular types. Cellular fate                         depends on the levels and phosphorylation of three main master regulators: ComA,                       Spo0F y DegU . Surfactin producers and competent cells depend on ComA, biofilm                       producers, cannibal cells and sporulating cells depend mainly on Spo0A and                     exoprotease producer cells depend on DegU . Each type of subpopulation and                     regulation system will be discussed below.  

The start of the genetic network: Quorum sensing 

The ability to alter gene expression and behaviour, depending on the environment, is                         characteristic of bacteria. One of the most dynamic changes they face is population                         density. Bacteria can exist in small populations, however, as their population density                       increases, they can coexist with other bacterial species. In these interactions, bacteria                       sense and respond to outside changes, using a cell-cell communication that is known                         as quorum sensing (QS). This communication pathway produces, detects, releases and                     responds with molecules known as "auto-inducers".  Communication through quorum sensing allows bacteria to coordinate the expression                   of genes from an entire community. The first quorum-sensing circuit was identified in                         Vibrio fischeri in 1983 (Engebrecht et al ., 1983). Nowadays, dozens of bacterial                       quorum-sensing circuits have been identified, and all of them allow bacteria to                       accomplish the same task; to regulate gene expression according to the population                       density with which they coexist (Bassler et al., 2013).   

6

Page 8: How to Bacillus subtilis II

Bacillus subtilis codes for two types of quorum-sensing, ComQXPA and Rap-Phr, both                       of which control a regulator called ComA, which is responsible for surfactant                       production. Genetically, the ComQXPA system is coded for the operon comQXPA. The                       Rap-Phr system, on the other hand, codes for Rap receptors and Phr auto-inducers                         (Bareia et al., 2017).  

System ComQXPA in detail 

There are four main genes involved in the Quorum Sensing System: ComQXPA ; with one                           common promoter in front of ComQ and two putative ones in front of ComX and ComA.                               Even though there are several polymorphisms between strains, four phenotype groups                     have been identified, and communication is possible between strains of the same                       group (Dogsa, et al. 2014). 

ComX is the main system component: it is a pheromone that works as an extracellular                             signaling molecule. Among the responses comX activates, surfactin production is                   notable, as well as biofilm production (indirectly) and extracellular DNA release. It also                         has an important role in cell differentiation . The sequence presents marked                     polymorphism, but in all strains a tryptophan residue is present, which is modified by                           ComQ (Okada, et al. 2005) 

ComQ encodes an enzyme: isoprenyl transferase that is in charge of comX exportation                         and postranslational modification of the produced precursor; these is the action to                       attach an isoprenyl unit to the tryptophan residue (the specific mechanism can vary                         from one strain to the other) (Dogsa, et al. 2014). Its activity is still on review, since the                                   specific mechanism of comX exportation is still unknown (Okada, et al. 2005) in                         addition to the fact that some databases indicate that it may have a membrane-binding                           region (Dogsa, et al. 2014). 

ComP is a membrane receptor that recognizes comX and then activates comA through                         phosphorylation. It has a histidine-kinase and an ATP-binding domain (Spacapan, et al.                       2018). 

ComA represents the final step of the QS pathway: it is a transcriptional response                           regulator that activates approximately 89 genes in 35 operons. Some of these are srfA                           (surfactin production), degQ (exoproteases production) (Spacapan, et al . 2018). 

The main regulation consists of a negative feedback loop based on ComX production of                           the productive cell (Dogsa, et al . 2014)  

7

Page 9: How to Bacillus subtilis II

Subpopulation types 

Motile bacillus 

This type of cellular subpopulation does not depend on the three master regulators                         mentioned above, which are present mainly on post-exponential growth phases.                   Instead, motility is developed during the exponential growth, and it has been                       suggested that these cells will later differentiate into the other subpopulations                     (Verhamme et al ., 2007; Vlamakis et al., 2008). Lets first review some basic concepts                           about bacterial motility.  

Understanding motility and mobility in bacteria 

Motility is the ability of living systems to exhibit motion and to perform mechanical                           work at the expense of metabolic energy. (Day, R., n.d.). Be sure not to confuse                               “motility” with “mobility”, because they´re not the same. The difference between both                       can be observed when analyzing the bacterial motion under a microscope.   Brownian motion of particles demonstrates their mobility under the influence of                     thermal agitation . Likewise, motility, coming from the etymological root mot-, “to push                         or move”, meaning like this, “ability of automatic move”, (Online Etymology Dictionary,                       2020) refers to the saltatory motion of the bacteria, it may transport the same particles                             to much greater distances using metabolic energy . (Day, R., n.d.).  In summary, the mobility refers to the capacity of an organism to be moved, and                             motility to the ability of moving by itself.   

What does bacterial motility serve for? 

 The usage of the motility in bacteria, mainly consists of conferring a bacteria to change                             direction . The importance of this resides in the fact that bacteria may require moving                           away or closer towards repellents or attractants, respectively. Like this, motile                     bacteria are effective root colonizers and can swim towards root exudates or other                         nutrient gradients earlier than non motile bacteria. (Bhawsar, S., 2011)  

8

Page 10: How to Bacillus subtilis II

Which Bacillus are motile? 

All the members of the genus Bacillus have that characteristic rod-like shape. However,                         B. subtilis is one of the species of this genus that has been packed additionally with                               several flagella (whip-like tails). B. subtilis has peritrichous flagella, meaning the cell is                         covered with tiny tails. These tails can be seen using a light microscope with a                             specialized strain. (Steele, E., 2016).  As another example, Bacillus piliformis, another bacteria from the Bacillus genus, possesses peritrichous flagella, and is therefore also motile. (DeLong, D. & Manning, P, 1994).  

