icassp 2012 tutorialrqiu/teaching/ece7750/...scaling down p with m ⇒ noise will limit performance....

67
MM YS ICASSP 2012 Tutorial Very Large MIMO Systems Part I: Theory and Analysis Erik G. Larsson March 26, 2012 Div. of Communication Systems Dept. of Electrical Engineering (ISY) Link¨opingUniversity Link¨oping,Sweden www.commsys.isy.liu.se

Upload: others

Post on 15-Sep-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

MM

YS

ICASSP 2012 Tutorial

Very Large MIMO Systems

Part I: Theory and Analysis

Erik G. Larsson

March 26, 2012

Div. of Communication SystemsDept. of Electrical Engineering (ISY)

Linkoping UniversityLinkoping, Sweden

www.commsys.isy.liu.se

Page 2: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

With thanks to my team and collaborators:

◦ Hien Q. Ngo (LiU, Sweden)◦ Antonios Pitarokoilis (LiU)◦ Saif Mohammed (LiU)◦ Daniel Persson (LiU)

◦ Fredrik Rusek (Lund, Sweden)◦ Ove Edfors (Lund)◦ Buon Kiong Lau (Lund)◦ Fredrik Tufvesson (Lund)

◦ Thomas L. Marzetta (Bell Labs/Alcatel-Lucent, USA)

◦ Christoph Studer (Rice Univ., USA)

1/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 3: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Why MIMO◮ Array gain (beamforming)

◮ Spatial division mult. access

◮ Spatial multiplexing

◮ Rate ∼ min (nr, nt) log (1 + SNR)

◮ Reliability pe ∼ SNR−nrnt

2/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 4: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Very Large MIMO

M=

x100

antennas!K

terminals

k=1

k=K

◮ We think of very large (multiuser) MIMO as a system with◮ M ≫ K ≫ 1◮ coherent, but simple, processing

◮ Potential to improving rate & reliability dramatically

◮ Potential to scaling down TX power drastically

3/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 5: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Large MIMO Arrays

◮ Reduce bulky items (coax)◮ Each antenna unit simple (low accuracy)◮ Resilience against individual failures (hotswapping)◮ Potential economy of scale in manufacturing◮ Enable for mmWave radio (60-300 GHz)?

4/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 6: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Large MIMO: Some Known Facts(Notation: M antennas, K terminals, power per terminal P )

◮ Linear processing (MRC/MRT, ZF, ... ) nearly optimal asM ≫ K ≫ 1

◮ P and M “large enough” ⇒ pilot contamination limitsperformance

◮ Scaling down P with M ⇒ noise will limit performance.

◮ Perfect CSI & optimal processing ⇒ P can be scaled as 1/M

◮ Given linear processing and imperfect CSI, in a MU system,P can be scaled as 1/

√M

5/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 7: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Large MIMO: Some Known Facts, cont.

◮ System performance can be limited by◮ pilot contamination (M → ∞, P 9 0)◮ thermal noise (P → 0 too fast as M increased)◮ intracell interference (e.g., MRC and M ≯> K)◮ intercell interference

so there are several possible operating points depending on◮ number of antennas◮ available TX power◮ choice of receiver/precoder algorithm◮ coherence time (dictates ultimately the number of users served)

6/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 8: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Large MIMO: Some Beliefs/Speculation◮ Not enough time for CSI feedback, so must operate in TDD mode.

◮ Not enough pilots (optimal training is orthogonal)◮ Not enough resources for fast CSI feedback

◮ System will operate in nearly-noise limited regime (∼1 bpcu/term)◮ Very aggressive spatial multiplexing; aggregate efficiency ∼ K bpcu◮ Each user could get the full bandwidth

⇒ simple MAC, little or no control signaling◮ Impairments, e.g., multiuser interference (almost) drown in noise

⇒ linear or nearly-linear receivers◮ May even get away with equalization-free (matched filter only) SC

transmission

◮ Vast excess (M −K) of degrees of freedom:⇒ use for HW-friendly signal shaping and smart receiver algorithms

◮ Per-antenna constant envelope or low-PAR multiuser precoding◮ Channel estimation exploiting subspaces

◮ Channel will harden (random matrix theory)

◮ Larger array reveals new propagation phenomena

7/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 9: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Large MIMO: Some of the Most Important Questions

◮ Processing will have to be simple (linear). How good is this?

◮ Non-CSI@TX operation: STBC more or less optimal

◮ Acquisition

◮ Hardware imperfections: phase noise, I/Q imbalance, A/D, PAs

◮ Synchronization at low SNR

◮ TDD will bring us pilot contamination in the downlink.How bad is this really in practice?

◮ TDD will require reciprocity calibration.How, when and at what cost?

