iee5328 nanodevice transport theory and computational tools

36
IEE5328 Nanodevice Transport Theory and Computational Tools Prof. Ming-Jer Chen Dept. Electronics Engineering National Chiao-Tung University May 1, 2013 Lecture 7: Effective Mobility in 2DEG and 2DHG of Long- Channel Thick Gate-Oxide Planar Bulk MOSFETs: Microscopic Calculatio (Advanced Device Physics with emphasis on hands-on calculations) 1 IEE5328 Prof. MJ Chen NCTU

Upload: ray-gilliam

Post on 03-Jan-2016

31 views

Category:

Documents


1 download

DESCRIPTION

IEE5328 Nanodevice Transport Theory and Computational Tools. (Advanced Device Physics with emphasis on hands-on calculations). Lecture 7 : Effective Mobility in 2DEG and 2DHG of Long-Channel Thick Gate-Oxide Planar Bulk MOSFETs: Microscopic Calculation. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: IEE5328 Nanodevice Transport Theory                 and Computational Tools

IEE5328 Nanodevice Transport Theory and Computational Tools

Prof. Ming-Jer ChenDept. Electronics EngineeringNational Chiao-Tung UniversityMay 1, 2013

Lecture 7:

Effective Mobility in 2DEG and 2DHG of Long-Channel Thick Gate-Oxide Planar Bulk MOSFETs: Microscopic Calculation

(Advanced Device Physics with emphasis onhands-on calculations)

1IEE5328 Prof. MJ Chen NCTU

Page 2: IEE5328 Nanodevice Transport Theory                 and Computational Tools

Two-Dimensional Hole Gas

IEE5328 Prof. MJ Chen NCTU 2

Page 3: IEE5328 Nanodevice Transport Theory                 and Computational Tools

3IEE5328 Prof. MJ Chen NCTU

Thick Oxides

No Stress

Stress

Page 4: IEE5328 Nanodevice Transport Theory                 and Computational Tools

4IEE5328 Prof. MJ Chen NCTU

Page 5: IEE5328 Nanodevice Transport Theory                 and Computational Tools

National Chiao-Tung University Nano Electronics Physics Lab. 5

Kubo-Greenwood Formula

vxμ is the group velocity of subband μ along x-direction and f0 is the

equilibrium Fermi distribution.

The mobility formula in electron case

is no longer valid for the hole case due to the failure of the effective mass approximation.Thus, the hole mobility formula as derived from the Boltzmann transport equation (BTE) must be used:

Page 6: IEE5328 Nanodevice Transport Theory                 and Computational Tools

National Chiao-Tung University Nano Electronics Physics Lab. 6

Kubo-Greenwood Formula

Group Velocity (cm/sec)

k<100>

(cm-1)

k<010> (

cm

-1)

-4 -2 0 2 4

x 107

-4

-3

-2

-1

0

1

2

3

4x 10

7

-1

-0.5

0

0.5

1

x 108

k<100>

(1/cm)

k<

01

0> (

1/c

m)

-4 -2 0 2 4

x 107

-4

-3

-2

-1

0

1

2

3

4x 10

7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1st SubbandSi (001) @ 300K FS=1MV/cm

Page 7: IEE5328 Nanodevice Transport Theory                 and Computational Tools

National Chiao-Tung University Nano Electronics Physics Lab. 7

Physical Models② Acoustic Phonon, Optical Phonon, and Surface Roughness

Scattering

; ;

ω

q

Longitudinal Transverse

Acoustic

Optical

Si Phonon Dispersion

H’Hole-AC Phonon

H’Hole-OP PhononΔE≈1meV within 1/2 Brillouin zone

ΔE≈61.2meV

Phonon wave vector

Page 8: IEE5328 Nanodevice Transport Theory                 and Computational Tools

National Chiao-Tung University Nano Electronics Physics Lab. 8

Physical Models② Acoustic Phonon, Optical Phonon, and Surface Roughness

Scattering

The acoustic deformation potential Dac, is strongly connected to Bir-Pikus deformation potentials. According to Lawaetz, Dac can be formulated as

; ;

c11, c12, and c44 are the elastic coefficients

H’Hole-AC Phonon

Small vibration termElastic scattering

Isotropic approximation

Page 9: IEE5328 Nanodevice Transport Theory                 and Computational Tools

National Chiao-Tung University Nano Electronics Physics Lab. 9

Physical Models② Acoustic Phonon, Optical Phonon, and Surface Roughness

Scattering

According to Wiley and Costato and Reggiani, the optical deformation potential Dop can have the following formalism:

; ;

Average sound velocity

H’Hole-OP Phonon

Small vibration termInelastic scattering (61.2meV)

Isotropic approximation

ωop : optical phonon frequency; nop : Bose occupation factor of optical phonons

Page 10: IEE5328 Nanodevice Transport Theory                 and Computational Tools

National Chiao-Tung University Nano Electronics Physics Lab. 10

Physical Models② Acoustic Phonon, Optical Phonon, and Surface Roughness

Scattering

; ;