Genes involved in B. Subtilis motility 

Among populations of B. subtilis , only a fraction of cells express sigD , the sigma factor necessary for flagellar production, resulting in heterogeneity in motility (Kearns, 2005). Some of these cell types can be distinguished from their sister cells because their altered gene expression results in morphological changes that are visible under the microscope. (Lopez, D., et al., 2009)  Motility requires the induction of a large fla-che operon , which contains 31 genes                         encoding for proteins that make up the basal body of the flagella, the chemotaxis                           system , and the sigma factor SigD (Lopez, D., et al., 2009)  SigD is encoded at the end of the fla-che operon and is required for the expression of                                 the hag locus , which encodes flagellin, the protein comprising the actual flagellar                       filament, as well as for the motA and motB genes, which encode for the motor proteins                               necessary for flagellar rotation (Marquez-Magana & Chamberlin, 1994).   Transcription of genes important for motility and matrix production is regulated by                       Spo0A . High levels of Spo0A-P repress the fla/che motility operon , whereas Spo0A-P                       is required for extracellular matrix gene expression via the activation of the regulatory                         protein SinI. (Lopez, D., et al ., 2009)  

9

Page 11: How to Bacillus subtilis II

Surfactin producer cells 

Surfactin is an antibiotic and biosurfactant lipopeptide produced by B. subtilis,                     consisting of the anion of seven membrane peptides and a mixture of hydrophilic fatty                           acids (Stein, 2005). 

Surfactin lipopeptide is the most powerful biosurfactant known, as a 20-M solution can                         decrease the surface tension of water from 72 mN m.1 (Carrillo et al ., 2003). Surfactin                             exerts an action like that of detergents in biological membranes and is distinguished by                           its exceptional emulsifying, foaming, antiviral capacity (Peypux et al., 1999). 

Regulating Surfactin 

The expression of srfA and comS is regulated by a complex network that handles                           cellular differentiation, including quorum sensing which operates from the extracellular                   concentration of ComX and the regulatory components of the ComXPA system                     mentioned before. 

When the cell density is high, a large amount of extracellular ComX is concentrated so                             ComP begins to phosphorylate ComA which is the transcription factor of the operon                         srfA (responsible for producing surfactin). When the cell density is low (this is, during                           exponential phase) then ComP does not phosphorylates ComA and the surfactin                     production does not start. 

 

Figure 2. Regulation of srfA operon. The schematic model for the regulation of the transcription of the                                 srfA operon network involved in two extracellular signaling peptide-mediated quorum sensing in B.                         subtilis. Retrivered from Shoung Li, 2019. 

10

Page 12: How to Bacillus subtilis II

Bacillus subtilis as an antibiotic producer 

Besides surfactin, it is worth to mention the potential of B. subtilis to produce                           antibiotics has been recognized for 50 years. Peptide antibiotics represent the                     predominant class as they have high rigidity, hydrophobicity, and/or cyclical structures                     with constituents such as D-amino; These structures are generally resistant to                     hydrolysis by peptidase or proteases (Katz and Demain, 1997). Cysteine residues can be                         oxidized by bisulfates or undergo modifications to a characteristic C-S intramolecular                     anchorage, obtaining resistance to oxidation. 

B. subtilis uses two biosynthesis pathways for these antibiotics: 1) non-ribosome                     synthesis of peptides by mega enzymes (non-ribosomal peptide synthesizes) and 2)                     Ribosome synthesis of precursors, which are exposed to post-translational                 modifications and protein processing (Stein, 2005). 

 

Figure 3. Antibiotic production regulatory routes. Regulatory routes of biosynthesis of B. subtilis                           antibiotics such as surfactin, subtilisin, surfactin, Skf death factor, and antimicrobial peptide related to                           Tas A spores. Arrows represent positive regulation and T-lines represent negative regulation. (Retrieved                         from Hamoen et al. (2003). 

 

Biofilm producer cells 

When bacteria are faced with hostile environments, they are prone to develop survival                         strategies, such as sporulation or the formation of extracellular matrix layers of                       proteins, exopolysaccharides and sometimes extracellular DNA, known as biofilm                 (Flemming et al. 2016). Bacteria in biofilm are generally more resistant to environmental                         

11

Page 13: How to Bacillus subtilis II

stress and less susceptible to the effects of antibiotics (Costerton et al. 1999). At least                             five steps can be considered crucial for biofilm formation, (1) reversible attachment, (2)                         irreversible attachment, (3) microcolony formation, (4) biofilm maturation, and (5)                   dispersion (Stoodley et al. 2002).  Particularly in Bacillus subtilis , transcription regulation is crucial for biofilm formation                     (Cairns et al . 2014). The transcriptional regulator Spo0A is critical in biofilm initiation.                         There are two repressors of biofilm formation: abrB and sinR, which act directly or                           indirectly on the 15 genes of the eps operon required for extracellular polysaccharide                         biosynthesis, within the tapA-sip-tasA operon, as well as the bslA gene encoding                       hydrophobic proteins.  There is an antagonist that acts directly on the SinR biofilm repressor, known as SinI,                             which blocks the formation of SinR tetramers that interrupt the formation of biofilm,                         promoting biosynthesis and organization of the biofilm. In combination with eps, tasA                       is the major component of biofilms (Branda et al. 2001), tapA represents a component                           in lower concentration that anchors fibers in bacterial walls and forms tasA. 

 

Cannibal cells 

We already know that when forming a biofilm, a colony of Bacillus subtilis can                           differentiate into different subpopulations which are dedicated to perform different                   tasks (Kearns and Losick, 2005; Branda, et al., 2001; Shank and Kolter, 2011).                         Surprisingly, one of those subpopulations consist of bacteria which show cannibalistic                     behaviors (Mielich-Süss and Lopez, 2015). But, exactly on what does this form of                         cannibalism consist? 

To understand this process better, we must first remember that this occurs in the                           onset of sporulation (Höfler, et al ., 2016). Sporulation in Bacillus subtilis is induced since                           it undergoes carbon, nitrogen, and phosphorus starvation (Piggot and Hilbert, 2004;                     Higgins and Dworkin, 2012). Taking this into consideration, cannibalism in sporulating                     bacteria, such as Bacillus subtilis, has been considered a countermeasure to delay                       sporulation as long as possible, since the latter is an energetically-expensive event                       (González, et al ., 2003; Höfler, et al ., 2016). 