8/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 10: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Favorable Propagation andIts Implications

9/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 11: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

“Favorable propagation” and Rate◮ M ×K, MIMO link, channel H, M ≥ K, no CSI@TX. Rate:

R =

K∑

k=1

log2

(

1 +SNR

Kλ2k

)

, SNR =PtotN0

◮ If |Hij | ∼ 1,∑K

k=1 λ2k = ‖H‖2 ≈ MK, so

log2 (1 +MSNR)︸ ︷︷ ︸

rank-1 channel (LoS)

λ21=MK, λ2

2=···=λ2

K=0

≤ R ≤ K · log2(

1 +M

KSNR

)

︸ ︷︷ ︸

HHH∝I (full rank channel)

λ21=···=λ2

K=M

Favorable propagation

◮ H i.i.d. and M ≫ K ⇒ favorable propagation.◮ In MU-MIMO (H ⇒ G), “favorable propagation” if

GHG

M≈

β1 0 · · · 0

0 β2. . .

......

. . .. . . 0

0 · · · 0 βK

, D, M ≫ K

10/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 12: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Favorable propagation and “ideal channels”

−40 −30 −20 −10 0 10 20 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pro

b(σ

≤ ab

scis

sa)

ordered singular values [dB]

i.i.d 6x128i.i.d. 6x6

11/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 13: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Favorable propagation and detection

◮ Optimal (coherent) uplink detector:

minx,xk∈X

‖y −Gx‖ (∗)

has complexity ∼ exp(K)

◮ With favorable propagation and M ≫ K,

1

MGHG ≈ D

so

(∗) ⇔ minx,xk∈X

∥∥∥∥

1

MGHy −Dx

∥∥∥∥

⇔ minxk∈X

∣∣∣∣xk − GH

k y

Mβk

∣∣∣∣

2

◮ Expect simple (linear) detectors to be good enough: MRC, ZF

◮ Complexity ∼ MK2

12/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 14: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Favorable propagation and linear precoding◮ MRC precoding, x ∝ G∗s, is essentially time-reversal “in space”◮ In rich scattering, focus power not in a direction but at a point

13/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 15: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Do we have “favorable propagation” in practice?

◮ Our partners at Lund Univ., Sweden have conducted uniquemeasurements [RPL2011+,GERT2011].

◮ Indoor 128-ant. (4x16 dual-pol.) array. 3 users indoor, 3 outdoor.

◮ 2.6 GHz CF, 50 MHz BW, 100 snapshots (10m).

◮ Normalized to retain only small-scale fading.

14/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 16: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Lund measurements, example of results (more in part II)

−40 −30 −20 −10 0 10 20 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pro

b(σ

≤ ab

scis

sa)

ordered singular values [dB]

meas 6x128meas 6x6

15/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 17: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Spectral and Energy Efficiency with LinearReceivers:

Analysis of a Single-Cell System

16/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 18: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Cellular UL, (BT )coh. = 14× 14, M = 50 [NLM2011]

0 10 20 30 40 50 60 70 80 9010

-1

100

101

102

103

104

K=1, M=1

MRC

20 dB

10 dB

0 dB

-10 dB

-20 dB

Rel

ativ

e E

nerg

y-E

ffic

ienc

y (b

its/J

)/(b

its/J

)

Spectral-Efficiency (bits/s/Hz)

K=1, M=100

M = 100

ZF

17/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 19: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Derivation of uplink spectral/efficiency tradeoff

◮ gk =√βkhk.

◮ hk: small scale fading;E[|hmk|2] = 1; zero mean.

◮ βk: path loss+shadowing◮ SNR for kth terminal: Pβk

◮ RX signal:

y =√P

K∑

k=1

gk︸︷︷︸

M×1

xk + n, E[|xk|2] = 1, ni ∼ CN(0, 1)

◮ Write as

y =√P G︸︷︷︸

M×K

x︸︷︷︸

K×1

+n, G = HD1/2, H , [h1, . . . ,hK ], D ,

β1

. . .

βK

18/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 20: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Uplink Power Efficiency with MRC - Perfect CSI◮ Maximum-Ratio-Combining

rmrc =GGGHyyy =GGGH(√

PGGGxxx+nnn)

⇒ rk,mrc =√P‖gggk‖2xk

︸ ︷︷ ︸

desired signal

+√P

K∑

i6=k

gggHk gggixi

︸ ︷︷ ︸

interference

+gggHk nnn︸︷︷︸

noise

◮ Observe that: gi ,gggHk gggi

‖gggk‖ ∼ CN (0, βi), indep. of gk

⇒ SINRk =P‖gggk‖4

P∑K

i6=k |gggHk gggi|2 + ‖gggk‖2=

P‖gggk‖2P∑K

i6=k |gi|2 + 1

M≫1≈ PMβk

P∑K

i6=k |gi|2 + 1

M→∞→{

∞, P fixed

P0βk, P = P0/M

⇒ TX power can be scaled as ∝ 1/M

19/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 21: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Uplink Performance with MRC - Perfect CSI◮ Achievable ergodic rate

Rk,mrc = E

{

log2

(

1 +P‖gggk‖2

P∑K

i6=k |gi|2 + 1

)}

≥ log2

1 +

(

E

{

P∑K

i6=k |gi|2 + 1

P‖gggk‖2

})−1

= log2

(

1 +P (M − 1)βk

P∑K

i6=k βi + 1

)

(use E[log(1 + 1/x)] ≥ log(1 + 1/E[x]))

◮ Here: E{

1

‖gk‖2

}

= 1

M−1

1

βk

◮ Special case of E{

tr

(

WWW−1)}

= m

n−m, if WWW ∼ Wm (n,IIIn).

