hydraulics topic 2 uniform flow in open channel

Upload: anep-ameer

Post on 07-Jul-2018

252 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    1/74

    Hydraulics

    Topic 2. Uniform Flow in Open Channel

    Dr. Mohd Ariff bin Ahmad [email protected]

    Assoc. Prof. Dr. Tan Lai [email protected]

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    2/74

    Learning Outcomes

    At the end of this topic, students should be able to:

    i. Understand the concept of uniform flow

    ii. Calculate normal flow depth in variable channelsections using Chezy and Manning equations

    iii. Determine the best hydraulic/effective section of

    open channel

    BFC21103 HydraulicsTan et al. ([email protected])

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    3/74

    BFC21103 HydraulicsTan et al. ([email protected])

    Open Channel Flow

    Classification

    based on Time

    Classification

    based on Space

    Steady Unsteady Uniform Non-Uniform

    GVF RVF

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    4/74

    BFC21103 HydraulicsTan et al. ([email protected])

    •  Uniform flow is considered to be steady only, sinceunsteady uniform flow is practically does not exist.

    • Steady uniform flow is rare in natural streams, only

    happens in prismatic channels.

    • We adopt / assume uniform flow for most flow

    computations because uniform flow calculation is

    simple, practical and provide satisfactory solution.

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    5/74

    BFC21103 HydraulicsTan et al. ([email protected])

    The 132 km long All-American Canal links California's Imperial Valley to the Colorado River. This new

    concrete-lined section saves about 3.8 million of water a year over its leaky earthen forerunner 

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    6/74

    BFC21103 HydraulicsTan et al. ([email protected])

    The concrete channel of Los Angeles River (NGM, 2010)

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    7/74

    BFC21103 HydraulicsTan et al. ([email protected])

    The Klang River, Kuala Lumpur & Selangor

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    8/74

    BFC21103 HydraulicsTan et al. ([email protected])

    •  In uniform flow, the normal depth y o occurs when depth of water is

    the same along the channel.

    •  Normal depth y o implies that the water depth, flow area, wetted

    perimeter, velocity and discharge at every section of the channel

    are constant within a prismatic channel.

    •  Thus, in uniform flow, the energy line, water surface and channel

    bottom are parallel, i.e. the slopes are equal S f  = Sw  = So = S.

    g

    2

    2

    y o

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    9/74

    2.1 Velocity Distribution

    BFC21103 HydraulicsTan et al. ([email protected])

    Natural channel

    0.84

    0.820.800.76

    0.70

    0.620.48

    V max

    V max

    0.52

    0.50

    0.450.400.35

    y o

    0.53

    Rectangular channel

    V average

    0.6y o

    V max0.2y 

    o

    V

    y

    y o

    Velocity distribution

    Depends on the geometry of the channel and wetted boundary

    roughness

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    10/74

    BFC21103 HydraulicsTan et al. ([email protected])

    2.2 Chezy and Manning Equations

    Two most common equations used in the uniform flow computations:

    1. Chezy formula

    2. Manning formula

    2

    1

    2

    1

    oSCRV  

    2

    1

    3

    21

    oSRnV  

     x 

    o

     x SRV   constantThus, the general uniform flow equation:

    C  = Chezy roughness coefficient

    n = Manning roughness coefficient

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    11/74

    BFC21103 HydraulicsTan et al. ([email protected])

    6

    11R

    nC  Difference between Chezy and Manning formulae

    Factors determining the roughness are surface roughness, vegetation,

    channel irregularity, channel alignment, silting and scouring,

    obstruction, size and shape of channel, stage and discharge, seasonalchange, and suspended material and bed load.

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    12/74

    BFC21103 HydraulicsTan et al. ([email protected])

    The Chezy two assumptions are:

    1. The force resisting the flow per unit area of the channel bed is

    proportional to the square of the velocity:

    2. The effective component of the gravity force causing the flow

    must be equal to the total force of resistance. This is also the

    basic principle of uniform flow where uniform flow will be

    developed if the resistance is balance by the gravity forces:

    Derivation of Chezy equation

    PLV k F  f 2  

         sin ALF g 

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    13/74

    BFC21103 HydraulicsTan et al. ([email protected])

    2

    2

    y o

    W

    Datum

     A 

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    14/74

    BFC21103 HydraulicsTan et al. ([email protected])

           sin2  ALPLV k   

    o

     ALSPLV k          2

    oSP

     A

    k V 

      

     2

    2

    1

    2

    12

    1

    oSRk V     

     

     

     

      

     

    2

    1

    2

    1

    oSRC V   where C  = Chezy coefficient

    1221   sin   MM pF W  p  f       

    Since for uniform flow, 2121   and  MM p p  

    Total force of resistance is counter-balances with the

    effective component of gravity, which is acts parallel

    to the channel bed.

