how2 foundations final

Upload: boyzes

Post on 06-Mar-2016

219 views

Category:

Documents


0 download

DESCRIPTION

How2 Foundations FINAL

TRANSCRIPT

  • IntroductionTheintroductionofEuropeanstandardstoUK

    constructionisasignificantevent.Thetendesign

    standards,knownastheEurocodes,willaffect

    alldesignandconstructionactivitiesascurrent

    Britishstandardsfordesignareduetobe

    withdrawnin2010.

    Thispublicationispartoftheseriesofguides

    entitledHow to design concrete structures using

    Eurocode 2.Theiraimistomakethetransitionto

    Eurocode2: Design of concrete structuresaseasy

    aspossiblebydrawingtogetherinoneplacekey

    informationandcommentaryrequiredforthe

    designoftypicalconcreteelements.

    Thecementandconcreteindustryrecognisedthat

    asubstantialeffortwasrequiredtoensurethat

    theUKdesignprofessionwouldbeabletouse

    Eurocode2quickly,effectively,efficientlyand

    withconfidence.Withsupportfromgovernment,

    consultantsandrelevantindustrybodies,the

    ConcreteIndustryEurocode2Group(CIEG)was

    formedin1999andthisGrouphasprovidedthe

    guidanceforaco-ordinatedandcollaborative

    approachtotheintroductionofEurocode2.As

    aresult,arangeofresourcesistobemade

    availablethroughTheConcreteCentretohelp

    designersduringthetransitionperiod(seeback

    coverfordetails).

    Eurocode 7: Geotechnical designScopeAllfoundationsshouldbedesignedsothatthesoilsafelyresiststhe

    actionsappliedtothestructure.Thedesignofanyfoundationconsistsof

    twocomponents;thegeotechnicaldesignandthestructuraldesignofthe

    foundationitself.However,forsomefoundations(e.g.flexiblerafts)theeffect

    oftheinteractionbetweenthesoilandstructuremaybecriticalandmust

    alsobeconsidered.GeotechnicaldesigniscoveredbyEurocode71,whichsupersedesseveralcurrentBritishStandardsincludingBS59302,BS80023andBS80044.ThenewEurocodemarksasignificantchangeingeotechnicaldesigninthatlimitstateprinciplesareusedthroughoutandthisshould

    ensureconsistencybetweentheEurocodes.TherearetwopartstoEurocode7,

    Part1:General rulesandPart2: Ground investigation and testing.

    TheessentialfeaturesofEurocode7,Part1relatingtofoundationdesignare

    discussedinthisguide.Itshouldbeemphasisedthatthispublicationcovers

    onlythedesignofsimplefoundations,whichareasmallpartofthescopeof

    Eurocode7.Thereforeitshouldnotbereliedonforgeneralguidanceonthis

    Eurocode.AtthetimeofwritingitisanticipatedthattheNationalAnnex(NA)

    forPart1willbepublishedinOctober2006.

    Limit statesThefollowingultimatelimitstates(ULS)shouldbesatisfiedforgeotechnical

    design;theyeachhavetheirowncombinationsofactions.(Foranexplanation

    ofEurocodeterminologypleaserefertoHow to design concrete structures

    using Eurocode 2: Introduction to Eurocodes5).EQU Lossofequilibriumofthestructure.

    STR Internalfailureorexcessivedeformationofthestructureorstructural

    member.

    GEO Failureduetoexcessivedeformationoftheground.

    UPL Lossofequilibriumduetoupliftbywaterpressure.

    HYD Failurecausedbyhydraulicgradients.

    Inaddition,theserviceabilitylimitstates(SLS)shouldbesatisfied.Itwill

    usuallybeclearthatoneofthelimitstateswillgovernthedesignand

    thereforeitwillnotbenecessarytocarryoutchecksforallofthem,although

    itisconsideredgoodpracticetorecordthattheyhaveallbeenconsidered.

    Geotechnical categoriesEurocode7recommendsthreegeotechnicalcategoriestoassistinestablishing

    thegeotechnicaldesignrequirementsforastructure(seeTable1).