◮ Spectral efficiency: S =∑K

k=1 Rk

◮ Small-scale fading goes away in the limit.

20/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 22: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Uplink performance with, ZF, perfect CSI

◮ Zero-forcing:

√P · xzf = (GHG)−1GHy =

√Pxxx+ (GHG)−1GHnnn

◮ Capacity lower bound:

Rk,zf = E

log2

1 +

P[(

GGGHGGG)−1

]

kk

M≫1≈ log2

(

1 +P

1/(Mβk)

)

M→∞→{

∞, P fixed

log2(1 + βkP0), P = P0/M

◮ MRC and ZF are equivalent as M ≫ 1 since

xzf = (GHG)−1GHy ≈ 1

MD−1GHy = xmrc

21/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 23: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Uplink performance with MMSE - perfect CSI◮ Minimum mean-squared error detector:

xxxmmse =

(

GGGHGGG+1

PIIIK

)−1

GGGHyyy

◮ Capacity lower bound:

Rk,mmse = E

log2

1[(

IIIK + PGGGHGGG)−1

]

kk

M≫1≈ log2

(1

1/(1+MβkP )

)M→∞→

{∞, P fixedlog2(1+βkP0) , P = P0/M

◮ As M ≫ 1, MRC, ZF, and MMSE are equivalent, i.e.,

xxxmmse =

(

GGGHGGG+1

PIIIK

)−1

GGGHyyy ≈(

MDDD +1

PIIIK

)−1

GGGHyyy

22/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 24: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Optimal linear detector◮ Let AAA be an M ×K linear detector matrix. Then

r = AAAHyyy =√PAAAHGGGxxx+AAAHnnn.

rk =√PaaaHk gggkxk +

√P

K∑

i=1,i6=k

aaaHk gggixi + aaaHk nnn

◮ Capacity lower bound:

Rk = E

{

log2

(

1 +P |aaaHk gggk|2

P∑K

i=1,i6=k |aaaHk gggi|2 + ‖aaak‖2

)}

= E

{

log2

(

1+|aaaHk gggk|2aaaHk ΛΛΛkaaak

)}

≤E

{

log2

(

1+‖aaaHk ΛΛΛ

1/2k ‖2‖ΛΛΛ−1/2

k gggk‖2aaaHk ΛΛΛkaaak

)}

= E{log2

(1 + gggHk ΛΛΛ−1

k gggk)}

where ΛΛΛk ,∑K

i=1,i6=k gggigggHi + 1

P IIIM◮ Equality when aaak ∝ ΛΛΛ−1

k gggk: MMSE detector!

23/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 25: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Uplink Power Efficiency with MRC - Estimated CSI◮ CSI from pilots: GGG = GGG + EEE, where εεεi ∼ CN

(0,

βiPpβi+1

IIIM

),

gggi ∼ CN(0,

Ppβ2i

Ppβi+1IIIM

), Pp = τP , τ=#pilots

◮ MRC

rmrc = GGGHyyy = GGG

H(√

PGGGxxx −√PEEExxx +nnn

)

⇒ rk,mrc =√P‖gggk‖2

xk +√P

K∑

i 6=k

gggHk gggixi −

√P

K∑

i=1

gggHk εεεixi + ggg

Hk nnn

◮ Signal-to-interference-plus-noise ratio:

SINRk =P‖gggk‖2

P∑K

i 6=k |ˆgi|2 + P∑K

i=1

βiτPβi+1

+ 1, ˆgi ,

gggHk gggi

‖gggk‖∼ CN

(0,

Ppβ2i

Ppβi + 1

)

M≫1≈PM

τPβ2k

τPβk+1

P∑K

i 6=k |ˆgi|2 + P∑K

i=1

βiτPβi+1

+ 1

M→∞→

∞, P = P0

0, P = P0/M

τP 20 β

2k, P = P0/

√M

⇒ TX power can be scaled as ∝ 1/√M

24/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 26: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Uplink Performance with MRC - Estimated CSI◮ Achievable ergodic rate

Rk,mrc = E

{

log2

(

1 +P‖gggk‖2

P∑K

i6=k |ˆgi|2 + P∑K

i=1βi

τPβi+1 + 1

)}

≥ log2

1 +

(

E

{

P∑K

i6=k |ˆgi|2 + P∑K

i=1βi

τPβi+1 + 1

P‖gggk‖2

})−1

= log2

(

1 +τP 2 (M − 1)β2

k

P (τPβk + 1)∑K

i6=k βi + (τ + 1)Pβk + 1

)

