hydro power plat

48
ABSTRACT We are analyzing the prototype small hydro power plant in the direction of evaluating energy production for a period of time by taking input energy as potential head in the form of battery and then compare this result with thermal power plant.

Upload: subbu-suni

Post on 08-Dec-2015

230 views

Category:

Documents


0 download

DESCRIPTION

dddd

TRANSCRIPT

Page 1: Hydro Power Plat

ABSTRACT

We are analyzing the proto type smal l hydro power p lant in

the d i rec t ion of evalua t ing energy product ion for a per iod of

t ime by taking input energy as potent ia l head in the form of

ba t te ry and then compare th is resul t wi th thermal power

p lant .

Page 2: Hydro Power Plat

CONTENTS

ACKNOWLEDGEMENT

ABSTRACT

CHAPTER-I page . No

1. Introduct ion 2

CHAPTER-II

2. Elements of hydropower plant 3

2.1Catchments area 4

2.2 Reservoi r 4

2.3 Dam 4

2.4 Turbine & Genera tors 5

2.5Draf t tubes 10

2.6 Penstock 11

2.7 Power house & Equipments 12

2.8 Spi l lways 12

2.9 Surge tank 13

2.10 Transformer 13

Page 3: Hydro Power Plat

CHAPTER-III

3 . Instal lat ion of hydropower plant 14

3 .1Avai labi l i ty of water 14

3 .2Water s torage 15

3 .3Water head 15

3 .4Access ib i l i ty of the s i te 16

3 .5Dis tance f rom load cent re 16

3 .6Type of the land of s i te 16

CHAPTER-IV

4 . Working of hydropower plant 17

CHAPTER-V

5 . Mathematical descr ipt ion 21

CHAPTER-VI

6 . Calculat ions 23

CHAPTER-VII

7. Comparison with Thermal power plant 25

CHAPTER-VIII

8 . Advantages 26

CHAPTER-IX

9 . Results & declarat ion 28

CONCLUSION 32

APPENDIX

Page 4: Hydro Power Plat

NOMECLATURE

Ø = speed ra t io , i t var ies f rom 0.43 to 0 .48

Cv = Coeff ic ient of ve loc i ty

=0 .98 (or) 0 .99

H = Net head on turbine .

g = accelera t ion due to gravi ty of 9 .8 m/s 2 ,

P th = Theore t ica l power

W = Weight dens i ty

Q = Flow of water through turbine

H = Head avai lable

ρ = The dens i ty of water (~1000  kg/m 3 ) ,

D= Mean diameter

d= diameter of je t

P=shaf t power

Page 5: Hydro Power Plat

CHAPTER-1

INTRODUCTION

A hydroe l ec t r i c power p l an t ha rne s se s t he ene rgy found i n mov ing

o r s t i l l wa t e r and conve r t s i t i n t o e l e c t r i c i t y .

Mov ing wa t e r , such a s a r i ve r o r a wa t e r f a l l , h a s mechan i ca l ene rgy .

‘Mechan i ca l ene rgy i s t he ene rgy t ha t i s pos se s sed by an ob j ec t due

t o i t s mo t ion o r s t o r ed ene rgy o f pos i t i on . ’ Th i s means t ha t an

ob j ec t ha s mechan i ca l ene rgy i f i t ’ s i n mo t ion o r ha s t he po t en t i a l t o

do work ( t he movemen t o f ma t t e r f r om one l oca t i on t o ano the r , )

ba sed on i t s pos i t i on . The ene rgy o f mo t ion i s c a l l ed k ine t i c ene rgy

and t he s t o r ed ene rgy o f pos i t i on i s c a l l ed po t en t i a l ene rgy . Wa te r

ha s bo th t he ab i l i t y and t he po t en t i a l t o do work . The re fo re , wa t e r

con t a in s mechan i ca l ene rgy ( t he ab i l i t y t o do work ) , k ine t i c ene rgy

( i n mov ing wa t e r , t he ene rgy ba sed on movemen t ) , and po t en t i a l

ene rgy .

The po t en t i a l and k ine t i c /mechan i ca l ene rgy i n wa t e r i s ha rne s sed

by c r ea t i ng a sy s t em to e f f i c i en t l y p roce s s t he wa t e r and c r ea t e

e l e c t r i c i t y f rom i t

Hydro Power P l an t was i nven t ed by H .F . Roge r s

Hydro Power P l an t f u l f i l l s t he 30% o f t he t o t a l ene rgy needs o f t he

wor ld .

To t a l hyd ro po t en t i a l o f t he wor ld = 5000 GW.

Page 6: Hydro Power Plat

CHAPTER-II

BASIC COMPONENTS OF HYDROPOWER PLANT

1. Catchment area

2 . Reservoir

3 . Dam

4. Turbines & Generators

5. Draft tubes

6. Penstock

7. Power house & equipments

8. Spi l l ways

9. Surge tank

Page 7: Hydro Power Plat

2.1 . Catchments area:

The who le a r ea beh ind t he c l am t r a in ing i n to a s t r e am a s r i ve r

a c ro s s wh ich t he dam has been bu i l t a t su i t ab l e p l ace i s c a l l ed

ca t chmen t s a r ea .