    Fr  = Force of resistance

    W = Weight of the fluid = ALθ = Slope angle of the bed

    = Specific weight of the fluid

    A = Cross sectional area of the channel

    L = Characteristic length of the channel

    The resistance to flow is proportional to

    the square of the velocity. 

    Fr  = resistance to flow (N)

    Aw  = wetted area = PxL

    P = wetted perimeter

    L = length of the channel

    K = constant of proportionality

    V = mean velocity of flow

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    15/74

    BFC21103 HydraulicsTan et al. ([email protected])

    A rectangular channel 2.0 m wide carries water at a depth of 0.5 m.

    The channel is laid on a slope of 0.0004. The Chezy coefficient is 73.6.Compute the discharge of the channel. 

    Given B = 2.0 m, y  = 0.5 m, So = 0.0004 and C  = 73.6 

     A = By  = 1 m2, P = B + 2y  = 3 m, R = 1/3 m 

    B

    y

    oRS AC Q

    0004.0

    3

    16.731   Q

    /sm850.0  3Q

    Activity 2.1

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    16/74

    BFC21103 HydraulicsTan et al. ([email protected])

    Water flows in a triangular channel with side slope 1.5(H) : 1(V),

    bottom slope 0.0002 and Chezy coefficient of 67.4. The depth offlow is 2.0 m. Find the flow rate and average velocity. Based on

    Froude number, determine the state of flow.

    z

    y1

    Given y  = 2.0 m, z = 1.5, So = 0.0002 and C  = 67.4 

     A = zy 2 = 6 m2, P = 2y  = 7.211 m, R = A/P = 0.832 m, D = A/T  = 6/2zy  = 1 m 

    Activity 2.2

    oRSC V  

    0002.0832.04.67   V 

    m/s869.0V 

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    17/74

    BFC21103 HydraulicsTan et al. ([email protected])

     AV Q

    869.06Q

    /sm217.5   3Q

    gDV Fr

    181.9

    869.0Fr

    flowlsubcritica277.0Fr  

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    18/74

    BFC21103 HydraulicsTan et al. ([email protected])

    Chezy resistance factor C

    The following two equations can be used to determine Chezycoefficient:

    1. Ganguillet-Kutter

    2. Bazin

    Rn

    S

    nSC 

    o

    o

      

      

    00155.0231

    100155.023

    R

    mC 

    1

    87

    n = Kutter coefficient

    m = Bazin coefficient

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    19/74

    BFC21103 HydraulicsTan et al. ([email protected])

    Table 2.1a Values of Manning roughness coefficient n 

    Surface characteristics Range of n

    (a) Lined channels with straight alignment

    Concrete

    i. formed, no finish 0.013 - 0.017

    ii. trowel finish 0.011 - 0.015

    iii. float finish 0.013 - 0.015

    iv. gunite, good section 0.016 - 0.019

    v. gunite, wavy section 0.018 - 0.022

    Concrete bottom, float finish, sides as indicated

    i. dressed stone in mortar 0.015 - 0.017

    ii. random stone in mortar 0.017 - 0.020

    iii. cement rubble masonry 0.020 - 0.025iv. cement rubble masonry, plastered 0.016 - 0.020

    v. dry rubble (rip-rap) 0.020 - 0.030

    Tile 0.016 - 0.018

    Brick 0.014 - 0.017

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    20/74

    BFC21103 HydraulicsTan et al. ([email protected])

    Table 2.1b Values of Manning roughness coefficient n 

    Surface characteristics Range of n

    Sewers (concrete, asbestos-cement, vitrified-clay

    pipes)

    0.012 - 0.015

    Asphalt

    i. smooth 0.013

    ii. rough 0.016

    Concrete lined, excavated rock

    i. good section 0.017 - 0.020

    ii. irregular section 0.022 - 0.027

    Laboratory flumes-smooth metal bed, glass or

    perspex sides

    0.009 - 0.010

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    21/74

    BFC21103 HydraulicsTan et al. ([email protected])