M→∞→{

0 P = P0/M

τP 20 β

2k P = P0/

√M

(gk and ˆgi, i 6= k are independent)

◮ Spectral efficiency: S =T − τ

T

K∑

k=1

Rk, T =coherence BT-product

25/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 27: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Uplink Performance with ZF - Estimated CSI◮ Zero-forcing

√P · xxxzf =

(

GGGHGGG)−1

GGGH(√

PGGGxxx−√PEEExxx+nnn

)

=√Pxxx−

√P(

GGGHGGG)−1

GGGHEEExxx+

(

GGGHGGG)−1

GGGHnnn

◮ Capacity lower bound:

Rk,mrc = E

log2

1+

P(∑K

i=1Pβi

Ppβi+1+1)[(

GGGHGGG)−1

]

kk

M≫1≈ log2

1+P

(∑K

i=1Pβi

Ppβi+1+1)

/(

MPpβ2

k

Ppβk+1

)

M→∞→

∞, P fixed

0, P = P0/M

log2(1 + τβ2

kP20

), P = P0/

√M 26/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 28: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Uplink performance with MMSE - estimated CSI◮ Minimum mean-squared error:

xxxmmse = GGGH(

GGGGGGH+

1

PCov

(

−√PEEExxx+nnn

))−1

yyy

◮ Capacity lower bound:

Rk,mmse=E

log2

1[(

IIIK+(∑K

i=1βi

Ppβi+1+ 1

P

)−1GGG

HGGG)−1

]

kk

M≫1≈ log2

(

1 +MPpβ

2k/ (Ppβk+1)

∑Ki=1

βi

Ppβi+1+ 1

P

)

M→∞→

∞, P fixed

0, P = P0/M

log2(1 + τβ2

kP20

), P = P0/

√M

27/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 29: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Required power, 1 bit/s/Hz/terminal for K = 10, τ = K

50 100 150 200 250 300 350 400 450 500-9.0

-6.0

-3.0

0.0

3.0

6.0

9.0

12.0

15.0

18.0 MRC ZF MMSE

Perfect CSI

Req

uire

d P

ower

, Nor

mal

ized

(dB

)

Number of Base Station Antennas (M)

Imperfect CSI

1 bit/s/Hz

28/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 30: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Required power, 2 bit/s/Hz/terminal for K = 10, τ = K

50 100 150 200 250 300 350 400 450 500-3.0

0.0

3.0

6.0

9.0

12.0

15.0

18.0

21.0

24.0

27.0

30.0

MRC ZF MMSE

Perfect CSI

Req

uire

d Po

wer

, Nor

mal

ized

(dB

)

Number of Base Station Antennas (M)

Imperfect CSI

2 bits/s/Hz

29/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 31: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Spectral-energy efficiency tradeoff◮ Sum-spectral efficiency (βk = 1 here):

R =

(1− τ

T

)K log2

(

1 + τ(M−1)P 2

τ(K−1)P 2+(τ+K)P+1

)

, for MRC(1− τ

T

)K log2

(

1 + τ(M−K)P 2

(τ+K)P+1

)

, for ZF

◮ Energy efficiency: η =R

P◮ Reference mode: K = 1,M = 1

arg max1≤τ≤T

η

◮ Single-user system: K = 1,M fixed

argmaxP,τ

η, s.t. S = const., 1 ≤ τ ≤ T

◮ Multi-user system: M fixed

arg maxP,K,τ

η

s.t. S = const.,K ≤ τ ≤ T(K ≤ M for ZF) 30/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 32: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Cellular UL, (BT )coh. = 14× 14, M = 1 [NLM2011]

0 10 20 30 40 50 60 70 80 9010

-1

100

101

102

103

104

K=1, M=1

20 dB

10 dB

0 dB

-10 dB

Rel

ativ

e E

nerg

y-E

ffic

ienc

y (b

its/J

)/(b

its/

J)

Spectral-Efficiency (bits/s/Hz)31/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 33: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Cellular UL, (BT )coh. = 14× 14, M = 100 [NLM2011]

0 10 20 30 40 50 60 70 80 9010

-1

100

101

102

103

104

K=1, M=1

20 dB

10 dB

0 dB

-10 dB

Rel

ativ

e E

nerg

y-E

ffic

ienc

y (b

its/J

)/(b

its/J

)

Spectral-Efficiency (bits/s/Hz)

K=1, M=100

32/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 34: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Cellular UL, (BT )coh. = 14× 14, M = 100 [NLM2011]

0 10 20 30 40 50 60 70 80 9010

-1

100

101

102

103

104

K=1, M=1

MRC

20 dB

10 dB

0 dB

-10 dB

-20 dB

Rel

ativ

e E

nerg

y-E

ffic

ienc

y (b

its/J

)/(b

its/J

)

Spectral-Efficiency (bits/s/Hz)

K=1, M=100

M = 100

ZF

33/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 35: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Cellular UL, (BT )coh. = 14× 14, 100 = 50 [NLM2011]