    HowtodesignconcretestructuresusingEurocode2

    6.FoundationsR WebsterCEng,FIStructEO BrookerBEng,CEng,MICE,MIStructE

  • 2HowtodesignconcretestructuresusingEurocode2

    Table 1 Geotechnical categories of structures

    Category Description Risk of geotechnical failure Examples from Eurocode 7

    1 Smallandrelativelysimplestructures Negligible Nonegiven

    2 Conventionaltypesofstructureandfoundationwithnodifficultgroundorloadingconditions

    Noexceptionalrisk Spreadfoundations

    3 Allotherstructures Abnormalrisks LargeorunusualstructuresExceptionalgroundconditions

    Table 2Design values of actions derived for UK design, STR/GEO ultimate limit state persistent and transient design situations

    Combination Expression reference from BS EN 1990

    Permanent actions Leading variable action

    Accompanying variable actions

    Unfavourable Favourable Main (if any) Others

    Combination 1 (Application of combination 1 (BS EN 1997) to set B (BS EN 1990)

    Exp.(6.10) 1.35Gka 1.0Gka 1.5bQk 1.5bco,icQk,i

    Exp.(6.10a) 1.35Gka 1.0Gka 1.5co,1cQk 1.5bco,icQk,i

    Exp.(6.10b) 0.925dx1.35Gka 1.0Gka 1.5bQk 1.5bco,icQk,i

    Combination 2 (Application of combination 2 (BS EN 1997) to set C (BS EN 1990)

    Exp.(6.10) 1.0Gka 1.0Gka 1.3bQk,1 1.3bco,ibQk,i

    Keya WherethevariationinpermanentactionisnotconsideredsignificantGk,j,supandGk,j,infmaybetakenasGkb Wheretheactionisfavourable,gQ,i=0andthevariableactionsshouldbeignoredc ThevalueofcocanbeobtainedfromTableNA.A1.1oftheUKNAtoBSEN1990(orseeTable3ofIntroduction to Eurocodes5)d ThevalueofjintheUKNAtoBSEN1990is0.925

    Table 3Partial factors for geotechnical material properties

    Angle of shearing resistance (apply to tan h)

    Effective cohesion Undrained shear strength

    Unconfined strength Bulk density

    Symbol gh gc gcu gqu gg

    Combination1 1.0 1.0 1.0 1.0 1.0

    Combination2 1.25 1.25 1.4 1.4 1.0

    Itisanticipatedthatstructuralengineerswilltakeresponsibilityforthe

    geotechnicaldesignofcategory1structures,andthatgeotechnical

    engineerswilltakeresponsibilityforcategory3structures.The

    geotechnicaldesignofcategory2structuresmaybeundertakenby

    membersofeitherprofession.Thisdecisionwillverymuchdependon

    individualcircumstances.

    Methods of design and combinationsTherehasnotbeenaconsensusamongstgeotechnicalengineers

    overtheapplicationoflimitstateprinciplestogeotechnicaldesign.

    Therefore,toallowforthesedifferencesofopinion,Eurocode7

    providesforthreedesignapproachestobeusedfortheULS.The

    decisiononwhichapproachtouseforaparticularcountryisgiven

    initsNationalAnnex.IntheUKdesignapproach1willbespecified

    intheNationalAnnex.Forthisdesignapproach(excludingpileand

    anchoragedesign)therearetwosetsofcombinationstouseforthe

    STRandGEOultimatelimitstates.Thevaluesforthepartialfactors

    tobeappliedtotheactionsforthesecombinationsofpartialfactors

    aregiveninTable2andthepartialfactorsforthegeotechnical

    materialpropertiesaregiveninTable3.Combination1willgenerally

    governthestructuralresistance,andcombination2willgenerally

    governthesizingofthefoundations.

    Thepartialfactorsforsoilresistancetoslidingandbearingshouldbe

    takenas1.0forbothcombinations.

    ThepartialfactorstobeappliedtotheactionsattheEQUlimitstate

    aregiveninTable4;thegeotechnicalmaterialpartialfactorsbeingthe

    sameasforcombination2inTable3.

    FortheSLS,Eurocode7doesnotgiveanyadviceonwhetherthe

    characteristic,frequentorquasi-permanentcombinationshouldbe

    used.Wheretheprescriptivemethodisusedforspreadfoundations

    (seepage3)thenthecharacteristicvaluesshouldbeadopted.For

  • 6.Foundations

    3

    directmethodsofcalculationthefrequentcombinationcanbeused

    forsizingoffoundationsandthequasi-permanentcombinationcanbe

    usedforsettlementcalculations.