    Manning roughness coefficient n 

    = 0.020 - 0.022

    Manning roughness coefficient n 

    = 0.020 - 0.022

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    22/74

    BFC21103 HydraulicsTan et al. ([email protected])

    Manning roughness coefficient n = 0.022 - 0.024

    Manning roughness coefficient n 

    = 0.020

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    23/74

    BFC21103 HydraulicsTan et al. ([email protected])

    Surface characteristics Range of n

    (b) Unlined, non-erodible channels

    Earth, straight and uniform

    i. clean, recently completed 0.016 - 0.020

    ii. clean, after weathering 0.018 - 0.025

    iii. gravel, uniform section, clean 0.022 - 0.030

    iv. with short grass, few weeds 0.022 - 0.033

    Channels with weeds and brush, uncut

    i. dense weeds, high as flow depth 0.050 - 0.120

    ii. clean bottom, brush on sides 0.040 - 0.080

    iii. dense weeds or aquatic plants in deep

    channels

    0.030 - 0.035

    iv. grass, some weeds 0.025 - 0.033

    Rock 0.025 - 0.045

    Table 2.1c Values of Manning roughness coefficient n 

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    24/74

    BFC21103 HydraulicsTan et al. ([email protected])

    Surface characteristics Range of n

    (c) Natural channels

    Smooth natural earth channels, free from growth,

    little curvature

    0.020

    Earth channels, considerably covered with small

    growth

    0.035

    Mountain streams in clean loose cobbles, rivers

    with variable section with some vegetation on thebanks

    0.040 - 0.050

    Rivers with fairly straight alignment, obstructed

    by small trees, very little under brush

    0.060 - 0.075

    Rivers with irregular alignment and cross-section,

    covered with growth of virgin timber and

    occasional patches of bushes and small trees

    0.125

    Table 2.1d Values of Manning roughness coefficient n 

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    25/74

    BFC21103 HydraulicsTan et al. ([email protected])

    Manning roughness coefficient n = 0.11

    Manning roughness coefficient n = 0.20

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    26/74

    BFC21103 HydraulicsTan et al. ([email protected])

    Grassed swale

    Table 2.2 Values of Manning

    roughness coefficient for

    grassed swale 

    Surface

    cover

    Manning n

    Short grass 0.030 - 0.035

    Tall grass 0.035 - 0.050

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    27/74

    BFC21103 HydraulicsTan et al. ([email protected])

    Table 2.3 Proposed values of Bazin coefficient m

    Description of channel Bazin coefficient m

    Very smooth cement of planed wood 0.11

    Unplaned wood, concrete, or brick 0.21

    Ashlar, rubble masonry, or poor brickwork 0.83

    Earth channels in perfect condition 1.54

    Earth channels in ordinary condition 2.36

    Earth channels in rough condition 3.17

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    28/74

    BFC21103 HydraulicsTan et al. ([email protected])

    Calculate the velocity and discharge in a trapezoidal channel having a

    bottom width of 20 m, side slopes 1(H) : 2(V), and a depth of water 6

    m. Given Kutter's n = 0.015 and So = 0.005.

    z

    y1

    B

    Activity 2.3

    Given B = 20 m, y  = 6.0 m, z = 0.5, So = 0.005 and n = 0.015 

     A = By  + zy 2 = 138 m2,

    P = B + 2y   = 33.42 m,

    R = A/P = 4.13 m 

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    29/74

    BFC21103 HydraulicsTan et al. ([email protected])

    R

    n

    S

    nSC 

    o

    o

     

      

     

    00155.0

    231

    100155.023

    Ganguillet-Kutter 

    13.4

    015.0

    005.0

    00155.0231

    015.01

    005.000155.023

     

      

     

    769.76C 

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    30/74

    BFC21103 HydraulicsTan et al. ([email protected])

    oRSC V  Chezy velocity 

    005.013.4769.76   V 

    m/s03.11V 

     AV Q Discharge 

    03.11138Q

    /sm14.1522   3Q

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    31/74

    BFC21103 HydraulicsTan et al. ([email protected])

    Find the equivalent Bazin coefficient m for the question in Activity 2.3

    and compare the Chezy coefficients obtained from Kutter n & Bazin m.