0 10 20 30 40 50 600

20

40

60

80

100

120

140

number of users

Spectral-Efficiency (bits/s/Hz)

number of uplink pilots

ZF

MRC

M=100

34/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 36: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Cellular UL, (BT )coh. = 14× 14, M = 50 [NLM2011]

0 10 20 30 40 50 60 70 80 9010

-1

100

101

102

103

104

-20 dB

M=50

ZF

MRC

20 dB

10 dB

0 dB

-10 dB

Rel

ativ

e E

nerg

y-E

ffic

ienc

y (b

its/J

)/(b

its/J

)

Spectral-Efficiency (bits/s/Hz)

K=1, M=50

K=1, M=1

35/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 37: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Some Observations: Single-Cell System Uplink

◮ The MRC receiver is limited by intracell interference, but will bevery competitive at ∼1 bpcu/terminal and facilitates decentralizedimplementation

◮ Power efficiency: with large number of BS antennas, the TX powerof each user can be scaled as

◮ 1/M if the BS has perfect CSI◮ 1/

√M if the BS estimates CSI from uplink pilots

◮ Key points remain the same for the downlink

◮ In the downlink, with TDD, training costs only uplink (notdownlink) resources

36/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 38: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Uplink in Interference Limited Multicell System:Limits Dictated by Pilot Contamination

37/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 39: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Interference limited multicell system

cell l

cell j

Glj

◮ RX data: yl︸︷︷︸

M×1

=√P∑L

j=1 Glj︸︷︷︸

=HljD1/2lj

M×K

xj︸︷︷︸

K×1

+nl

◮ CSI from pilots: Gll =

Gll +

L∑

j=1,j 6=l

Glj

+1

√Pp

Wl (LS

estimate)

38/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 40: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Interference limited system - pilot contamination◮ Consider MRC processing in the lth cell:

rrrl = GGGH

ll yyyl =

(∑L

j=1GGGlj +1√Pp

WWW l

)H (√P∑L

i=1GGGlixxxi +nnnl

)

rrrlM

=√P

L∑

i=1

L∑

j=1

GGGHljGGGli

Mxxxi+

L∑

j=1

GGGHljnnnl

M+

P

Pp

L∑

i=1

WWWHl GGGli

Mxi+

1√

Pp

WWWHl nnnl

M

≈√P

L∑

i=1

DDDlixxxi, as M ≫ K

◮ The SIR of the uplink transmission for the kth user in the lth cell

SIRlk =β2llk

∑Li6=l β

2lik

indep. of P ⇒ Pilot contamination!

◮ Limited (only) by interfering pilots. No noise, no fast fading.◮ Similar analysis for ZF (a bit more involved)

39/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 41: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Cell. UL, M = ∞, (14×15kHz)×0.5ms, (3 + 3 + 1)/7 T+D+O, 3× 14 = 42 term., [Mar2010]

10−1

100

101

102

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

capacity per terminal (megabits/second)

cum

ulat

ive

dist

ribut

ion

7 3 1

40/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 42: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Pilot contamination - does finite dimensional channel help?

1

2

M

Φ1

Φ2

ΦM’

◮ Consider finite-dimensional channel:

G = A︸︷︷︸

M×M ′

G′︸︷︷︸

M ′×K

= AH ′D1/2

where M ′ fixed as M → ∞

◮ Pilot contamination continues to fundamentally limit the SIR[NML2011]

41/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 43: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Interference limited system - general remarks

◮ P > ǫ and M → ∞, thermal noise and fast fading vanish◮ Since pilots need be reused, received pilots will be contaminated and

this effect will persist no matter what channel estimation scheme isused

◮ Using different pilot sequences in different cells does not help - finitedimensionality of pilot signal space

◮ Finite dimensionality of the channel does not eliminate the problem

42/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 44: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Large-Scale MU-MIMODownlink Precoding

43/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 45: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Downlink precoding - general remarks

◮ In the downlink, the are M −K “unused” degrees of freedom.These excess DoF could be used to

◮ Null out interference◮ Shape the transmitted signals in a hardware-friendly way◮ Exploit asymptotic orthogonality

◮ An excess in the number of antennas also means that simpleprecoders (MRT, time-reversal) may be used to combat frequencyselectivity

44/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 46: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Constant Envelope MU-MIMO Downlink Precoding

◮ Constant-envelope transmission [ML2011a,ML2011b]

x =

P

M

ejθ1

...ejθM

◮ Insensitive to PA non-linearity.

◮ How well can we approximate a desired wavefield at K locations, byvarying only the phase of the transmitted signals?

◮ Not to be confused with equal-gain transmission (something entirelydifferent)!