    Furtherinformationondesigncombinationscanbefoundinanother

    guideintheseries,Introduction to Eurocodes5.

    Geotechnical design reportAgeotechnicaldesignreportshouldbeproducedforeachproject,

    evenifitisonlyasinglesheet.Thereportshouldcontaindetailsof

    thesite,interpretationofthegroundinvestigationreport,geotechnical

    designrecommendationsandadviceonsupervision,monitoringand

    maintenanceoftheworks.Itislikelythatthisreportwillrequireinput

    frommorethanoneconsultant,dependingonwhethertheprojectisin

    geotechnicalcategory1,2or3.

    Thefoundationdesignrecommendationsshouldincludebearing

    resistancesandcharacteristicvaluesforsoilparameters.Itshould

    alsoclearlystatewhetherthevaluesareapplicabletoSLSorULSand

    whethertheyareforcombination1orcombination2.

    Spread foundationsThegeotechnicaldesignofspreadfoundations(e.g.stripandpad

    foundations)iscoveredbysection6ofEurocode7,Part1andthis

    givesthreemethodsfordesign:

    Directmethodcalculationiscarriedoutforeachlimitstate. Indirectmethodexperienceandtestingusedtodetermine

    serviceabilitylimitstateparametersthatalsosatisfyallrelevant

    limitstates(includedinEurocode7mainlytosuitFrenchdesign

    methods,andisnotdiscussedfurtherhere).

    Prescriptivemethodinwhichapresumedbearingresistanceisused.

    FormostspreadfoundationsintheUK,settlementwillbethe

    governingcriterion;traditionallyallowablebearingpressureshavebeen

    usedtolimitsettlement.Thisconceptofincreasingthefactorofsafety

    onbearingresistancestocontrolsettlementmaystillbeusedwiththe

    prescriptivemethod.TheexceptionisforsoftclayswhereEurocode7

    requiressettlementcalculationstobeundertaken.

    Whenusingthedirectmethod,calculationsarecarriedoutforeach

    limitstate.AttheULS,thebearingresistanceofthesoilshouldbe

    checkedusingpartialfactorsonthesoilpropertiesaswellason

    theactions.AttheSLSthesettlementofthefoundationsshouldbe

    calculatedandcheckedagainstpermissiblelimits.

    Theprescriptivemethodmaybeusedwherecalculationofthesoil

    propertiesisnotpossibleornecessaryandcanbeusedprovidedthat

    conservativerulesofdesignareused.Thereforereferencecancontinue

    tobemadetoTable1ofBS8004(seeTable5)todeterminepresumed

    (allowable)bearingpressuresforcategory1structuresandpreliminary

    calculationsforcategory2structures.Alternatively,thepresumed

    bearingresistancetoallowforsettlementcanbecalculatedbythe

    geotechnicaldesignerandincludedinthegeotechnicaldesignreport.

    Table 4Design values of actions derived for UK design, EQU ultimate limit state persistent and transient design situations

    Combination Expression reference

    Permanent actions Leading variable action

    Accompanying variable actions

    Unfavourable Favourable Main (if any)

    Others

    Exp.(6.10) 1.0Gka 0.90Gka 1.5bQk 1.5cco,icQk,i

    Key

    a WherethevariationinpermanentactionisnotconsideredsignificantGk,j,supandGk,j,infmaybetakenasGk

    b Wheretheactionisfavourable,gQ,i=0andthevariableactionsshouldbeignored

    c ThevalueofcocanbeobtainedfromTableNA.A1.1oftheUKNAtoBSEN1990

    Table 5Presumed allowable bearing values under static loading (from BS 8004)

    Category Type of soil Presumed allowable bearing value (kN/m2) Remarks

    Non-cohesivesoils

    Densegravel,ordensesandandgravel >600 Widthoffoundationnotlessthan1m.Groundwaterlevelassumedtobebelowthebaseofthefoundation.Mediumdensegravel,ormedium

    densesandandgravel

  • 4HowtodesignconcretestructuresusingEurocode2

    Partialfactorsforthesoilparametersusedtodeterminetheresistances

    canbeobtainedfromTable3above(combination2).