Now, the bacteria have a specialized mechanism that depends on both environmental                       factors and correct timings on the expression of genes. First, we need to have in mind                               that the operons related to cannibalism are skf and sdp . Basically, these operons                         

12

Page 14: How to Bacillus subtilis II

consist of the toxins and the machinery needed to produce, release, and acquire                         resistance to them (González, et al., 2003; Ellermeier, et al., 2006). 

But, when does the bacteria know how to express them both? It starts with the                             signaling molecule surfactin , which triggers matrix and cannibal toxin production in                     the same sub-population of cells by activation of KinC (López, et al., 2009), which                           further phosphorylates Spo0A, the master sporulation regulator, through a                 phosphorelay pathway (González, et al ., 2003; Piggot and Hillbert, 2004; Higgins and                       Dworkin, 2012). Phosphorylated spo0A (spo0A~P), when present in low levels, is in                       charge of activating transcription of the sdp and skf operons, either by indirect,                         -through AbrB inhibition- or direct positive regulation (Fujita, et al ., 2005). Therefore,                       cells that start phosphorylating spo0A lyse those who still have not started to                         phosphorylate the transcription factor (González, et al ., 2003). In Figure 4 you can see                           an oversimplified image based on the different authors cited before. 

 

Figure 4. Simplified representation of the genetic regulation of cannibalism operons’ expressions.                       Adapted from: González, J. E., 2011; Lopez, D., 2009. 

Exoprotease producer cells 

Some of the important components of the biofilm are exoproteases, having two main                         enzymes: aprE (serine exoprotease or subtilisin) and NprE (metalloprotease). DegQ                   gene is responsible for protease production. aprE and NprE activity represents 95% of                         the total proteolytic activity; their importance lies in the role they play in supplying                           aminoacids for growth, but also in ComX degradation, thus regulating the Quorum                       Sensing System (Spacapan , et al. 2018).  

13

Page 15: How to Bacillus subtilis II

Exoprotease production occurs only during the post-exponential growth phase; and is                     regulated indirectly by ComX , as DegQ is regulated by comA regulon. Both AprE and                           NprE prevent autolysis of cells in the stationary phase and are not essential in growth                             nor sporulation, but some of their regulators are (Barbieri, et al. 2016). 

 

Figure 5. Exoprotease regulation in B. subtilis. Retrieved from (Spacapan, et al. 2018)   AprE is important for CSF and PhrA production, which are two QS signaling peptides; it                             is directly repressed by AbrB, ScoC and SinR, and activated by phosphorylated DegU .                         Among the indirect regulators, phosphorylated Spo0A, AbbA , phosphorylated SalA,                 TnrA, SinI, DegS, DeqQ, DegR and RapG are found (Barbieri, et al. 2016).  

Sporulating cells 

As mentioned before, sporulation is a stress response of many bacteria, including                       Bacillus subtilis , triggered by nutrient starvation (Piggot and Hilbert, 2004; Higgins and                       Dworkin, 2012). The process can take several hours, and the result is a spore which is                               resistant to many harsh environmental conditions. As sporulation is a very complex                       process, it is described in a broad perspective in this work. For further information, you                             may consult Piggot and Hilbert’s (2004a, 2004b), Setlow’s (2003), Nicholson and                     collaborators’ (2000), among others’ works. 

At the beginning, a phosphorelay occurs when kinases (KinA, KinB, KinC, KinD, and                         KinE ) phosphorylate spo0F, which furthers phosphorylates spo0B which finally                 transfers the phosphate group to spo0A (Burbulys, et al ., 1991; Piggot and Hilbert,                         2004a). When present in low levels, spo0A~P induces matrix production and                     cannibalism in a subpopulation of Bacillus subtilis ; when spo0A~P reaches a                     

14

Page 16: How to Bacillus subtilis II

high-threshold , then the genes that are involved in the second stage of sporulation                         start to express (Fujita, et al ., 2005; López, et al ., 2009; Errington, 1993). 

Once the second stage of sporulation begins, the bacteria start to develop a constant                           “communication” among the mother cell and the forespore. Differential expression of                     transcription factors along with other spo genes help in the development of the spore                           (Errington, 1993; Piggot and Hilbert, 2004a); a diagram depicting the previously                     mentioned process can be seen in Fig. 6. At the end, there is a spore resistant to very                                   adverse environmental conditions within a mother cell that will eventually lyse (Piggot                       and Hilbert, 2004a; Errington, 1993) (Fig. 7). 

 Figure 6. Diagram that shows the “communication” among the prespore and the mother cell. This diagram was retrieved from: Piggot, P. (2004a)

 

Figure 7. Graphic representation of the different stages of sporulation and the genes related to each                               one. The diagram was retrieved from: Errington, J. (1993).  

15

Page 17: How to Bacillus subtilis II

B. subtilis plasmids 

Replicative plasmids 

Replicative plasmids for B. subtilis need a different origin of replication than plasmids                         for gram negative bacteria such as E. coli. There exist three main types of origin of                               replication for circular plasmids, theta, rolling circle and strand displacement. Most of                       the plasmids that have been characterized for gram positive bacterias have plasmids                       which use a mode of replication called rolling-circle (del Solar et al ., 1998).   Given that some authors have reported problems with plasmid instability (Bron, et al.,                         1998), an usual strategy is to use shuttle vectors for E. coli and B. subtilis. This means                                 that your replicative plasmid for B. subtilis generally should have an E. coli origin of                             replication for cloning and a origin of replication compatible with B. subtilis.   iGEM team Toulouse 2016 created a part (BBa_K1937002) to turn any pSB1C3-based                       plasmid into a shuttle vector for E. coli and B. subtilis. This part includes the repU origin                                 of replication and a kanamycin resistance gene for B. subtilis.  

Integrative plasmids 

This is the most commonly used method for modifying B. subtilis . These plasmids carry                           an origin of replication and resistance marker for E. coli , and sequences with homology                           to a part of the genome of B. subtilis. Generally this is done through double-crossover                             recombination. In this case, homology sequences bigger than 400 bp flank the genes                         that you desire to integrate, including a resistance marker. Your genes will be                         integrated between the respective homologies. In this type of integration it is                       important to linearize your plasmid (in a region that will not be integrated) to avoid                             single-crossover recombination (Harwood et al., 2013).  