45/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 47: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Constant Envelope versus “Beamforming”

u

√P

h∗1

‖h‖

√P

h∗m

‖h‖

√P

h∗M

‖h‖

Amplitude range = [0 · · ·√P |u|]

ejθu1

ejθum

ejθuM

Constant amplitude =√

PM

√PM

√PM

√PM

Antenna 1 Antenna 1

Antenna m Antenna m

Antenna M Antenna M

Beamforming Constant-envelope transmission

46/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 48: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Constant Envelope MU-MIMO Downlink Precoding◮ Ek: energy per information symbol uk (per user)◮ P : total transmit power◮ Received signals:

yk =

P

M

M∑

i=1

hk,iejθi+nk =

√P√

Ekuk+√P

(∑Mi=1 hk,ie

jθi

√M

−√

Ekuk

)

︸ ︷︷ ︸

,δk

+nk

◮ Performance bound, with Gaussian symbols per user:

I(yk;uk) = h(uk)− h(uk | yk) = h(uk)− h(

uk − yk√P√Ek

∣∣∣ yk

)

≥ h(uk)− h(

uk − yk√P√Ek

)

≥ h(uk)− h( δk√

Ek

+nk√P√Ek

)

= log2(πe)− h( δk√

Ek

+nk√P√Ek

)

≥ log2(πe)− log2

(

πe var[ δk√

Ek

+nk√P√Ek

])

≥ log2(πe)− log2

(

πeE[ ∣∣∣

δk√Ek

+nk√P√Ek

∣∣∣

2 ])

= log2(πe)− log2

(

πe[E[|δk|2]

Ek+

1

PEk

])

◮ Downlink signal design: arg minθi∈[−π,π) , i=1,...,M

|δk|2

47/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 49: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Constant-env. MU-MIMO precoding, Gauss. symbols

0 50 100 150 200 250 300−12

−9

−6

−3

0

3

6

9

12

1515

No. of Base Station Antennas (M)

Min

. req

d. P

T/σ

2 (dB

) to

ach

ieve

a p

er−

user

rat

e of

2 b

pcu

K = 10, Proposed CE Precoder (CE)K = 10, ZF Phase−only Precoder (CE)K = 10, GBC Sum Cap. Upp. Bou. (APC)K = 40, Proposed CE Precoder (CE)K = 40, ZF Phase−only Precoder (CE)K = 40, GBC Sum Cap. Upp. Bou. (APC)

1.7 dB

48/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 50: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Constant-env. MU-MIMO precoding, Gauss. symbols

0 0.5 1 1.5 2 2.5 31

2

3

4

5

6

7

8

9

Desired per−user information rate (bpcu)

Ext

ra T

rans

mit

Pow

er R

equi

red

w.r

.t. S

um C

ap. U

pp. B

ou. (

dB)

ZF Phase−only Precoder

Proposed CE Precoder

M = 12, N = 48

1.5 dB

49/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 51: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

PAR-Aware MU-MIMO OFDM Downlink [SL2012]

◮ Precoder design problem:

(PMP)

minimizea1,...,aN

max{‖a1‖∞ , . . . , ‖aN‖∞

}

subject to sw = Hwfw(a1, . . . , aN ), w ∈ T0N×1 = fw(a1, . . . , aN ), w ∈ T c.

◮ Hw: time-frequency channel

◮ fw(·) linear function; includes OFDM modulation and S/Pconversion

◮ T : used subcarriers; T c: null subcarriers

◮ Convex optimization problem, fast algorithm; relaxation

50/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 52: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

PAR-aware MU-MIMO OFDM DL

51/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 53: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

PAR-aware MU-MIMO OFDM DL (99% percentiles)

52/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 54: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

PAR-aware MU-MIMO OFDM DL (99% percentiles)

53/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 55: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Single-Carrier Downlink in ISI Channels [PML2012]

MU-MISO ISI Channel:

y[i] =

L−1∑

l=0

D1/2l HH

l x[i− l] + n[i]

◮ L independent channel taps

◮ Normalized Power Delay Profile

Dl = diag{dl[1], . . . , dl[K]},

dl[k] ≥ 0,

L−1∑

l=0

dl[k] = 1

Matched Filter Precoder

x[i] =

√ρfMK

L−1∑

l=0

HlD1/2l s[i+ l]

◮ s[i]: White Gaussianinformation symbols

◮ ρf : long-term average totalradiated power by the basestation in a single channel use

54/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 56: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Single Carrier Transmission - Achievable Sum Rate◮ Define vl[k]

∆= HlD

1/2l ek. Then,

yk[i] =

(√ρfMK

L−1∑

l=0

E[vHl [k]vl[k]

]

)

sk[i] + n′k[i],

where n′k[i] is an effective noise term.

n′k[i] ,

√ρfMK

(L−1∑

l=0

vHl [k]vl[k]−

L−1∑

l=0

E[vHl [k]vl[k]

]

)

sk[i]

︸ ︷︷ ︸

Additional Interference Term (IF)

+

√ρfMK

L−1∑

a=1−La 6=0

min(L−1+a,L−1)∑

l=max(a,0)

vHl [k]vl−a[k]sk[i− a]

︸ ︷︷ ︸

Intersymbol Interference (ISI)