    Thepressuredistributionunderthebaseshouldbeassessedtoensure

    thatthemaximumpressuredoesnotexceedthebearingresistances

    obtainedfromthegeotechnicaldesignreportatbothEQUandGEO

    ultimatelimitstates(seeFigure2).Iftheeccentricityisgreaterthan

    L/6atSLS,thenthepressuredistributionusedtodeterminethe

    settlementshouldbemodifiedbecausetensioncannotoccurbetween

    thebaseandthesoil.Inthiscasethedesignershouldsatisfyhimself

    thattherewillbenoadverseconsequences(e.g.excessiverotationof

    thebase).ItshouldalsobenotedthattheULSpressuredistribution

    diagramwillberectangularandnottrapezoidal.

    Reinforced concrete padsWherethepadfoundationsrequirereinforcementthefollowingchecks

    shouldbecarriedouttoensure:

    Sufficientreinforcementtoresistbendingmoments. Punchingshearstrength. Beamshearstrength.

    ThemomentsandshearforcesshouldbeassessedusingtheSTR

    combination:

    1.35Gk+1.5Qk STRcombination1(Exp.(6.10))

    However,theremaybeeconomiestomadefromusingExpressions

    (6.10a)or(6.10b)fromtheEurocode.

    Thecriticalbendingmomentsfordesignofbottomreinforcement

    arelocatedatthecolumnfaces.Bothbeamshearandpunching

    shearshouldthenbecheckedatthelocationsshowninFigure3.For

    punchingshearthegroundreactionwithintheperimetermaybe

    deductedfromthecolumnload(Expression(6.48),Eurocode2116).Itisnotusualforapadfoundationtocontainshearreinforcement,

    thereforeitisonlynecessarytoensurethattheconcreteshearstress

    capacitywithoutshearreinforcement(vRd,cseeTable6)isgreater

    thanappliedshearstress(vEd=VEd/(bd)).

    Ifthebasicshearstressisexceeded,thedesignermayincreasethe

    depthofthebase.Alternatively,theamountofmainreinforcement

    couldbeincreasedor,lessdesirably,shearlinkscouldbeprovided.

    (SeetheaccompanyingguideHow to design concrete structures

    using Eurocode 2: Beamsforanexplanationofhowtodesignshear

    reinforcement.)

    How to FoundationsFig 2 16.02.06Job No.

    MM M

    P

    PPe

    eee = /M P

    P

    P

    L

    L

    L

    L1 +

    e6

    6e

    1

    2P

    1.5 3L e

    L = width of base

    SLS pressure distributions ULS pressure distribution

    or

    Figure 2Pressure Distribution for Pad Foundations

    P

    2L e

    P P P

    Figure 2Pressure distributions for pad foundations

    Figure 1Procedures for depth of spread foundations

    Design foundation (structural design) using the worst of combinations 1 and 2 (ULS) for actions and geotechnical

    material properties.

    START

    Design using direct method?

    Obtain soil parameters from Ground Investigation report

    Size foundation (geotechnical design) using the worst of combinations

    1 or 2 (ULS) for actions and geotechnical material properties. Combination 2

    will usually govern.

    Use prescriptive method.Size foundation

    (geotechnical design) using SLS for actions

    and presumed bearing resistance

    Is there an overturning moment?

    Check overturning using EQU limit state for actions and

    GEO combination 2 for material properties.

    Yes No

    Yes

    No

    Aflowchartshowingthedesignprocessforshallowfoundationsis

    giveninFigure1.

    Wherethereisamomentappliedtothefoundation,theEQUlimit

    stateshouldalsobechecked.Assumingthepotentialoverturningof

    thebaseisduetothevariableactionfromthewind,thefollowing

    combinationshouldbeused(thevariableimposedactionisnot

    consideredtocontributetothestabilityofthestructure):

    0.9Gk+1.5Qk,w EQUcombination

    where:

    Gkisthestabilisingcharacteristicpermanentaction

    (Use1.1Gkforadestabilisingpermanentaction)

    Qk,wisthedestabilisingcharacteristicvariablewindaction

  • 6.Foundations

    5

    Design for punching shearEurocode2providesspecificguidanceonthedesignoffoundationsfor

    punchingshear,andthisvariesfromthatgivenforslabs.InEurocode2the

    shearperimeterhasroundedcornersandtheforcesdirectlyresistedby

    thegroundshouldbededucted(toavoidunnecessarilyconservative

    designs).Thecriticalperimetershouldbefounditeratively,butitis

    generallyacceptabletocheckatdand2d.Alternatively,aspreadsheet

    couldbeused(e.g.spreadsheetTCC81fromSpreadsheets for concrete

    design to BS 8110 and Eurocode 27).TheprocedurefordeterminingthepunchingshearrequirementsisshowninFigure4.