16

Page 18: How to Bacillus subtilis II

 Figure 8. B. subtilis double crossover recombination. Taken from Harwood et al., 2013.  Some of the most common genes for integration into the B. subtilis genome are AmyE                             and ThrC . Integration in AmyE is easily detected through the amylase test and the 5’                             and 3’ sequences are available in the part registry with the numbers BBa_K143001 and                           Ba_K 143002. ThrC creates threonine auxotrophic mutants, which can be detected by                       growing the strains in medium without threonine and medium with it.   

          

17

Page 19: How to Bacillus subtilis II

Useful tools for Bacillus subtilis  B. subtilis is a model organism for gram positive bacteria, and it also has been widely                               commercially exploited. As a consequence, multiple tools have been developed to                     facilitate the work of this organism. Here we will list the ones that we found most                               useful.  

Genetic elements for Bacillus subtilis  

First of all, we recommend you to search in the official section for Bacillus subtilis                             parts in the parts registry: http://parts.igem.org/Bacillus_subtilis.  Besides the parts registry, several authors intended to find and characterize genetic                       elements for B. subtilis . These elements are described in the following table. 

  

Names  Features and limitations  Applications  Refs 

Native promoter library-1 

Features: (1) 84 promoters with 3 orders of magnitude in the variation of maximal expression strength. Limitations: (1) Lack of promoters for dynamic regulation of gene expression. (2) Long sequences of promoters causing difficulties in regard to genetic manipulation. 

(1) Enhancing heterologous protein expression. (2) Static regulation of gene expression level for metabolic engineering. (3) Genetic circuit construction. 

Song et al. (2016) 

Native promoter library-2 

Features: (1) 114 promoters classified into 4 categories based on their active phase from exponential phase to stationary phase. Limitations: (1) Long sequences of promoters (300 bp) that are inconvenient for use in genetic manipulation. 

(1) Enhancing heterologous protein expression. (2) Static regulation of gene expression level for metabolic engineering. (3) Genetic circuit construction. 

Yang et al. (2017) 

18

Page 20: How to Bacillus subtilis II

Synthetic promoter library-1 

Features: (1) 32 synthetic promoters with 900-fold differences strength, which consisted of short promoter sequences (~60bp) for convenient genetic manipulation. Limitations: (2) Lack of promoters for dynamic regulation of gene expression. 

(1) Enhancing heterologous protein expression. (2) Static regulation of gene expression level for metabolic engineering. (3) Genetic circuit construction. 

Guiziou, et al. (2016) 

Synthetic promoter library-2 

Features: (1) 220 synthetic promoters with 140-fold differences strength, which consisted of short sequences (54-220 bp) for convenient genetic manipulation. Limitations: (1) Lack of promoters for dynamic regulation of gene expression 

(1) Enhancing heterologous protein expression (2) Static regulation of gene expression level for metabolic engineering. (3) Genetic circuit construction. 

Liu, et al.     (2018) 

Synthetic expression modules from up element to spacer sequence between RBS and the first codons 

Features: (1) 12 000 synthetic expression modules with 5 orders of magnitude in variation of expression strength, inducing 32 synthetic expression modules for significant enhanced expression. Limitations: (1) Lack of modules for dynamic regulation of gene expression. 

(1) Enhancing heterologous protein expression. (2) Static regulation of gene expression level for metabolic engineering. (3) Genetic circuit construction. 

Sauer, et al. (2018) 

RBS sequence library 

Features: (1) 31 synthetic RBS sequences with 800-fold strength differences. Limitations: (1) Effects of 5’ end of the coding sequences on translation were not considered. 

(1) Enhancing heterologous protein expression. (2) Static regulation of gene expression level for metabolic engineering. (3) Genetic circuit construction. 

Guiziou, et al. (2016) 

Synthetic proteolysis tag library 

Features: (1) 22 synthetic proteolysis tags with 100-fold strength differences. Limitations: (1) Lack of proteolysis tags for dynamic regulation of gene expression. 

(1) Enhancing heterologous protein expression. (2) Static regulation of gene expression level for metabolic engineering. (3) Genetic circuit construction. 

Guiziou, et al. (2016) 

 Table 2. Developed genetic elements for regulation in Bacillus subtilis. Taken from Liu et al., (2018).    

19

Page 21: How to Bacillus subtilis II

Bacillus SEVA siblings 

Bacillus SEVA siblings is a toolbox designed by Radeck et al. (2017) for the creation of                               integrative vectors for Bacillus subtilis based on the Standard European Vector                     Architecture (SEVA). It is designed so each integrative plasmid consists of four parts: a                           part containing a resistance gene and origin of replication for E. coli , a part with the 5’                                 region of a gene of your choose for integration, a part with the 3’ region and a part with                                     a resistance gene for Bacillus subtilis and a multiple cloning site. This allows you to                             create integrating vectors targeted to any part of the genome that you desire. The                           assembly of these four parts is carried out with a golden gate reaction, which makes                             this toolkit very practical.  The vectors created by the authors are available in the BGSC and the SEVA collection. 

 

 Figure 9. Parts of the Bacillus SEVA siblings vectors. E. coli origin of replication and resistance gene (blue), 5’ homology for integration (yellow), B. subtilis resistance gene and multiple cloning site (orange), 3’ homology for integration (red). Taken from Radeck et al., 2017.   

Subtiwiki 

Subtiwiki is a gene and protein-centered database for B. subtilis ( Flórez , et al., 2009) ).                               You can search for a specific protein and it will give you basic information such as                               locus, isoelectric point, molecular weight, function and links to externals databases                     and also publications related to that protein. This is a very complete database. It also                             includes a pathway browser, interaction browser, expresion browser, genome browser,                   regulation browser and a list of the genes in the regulon of your protein.  

20

Page 22: How to Bacillus subtilis II

The regulation browser gives you a quick perspective on the interactions of your gene,                           it represents activation with green lines and represion with red lines. As a plus, you can                               export this data as a CSV file. 