2.2 . Reservoir:

A re se rvo i r i s emp loyed t o s t o r e wa t e r wh ich i s f u r t he r

u t i l i z ed t o gene ra t e power by runn ing t he hyd roe l ec t r i c t u rb ine s .

2.3 . Dam:

A dam i s a ba r r i e r wh ich con f ine s o r r a i s e s wa t e r f o r s t o r age o r

d ive r s i on t o c r ea t e a hyd rau l i c head .

Dam’s a r e gene ra l l y made o f conc re t e , S tone mason ry , Rock

f i l l o r T imbe r

2.4 . Turbines & Generators:

Page 8: Hydro Power Plat

Turb ine & Gene ra to r i s t he mos t impor t an t pa r t o f any

power p l an t

Thi s combina t i on i s known a s THE HEART OF THE POWER

PLANT.

2.4 .1 . TURBINE:

Tu rb ine i s a dev i ce t ha t conve r t s t he ene rgy i n a s t r e am o f

f l u id i n to mechan i ca l ene rgy by pa s s ing t he s t r e am th rough a sy s t em

o f f i xed and mov ing f an l i ke b l ades and caus ing t he l a t t e r t o ro t a t e .

A t u rb ine l ooks l i ke a l a rge whee l w i th many sma l l r ad i a t i ng b l ades

a round i t s r im .

CLASSIFICATION OF TURBINES:

Accord ing t o t he t ype o f f l ow o f wa t e r :

The wa t e r t u rb ine s u sed a s p r ime move r s i n hyd ro e l e c t r i c power

s t a t i ons a r e o f f ou r t ypes . They a r e

ax i a l f l ow : hav ing f l ow a long sha f t ax i s

i nwa rd r ad i a l f l ow : hav ing f l ow a long t he r ad iu s

t angen t i a l o r pe r i phe ra l : hav ing f l ow a long t angen t i a l

d i r e c t i on

mixed f l ow : hav ing r ad i a l i n l e t ax i a l ou t l e t

Page 9: Hydro Power Plat

I f t he runne r b l ades o f ax i a l f l ow tu rb ine s a r e f i xed , t hose a r e

c a l l ed p rope l l e r t u rb ine s .

Acco rd ing t o t he a c t i on o f wa t e r on mov ing b l ades

Wa te r t u rb ine s a r e o f 2 t ypes name ly impu l se ad r eac t i on t ype

t u rb ine s .

Impul se Turb ines : These t u rb ine s change t he d i r ec t i on o f f l ow o f a

h igh ve loc i t y f l u id j e t . The r e su l t i ng impu l se sp in s t he t u rb ine and

l e aves t he f l u id f l ow wi th d imin i shed k ine t i c ene rgy . The re i s no

p r e s su re change o f t he f l u id i n t he t u rb ine ro to r b l ades . Be fo re

r e ach ing t he t u rb ine t he f l u id ' s P r e s su re head i s changed t o ve loc i t y

head by acce l e r a t i ng t he f l u id w i th a nozz l e . Pe l t on whee l s and de

Lava l t u rb ine s u se t h i s p roce s s exc lu s ive ly . Impu l se t u rb ine s do no t

r equ i r e a p r e s su re c a semen t a round t he runne r s i nce t he f l u id j e t i s

p r epa red by a nozz l e p r i o r t o r e ach ing t u rb ine . Newton ' s s econd l aw

desc r i be s t he t r ans f e r o f ene rgy fo r impu l se t u rb ine s .

Reac t ion Turb ines : These t u rb ine s deve lop t o rque by r eac t i ng t o t he

f l u id ' s p r e s su re o r we igh t . The p r e s su re o f t he f l u id changes a s i t

pa s se s t h rough t he t u rb ine ro to r b l ades . A p re s su re c a semen t i s

needed t o con t a in t he work ing f l u id a s i t a c t s on t he t u rb ine s t age ( s )

o r t he t u rb ine mus t be fu l l y immersed i n t he f l u id f l ow (w ind

t u rb ine s ) . The ca s ing con t a in s and d i r ec t s t he work ing f l u id and , f o r

wa t e r t u rb ine s , ma in t a in s t he suc t i on impa r t ed by t he d r a f t t ube .

F r anc i s t u rb ine s and mos t s t e am tu rb ine s u se t h i s concep t . Fo r

compre s s ib l e work ing f l u id s , mu l t i p l e t u rb ine s t age s may be u sed t o

ha rne s s t he expand ing ga s e f f i c i en t l y . Newton ' s t h i rd l aw desc r i be s

t he t r ans f e r o f ene rgy fo r r e ac t i on t u rb ine s .

Acco rd ing t o t he Head and quan t i t y o f wa t e r ava i l ab l e

Page 10: Hydro Power Plat

The wa t e r t u rb ine s a r e o f 2 t ypes . Those a r e h igh head - l ow f l ow

and l ow to med ium head and h igh t o med ium d i s cha rge t u rb ine s .