    Table 6vRd,c resistance of members without shear reinforcement, MPa

    r l Effective depth, d (mm)

    300 400 500 600 700 800 900 1000a

    0.25% 0.47 0.43 0.40 0.38 0.36 0.35 0.35 0.34

    0.50% 0.54 0.51 0.48 0.47 0.45 0.44 0.44 0.43

    0.75% 0.62 0.58 0.55 0.53 0.52 0.51 0.50 0.49

    1.00% 0.68 0.64 0.61 0.59 0.57 0.56 0.55 0.54

    1.25% 0.73 0.69 0.66 0.63 0.62 0.60 0.59 0.58

    1.50% 0.78 0.73 0.70 0.67 0.65 0.64 0.63 0.62

    1.75% 0.82 0.77 0.73 0.71 0.69 0.67 0.66 0.65

    2.00% 0.85 0.80 0.77 0.74 0.72 0.70 0.69 0.68

    2.50% 0.85 0.80 0.77 0.74 0.72 0.70 0.69 0.68

    k 1.816 1.707 1.632 1.577 1.535 1.500 1.471 1.447

    Key

    aFordepthsgreaterthan1000calculatevRd,cdirectly.

    Notes

    1Tablederivedfrom:vRd,c=0.12k(100r Ifck)(1/3)0.035k1.5fck0.5wherek=1+(200/d)2andr I=(rIy+r Iz)0.02,r Iy=Asy/(bd)andr Iz=Asz/(bd)

    2Thistablehasbeenpreparedforfck=30;wherer lexceed0.40%thefollowingfactorsmaybeused:

    fck 25 28 32 35 40 45 50

    Factor 0.94 0.98 1.02 1.05 1.10 1.14 1.19

    Beam shearfaces

    2d

    Figure 3Shear checks for pad foundations

    d

    d

    h

    Bends may berequired

    Punching shear perimeters,(load within deducted from V )Ed

    How to FoundationsFig 3 20.02.06Job No.

    Figure 3Shear checks for pad foundations

    START

    Determine value of factor ( =1.0 when applied moment is zero; refer to Expressions

    (6.38) to (6.42) from BS EN 199211 for other cases)

    Determine value of vEd,max (design shear stress at face of column) from:

    vEd,max = (VEd DVEd) (from Exp. (6.38)) (u0deff)

    where u0 is perimeter of column (see Clause 6.4.5 for columns at base edges)

    deff = (dy + dz)/2 where dy and dz are the effective depths in orthogonal directions

    Determine value of vRd,max (refer to Table 7)

    Determine concrete punching shear capacity vRd (without shear reinforcement) from 2dvRd,c/a (Refer to Table 6 for vRd,c)

    Yes

    Either increase main steel, or provide punching shear

    reinforcement required. (Not recommended

    for foundations.)

    No

    No shear reinforcement required. Check complete.

    Figure 4Procedure for determining punching shear capacity for pad foundations

    How to FoundationsFig 5 20.02.06Job No.

    bz

    2d2d

    by

    u1

    u1

    Figure 5Typical basic control perimeters around loaded areas.

    Figure 5Typical basic control perimeters around loaded areas

    Yes

    Redesign foundationIs vEd,max < vRd,max?No

    Determine value of vEd, (design shear stress) from:vEd = (VEd DVEd)

    (u1deff)where u1 is length of control perimeter (refer to Figure 5). For

    eccentrically loaded bases, refer to Exp. (6.51).The control perimeter will have to be found through iteration;

    it will usually be between d and 2d

    Is vEd < vRd at critical perimeter?

  • 6HowtodesignconcretestructuresusingEurocode2

    flexurereferenceshouldbemadetoanotherguideinthisseries,How

    to design concrete structures using Eurocode 2: Beams8.

    Alternatively,atrussanalogymaybeused;thisiscoveredinSections5.6.4

    and6.5ofEurocode211.Thestrutangleyshouldbeatleast21.8to

    thehorizontal;notethatyshouldbemeasuredintheplaneofthecolumn

    andpile.