 Figure 10. Regulation network of Spo0A. Each blue dot is a protein, activation is represented with green                                 lines and repression with red lines. Retrieved from: Subtiwiki (Zhu B & Stülke, 2018).  In the expression browser section you will find data on the transcription and expression                           level of your protein under different growing conditions and compare them to other                         proteins which you can select. 

 Figure 11. Transcription level of Spo0A(red), AbrB(dark blue) and Spo0F(light blue). Retrieved from: Subtiwiki (Zhu B & Stülke, 2018) 

21

Page 23: How to Bacillus subtilis II

BsubCyc 

BsubCyc is part of the BioCyc database, here you will find features about the                           sequences, genes and proteins of Bacillus subtilis, it includes a genome browser, a                         regulatory overview of Bacillus subtilis general regulation, as well as individual and full                         metabolic maps.  

 Figure 12. Bacillus subtilis subtilis 168 metabolic overview. Taken from BsubCyc (Caspi et al. 2014)  

Bacillus Genetic Stock Center 

The Bacillus Genetic Stock Center (BGSC) is a genetic stock where you can find and                             order B. subtilis strains with specific phenotypes or modifications, as well as cloning                         vectors and bacteriophage for the genus Bacillus.  According to their page, they have 1291 mutants derived from B. subtilis 168, 55 other                             strains derived from non-168 backgrounds, 54 Bacillus subtilis lysogens and 42 lytic                       phages of B. cereus, B. subtilis, and B. thuringiensis. This is the catalog of strains of B.                                 subtilis: Bacillus Genetic Stock Center Catalog of Strains, Seventh Edition, Volume 1:                       Bacillus subtilis 168 . You can order directly from their page. We highly recommend you                           

22

Page 24: How to Bacillus subtilis II

to search if the phenotype you need is found here since it will save you a considerable                                 amount of work and the price is very accessible.   

                        

 

23

Page 25: How to Bacillus subtilis II

Previous iGEM Bacillus subtilis Projects  There is a list of iGEM projects developed with Bacillus subtilis on the parts registry                             ( http://parts.igem.org/Bacillus_subtilis#Ribosome_binding_sites ). However, this list       only covers the competence until the year 2015. We believe that knowing what other                           teams have made in previous years is very important to come up with new and better                               ideas. Because of this we decided to include a list of iGEM projects related to B. subtilis                                 from 2016 to 2019 to complement the information on the parts registry.  

2016 

Team  Project title  Description  Link 

UBonn  Enzymatic Whitewashing - the 

ecological approach to paper 

recycling  

The team developed a high         throughput system that not only         allows to quantify deinking efficiency         but also to cheaply mass-produce         enzymes using a Bacillus subtilis         secretion system. 

http://2016.igem.org/Team:UBonn_HBRS   

Freiburg  

Nanocillus-'cause spore is more! 

 

After administration, conventional     drugs are distributed throughout the         whole body thus affecting both,         diseased and healthy cells. By         engineering the spores of probiotic         Bacillus subtilis, a member of the           human microbiome, the team       established a low-cost carrier for         well-tolerated treatment 

http://2016.igem.org/Team:Freiburg  

SVCE  

LACTOSHIELD  

The team developed a novel system           that produces cationic antimicrobial       peptides (cAMPs) to prolong the shelf           life of milk by preventing bacterial           contamination. 

http://2016.igem.org/Team:SVCE_CHENNAI  

Toulouse  Paleotilis, a shield for the Lascaux 

cave  

The project consists of an engineered           Bacillus subtilis strain which grows on           bacterial organisms present in the         cave. It releases antifungals when in           close vicinity of fungi 

http://2016.igem.org/Team:Toulouse_France  

24

Page 26: How to Bacillus subtilis II

Groningen  

CryptoGE®M: Encode it, Keep it 

 

The world's silicon supply won't be           able to cover the demand for flash             data storage by 2040. The team’s goal             was to safely send a key and an               encrypted message in two separate         spore systems of Bacillus subtilis. 

http://2016.igem.org/Team:Groningen  

UC Davis  

CYANtific  

In this project, the team         demonstrates that the GAF domain of           cyanobacteriochrome (CBCR)   proteins are a viable natural         alternative to artificial food dyes. 

http://2016.igem.org/Team:UC_Davis  

UofC Calgary  The subtilis defence 

 

The project is based on the           administration of the naturally       occurring peptide Bowman-Birk     Protease Inhibitor (BBI), which has         been shown to confer protection         against DNA damage following       radiation exposure. To express mBBI         the team chose Bacillus subtilis. 

http://2016.igem.org/Team:UofC_Calgary  

 

2017  

Team  Project title  Description  Link 

RDFZ-China  Mobile Surfactant Factory Combating 

Oil Spill With Engineered Bacillus 

subtilis  

The project engineered Bacillus       subtilis that function as surfactin         producing units to remediate       contaminated soils. Biosurfactants     and the introduction of Bacillus         subtilis should have fewer impacts on           soil microbiome and should be more           effective than relying on       bioremediation alone.  

http://2017.igem.org/Team:RDFZ-China  

Stanford-Brown   

Mars: Getting there and staying there 

 

The risk of mid-mission equipment         failure, power shortages, or supply         depletion incentivizes precautionary     measures, but the financial strain of           sending unnecessary mass into       space limits this practice. Prioritizing         repair over replacement, they were         

http://2017.igem.org/Team:Stanford-Brown  

25

Page 27: How to Bacillus subtilis II

developing self-healing materials     embedded with Bacillus subtilis. For         longer-lasting energy, they were       designing a 'biobactery' using linearly         oriented E. coli to generate power.           For renewable materials, they were         engineering bacteria to synthesize       and degrade rubber. 