H’Hole-SR

Small vibration term

Elastic scattering

p+ p+

Gate

Inversion Layern-type Substrate

H’Hole-SR

Anisotropic scattering

Page 11: IEE5328 Nanodevice Transport Theory                 and Computational Tools

National Chiao-Tung University Nano Electronics Physics Lab. 11

Physical Models② Acoustic Phonon, Optical Phonon, and Surface Roughness

Scattering

; ;

Anisotropic surface roughness scattering rate

0.25 0.30 0.35 0.400

2x1014

4x1014

6x1014

8x1014

Unstressed

Surf

ace

Roughnes

s Sca

tter

ing R

ate

(sec

-1)

Energy (eV)

0o from k<100>

45o from k<100>

135o from k<100>

Long. -1 GPa

(001) 1st SubbandE

eff ~ 0.6 MV/cm

Unscreened

0.05 0.10 0.15 0.20 0.250

1x1014

2x1014

3x1014

4x1014

Unstressed

Long. -1 GPa

(110) 1st Subband E

eff ~ 0.6 MV/cm

Unscreened

Surf

ace

Roughnes

s Sca

tter

ing R

ate

(sec

-1)

Energy (eV)

0o from k<110>

45o from k<110>

90o from k<110>

Page 12: IEE5328 Nanodevice Transport Theory                 and Computational Tools

National Chiao-Tung University Nano Electronics Physics Lab. 12

Physical Models② Acoustic Phonon, Optical Phonon, and Surface Roughness

Scattering

; ;

Isotropic SR scattering

0

50

100

150

200

250

0

45

90

135

180

225

270

315

0

50

100

150

200

250

(110) x'= <001>y'= <110>

Hole

Mobili

ty (cm

2 /Vse

c)

(001)------- (110) [Pham.] This work

(001) x'= <100>y'= <010>

0

50

100

150

200

250

0

45

90

135

180

225

270

315

0

50

100

150

200

250

(110) x'= <001>y'= <110>

Hole

Mobili

ty (cm

2 /Vse

c)

(001)------- (110) [Pham] This Work

(001) x'= <100>y'= <010>

Anisotropic SR scattering

*A. T. Pham, C. Jungemann, and B. Meinerzhagen, “Microscopic modeling of hole inversion layer mobility in unstrained and uniaxially stressed Si on arbitrarily oriented substrates,” Solid-State Electronics, vol. 52, pp. 1437-1442, May 2008.

Page 13: IEE5328 Nanodevice Transport Theory                 and Computational Tools

National Chiao-Tung University Nano Electronics Physics Lab. 13

; ;

Page 14: IEE5328 Nanodevice Transport Theory                 and Computational Tools

Two-Dimensional Electron Gas

IEE5328 Prof. MJ Chen NCTU 14

Page 15: IEE5328 Nanodevice Transport Theory                 and Computational Tools

15IEE5328 Prof. MJ Chen NCTU

Under the momentum relaxation time approximation,

Thick Oxides

Page 16: IEE5328 Nanodevice Transport Theory                 and Computational Tools

IEE5328 Prof. MJ Chen NCTU 16

Thick Oxides

Gaussian model:

Exponential model:

Page 17: IEE5328 Nanodevice Transport Theory                 and Computational Tools

IEE5328 Prof. MJ Chen NCTU 17

Thin Oxides

Page 18: IEE5328 Nanodevice Transport Theory                 and Computational Tools

IEE5328 Prof. MJ Chen NCTU 18

Thin Oxides

Page 19: IEE5328 Nanodevice Transport Theory                 and Computational Tools

IEE5328 Prof. MJ Chen NCTU 19

Page 20: IEE5328 Nanodevice Transport Theory                 and Computational Tools

20

Inversion layer mobility in thick oxide MOSFETs can be limited to three primary scattering mechanisms:

Total Mobility

Effec

tive

Mobility

Effective Field

Coulmbscattering phonon

scattering

Surface roughnessscattering

Page 21: IEE5328 Nanodevice Transport Theory                 and Computational Tools

Coulomb-Limited Mobility Model due to Ionized Impurity Atoms in the Substrate Region- The scattering rate of ionized impurity in 3-D case can be presented by:

- However, it is not the 2-D electron gas inside the MOSFET.

Nano Electronics Physics Lab @ NCTU 21

Ionized Impurity Ionized Impurity Scattering ModelScattering Model

: the ionized impurity concentration

: the Debye length can be written as , where n0 is the 3-D density of the mobile carrier

34 222 2 2 22

2 22 2

81[ln(1 ) ] , 4 ( )

( ) 116 2I D

Dimp o si

N e mELr pr E r L

E rm

IN

DL 20

si o BD

k TL

e n

Page 22: IEE5328 Nanodevice Transport Theory                 and Computational Tools

Coulomb-Limited Mobility Model due to Ionized Impurity Atoms in the Substrate Region at 2-D case- The momentum conservation in the z-direction of the 3-D case at the scattering process of 2-D carriers should be replaced by the integral as:

Therefore, the scattering rate of ionized impurity scattering in 2-D case

from mth subband to nth subband can be expressed as:

Nano Electronics Physics Lab @ NCTU 22

where H2D and H3D are the matrix elements for 2-D and 3-D scattering, respectively.