Acco rd ing t o t he name o f t he o r i g ina to r

Wa te r t u rb ine s a r e o f 3 t ypes name ly

1 . Pe l t on Whee l ,

2 . F ranc i s t u rb ine and

3 . Kap l an t u rb ine .

2.4 .1 .1 .Pelton Wheel:

A Pe l t on whee l , a l so ca l l ed a Pe l t on t u rb ine , i s one o f t he mos t

e f f i c i en t t ypes o f wa t e r t u rb ine s . I t was i nven t ed by Les t e r A l l an

Pe l t on (1829 -1908) i n t he 1870s , and i s an impu l se mach ine ,

mean ing t ha t i t u se s Newton ' s s econd l aw to ex t r ac t ene rgy f rom a

j e t o f f l u id .

Page 11: Hydro Power Plat

f i g2 .4 .1 .pe l t on whee l

The pe l t on whee l t u rb ine i s a t angen t i a l f l ow impu l se t u rb ine ,

wa t e r f l ows a long t he t angen t t o t he pa th o f t he runne r . Nozz l e s

d i r ec t f o r ce fu l s t r e ams o f wa t e r aga in s t a s e r i e s o f spoon - shaped

bucke t s moun ted a round t he edge o f a whee l . Each bucke t r eve r se s

t he f l ow o f wa t e r , l e av ing i t w i t h d imin i shed ene rgy . The r e su l t i ng

impu l se sp in s t he t u rb ine . The bucke t s a r e moun ted i n pa i r s , t o keep

t he fo r ce s on t he whee l ba l anced , a s we l l a s t o ensu re smoo th ,

e f f i c i en t momen tum t r ans f e r o f t he f l u id j e t t o t he whee l . The Pe l t on

whee l i s mos t e f f i c i en t i n h igh head app l i c a t i ons .

S ince wa t e r i s no t a compre s s ib l e f l u id , a lmos t a l l o f t he

ava i l ab l e ene rgy i s ex t r ac t ed i n t he f i r s t s t age o f t he t u rb ine .

The re fo re , Pe l t on whee l s have on ly one whee l , un l i ke t u rb ine s t ha t

ope ra t e w i th compre s s ib l e f l u id s .

2.4 .2 .Kaplan Turbine

The Kap l an t u rb ine i s a p rope l l e r - t ype wa t e r t u rb ine t ha t ha s

ad ju s t ab l e b l ades . I t was deve loped i n 1913 by t he Aus t r i an

p ro fe s so r (V ik to rKap l an ) .

The Kap l an t u rb ine was an evo lu t i on o f t he F ranc i s t u rb ine . I t s

i nven t i on a l l owed e f f i c i en t power p roduc t i on i n l ow head

app l i c a t i ons t ha t was no t pos s ib l e w i th F ranc i s t u rb ine s .

Kap l an t u rb ine s a r e now wide ly u sed t h roughou t t he wor ld i n h igh -

f l ow , low-headpowerp roduc t i on .

The Kap l an t u rb ine i s an i nward f l ow r eac t i on t u rb ine , wh ich

means t ha t t he work ing f l u id changes p r e s su re a s i t moves t h rough

t he t u rb ine and g ive s up i t s ene rgy . The de s ign combines r ad i a l and

Page 12: Hydro Power Plat

ax i a l f ea tu r e s .

The be low f i gu re s show f l ow in a Kap l an t u rb ine . I n t he

p i c tu r e , p r e s su re on runne r b l ades and hub su r f ace i s shown us ing

co lo r mapp ing . The d i ame te r o f t he runne r o f such mach ine s i s

t yp i ca l l y 5 me t e r s .

f i g . 2 .4 .1 .4 .kap l an tu rb ine

The i n l e t i s a s c ro l l - shaped t ube t ha t wraps a round t he t u rb ine ' s

w icke t ga t e . Wa te r i s d i r e c t ed t angen t i a l l y , t h rough t he w icke t ga t e ,

and sp i r a l s on t o a p rope l l e r shaped runne r , c aus ing i t t o sp in .

The ou t l e t i s a spec i a l l y shaped d r a f t t ube t ha t he lp s dece l e r a t e t he

wa t e r and recove rk ine t i c ene rgy .

Page 13: Hydro Power Plat

The t u rb ine does no t need t o be a t t he l owes t po in t o f wa t e r

f l ow , a s l ong a s t he d r a f t t ube r ema ins fu l l o f wa t e r . A h ighe r

t u rb ine l oca t i on , howeve r , i nc r ea se s t he suc t i on t ha t i s impa r t ed on

t he t u rb ine b l ades by t he d r a f t t ube . Va r i ab l e geome t ry o f t he w icke t

ga t e and t u rb ine b l ades a l l ows e f f i c i en t ope ra t i on fo r a r ange o f

f l ow cond i t i ons . Kap l an t u rb ine e f f i c i enc i e s a r e t yp i ca l l y ove r 90%.