+

√ρfMK

K∑

q=1

q 6=k

L−1∑

a=1−L

min(L−1+a,L−1)∑

l=max(a,0)

vHl [k]vl−a[q]sq[i− a]

︸ ︷︷ ︸

Multiuser Interference (MUI)

+ nk[i]︸︷︷︸

AWGN

55/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 57: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Single Carrier Transmission - Achievable Sum Rate◮ Achievable Rate for user k:

Rk = log2

1 +

=ρfM/K︷ ︸︸ ︷

Esk[i]

∣∣∣∣∣

√ρfMK

L−1∑

l=0

E[vHl [k]vl[k]

]sk[i]

∣∣∣∣∣

2

Var (n′k[i])

︸ ︷︷ ︸

=ρf+1

◮ Achievable sum-rate:

Rsum(ρf ,M,K) =

K∑

k=1

Rk = K log2

(

1 +ρfM

Kρf +K

)

56/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 58: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Single Carrier Transmission versus OFDM

40 60 80 100 120 140 160 180 200−14

−12

−10

−8

−6

−4

−2

0

No of Base Station Antennas (M)

Pow

er [d

B]

Proposed PrecoderCo−op Sum−Capacity BoundOFDM Bound T

cp=T

u/4

K=20

K=10

57/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 59: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

MIMO Detection in Non-M ≫ K Systems

58/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 60: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

General Observations

◮ For favorable propagation and M ≫ K, linear detectors may besufficiently good.

◮ When M ≈ K, the BS must switch from linear detection to moreadvanced algorithms.

◮ Detection: classical algs (SD, FCSD, LLL, ...) too complex!

◮ Envisaged detection methods for very large MIMO:◮ Iterative linear filtering schemes:

- soft information-based methods (MMSE-SIC)- hard information-based method (BI-GDFE)

◮ Random search methods: Tabu Search (TS).◮ Reading: [RPL+2011] and papers cited therein

59/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 61: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Iterative Linear Filtering Scheme (MMSE-SIC)◮ At the BS: x = Gq +wr, where q = [q1, ..., qK ]T is the transmitted

vector from K users.

� � �������� � ������ � �

�������� �������� � � ��� � �

� � �

0

0

0 �

( )� �

� � �

��� !" #�$!%&!%!� !�

��" '"�$! �

( ) ( )*

( + ( ) ( )

, ,

- .

/

0 1

0 2

0

3 3 4

5 3

1

1

6

789: ;< =>

?@AB ?@AB

?@AB ?@AB ?@AB

C C

C C C

DEFGHIGFJKL L MNIOP

D D D DMKJIQOL R R SSSR

T U T U

VT T T W

X X

X X X

Y Z[ \ ]

Y Z[ \ ]^1 2

_ `

abc

def fgh i j h j

j ikl

mn∑o p

1q

◦ wi,k: linear filter.◦ h: rounding-off operation.◦ S: 1D complex signal constellation.

60/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 62: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Likelihood Ascent Search Algorithm

( )

r s

r s r s

r s r s

t uvvwx yz{|}~{y �� t

�|{ }~��|�� t

� �

� �

� �

� �

� �

� ��

0

0 0

0 0

0

{ }

� � � � � � � � � � � �

� � � �

� � � �

� � � � � � � ���� ���

� ���� � � � ���� � � ����

���������� �   ¡

��� � ���� � �¢����

£ £ £ £ £ £¤ ¤ ¤ ¤ ¥

£ £¤ ¤

£ £¤ ¤£ £ £ £

¥ ¤¤

¦ ¦

§ § § § § ¨ ©

¨

ª ª ª ª ªª «

¬ ­

® ¯¬ ° ¬± ²

¬ ³

¬ °

¬ ¬

´

µ ´

¶ ·µ

1 1 1 1 1

1 1 1

1

1

1

¸

¸ ¸ ¸ ¸

¹¹

¹

º » º »¼½¾ ¿À ÀÁÂ 1Ã Ã

Ä ÅÆÇÈÉÊËÌ ÍÎÏ 1Ð

ÑÒÓ

ÔÕÖ×Ø

Ö×Ø

Ù Ú Ù Ú

Ù Ú Ù Ú

Ù Ú Ù Ú

Û ÛÜ

Û ÛÜ

Û Û

Ý

Ý

Ý Þ

ß ß

à à

á âàã

ä ä

ä

◦ φ : q → b: mapping fromQAM vectors to bit vectors.◦ φ : b → q: mapping frombit vectors to QAM vectors.

61/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 63: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Tabu Search Scheme

åæçè

åæçè

éêë

ì íîîïð ñòóôõöò÷ì

øùúö÷ù õûüô óöñõ ì

ýþÿÿ õò í ñùõ ì

ýì

� �

� � �

� ��

0

� �

�� � � ����������

�������� ������������� �� �

� �� �

1 !