Sydney Australia 

Designing Insulin that is Single-Chain 

and Open-source (DISCO) 

The project involved using synthetic         biology to develop an insulin         manufacturing system that is       cost-efficient and simple, using the         bacterial species Escherichia coli       and Bacillus subtilis. 

http://2017.igem.org/Team:Sydney_Australia  

SZU-China  CON-cure-CRETE  

They designed a self-healing system         for concrete. They used gerA as a             biosensor for when liquid L-alanine         present. They placed the spores of           the Basilus subtilis into       microcapsules along with nutrients       and L-alanine powder. When the         concrete cracks the tension will         break the microcapsule and the         water will infiltrate. The team         designed a self-healing system for         concrete. When there is a microcrack           our system can be switched on and             concrete can start to heal         themselves. 

http://2017.igem.org/Team:SZU-China  

TMMU-China  

Development of Quorum Sensing 

Tool Kit for Gram-positive 

Bacteria  

The team wanted to develop a QS tool               kit for Gram-positive bacteria. The         tool kit is based on the Agr system               from S.aureus, the PlcR-PapR system         from Bacillus cereus, and the         AimR-AimP system from the Bacillus         subtilis bacteriophage Phi3T. The       plan was to test the utility of this tool                 kit in Bacillus subtilis and         Lactococcus lactis. 

http://2017.igem.org/Team:TMMU-China  

TU Dresden  EncaBcillus It's a trap! 

 

The project wants to introduce         Peptidosomes as a new fundamental         approach for generating and applying         encapsulated bacteria. Using the       powerful genetics of Bacillus subtilis         

http://2017.igem.org/Team:TU_Dresden  

26

Page 28: How to Bacillus subtilis II

and its secretory capabilities we         demonstrate communication and     cooperation between separately     encapsulated bacterial populations     as well as the environment. 

UIOWA  

Development of a 3-Hydroxypropioni

c Acid Biosensor 

The research project utilizes the         3-HP responsive genes found in P.           putida and P. denitrificans as         biological reporters which express       luciferase in the presence of 3-HP.           Then the system will be adapted to             Bacillus subtilis.  

http://2017.igem.org/Team:UIOWA  

WPI Worcester  

 

Go(a)t Lead? Bacterial Detection and Bioremediation 

of Lead Contamination in 

Drinking Water  

Our project aims to improve lead           testing and treatment by developing         a lead biosensor and colorimetric         lead assay, as well as a lead-binding             probiotic. 

http://2017.igem.org/Team:WPI_Worcester  

 

2018 

Team  Project title  Description  Link 

Goettingen   

Glyphosate on my plate?! Detection 

and inactivation of Glyphosate using 

the soil bacterium Bacillus subtilis 

The team’s aim is to engineer           the Gram-positive model     bacterium Bacillus subtilis for       the detection and degradation       of glyphosate.   

http://2018.igem.org/Team:Goettingen  

ICT-Mumbai   SmartSoil: Rooting for Sustainable 

Agriculture  

The team studied changes in         gene expression in the common         soil bacterium, Bacillus subtilis,       in response to root exudates of           rice, wheat, tomato and       soybean plants. The project is         constructing a genetic amplifier       using an exudate-inducible     promoter to produce     

http://2018.igem.org/Team:ICT-Mumbai  

27

Page 29: How to Bacillus subtilis II

phosphatase, which will help       solubilize organic phosphate     present in the soil.  

ITESLA-Soundbio 

 

Factor C The Difference: A 

Synthetic Biology Alternative to the 

LAL Endotoxin Detection Assay 

 

The team sought to synthesize a           codon-optimized sequence of     Factor C and integrate it into           Bacillus subtilis using a pAX01         backbone with a xylose       inducible promoter. In the       future, they hope to design a           detection mechanism to signal       for the cleavage of Factor C and             the presence of endotoxin. 

http://2018.igem.org/Team:iTesla-SoundBio  

OLS Canmore Canada 

The PET Peeve Project: 

Bio-tagging PET Plastic for Efficient 

Sorting and Recycling 

The project uses synthetic       biology to create a novel fusion           protein that can specifically       bio-tag PET plastic, so it can be             sorted and recycled correctly.       The project involves two       proteins, PET hydrolase and a         hydrophobin called BsIA, that       are produced via a bacterial         chassis called Bacillus subtilis.  

http://2018.igem.org/Team:OLS_Canmore_Canada  

SSTI-SZGD  

Hyaluronic acid micro factory: a 

bacterium produces low 

molecular weight hyaluronic acid 

 

The team constructed a       recombinant strain Bacillus     subtilis 168E which could       directly produce different     molecular weight HA products       by regulating the activities of         LHAase. They transferred the       LHAase gene into Bacillus       subtilis 168 which is from leech           resources coding   hyaluronidase. Therefore the HA       could be enzymatically     hydrolyzed to a different       molecular weight. 

http://2018.igem.org/Team:SSTi-SZGD  

28

Page 30: How to Bacillus subtilis II

UIOWA  Investigating biosensors for the 

industrial production of 

3-hydroxypropionic acid 

The research team transformed       a promoter-regulator system     that recognizes 3HP into       Bacillus subtilis. 

http://2018.igem.org/Team:UIOWA  

  

 

2019 

Team  Project title  Description  Link 

BrownStanfordPrinctn 

Towards an Astropharmacy 

The team designed genetic       templates to produce insulin,       teriparatide, and hG-CSF using       cellular systems to harnesses the         speed of VmaxTM, the long-term         viability of Bacillus subtilis, and         production capability of E.coli, and         commercial and lab-developed     cell-free systems for their       adaptability. 

https://2019.igem.org/Team:BrownStanfordPrinctn  

Duesseldorf     

SynMilk- an eco-friendly 

synthetic cow’s milk to save the 

environment 

The project consists in the         production of the natural       components of cow`s milk using         methods from synthetic biology to         modify microorganisms. The team       modified Bacillus subtilis, Pichia       pastoris, and the photosynthetic       cyanobacterium Synechocystis sp.     PCC 6803 to produce the milk           proteins heterologously.  

https://2019.igem.org/Team:Duesseldorf  

HZNFHS Hangzhou  

 