2.4.2. GENERATOR:

The s c i en t i f i c p r i nc ip l e on wh ich gene ra to r s ope ra t e was

d i s cove red a lmos t s imu l t aneous ly i n abou t 1831 by t he Eng l i sh

chemi s t and phys i c i s t , Michae l Fa raday , and t he Amer i can phys i c i s t ,

Jo seph Henry . Imag ine t ha t a co i l o f w i r e i s p l aced w i th in a

magne t i c f i e l d , w i th t he ends o f t he co i l a t t a ched t o some e l ec t r i c a l

dev i ce , such a s a ga lvanome te r . I f t he co i l i s r o t a t ed w i th in t he

magne t i c f i e l d , t he ga lvanome te r shows t ha t a cu r r en t ha s been

i nduced w i th in t he co i l . The magn i t ude o f t he i nduced cu r r en t

depends on t h r ee f a c to r s : t he s t r eng th o f t he magne t i c f i e l d , t he

l eng th o f t he co i l , and t he speed w i th wh ich t he co i l moves w i th in

t he f i e l d .

In f a c t , i t makes no d i f f e r ence a s t o whe the r t he co i l r o t a t e s

w i th in t he magne t i c f i e l d o r t he magne t i c f i e l d i s c aused t o ro t a t e

a round t he co i l . The impor t an t f a c to r i s t ha t t he w i r e and t he

magne t i c f i e l d a r e i n mot ion i n re la t i on t o e ach o the r . I n gene ra l ,

mos t DC gene ra to r s have a s t a t i ona ry magne t i c f i e l d and a ro t a t i ng

co i l , wh i l e mos t AC gene ra to r s have a s t a t i ona ry co i l and a ro t a t i ng

magne t i c f i e l d .

Page 14: Hydro Power Plat

Fig .2 .4 .3 .Gene ra t e r

2.5 . DRAFT TUBES Dra f t Tube i s an emp ty s t ruc tu r e made benea th t he Tu rb ine . I t

s e rve s i n fo l l owing 2 pu rpose ’ s :

I t a l l ows t he t u rb ine t o be s e t above t a i l wa t e r l eve l w i thou t

l o s s o f head , t o f a c i l i t a t e i n spec t i on and ma in t enance .

I t r ega in s by d i f fu se r a c t i on , t he ma jo r po r t i on o f t he k ine t i c

ene rgy de l i ve r ed t o i t f r om the runne r .

I t i nc r ea se s t he ou tpu t power .

I t i nc r ea se s t he e f f i c i ency o f Hydro Power P l an t .

2.6 . PENSTOCK

Pens tock i s t he connec t i ng p ipe be tween t he dam & the t u rb ine

house .

I t he lp s t o i nc r ea se t he k ine t i c ene rgy o f t he wa t e r coming

f rom the dam.

Page 15: Hydro Power Plat

Pens tock i s made up o f a ve ry s t rong ma te r i a l wh i ch can

su s t a in t he h igh p r e s su re o f wa t e r .

2.7 . POWER HOUSE & EQUIPMENT Some more componen t s a r e r equ i r ed fo r t he p rope r , u se r

f r i end ly & smoo th func t i on ing o f t he power p l an t . These

componen t s a r e a s f o l l ow:

VALVE: - Th i s i n s t rumen t wh ich i s u sed t o con t ro l t he

p r e s su re o f f l ow o f wa t e r .

PUMPS: - Th i s dev i ce i s u sed t o s end wa t e r o r any f l u id f rom

lower po t en t i a l t o h ighe r po t en t i a l .

2.8 .SPILL WAY'S : Sp i l l Way’ s i s a k ind o f c ana l p rov ided be s ide s t he dam.

Sp i l l Way’ s i s u sed t o a r r ange t he exce s s o f a ccumula t i on o f

wa t e r on t he dam because exce s s a ccumula t i on o f wa t e r may

damage t he dam s t ruc tu r e

2.9. SURGE TANK:

When t he r e i s a sudden c lo se o r dec r ea se i n p r e s su re due

t o con t ro l a r e t he ba s i c componen t s o f a conven t i ona l hydropower

p lant

2.10. TRANSFORMERS :

The t r ans fo rmer i n s ide t he powerhouse t ake s t he AC and conve r t s i t

t o h ighe r -vo l t age cu r r en t .

CHAPTER-III

Page 16: Hydro Power Plat

INSTALLATION OF HYDROPOWER PLANT

The fo l l owing f ac to r s shou ld be cons ide red wh i l e s e l ec t i ng t he s i t e

f o r a hyd ropower p l an t .

1 . Ava i l ab i l i t y o f wa t e r

2 . Wa te r s t o r age

3 . Wa te r head

4 . Acces s ib i l i t y o f t he s i t e

5 . D i s t ance f rom load cen t r e

6 . Type o f t he l and o f s i t e

3 .1 . Avai labi l i ty of water:

The mos t impor t an t a spec t o f hyd ropower p l an t i s t he

ava i l ab i l i t y o f wa t e r a t t he s i t e , s i nce a l l o t he r de s ign i s ba sed on i t .

The re fo re t he run -o f f da t a a t t he p roposed s i t e mus t be ava i l ab l e

be fo re hand . I t may no t be pos s ib l e t o have run -o f f d a t a a t t he

p roposed s i t e bu t da t a conce rn ing t he r a i n f a l l ove r t he l a rge

ca t chmen t s a r ea i s a lways ava i l ab l e .