"

( )#$%&' ()*+ ,- ./0 0

1234

567896 :;6 6<=>?6@:

<AA6A 6B:=C ?B D

E FGHIJK LMNOPQRS

PQRSPQRS

TUV TUV

WXYZ[YX\]^ X_`abc d Xee \f

g]afh] \i] jb_k\ h]Z\f_ bj h]Z\f_k bc

l lmj d k]\ ^ d Xce ^

n

o

p p

q rst u v

w

u x t t u

yz { |z z

{ |z z z { |z

} }~

~

� �

� �

��

���

���� �� ��������� ���� ��

62/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 64: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Complexity Estimates for Detectors

◮ M ×K system

Detector Complexity for each realization of x Complexity per realization of G

MMSE MK MK2 +K3

MMSE-SIC (M2K +M3)NIter

BI-GDFE MKNIter (M2K +M3)NIter

TS ((M +NTabu)NNeigh +MK)NIter MK2 +K3

FCSD (M2 +K2 + r2)|S|r MK2 +K3

MAP MK|S|K

63/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 65: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Detection in the Uplink: Example, 40× 40 system

105

106

107

108

10−4

10−3

10−2

TS

MMSE-SIC

BI-GDFE

MMSE

FCSD

BER

Number of floating point operations

64/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 66: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

LiteratureRPL+2011 F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L.

Marzetta, O. Edfors, and F. Tufvesson, “Scaling up MIMO:Opportunities and Challenges with Large Arrays”,arXiv:1201.3210, 2011.

NLM2011 H.Q. Ngo, E.G. Larsson and T. Marzetta, “Energy andSpectral Efficiency of Very Large Multiuser MIMOSystems”, arXiv:1112.3810, 2011.

LM2011a S.K. Mohammed and E.G. Larsson, “Per-antenna ConstantEnvelope Precoding for Large Multi-User MIMO Systems”,arXiv:1201.1634v1, 2011.

LM2011b S.K. Mohammed and E.G. Larsson, “Single-UserBeamforming in Large-Scale MISO Systems...: TheDoughnut Channel”, arXiv:1111.3752, 2011.

SL2012 C. Studer and E.G. Larsson, “PAR-Aware Large-ScaleMulti-User MIMO-OFDM Downlink”, arXiv:1202.4034,2012.

HBD2011 J. Hoydis, S. ten Brink, M. Debbah, “Massive MIMO: HowMany Antennas do We Need?”, arXiv:1107.1709, 2011.

GERT2011 X. Gao, O. Edfors, F. Rusek, and F. Tufvesson, “Linearpre-coding performance in measured very-large MIMOchannels”, IEEE VTC 2011

Mar2010 T. L. Marzetta, “Noncooperative MU-MIMO with unlimitednumbers of base station antennas,” IEEE Trans. Wireless.Comm. 2010.

JAMV2011 J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vishwanath,“Pilot contamination and precoding in multi-cell TDDsystems,” IEEE Trans. Wireless Commun., 2011.

GJ2011 B. Gopalakrishnan and N. Jindal, “An Analysis of PilotContamination on Multi-User MIMO Cellular Systems withMany Antennas,” IEEE SPAWC 2011.

NML2011 H. Q. Ngo, T. Marzetta and E. G. Larsson, “Analysis of thepilot contamination effect in very large multicell multiuserMIMO systems for physical channel models,” IEEE ICASSP2011.

PML2012 A. Pitarokoilis, S. K. Mohammed and E. G. Larsson, “Onthe optimality of single-carrier transmission in large scaleantenna systems”, IEEE Wireless Communication Letters,submitted, 2012.

CMT2004 G. Caire, R. Muller and T. Tanaka, “Iterative multiuserjoint decoding: optimal power allocation and low-complexityimplementation,” IEEE Trans. IT, 2004.

ZLW2007 H. Zhao, H. Long and W. Wang, “Tabu search detection forMIMO systems,” IEEE PIMRC 2007.

VMCR2008 K. Vishnu Vardhan, S. Mohammed, A. Chockalingam, andB. Sundar Rajan, “A low-complexity detector for largeMIMO systems and multicarrier CDMA systems,” IEEEJSAC 2008.

Sun2009 Y. Sun, “A family of likelihood ascent search multiuserdetectors: an upper bound of bit error rate and a lowerbound of asymptotic multiuser efficiency,” IEEE JSAC 2009.

LH1999 A. Lampe and J. Huber, “On improved multiuser detectionwith iterated soft decision interference cancellation,” inProc. IEEE Communication Theory Mini-Conference, 1999.

65/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS

Page 67: ICASSP 2012 Tutorialrqiu/teaching/ece7750/...Scaling down P with M ⇒ noise will limit performance. PerfectCSI& optimalprocessing⇒ P can be scaled as 1/M Given linearprocessingand

Thank You

Visit the very large MIMO website

www.commsys.isy.liu.se/ egl/vlm/vlm.html

66/66

Erik G. LarssonVery Large MIMO Systems

Communication Systems

Linkoping UniversityMM

YS