Biological dinitrogen fixation 

Nif-specific transcriptional 

activator NifA gene modulates pH and 

The team cloned the NifA gene           from Sinorhizobium fredii,     constructed the over-expression     vector of pHT43 and transformed         into Bacillus subtilis. The NifA         over-expressed Bacillus subtilis     modulated the soil pH from 4.0 to             over 7. 

https://2019.igem.org/Team:HZNFHS_Hangzhou  

29

Page 31: How to Bacillus subtilis II

bacteria around tea plants 

Jiangnan-China    

SUPERB  The team used surfactin. In order           to produce surfactin industrially,       we modified Bacillus subtilis 168 by           knocking out competition     pathways, replacing promoters,     and enhancing resistance efflux       genes. 

https://2019.igem.org/Team:Jiangnan-China  

Orleans      

The Metal`OSE Project (Optimized 

Sludge Engineering) 

The project aims to create a           bacterium able to specifically       remove heavy metals from sewage         sludges and produce ethanol from         the cellulose is contains. 

https://2019.igem.org/Team:Orleans  

 

                

References Barbieri, G., Albertini, A. M., Ferrari, E., Sonenshein, A. L., & Belitsky, B. R. (2016). Interplay of                                 CodY and ScoC in the Regulation of Major Extracellular Protease Genes of Bacillus subtilis.                           Journal of Bacteriology, 198(6), 907–920. doi:10.1128/jb.00894-15 

30

Page 32: How to Bacillus subtilis II

Bareia, T., Pollak, S. & Eldar, A. Self-sensing in Bacillus subtilis quorum-sensing systems.Nat                         Microbiol 3, 83–89 (2018). https://doi.org/10.1038/s41564-017-0044-z 

Bassler B.L., Miller M.B. (2013) Quorum Sensing. In: Rosenberg E., DeLong E.F., Lory S.,                           Stackebrandt E., Thompson F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg.                   https://doi.org/10.1007/978-3-642-30123-0_60 

Bhawsar, S., (2011). “Bacterial Locomotion- Importance of Bacterial Motility.” Biotech                   Articles.https://www.biotecharticles.com/Biology-Article/Bacterial-Locomotion-Importance-of-Bacterial-Motility-629.html 

Branda S, Chu F, Kearns, D, Kolter R & Losick, R. (2005). A master regulator for biofilm                                 formation by Bacillus subtilis. Mol Microbiol 55: 739–749. 

Branda SS, Chu F, Kearns DB, Losick R, Kolter R (2006) A major protein component of the                                 Bacillus subtilis biofilm matrix. Mol Microbiol 59:1229–1238  

Branda, S. S., González-Pastor, J. E., Ben-Yehuda, S., Losick, R., & Kolter, R. (2001). Fruiting                             body formation by Bacillus subtilis. Proceedings of the National Academy of Sciences, 98(20),                         11621-11626. 

Bron, S., Luxen, E., & Swart, P. (1988). Instability of recombinant pUB110 plasmids in Bacillus                             subtilis: Plasmid-encoded stability function and effects of DNA inserts. Plasmid, 19(3), 231–241.                       doi:10.1016/0147-619x(88)90041-8  

Burbulys, D., Trach, K. A., & Hoch, J. A. (1991). Initiation of sporulation in B. subtilis is controlled                                   by a multicomponent phosphorelay. Cell, 64(3), 545-552. 

Caspi et al. (2014). The MetaCyc database of metabolic pathways and enzymes and the BioCyc                             collection of Pathway/Genome Databases. Nucleic Acids Research 42:D459-D471. 

Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: A common cause of                         persistent infections. Science 284:1318–1322. 

Day, R. (1981). “Motility”. The Journal Cell Biology. https://url2.cl/HyKst 

Del Solar, G., Giraldo, R., Ruiz. M., Espinosa, M. & Díaz, R. (1998). Replication and Control of                                 Circular Bacterial Plasmids. Microbiology and Molecular Biology Reviews 62 (2) 434-464; DOI:                       10.1128/MMBR.62.2.434-464.1998 

DeLong, D. & Manning, P, (1994) Bacterial Diseases. Bacillus, Science Direct.                     https://www.sciencedirect.com/science/article/pii/B9780124692350500142 

31

Page 33: How to Bacillus subtilis II

Dogsa, I., Choudhary, K.S., Marsetic, Z., Hudaiberdiev, S., Vera, R., Pongor, S. & Mandic-Mulec, I.                             (2014). ComQXPA Quorum Sensing Systems May Not Be Unique to Bacillus subtilis: A Census in                             Prokaryotic Genomes. PLoS ONE 9(5): e96122. doi:10.1371/journal.pone.0096122 

Ellermeier, C. D., Hobbs, E. C., Gonzalez-Pastor, J. E., & Losick, R. (2006). A three-protein                             signaling pathway governing immunity to a bacterial cannibalism toxin. Cell, 124(3), 549-559. 

Elshaghabee, F. M., Rokana, N., Gulhane, R. D., Sharma, C., & Panwar, H. (2017). Bacillus As                               Potential Probiotics: Status, Concerns, and Future Perspectives. Frontiers in Microbiology, 8.                     doi:10.3389/fmicb.2017.01490 

Engebrecht, J., Nealson, K., & Silverman, M. (1983). Bacterial bioluminescence: isolation and                       genetic analysis of functions from Vibrio fischeri. Cell, 32(3), 773–781.                   https://doi.org/10.1016/0092-8674(83)90063-6 

Errington, J. (1993). Bacillus subtilis sporulation: regulation of gene expression and control of                         morphogenesis. Microbiology and Molecular Biology Reviews, 57(1), 1-33. 

Flemming, H., Wingender, J., Szewzyk, U. et al. Biofilms: an emergent form of bacterial life. Nat                               Rev Microbiol 14, 563–575 (2016). https://doi.org/10.1038/nrmicro.2016.94 

Flórez L.A., Roppel S.F., Schmeisky A.G., Lammers C.R., Stülke J. A community-curated                       consensual annotation that is continuously updated: the Bacillus subtilis centred wiki                     SubtiWiki. Database. 2009; doi:10.1093/database/bap012. 