Es t ima t e shou ld be made abou t t he ave rage quan t i t y o f wa t e r

ava i l ab l e t h rough ou t t he yea r and a l so abou t max imum and

min imum quan t i t y o f wa t e r ava i l ab l e du r ing t he yea r .

Dec ide t he c apac i t y a t t he hyd ropower p l an t .

Se t t i ng up o f peak l oad .

P rov ide adequa t e ga t e r e l i e f du r ing t he f l ood pe r i od .

3.2 . Water s torage:

The re i s a w ide va r i a t i on i n r a i n f a l l du r i ng t he yea r ; t he r e fo re ,

i t i s a lways nece s sa ry t o s t o r e t he wa t e r f o r con t i nuous gene ra t i on

o f power . The s t o r e c an be ca l cu l a t ed by w i th he lp o f mass cu rve .

Page 17: Hydro Power Plat

Fig3 .2 . In s t a l l a t i on o f hyd rop l an t

3.3 . Water head:

In o rde r t o gene ra t e a r equ i s i t e quan t i t y o f power , i t i s

nece s sa ry t ha t a l a rge quan t i t y o f wa t e r a t t he su f f i c i en t head shou ld

be ava i l ab l e . An i nc r ea se i n e f f ec t i ve head , f o r g iven ou tpu t r educes

t he quan t i t y o f wa t e r r equ i r ed t o be supp l i ed t o t u rb ine s .

3.4 . Access ibi l i ty of the s i te:

The s i t e shou ld have t r anspo r t a t i on f ac i l i t i e s on r a i l and

road .

Thi s i s impor t an t , i f t he e l e c t r i c power gene ra t ed i s t o be

u t i l i z ed a t ( o r ) nea r t he p l an t s i t e .

3.5 . Distance from the load centre:

Page 18: Hydro Power Plat

I t i s o f pa r amoun t impor t ance t ha t t he power p l an t shou ld be

s e t up nea r t he l oad cen t e r ; t h i s w i l l r educe t he cos t o f e r ec t i on and

ma in t ance o f t r ansmi s s ion l i ne s .

3.6 . Type of the land of the s i te:

I t shou ld be cheap & rocky .

The dam wi l l have l a rge s t c a t chmen t s a r ea t o s t o r e wa t e r

a t h igh head .

I t i s e conomica l i n cons t ruc t i on .

The rock shou ld be s t ab l e unde r a l l cond i t i ons .

CHAPTER-IV

WORKING OF HYDROPOWER PLANT

Page 19: Hydro Power Plat

Fig .4 .1 .work ing o f hyd ropower p l an t

The dam i s u sua l l y bu i l t on a l a rge r i ve r t ha t ha s a d rop i n

e l eva t i on , so a s t o u se t he fo r ce s o f g r av i t y t o a i d i n t he p roce s s o f

c r ea t i ng e l e c t r i c i t y . A dam i s bu i l t t o t r ap wa t e r , u sua l l y i n a va l l ey

whe re t he r e i s an ex i s t i ng l ake . An a r t i f i c i a l s t o r age r e se rvo i r i s

f o rmed by cons t ruc t i ng a dam ac ros s a r i ve r . No t i c e t ha t t he dam i s

much t h i cke r a t t he bo t t om than a t t he t op , because t he p r e s su re o f

t hewa te r i nc r ea se swi thdep th .

The a r ea beh ind t he dam whe re wa t e r i s s t o r ed i s c a l l ed t he

r e se rvo i r . The wa t e r t he r e i s c a l l ed g r av i t a t i ona l po t en t i a l ene rgy .

The wa t e r i s i n a s t o r ed pos i t i on above t he r e s t o f t he dam f ac i l i t y

so a s t o a l l ow g rav i t y t o c a r ry t he wa t e r down to t he t u rb ine s .

Because t h i s h ighe r a l t i t ude i s d i f f e r en t t han whe re t he wa t e r wou ld

na tu r a l l y be , t he wa t e r i s cons ide red t o be a t an a l t e r ed equ i l i b r i um.

Th i s r e su l t i n g r av i t a t i ona l po t en t i a l ene rgy o r , “ the s t o r ed energy

of pos i t i on pos se s sed by an ob j ec t . ” The wa t e r ha s t he po t en t i a l t o

do work because o f t he pos i t i on i t i s i n ( above t he t u rb ine s , i n t h i s

c a se . )

Page 20: Hydro Power Plat

f i g . 4 .2 .mo t ion o f wa t e r

Grav i t y w i l l f o r ce t he wa t e r t o f a l l t o a l ower pos i t i on t h rough

t he i n t ake and t he con t ro l ga t e . They a r e bu i l t on t he i n s ide o f t he

dam. When t he ga t e i s opened , t he wa t e r f rom the r e se rvo i r goes

t h rough t he i n t ake and becomes t r ans l a t i ona l k ine t i c ene rgy a s i t

f a l l s t h rough t he nex t ma in pa r t o f t he sy s t em: t he pens tock .