    Assume that for concrete with Kutter n = 0.015, Bazin m = 0.21 

    R

    mC  1

    87

    Bazin 

    Known A = 138 m2, P = 33.42 m, R = 4.13 m 

    13.4

    21.01

    87

    Kutter)-Ganguillet(from76.769Bazin)(from852.78   C 

    Activity 2.4

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    32/74

    BFC21103 HydraulicsTan et al. ([email protected])

    A trapezoidal channel is 10.0 m wide and has a side slope of

    1.5(H) : 1(V). The bed slope is 0.0003. The channel is lined with

    smooth concrete n  = 0.012. Compute the mean velocity and

    discharge for a depth of flow of 3.0 m.

    z

    y1

    B

    Given B = 10 m, y  = 3.0 m, z = 1.5, So = 0.0003 and n = 0.012 

     A = By  + zy 2 = 43.5 m2,

    P = B + 2y   = 20.817 m,

    R = A/P = 2.090 m 

    21   z

    Activity 2.5

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    33/74

    BFC21103 HydraulicsTan et al. ([email protected])

    2

    1

    3

    2

    1oSR

    nV  Manning velocity 

    2

    1

    3

    2

    0003.0090.2012.0

    1V 

    m/s359.2V 

     AV Q Discharge 

    359.25.43  

    /sm625.102  3

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    34/74

    BFC21103 HydraulicsTan et al. ([email protected])

    In the channel of Example 2.5, find the bottom slope necessary to

    carry only 50 m3/s of the discharge at a depth of 3.0 m.

    Activity 2.6

    Given B = 10 m, y  = 3.0 m, z = 1.5 and n = 0.012 

    and A = 43.5 m2, P = 20.817 m, R = 2.090 m 

    2

    1

    3

    21

    oS ARnQ Manning discharge 

    2

    1

    3

    2

    09.25.43012.0

    150 oS

    0000712.0oS

    51012.7   oS

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    35/74

    BFC21103 HydraulicsTan et al. ([email protected])

    A triangular channel with an apex angle of 75  carries a flow of

    1.2 m3/s at a depth of 0.80 m. If the bed slope is 0.009, find the

    roughness coefficient C  and n of the channel.

    Activity 2.7

    Given y  = 0.80 m, So = 0.009,   = 75, and Q = 1.2 m3/s 

    and A = zy 2 = 0.491 m2, P = 2y   = 2.017 m,

    R = A/P = 0.2435 m 

    21   z

    z

    y1 75  

      

     2

    tan  

    z  

      

     

    2

    75tan

    0.767

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    36/74

    BFC21103 HydraulicsTan et al. ([email protected])

    2

    1

    3

    21

    oS AR

    n

    Q Using Manning equation 

    2

    1

    3

    2

    009.02435.0491.01

    2.1   n

    0151.0n

    2

    1

    2

    1

    oSCARQ Using Chezy equation 

    2

    1

    2

    1

    009.02435.0491.02.1   C 

    197.52C 

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    37/74

    BFC21103 HydraulicsTan et al. ([email protected])

    A trapezoidal channel of bottom width 25 m and side slope

    2.5(H):1(V) carries a discharge of 450 m3/s with a normal depth of

    3.5 m. The elevations at the beginning and end of the channel are

    685 m and 650 m, respectively. Determine the length of the

    channel if n = 0.02.

    Given B = 25 m, z = 2.5, y o = 3.5, n = 0.02, and Q = 450 m3/s

    z

    y1

    B

     A = By  + zy 2 = 118.125 m2

    P = B + 2y = 43.848 m 21   z

    R = A/P = 2.694 m 

    Activity 2.8

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    38/74

    BFC21103 HydraulicsTan et al. ([email protected])

    2

    1

    3

    21

    oS AR

    n

    Q Manning equation,

    2

    1

    3

    2

    694.2125.11802.0

    1450 oS

    00155.0oS

    H

    oL

    zS

     

    HL65068500155.0  

    m13.22601HL

    Manning equation,

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    39/74

    BFC21103 HydraulicsTan et al. ([email protected])

    2.3 Conveyance

    Conveyance K  of a channel section is a measure of the carrying

    capacity of the channel section per unit longitudinal slope. It is

    directly proportional to discharge Q.

    1. Chezy formula

    2. Manning formula

    2

    1

    2

    1

    oSCARQ

    2

    1

    3

    21

    oS ARnQ

    2

    1

    CARK  

    3

    21 ARnK  

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    40/74

    BFC21103 HydraulicsTan et al. ([email protected])

    Section factor Z  in the Manning formula is AR2/3, which is a function of

    the depth of flow. 