Fujita, M., González-Pastor, J. E., & Losick, R. (2005). High-and low-threshold genes in the                           Spo0A regulon of Bacillus subtilis. Journal of bacteriology, 187(4), 1357-1368. 

González, J. E. (2011). Cannibalism: a social behavior in sporulating Bacillus subtilis. FEMS                         microbiology reviews, 35(3), 415-424; 

González, J. E., Hobbs, E. C., & Losick, R. (2003). Cannibalism by sporulating bacteria. Science,                             301(5632), 510-513. 

González-Pastor, J. E. (2011). Cannibalism: a social behavior in sporulating Bacillus subtilis.                       FEMS microbiology reviews, 35(3), 415-424. 

Guiziou, S. et al. (2016) A part toolbox to tune genetic expression in Bacillus subtilis. Nucleic                               Acids Res. 44, 7495–7508Harwood, C. R., Pohl, S., Smith, W., & Wipat, A. (2013). Bacillus subtilis.                               Methods in Microbiology Microbial Synthetic Biology, 87-117.             doi:10.1016/b978-0-12-417029-2.00004-2 

Higgins, D., & Dworkin, J. (2012). Recent progress in Bacillus subtilis sporulation. FEMS                         microbiology reviews, 36(1), 131-148. 

32

Page 34: How to Bacillus subtilis II

Höfler, C., Heckmann, J., Fritsch, A., Popp, P., Gebhard, S., Fritz, G., & Mascher, T. (2016).                               Cannibalism stress response in Bacillus subtilis. Microbiology, 162(1), 164-176. 

Kearns, D. B., & Losick, R. (2005). Cell population heterogeneity during growth of Bacillus                           subtilis. Genes & development, 19(24), 3083-3094. 

Kolter, R., Lopez, D. & Vlamakis, H. (2009). Generation of Multiple Cell Types in Bacillus Subtilis.                               Oxford Academic. https://academic.oup.com/femsre/article/33/1/152/2683634#48721581 

Liu, D. et al. (2018). Construction, model-based analysis and characterization of a promoter                         library for fine-tuned gene expression in Bacillus subtilis. ACS Synth. Biol. 7, 1785–1797 

Liu, Y., Liu, L., Li, J., Du, G., & Chen, J. (2018). Synthetic Biology Toolbox and Chassis                                 Development in Bacillus subtilis. Trends in Biotechnology. 

López, D., Vlamakis, H., Losick, R., & Kolter, R. (2009). Cannibalism enhances biofilm                         development in Bacillus subtilis. Molecular microbiology, 74(3), 609-618. 

Martinez, R. (2013). Bacillus subtilis. Brenner's Encyclopedia of Genetics, 246-248.                   doi:10.1016/b978-0-12-374984-0.00125-x 

Mielich‐Süss, B., & Lopez, D. (2015). Molecular mechanisms involved in Bacillus subtilis biofilm                         formation. Environmental microbiology, 17(3), 555-565. 

Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J., & Setlow, P. (2000). Resistance of                               Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and                   molecular biology reviews, 64(3), 548-572. 

Okada, M., Sato, I., Cho, S. J., Iwata, H., Nishio, T., Dubnau, D., & Sakagami, Y. (2005). Structure                                   of the Bacillus subtilis quorum-sensing peptide pheromone ComX. Nature Chemical Biology,                     1(1), 23–24. doi: 10.1038/nchembio709 

Online Etymology Dictionary. (2020) Motility. https://www.etymonline.com/word/motility 

Parkes, R., & Sass, H. (2009). Deep Sub-Surface. Encyclopedia of Microbiology, 64-79.                       doi:10.1016/b978-012373944-5.00275-3 

Piggot, P. (2009). Bacillus Subtilis. Encyclopedia of Microbiology, 45-56.                 doi:10.1016/b978-012373944-5.00036-5 

Piggot, P. J., & Hilbert, D. W. (2004a). Sporulation of Bacillus subtilis. Current opinion in                             microbiology, 7(6), 579-586. 

Piggot, P. J., & Hilbert, D. W. (2004b). Compartmentalization of gene expression during Bacillus                           subtilis spore formation. Microbiology and molecular biology reviews, 68(2), 234-262. 

33

Page 35: How to Bacillus subtilis II

Sauer, C. et al. (2018) Exploring the nonconserved sequence space of synthetic expression                         modules in Bacillus subtilis. ACS Synth. Biol. 7, 1773–1784Setlow, P. (2003). Spore germination.                         Current opinion in microbiology, 6(6), 550-556. 

Shank, E. A., & Kolter, R. (2011). Extracellular signaling and multicellularity in Bacillus subtilis.                           Current opinion in microbiology, 14(6), 741-747. 

Song, Y. et al. (2016) Promoter screening from Bacillus subtilis in various conditions hunting for                             synthetic biology and industrial applications. PLoS One 11, e0158447 

Spacapan, M., Danevčič, T., & Mandic-Mulec, I. (2018). ComX-Induced Exoproteases Degrade                     ComX in Bacillus subtilis PS-216. Frontiers in Microbiology, 9. doi:10.3389/fmicb.2018.00105 

Steele, E. (2016). "Bacillus Subtilis: Characteristics & Arrangement.". Study.com                 https://study.com/academy/lesson/bacillus-subtilis-characteristics-arrangement.html 

Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. Biofilms as complex differentiated                             communities. Annu. Rev. Microbiol. 56, 187–209 (2002). 

Wipat, A., & Harwood, C. R. (1999). The Bacillus subtilis genome sequence: The molecular                           blueprint of a soil bacterium. FEMS Microbiology Ecology, 28(1), 1-9. doi:10.1111/j.1574. 

Yang, S. et al. (2017) Characterization and application of endogenous phase-dependent                     promoters in Bacillus subtilis. Appl.Microbiol. Biotechnol. 101, 4151–4161-6941.1999.tb00555.x 

Zhu B. & Stülke J.(2017).SubtiWiki in 2018: from genes and proteins to functional network                           annotation of the model organism Bacillus subtilis. Nucleic acids research. 2017 Oct 09;                         46(D1):D743-748. doi:10.1093/nar/gkx908. 

 

 

34