    Bothbeamshearandpunchingshearshouldthenbecheckedasshownin

    Figure6.Forbeamshear,thedesignresistancesinTable6maybeused.Ifthe

    basicshearstressisexceeded,thedesignershouldincreasethedepthofthe

    base.Alternatively,theamountofmainreinforcementcouldbeincreasedor,

    lessdesirably,shearlinkscouldbeprovided.Careshouldbetakenthatmain

    barsarefullyanchored.Asaminimum,afullanchorageshouldbeprovided

    fromtheinnerfaceofpiles.Largeradiusbendsmayberequired.

    Whenassessingtheshearcapacityinapilecap,onlythetensionsteel

    placedwithinthestresszoneshouldbeconsideredascontributingtothe

    shearcapacity(seeFigure7).

    Raft foundationsThebasicdesignprocessesforraftsaresimilartothoseforisolated

    padfoundationsorpilecaps.Theonlydifferenceinapproachliesinthe

    selectionofanappropriatemethodforanalysingtheinteractionbetween

    theraftandthegroundsoastoachieveareasonablerepresentationof

    theirbehaviour.Forstifferrafts(i.e.span-to-thicknessgreaterthan10)with

    afairlyregularlayout,simplifiedapproachessuchasyieldlineortheflat

    slabequivalentframemethodmaybeemployed,onceanestimationof

    thevariationsinbearingpressurehasbeenobtainedfromageotechnical

    specialist.Whateversimplificationsaremade,individualelasticraft

    reactionsshouldequatetotheappliedcolumnloads.

    Thinner,moreflexibleraftsorthosewithacomplexlayoutmayrequire

    theapplicationofafiniteelementorgrillageanalysis.Forraftsbearing

    ongranularsub-gradesorwhencontiguous-piledwallsordiaphragm

    perimeterwallsarepresent,thegroundmaybemodelledasaseries

    ofWinklersprings.However,forcohesivesub-grades,thisapproachis

    unlikelytobevalid,andspecialistsoftwarewillberequired.

    Piled foundationsForthepurposeofthisguideitisassumedthatthepiledesignwillbe

    carriedoutbyaspecialistpilingcontractor.Theactionsonthepilesmust

    beclearlyconveyedtothepiledesigner,andtheseshouldbebrokendown

    intotheunfactoredpermanentactionsandeachoftheapplicablevariable

    actions(e.g.imposedandwindactions).Thepiledesignercanthencarry

    outthestructuralandgeotechnicaldesignofthepiles.

    WheremomentsareappliedtothepilecaptheEQUcombination

    shouldalsobeusedtocheckthepilescanresisttheoverturningforces.

    TheseEQUloadsmustalsobeclearlyconveyedtothepiledesigner

    andproceduresputinplacetoensurethepilesaredesignedforthe

    correctforces.

    Apilecapmaybetreatedasabeaminbending,wherethecritical

    bendingmomentsforthedesignofthebottomreinforcementare

    locatedatthecolumnfaces.Forfurtherguidanceondesigningfor

    Table 7Values for vRd, max

    fck vRd,max

    20 3.68

    25 4.50

    28 4.97

    30 5.28

    32 5.58

    35 6.02

    40 6.72

    45 7.38

    50 8.00

    How to FoundationsFig 8 20.02.06Job No.

    a a

    bF

    hF

    Figure 8Dimensions for plain foundations

    Figure 8Dimensions for plain foundations

    Stress zone

    45o

    As contributing to shear capacity

    Figure 7Shear reinforcement for pilecaps.

    How to FoundationsFig 7 20.02.06Job No.

    Figure 7Shear reinforcement for pilecaps

    Punching shear 5 2d from column face

    f /5

    f /5

    f

    Beam shear 5 d from column face

    Figure 6Critical shear perimeters for piles

    How to FoundationsFig 6 20.02.06Job No.

    Figure 6Critical shear perimeters for piles

  • 6.Foundations

    7

    Table 8Minimum percentage of reinforcement required

    fck fctm Minimum % (0.26 fctm /fyka )

    25 2.6 0.13%

    28 2.8 0.14%

    30 2.9 0.15%

    32 3.0 0.16%

    35 3.2 0.17%

    40 3.5 0.18%

    45 3.8 0.20%

    50 4.1 0.21%

    Key

    a Wherefyk=500MPa.

    Plain concrete foundationsStripandpadfootingsmaybeconstructedfromplainconcrete

    providedthefollowingrulesareadheredto.