    In Manning formula 21

    3

    21

    oS ARnQ

    Therefore,2

    132

    oS

    Qn AR  

    Section factor AR2/3 is normally used to compute the normal depth y o 

    when the discharge Q, bottom slope So and Manning roughnesscoefficient n are provided.

    Computation of y o could be through either direct trial-and-error

    computation, based on graph, or through provided design chart. 

    2.4 Section Factor

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    41/74

    BFC21103 HydraulicsTan et al. ([email protected])

    Activity 2.9

    A trapezoidal channel 5.0 m wide and having a side slope of 1.5(H) :

    1(V) is laid on a slope of 0.00035. The roughness coefficient n = 0.015.Find the normal depth for a discharge of 20 m3/s through this channel.

    Given B = 5.0 m, z = 1.5, So = 0.00035, n = 0.015, and Q = 20 m3/s

    z

    y1

    B

     A = By  + zy 2 = 5y  + 1.5y 2

    P = B + 2y = 5 + 2 y  21   z   25.3

    y y 

    P

     AR

    25.325

    5.15   2

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    42/74

    BFC21103 HydraulicsTan et al. ([email protected])

    Arranging Manning equation as a function of section factor,

    2

    13

    2

    oS

    Qn AR  

    2

    1

    3

    21

    oS ARnQ Manning equation,

    2

    1

    3

    2

    22

    00035.0

    015.020

    25.325

    5.155.15     

      

    o

    oooo

    y y y y 

    036.16

    25.325

    5.15

    32

    3

    52

    o

    oo

    y y 

    Therefore, y o = 1.820 m

    y o (m) 

    32

    3

    52

    25.325

    5.15

    o

    oo

    y y 

    By trial-and-error:

    1

    2

    1.8

    1.820

    5.391

    19.159

    15.706

    16.035

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    43/74

    BFC21103 HydraulicsTan et al. ([email protected])

    Graphically,

    036.16

    25.325

    5.15

    3

    2

    3

    52

    o

    oo

    y y 

     

    y o (m) 

    32

    3

    52

    25.325

    5.15

    o

    oo

    y y 

    1

    2

    1.5

    1.7

    5.391

    19.159

    11.198

    14.115

    1.8

    1.9

    15.706

    17.387 0

    0.5

    1

    1.5

    2

    2.5

    0 5 10 15 20 25

     AR 2/3

         y     o

        (  m   )

    y o = 1.82 m

    16.036

    Therefore, y o = 1.820 m

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    44/74

    BFC21103 HydraulicsTan et al. ([email protected])

    Design Chart is available,

    Circular

    Rectangular ( z = 0)

    B

    3

    8

    3

    2

    3

    8

    3

    2

     and 

    od 

     AR

    B

     AR

    o

    B

    y  and 

    0.2194

    0.37

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    45/74

    BFC21103 HydraulicsTan et al. ([email protected])

    036.1632

     AR

    3

    8

    3

    8

    32

    5

    036.16

    B

     AR2194.0

    37.0B

    537.0   y 

    Therefore, y o = 1.85 m

    At the x -axis,

    Intersecting at z = 1.5 of trapezoidal channel gives

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    46/74

    BFC21103 HydraulicsTan et al. ([email protected])

    Design chart for lined open drain fromUrban Stormwater Management Manual

    for Malaysia (Department of Irrigation

    and Drainage, 2000)

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    47/74

    BFC21103 HydraulicsTan et al. ([email protected])

    Activity 2.10

    A concrete-lined trapezoidal channel with n  = 0.015 is to have a

    side slope of 1(H) : 1(V). The bottom slope is to be 0.0004. Find thebottom width of the channel necessary to carry 100 m3/s of

    discharge at a normal depth of 2.50 m.

    z

    y1

    B

    Given y o = 2.5 m, z = 1, So = 0.0004, n = 0.015, and Q = 100 m3/s

     A = By  + zy 2 = 2.5B + 6.25 

    P = B + 2y = B + 7.071 21   z

    071.7

    25.65.2

    B

    B

    P

     A

    R

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    48/74

    BFC21103 HydraulicsTan et al. ([email protected])

    Manning equation as a function of section factor,

    2

    13

    2

    oS

    Qn AR  

    2

    1

    3

    2

    0004.0

    015.0100071.725.65.225.65.2     

      

    BBB

    75

    071.7

    25.65.2

    3

    2

    3

    5

    B

    B

    By trial-and-error, B = 16.33 m

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    49/74

    BFC21103 HydraulicsTan et al. ([email protected])

    Activity 2.11

    Water flows uniformly at 10 m3/s in a rectangular channel with a base

    width of 6.0 m, channel slope of 0.0001 and Manning's coefficient n =0.013. Using trial-and-error method, find the normal depth.