T rans l a t i ona l k ine t i c ene rgy i s t he ene rgy due t o mo t ion f rom one

l oca t i on t o ano the r . The wa t e r i s f a l l i ng (mov ing ) f rom the r e se rvo i r

t owards the tu rb ine s th rough thepens tock .

The i n t ake shown in f i gu re i nc ludes t he head works wh ich a r e

t he s t r uc tu r e s a t t he i n t ake o f condu i t s , t unne l s o r f l umes . These

s t ruc tu r e s i nc lude b looms , s c r eens o r t r a sh - r a cks , s l u i ce s t o d ive r t

and p r even t en t ry o f deb r i s and i c e i n t o t he t u rb ine s . Booms p reven t

t he i c e and f l oa t i ng l ogs f rom go ing i n t o t he i n t ake by d ive r t i ng

t hem to a bypas s chu t e . Sc r eens o r t r a sh - r acks ( shown in f i g ) a r e

f i t t ed d i r ec t l y a t t he i n t ake t o p r even t t he deb r i s f r om go ing i n t o

t he t ake . Deb r i s c l e an ing dev i ce s shou ld a l so be f i t t ed on t he t r a sh -

r acks . I n t ake s t ruc tu r e s c an be c l a s s i f i ed i n t o h igh p r e s su re i n t akes

u sed i n c a se o f l a rge s t o r age r e se rvo i r s and l ow p re s su re i n t akes

Page 21: Hydro Power Plat

used i n c a se o f sma l l ponds . The u se o f p rov id ing t he se s t r uc tu r e s a t

t he i n t ake i s , wa t e r on ly en t e r s and f l ows t h rough t he pens tock

wh ich s t r i ke s t he t u rb ine .

Con t ro l ga t e s a r r angemen t i s p rov ided w i th Sp i l lways .

Sp i l lway i s cons t ruc t ed t o a c t a s a s a f e ty va lve . I t d i s cha rge s t he

ove r f l ow wa te r t o t he down s t r e am s ide when t he r e se rvo i r i s f u l l .

These a r e gene ra l l y cons t ruc t ed o f conc re t e and p rov ided w i th wa t e r

d i s cha rge open ing , shu t o f f by me t a l con t ro l ga t e s . By chang ing t he

deg ree t o wh ich t he ga t e s a r e opened , t he d i s cha rge o f t he head

wa t e r t o t he t a i l r a ce can be r egu l a t ed i n o rde r t o ma in t a in wa t e r

l eve l i n r e se rvo i r .

The pens tock i s a l ong sha f t t ha t c a r r i e s t he wa t e r t owards t he

t u rb ine s whe re t he k ine t i c ene rgy becomes mechan i ca l ene rgy . The

fo r ce o f t he wa t e r i s u sed t o t u rn t he t u rb ine s t ha t t u rn t he gene ra to r

sha f t . The t u rn ing o f t h i s sha f t i s known a s ro t a t i ona l k ine t i c ene rgy

because t he ene rgy o f t he mov ing wa t e r i s u sed t o ro t a t e t he

gene ra to r sha f t . The work t ha t i s done by t he wa t e r t o t u rn t he

t u rb ine s i s mechan i ca l ene rgy . Th i s ene rgy power s t he gene ra to r s ,

wh i ch a r e ve ry impor t an t pa r t s o f t he hyd roe l ec t r i c power p l an t ;

t hey conve r t t he ene rgy o f wa t e r i n to e l e c t r i c i t y . Mos t p l an t s

con t a in s eve ra l gene ra to r s t o max imize e l e c t r i c i t y p roduc t i on .

Page 22: Hydro Power Plat

Fig ,4 .3work ing o f gene ra to r and t u rb ine

The gene ra to r s a r e compr i s ed o f f ou r ba s i c componen t s : t he

sha f t , t he exc i t e r s , t he ro to r , and t he s t a t o r . The t u rn ing o f t he

t u rb ine s power s t he exc i t e r s t o s end an e l e c t r i c a l cu r r en t t o t he

ro to r . The ro to r i s a s e r i e s o f l a rge e l e c t romagne t s t ha t sp in s i n s ide

a t i gh t l y wound co i l o f coppe r w i r e , c a l l ed t he s t a t o r . “A vo l t age i s

i nduced i n t he mov ing conduc to r s by an e f f ec t c a l l ed

e l e c t romagne t i c i nduc t i on . ” The e l ec t romagne t i c i nduc t i on caused

by t he sp inn ing e l ec t romagne t s i n s ide t he w i r e s c ause s e l e c t rons t o

move , c r ea t i ng e l e c t r i c i t y .

The k ine t i c /mechan i ca l ene rgy i n t he sp inn ing t u rb ine s t u rn s i n to

e l e c t r i c a l ene rgy a s t he gene ra to r s f unc t i on .