    Incompression,thevalueofacc,thecoefficienttakingaccountoflong-termeffectsappliedtodesigncompressivestrength

    (seeCl.3.1.6),shouldbetakenas0.6asopposedto0.85for

    reinforcedconcrete.

    Theminimumfoundationdepth,hF,(seeFigure8)maybecalculatedfrom:

    where:

    sgd=thedesignvalueofthegroundbearingpressure

    fctd =thedesignconcretetensilestrengthfromExp.(3.16)

    Formanysituationsthisisunlikelytoofferanysavingsoverthecurrent

    practiceofdesigningforhfa.

    Thepossibilityofsplittingforces,asadvisedinClause9.8.4ofEurocode

    211,mayneedtobeconsidered.

    Eurocode2allowsplainconcretefoundationstocontainreinforcement

    forcontrolofcracking.

    Rules for spacing and quantity of reinforcementCrack controlRefertoHow to design concrete structures using Eurocode 2: Getting

    started 9.

    Minimum area of principal reinforcementTheminimumareaofreinforcementisAs,min=0.26fctmbtd/fykbutnot

    lessthan0.0013btd(seeTable8).

    Maximum area of reinforcementExceptatlaplocations,themaximumareaoftensionorcompression

    reinforcement,shouldnotexceedAs,max=0.04Ac

    Minimum spacing of reinforcementTheminimumspacingofbarsshouldbethegreaterof:

    Bardiameter, Aggregatesizeplus5mm,or 20mm.

    Deep elementsFordeepelementstheadviceinEurocode2forthesidefacesofdeep

    beamsmaybefollowed.TheUKNationalAnnexrecommendsthat0.2%

    isprovidedineachface.Thedistancebetweenbarsshouldnotexceed

    thelesseroftwicethebeamdepthor300mm.Forpilecapstheside

    facemaybeunreinforcedifthereisnoriskoftensiondeveloping.

    Symbol Definition Value

    Ac Crosssectionalareaofconcrete bh

    As Areaoftensionsteel

    As,prov Areaoftensionsteelprovided

    As,reqd Areaoftensionsteelrequired

    d Effectivedepth

    deff Averageeffectivedepth (dy+dz)/2

    fcd Designvalueofconcretecompressivestrength accfck/gc

    fck Characteristiccylinderstrengthofconcrete

    fctm Meanvalueofaxialtensilestrength 0.30fck2/3forfckC50/60 (fromTable3.1,Eurocode2)

    Gk Characteristicvalueofpermanentaction

    h Overalldepthofthesection

    leff Effectivespanofmember SeeSection5.3.2.2(1)

    M DesignmomentattheULS

    Qk Characteristicvalueofavariableaction

    Qk,w Characteristicvalueofavariablewindaction

    VEd Designvalueofappliedshearforce

    vEd Designvalueofappliedshearstress

    VRd,c Designvalueofthepunchingshearresistancewithoutpunchingshearreinforcement

    vRd,c Designvalueofthepunchingshearstressresistancewithoutpunchingshearreinforcement

    vRd,max Designvalueofthemaximumpunchingshearresistancealongthecontrolsectionconsidered

    x Depthtoneutralaxis (dz)/0.4

    xmax Limitingvaluefordepthtoneutralaxis (d0.4)dwhered1.0

    z Leverarm

    acc Coefficienttakingaccountoflongterm 0.85forflexureandeffectsoncompressivestrengthandof axialloads,1.0forunfavourableeffectsresultingfromtheway otherphenomenaloadisapplied(FromUKNationalAnnex)

    b Factorfordeterminingpunchingshearstress

    d Ratiooftheredistributedmomenttotheelasticbendingmoment

    gm Partialfactorformaterialproperties

    r0 Referencereinforcementratio fck/1000

    r l Requiredtensionreinforcementatmid-span Asl bdtoresistthemomentduetothedesignloads(oratsupportforcantilevers)

    c0 Factorforcombinationvalueofavariableaction

    c1 Factorforfrequentvalueofavariableaction

    c2 Factorforquasi-permanentvalueofavariableaction

    Selected symbols

  • 6.Foundations

    Alladviceorinformation from The Concrete Centre is intended for those who will evaluate the significance and limitations of its contents and take responsibility for its use and application. No liability (including that for negligence) for any loss resulting from such advice or information is accepted by The Concrete Centre or its subcontractors, suppliers or advisors. Readers should note that publications from The Concrete Centre are subject to revision from time to time and they should therefore ensure that they are in possession of the latest version. This publication has been produced following a contract placed by the Department for Trade and Industry (DTI); the views expressed are not necessarily those of the DTI.