    B

    y

    Given Q = 10 m3/s, B = 6.0 m, So = 0.0001 and n = 0.013 

     A = By  = 6y  

    P = B + 2y  = 6 + 2y  

    y R

    3

    3

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    50/74

    BFC21103 HydraulicsTan et al. ([email protected])

    2

    1

    3

    2

    oS

    Qn

     AR  

    2

    1

    3

    2

    0001.0

    013.010

    3

    36

     

     

      

     

      o

    ooy 

    y y 

    167.23

    3   32

     

      

     

      o

    ooy 

    y y 

    By trial-and-error, y o = 1.942 m

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    51/74

    BFC21103 HydraulicsTan et al. ([email protected])

    A sewer pipe of 2.0 m diameter is laid on a slope of 0.0004 with

    n = 0.014. Find the depth of flow when the discharge is 2 m3

    /s.

    2  r

    D

    y o

         sin228

    2

    D

    Area A =

    Perimeter P = D 

    Activity 2.12

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    52/74

    BFC21103 HydraulicsTan et al. ([email protected])

    2

    13

    2

    oS

    Qn AR   Manning equation:

    2

    13

    2

    0004.0

    014.02 AR

    3

    8

    3

    8

    3

    2

    2

    4.1

    D

     AR

    2205.0

    3

    8

    3

    2

    D

     AR

    For design chart:

    6.0D

    y o

    26.0   oy  = 1.20 m

    Intersecting at circular section gives

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    53/74

    BFC21103 HydraulicsTan et al. ([email protected])

    Design Chart:

    Circular

    Rectangular (z = 0)

    B

    3

    8

    3

    2

    3

    8

    3

    2

     and 

    od 

     AR

    B

     AR

    od 

    B

    y  and 

    0.2205

    0.6

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    54/74

    BFC21103 HydraulicsTan et al. ([email protected])

    Simplification for Wide Rectangular Channel

    Wide channel: 02.0B

    y o

    For wide channel, is small, thereforeB

    y ooy R

    Or simply, oy R

    Discharge per unit width

    Normally used in rectangular channels.

    B

    Qq Discharge per unit width

    Unit is m3/s/m.

    yV q or

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    55/74

    BFC21103 Hydraulics

    Tan et al. ([email protected])

    Water flows through a very wide channel at a rate of 2.5 m3/s/m.

    The channel has a base width of 60 m, channel slope of 0.005 and

    Manning's coefficient of 0.013. What is the normal depth?

    Given: q = 2.5 m3/s/m, B = 60 m, So = 0.005, n = 0.013

    For a wide rectangular channel, R = y

    V y q oManning equation:

    Activity 2.13

    2

    1

    3

    21

    oo   SRny q

    2

    1

    3

    51

    oo Sy nq

    2

    1

    3

    5

    005.0013.0

    15.2     oy 

    m6272.0oy 

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    56/74

    BFC21103 Hydraulics

    Tan et al. ([email protected])

    2.5 Best Hydraulic Section (Most Effective Section)

    3

    21

     ARnK  

    A non-erodible channel should be designed for the best hydraulic

    efficiency.

    Best hydraulic section gives minimum area for a given discharge.

    Referring to the channel conveyance,

    for a constant flow area A, the conveyance increases with increase

    in hydraulic radius R or decrease in the wetted perimeter P.

    Simply, Qmax, Rmax and P min gives best hydraulic section.

    Pmin  - reduces construction cost (less lining material), and

    - reduces friction force.