Page 23: Hydro Power Plat

CHAPTER-V

MATHEMATICAL DESCRIPTION OF

HYDROPOWER PLANT

1 . The ve loc i t y o f t he j e t a t t he i n l e t ( v ) = Cv (2gH) ^ (1 /2 )

Whe re Cv = Coe f f i c i en t o f ve loc i t y

=0 .98 (o r ) 0 . 99

H = Ne t head on t u rb ine .

g = a cce l e r a t i on due t o g r av i t y o f 9 .8 m / s 2 ,

2 . The ve loc i t y o f whee l (Cb l ) = Ø √ (2gH)

Whe re Ø = speed r a t i o , i t v a r i e s f rom 0 .43 t o 0 .48

3 . The ang l e o f t he de f l e c t i on o f t he j e t t h rough bucke t s i s

t aken a s 165 ˚ ( I f no ang l e o f de f l e c t i on i s g iven )

4 . Mean d i ame te r (D)

Cb l =∏ DN/60

D= 60Cb l /∏N

5 . J e t r a t i o = D /d

D= Mean d i ame te r

d= d i ame te r o f j e t

Page 24: Hydro Power Plat

6 . Number o f bucke t s on a runne r = 15+ (D /2d )

=15+0 .5m

7 . Ove r a l l e f f i c i ency o f t he t u rb ine (ή ) =

Power ava i l ab l e a t t he sha f t o f t he t u rb ine / power supp l i ed a t t he

i n l e t o f t he t u rb ine

ή =P /WQH

Where P=sha f t power

Q=d i scha rge t h rough t u rb ine

H= Head unde r wh ich t u rb ine i s work ing

W= Dens i t y o f wa t e r

8 . Spec i f i c speed (Ns ) = (N√P) /h^ (5 /4 )

9 . Un i t speed (Nu) =N/√H

10 . Un i t d i s cha rge (Qu) = Q /√H

11 . Un i t power (Pu ) = P /H^ (3 /2 )

12 . Theo re t i c a l power (P th ) = ρgQH/1000 KW

Where P th = Theo re t i c a l power

W = We igh t dens i t y

Q = F low o f wa t e r t h rough t u rb ine

H = Head ava i l ab l e

Page 25: Hydro Power Plat

CHAPTER-VI

CALUCALTIONS

1 . The ve loc i t y o f t he j e t a t t he i n l e t ( v ) = Cv √ (2gH)

= 0 .98 √ (2*9 .81*0 .13 )

=1 .56m/s

2 . The ve loc i t y o f whee l (Cb l ) = Ø √ (2gH)

= 0 .45√ (2*9 .81*0 .13 )

=0 .71m/s

3 . Mean d i ame te r (D)

Cb l =∏ DN/60

D = 60Cb l /∏N

= (0 .71*60) / (∏*1 .8 )

= 0 .026m

4 . J e t r a t i o = D /d

= 0 .026 /0 .01

= 2 .6

5 . Number o f bucke t s on a runne r = 15+ (D /2d )

= 28

Page 26: Hydro Power Plat

6 . Power (P ) = ρgQH/1000 KW

= (1000*9 .81*1 .96E-3*0 .13

= 2 .12 wa t t s

7 . Ove r a l l e f f i c i ency o f t he t u rb ine (ή ) =

Power ava i l ab l e a t t he sha f t o f t he t u rb ine / power supp l i ed a t t he

i n l e t o f t he t u rb ine

Ή =P /WQH

= 2 .12 / (1000*9 .81 .*1 .96E-3*0 .13 )

= 0 .8481

= 84 .81%

8 . Spec i f i c speed (Ns ) = (N√P) /H^ (5 /4 )

= (1 .8√2 .12 ) / ( 0 .13^ (5 /4 )

= 35 rpm

9 . Un i t speed (Nu) =N/√H

=1 .8 /√0 .13

=5 rpm

10 . Un i t d i s cha rge (Qu) = Q /√H

=1 .96*E-3 /√0 .13

=5 .43E-3 m3 / s

Page 27: Hydro Power Plat

11 . Un i t power (Pu ) = P /H^ (3 /2 )

= 2 .12 / ( 0 .13^ (3 /2 )

=45 .22 wa t t s

Page 28: Hydro Power Plat

CHAPTER-VII

Comparison of hydro-power plant with thermal power

stat ion

S.NO ASPECTS

HYDRO- POWER STATION

THERMALPOWER STATION

1 Raw ma te r i a l consumpt ion

NILL Huge quan t i t y o f coa l consumed , t he r e by exhaus t i ng fue l r e se rve s .

2 Cos t o f ene rgy Cheape r Cos t l i e r

3 Cos t o f ene rgy gene ra t i on

Immune t o i n f l a t i on

Very much i n f l uenced by t he i nc r ea se i n t he cos t o f t he fue l .

4 L i f e o f p l an t Long u se fu l l i f e No t so l ong compa ra t i ve ly .

5 Po l l u t i on No Causes po l l u t i on

6 Des ign , cons t ruc t i on & r e l i ab i l i t y

S imp le i n de s ign

Robus t i n cons t ruc t i on

Re l i ab l e i n ope ra t i on .

More compl i ca t ed i n de s ign .

Les s robus t i n cons t ruc t i on .

Les s robus t i n ope ra t i on

7 Man power Sma l l La rge

8 Employmen t po t en t i a l

More Les s

9 Labour p rob l em

Less More

Page 29: Hydro Power Plat

10 Ove r a l l c ap i t a l expend i t u r e

Low High

\

CHAPTER-VIII

ADVANTAGES & DIS ADVANTAGES

8 .1 ADVANTAGES: No fue l cha rge s .