    Ref:TCC/03/21ISBN1-904818-31-5PublishedApril2006TheConcreteCentre

    Published by The Concrete Centre

    RiversideHouse,4MeadowsBusinessPark,StationApproach,Blackwater,Camberley,SurreyGU179AB

    Tel:+44(0)1276606800Fax:+44(0)1276606801

    www.concretecentre.com

    FormoreinformationonEurocode2andotherquestionsrelatingtothedesign,useandperformanceofconcretecontactthefreeNationalHelplineon:

    0700 4 500 500or0700 4 CONCRETE

    [email protected]

    References 1 BRITISHSTANDARDSINSTITUTION.BSEN1997:Eurocode7:Geotechnical design.BSI(2parts).

    2 BRITISHSTANDARDSINSTITUTION.BS5930:Code of practice for site investigation.BSI,1999.

    3 BRITISHSTANDARDSINSTITUTION.BS8002:Code of practice for earth retaining structures.BSI,1994.

    4 BRITISHSTANDARDSINSTITUTION.BS8004:Code of practice for foundations.BSI,1986.

    5 NARAYANAN,RS&BROOKER,O.How to design concrete structures using Eurocode 2: Introduction to Eurocodes.TheConcreteCentre,2005.

    6 BRITISHSTANDARDSINSTITUTION.BSEN199211,Eurocode 2: Design of concrete structures. General rules and rules for buildings.BSI,2004.

    7 GOODCHILD,CH&WEBSTERRM.Spreadsheets for concrete design to BS 8110 and Eurocode 2, version3.TheConcreteCentre,2006.

    8 MOSS,RM&BROOKER,O.How to design concrete structures using Eurocode 2: Beams.TheConcreteCentre,2006.

    9 BROOKER,O.How to design concrete structures using Eurocode 2: Getting started.TheConcreteCentre,2005.

    Further guidance and advice Guidesinthisseriescover:Introduction to Eurocodes, Getting started, Slabs, Beams, Columns, Foundations, Flat slabsandDeflection calculations.

    Forfreedownloads,detailsofotherpublicationsandmoreinformationonEurocode2visitwww.eurocode2.info

    ThisguideistakenfromTheConcreteCentrespublication,How to design concrete structures using Eurocode 2(Ref.CCIP-006)

    AcknowledgementsThecontentofthispublicationwasproducedaspartoftheprojectEurocode2:transitionfromUKtoEuropeanconcretedesignstandards.This

    projectwaspartfundedbytheDTIunderthePartnersinInnovationscheme.TheleadpartnerwastheBritishCementAssociation.Theworkwas

    carriedoutundertheguidanceoftheConcreteIndustryEurocode2Group,whichconsistsofrepresentativesfrom:

    AlanBaxterandAssociatesArupBritishCementAssociationBritishPrecastBuildingResearchEstablishmentClarkSmithPartnership

    ConcreteInnovationandDesignConstructDepartmentforTradeandIndustryOfficeoftheDeputyPrimeMinisterTheConcreteCentre

    TheConcreteSocietyQuarryProductsAssociation.

    ThanksareduetoDrAndrewBondofGeocentrixLtdforhisassistancewiththeinterpretationofEurocode7.

    The Concrete Centre provides Eurocode 2 seminars and short courses across the UK

    Free CPD seminar 9 May, London, 6.00 pm startAn Introduction to Eurocode 2: Design of Concrete StructuresThisseminarintroducesEurocode2andaimstohelpdesignersbecomefamiliarwithanewsetofdocuments,theirterminologyandtheinteractionbetweenthem.

    Short course in partnership with IStructE 14 June, Manchester, 9.00 am startDesign to Eurocode 2 including the UK AnnexTheone-daycoursewillincludeanintroductiontothenewcode,followedbyworkedexamplesondesignanddetailingofthemainstructuralelementsusingtheUKsnationallydeterminedparameters.198+VATIStructEmembers;220+VATnon-members

    For more information on these events, or alternative dates, venues and topics visit www.concretecentre.com/events