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    57/74

    BFC21103 Hydraulics

    Tan et al. ([email protected])

    Cross

    section

    Side

    slope zArea A

    Wetted

    perimeter P

    Hydraulic

    radius R

    Top width

    T

    Hydraulic

    depth D

    Section

    factor Z

    Trapezoid

    Rectangle - 2y 

    2

    4y 2y y

    Triangle 1 y 2 2y

    Semicircle - 2y

    Parabola -

    Table. Best hydraulic sections

    23y 

    2

    2y 

     

    2

    3

    24y 

    y 32

    y 22

    y  

    y 3

    28

    2

    2

    4

    2y 

    2

    2

    y 3

    34

    y 22

    y 4

    3

    2

    y 4

     

    y 3

    2

    5.2

    2

    3y 

    5.22y 

    5.2

    2

    2y 

    5.2

    4y 

     

    5.2

    9

    38y 

    3

    1

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    58/74

    BFC21103 Hydraulics

    Tan et al. ([email protected])

    What is the best hydraulic section for a rectangular channel?

    B

    y

    By  AFor a rectangular channel,

    y BP   2

    Let's first assume A to be constant:

    y y  AP   2

    22 y 

     A

    dy 

    dP

    For best hydraulic section 0d

    d

    P

    Activity 2.14

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    59/74

    BFC21103 Hydraulics

    Tan et al. ([email protected])

    For best hydraulic section 022

      ey 

     A

    22 ey  A

    2

    2 ee   y By   ey B   2

    ey BP   2ee   y y P   22  

    ey P   4

    P

     A

    R

    e

    e

    y R

    4

    2  2

    2

    ey 

    R

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    60/74

    BFC21103 Hydraulics

    Tan et al. ([email protected])

    Show that the best hydraulic trapezoidal section is one-half

    of a hexagon.

    60 1

    3

    1z

    For a trapezoid,

    2zy By  A  

    212   zy BP  

    Activity 2.15

    Let's first assume A and z to be constant:

    For best hydraulic section 0d

    d

    P

    zy y 

     AB  

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    61/74

    BFC21103 Hydraulics

    Tan et al. ([email protected])

    22   12   zzy  A

    dy dP

    212   zy zy 

     AP   Substituting B

    For best hydraulic section 012  2

    2    zz

     A

    e 22

    12 ey zz A  

    212   zy zy 

     AP   And,

    zzy P e     2122

    P

     AR Therefore,

    zzy zzy R

    e

    e

    2

    22

    12212

    2

    ey R

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    62/74

    BFC21103 Hydraulics

    Tan et al. ([email protected])

    If z is allowed to vary,2212 ey zz A  

    zz

     A

    y e 212

    zzy P e     2122Substitute into P,

    zzzz A

    P  

      2

    2   12122

    zz AP     2122

    0d

    d

    z

    P

    3

    1ez

    When

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    63/74

    BFC21103 Hydraulics

    Tan et al. ([email protected])

    zzy P e     2122

    2

    12   zy BP 

    212   zy PB  

    ey B3

    2

    ey P   32

    2212 ey zz A  

    23 ey  A

    3

    1ezWhen ,

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    64/74

    BFC21103 Hydraulics

    Tan et al. ([email protected])

    A slightly rough brick-lined trapezoidal channel carrying a

    discharge of 25.0 m3

    /s is to have a longitudinal slope of 0.0004.Analyse the proportions of

    (a) an efficient trapezoidal channel section having a side of

    1.5(H) : 1(V),

    (b) the most efficient-channel section of trapezoidal shape.

    Rough brick-lined gives Manning roughness n = 0.017

    Activity 2.16

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    65/74

    BFC21103 Hydraulics

    Tan et al. ([email protected])

    (a) Fixed side slopes of 1.5(H) : 1(V),

    For best hydraulic section2212 ey zz A  

    2

    ey R

    21056.2 ey  A

    From Manning equation, 21

    3

    21

    oS AR

    n

    Q

    2

    13

    2

    20004.0

    21056.2

    017.0

    125  

     

      

        eey 

    m8298.2ey 2

    zy By  A  

    e

    e

    e y y 

    y B   5.1

    1056.2   2

    m7137.1B 1.52.830 m1

    1.714 m

    and

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    66/74

    BFC21103 Hydraulics

    Tan et al. ([email protected])

    (b) If the side slope is not fixed, the side slope and other channel

    characteristics for most-efficient trapezoidal section are

    31ez

    ey B3

    2

    23 ey  A 2

    ey R

    5774.0ez

    m045.3ey 

    m516.3eB

    From Manning equation, 21

    321oS AR

    nQ

    2

    13

    2

    20004.0

    21056.2

    017.0

    125  

     

      

        eey 

    0.5774

    3.045 m1

    3.516 m

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    67/74

    BFC21103 Hydraulics

    Tan et al. ([email protected])

    2.6 Channels of Compound Sections

    Compound sections channel - channels that are composed of several

    distinct subsections with each subsection different in roughness fromothers.