Less supe rv i s i ng s t a f f i s r equ i r ed .

Main t enance & ope ra t i on cha rge s a r e ve ry l ow .

Runn ing cos t o f t he p l an t i s l ow .

The p l an t e f f i c i ency does no t change w i th age .

I t t ake s f ew minu t e s t o run & synch ron i ze t he p l an t .

No fue l t r anspo r t a t i on i s r equ i r ed .

No a sh & f l ue ga s p rob l em & does no t po l l u t e t he a tmosphe re .

These p l an t s a r e u sed fo r f l ood con t ro l & i r r i ga t i on pu rpose .

Long l i f e i n compa r i son w i th t he The rma l & Nuc l ea r Power

P l an t .

8 .2 . DISADVANTAGE ' S

The i n i t i a l co s t o f t he power p l an t i s ve ry h igh .

Takes l ong t ime fo r cons t ruc t i on o f t he dam.

Gene ra l l y , such p l an t s a r e l oca t ed i n h i l l y a r ea s f a r away f rom

load cen t e r & thus t hey r equ i r e l ong t r ansmi s s ion l i ne s &

lo s se s i n t hem wi l l be more .

Page 30: Hydro Power Plat

Power gene ra t i on by hyd ro power p l an t i s on ly dependan t on

na tu r a l phenomenon o f r a i n .The re fo re a t t he t ime o f d rough t

o r summer s e s s ion t he Hydro Power P l an t w i l l no t work .

CHAPTER-IX

Results and decis ions

Mass curve

Page 31: Hydro Power Plat
Page 32: Hydro Power Plat

Discharge vs Speed

Unit power vs . speed

Page 33: Hydro Power Plat

Over a l l e f f ic iency vs unit speed

Eff ic iency of pel ton turbine with ful l load

Page 34: Hydro Power Plat

Conclusion

Compar ing t o The rma l Power p l an t Hydro Power p l an t i s

be t t e r , because Hydro Power p l an t i s e f f i c i en t t hen The rma l Power

p l an t .

Name of plant

Power Input

Power Output

Eff ic iency

HPP 12 10.2 85

TPP 12 9 .12 76

Page 35: Hydro Power Plat

Important hydro plants in India

State/name of power plant installed capacity (Mw)

Andhra Pradesh

Machkand (stage I&II) 114

Upper silern 120

Lower silern 600

Srisailam 770

Nagarguna sager 100

Assam

Umiam 54

Gujarat

Page 36: Hydro Power Plat

Ukai 300

Himachal Pradesh

Baira suil 200

Jammu & Kashmir

Salau 270

Karnataka

Thungabhdra 72

Sharavati 890

Kailindi 369

Kerala

Parambikulam-Aliyar 185

Sabarigiri 300

Idikki (stage-I) 390

Maharastra

Kayna (stages I,II,III) 860

Manipur

Lakota 70

Orissa

Hirakud (stage I,II) 270

Balimela 480

Punjab

Page 37: Hydro Power Plat

Bhakra nanga 1084

Beas-sutlej link 780

Rajasthan

Chambai 287

Uttar Pradesh

Rihand 300

Yamuna (sage I,II,) 425

Tamilnadu

Kundah (stage I, II,III) 424

BIBLIOGRAPHY

1. http://www.obermeyhydro.com

2. H.C. Huang and C.E. Hita, “Hydraulic Engineering Systems”, Prentice Hall Inc., Englewood Cliffs, New Jersey 1987.

3. British Hydrodynamic Research Association, “Proceedings of the Symposium on the Design and Operation of Siphon Spillways”, London 1975.

4. Allen R. Inversin, “Micro-Hydropower Sourcebook”, NRECA International Foundation, Washington, D.C.

5. USBR, “Design of Small Canal Structure”, Denver Colorado, 1978a.

6. USBR, “Hydraulic Design of Spillways and Energy Dissipaters”, Washington DC, 1964.

7. T. Moore, “TLC for small hydro: good design means fewer headaches”, HydroReview, April 1988.

8. T.P. Tung y otros, “Evaluation of Alternative Intake Configuration for Small Hydro”, Actas de HIDROENERGIA 93. Munich.

9. ASCE, Committee on Intakes, “Guidelines for the Design of Intakes for Hydroelectric Plants”, 1995.

Page 38: Hydro Power Plat

10. G. Munet y J.M. Compas, “PCH de recuperation d’energie au barrage de “Le Pouzin””, Actas de HIDROENERGIA 93, Munich.

11. G. Schmausser & G. Hartl, “Rubber seals for steel hydraulic gates”, Water Power & Dam Construction September 1998.

12. ISO 161-1-1996 “Thermoplastic pipes for conveyance of fluids – Nominal outside diameters and nominal pressures – Part 1: Metric series.”

13. ISO 3606-1976 “Unplasticized polyvinyl chloride (PVC) pipes. Tolerances on outside diameters and wall thickness.”

14 . ISO 3607-1977 “Polyethylene (PE) p ipes . Tolerance on outs ide d iameters and wal l