    Manning equation is applied separately to each subsection to

    determine the mean velocity.

    n

    i i  AV Q1

     A

    SK 

    o

    n

    i 2

    1

    1

      

      

    Or

    A i i 2 17

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    68/74

    BFC21103 Hydraulics

    Tan et al. ([email protected])

    [Final exam question, Semester I, Session 2013/2014]

    A composite channel as shown is designed to convey 19.8 m3/s of

    water. The channel on a longitudinal slope So  = 1:2000 is to belined with concrete (n  = 0.017). Determine the normal depth of

    flow based on graphical method.

    4 m

    3

    23 m

    Activity 2.17

    A i #2

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    69/74

    BFC21103 Hydraulics

    Tan et al. ([email protected])

    Assignment #2

    Q1.  [Final Exam Sem II, Session 2008/2009]

    (a) What is conveyance factor K ?

    (b) Figure Q1(b) shows a compound channel and its dimensions.

    The channel has bottom slope of 0.0036 and side slope of 1.5(H)

    : 0.75(V). Determine the value of Chezy resistance coefficient C  

    and velocity of flow if flowrate is 10 m3

    /s.

    1.5 m 

    0.2 m 

    0.5 m 

    Figure Q1(b)

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    70/74

    BFC21103 Hydraulics

    Tan et al. ([email protected])

    Q1.  (c) A very wide rectangular channel has a slope of 0.0004 and

    Manning n = 0.02. If 2.54 m3/s/m flow is to be conveyed in this

    channel, estimate the normal depth.

    (d) A trapezoidal channel is to carry 18 m3/s of flowrate on a

    bottom slope of 0.0009. Given that Manning's n is 0.026 and the

    sides of channel are inclined 63.44° to the vertical, determine

    the bottom width, depth and velocity for the best hydraulic

    section.

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    71/74

    BFC21103 Hydraulics

    Tan et al. ([email protected])

    Q2.  [Final Exam Sem I, Session 2010/2011]

    (a) Utilizing the concept of section factor, prove that the section in

    Figure Q2(a) gives

    when the discharge of the uniform flow is 33.6 m3/s, bed slope

    So = 0.001 and Manning coefficient n = 0.015.

      94.1512.8

    1058.41058.4

    3

    22

    2  

      

       

    y y y y  Z 

    y o 

    y o 

    2y o 

    45 

    60 10 m 

    Figure Q2(a)

    2

    oy 

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    72/74

    BFC21103 Hydraulics

    Tan et al. ([email protected])

    Q2.  (b) Determine the depth of flow y o of the channel if the best

    hydraulic section is needed for a composite section as in Figure

    Q2(b) to convey 6.5 m3/s of flow. Manning coefficient n and bed

    slope are 0.015 and 0.0015, respectively.

    4.5 m

    y o 

    y 1 

    y 2 

    Figure Q2(b)

    Q3 [Final Exam Sem I Session 2007/2008]

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    73/74

    BFC21103 Hydraulics

    Tan et al. ([email protected])

    Q3.  [Final Exam, Sem I, Session 2007/2008]

    (a) Water flows at a depth of 2.5 m in a rectangular concrete

    channel (n = 0.013) of width 12 m and bed slope 0.0028. Find

    the velocity and rate of flow.

    (b) A housing area needs a channel to convey 9.8 m3/s of runoff. A

    trapezoidal channel is proposed with 3 m width and side slope

    3(horizontal) : 4(vertical). If the channel is concrete-lined (n =

    0.013) and bottom slope So is 1 : 2000, determine the normal

    depth using graphical method.

    Q4.  [Final Exam, Sem I, Session 2007/2008]

    (a) Prove that the most efficient cross section for triangular channel

    is half of a square.

    (b) A concrete-lined irrigation channel with Manning's n = 0.020 isneeded to convey 12.5 m3/s of flow. The channel has a

    trapezoidal section with bottom slope So = 0.0015. Determine

    the most effective size of the channel if the side slope is

    restricted to 3(horizontal) : 1(vertical).

    - End of Question - 

  • 8/19/2019 Hydraulics Topic 2 Uniform Flow in Open Channel

    74/74

    THANK YOU