22 22 3 ( ) ( ) ( ) ( ) ( ), ziq z

D D z z z mn z m nH H I q dq I q I q z z e dz

34 2 1

2 2 222,, 22 2

, 2 / 4 3 ,

( )1 1[ln(1 ) ] , ( ) ( )

( ) 1 ( )16 2I D

m n m nm nimp D m no si

N e g Err E W z z dz

E r g E Wm

22 0

2 2

8, ox av BD

Dinv

Z k TmELr L

e N

• :The average inversion layer thickness

• :the density of states for two dimensions • :the density of states for three dimensions

avZ2 ( )Dg E

3 ( )Dg E

Ionized Impurity Ionized Impurity Scattering ModelScattering Model

Page 23: IEE5328 Nanodevice Transport Theory                 and Computational Tools

- For intravalley phonon scattering model, the momentum-relaxation rate in the subband mth to nth:

The total scattering rate in mth subband is determined by summing up within all the subbands:

Nano Electronics Physics Lab @ NCTU 23

Phonon Scattering ModelPhonon Scattering Model

21

(2 / 4) (2 / 4) 2 2,2, 3

(2 / 4) ,

1 1, ( ) ( )

acv d ac B

m n m nm nac m nl

n m D k TW z z dz

Ws

Dac : deformation potential due to acoustic phononsSl : sound velocity ρ : crystal densityWm,n: the form factor determined by the wave-functions of the mth subband and nth subbands

,(2 / 4) (2 / 4)

( )1

( ) ( )m

m m nnac ac

U E E

E E

where ( ) 1( 0) 0( 0)U x x and x is a step function.

Page 24: IEE5328 Nanodevice Transport Theory                 and Computational Tools

- For the intervalley phonon scattering model: (Incorrect Version) (1). From mth subband in twofold valleys to the nth subband in fourfold valleys:

(2). From mth subband in fourfold valleys to the nth subband in twofold valleys:

(3). From mth subband in fourfold valleys to the nth subband in fourfold valleys:

(4). From mth subband in twofold valleys to the nth subband in twofold valleys :

Nano Electronics Physics Lab @ NCTU 24

Phonon Scattering ModelPhonon Scattering Model

,

2{ } 14 ' 2 ' 2

, '2 ,

4 1 ( )1 1 1 1( ), ( ) ( )

( ) 2 2 2 1 ( ) m n

fd k k

k k n m nm nkINTER k m n

m D f E EN U E E E W z z dz

E E W f E

2{ } 1

2 ' ' 2 2,,

4 ,

2 1 ( )1 1 1 1( ), ( ) ( )

'( ) 2 2 2 1 ( )

fd k k

k k n m n m nm nkINTER k m n

m D f E EN U E E E W z z dz

E E W f E

2{ }4 '

, '4 ,

2{ }4 ' 1

',

2 1 ( )1 1 1 1( )

( ) 2 2 2 1 ( )

1 ( )1 1 1( ) , (exp( ) 1)

2 2 2 1 ( )

fd k k

k k nm nkINTER k m n

gd k k k

k k n kk k m n B

m D f E EN U E E E

E E W f E

m D f E E EN U E E E N

E W f E k T

where Ek and Dk are deformation energy and potential at kth intervalley phonon, and Nk is the occupation number of kth intervalley phonon.

2{ }2 ' 1

, '2 ,

1 ( )1 1 1 1( ) , (exp( ) 1)

( ) 2 2 2 1 ( )

fd k k k

k k n km nkINTER k m n B

m D f E E EN U E E E N

E E W f E k T

Page 25: IEE5328 Nanodevice Transport Theory                 and Computational Tools

- The scattering rate for a Gaussian function is described as:

Nano Electronics Physics Lab @ NCTU 25

Surface Roughness Scattering Surface Roughness Scattering ModelModel

2 2( ) 2 2 2 2 2

4, 3

0

( )1( ) (1 cos )

( ) 2DOS eff

j ij q

ji jSR

m E e EU E E e d

E

2 2 2 2=2 (1 cos ) =4 sin2

q k k

( )2

2

2 (E-E ) = DOS

jjm

k

Δ : rms height of the amplitude of surface roughness

: correlation length of surface roughness

0( ) ( )

eff

ij j idVE z z dz

dz

Page 26: IEE5328 Nanodevice Transport Theory                 and Computational Tools

Derivation of Two-Dimensional Mobility in the Universal Mobility Region- The scattering rates of the twofold and fourfold valley:

The electron mobility by using the average energy within the 2DEG in the relaxation time approximation can be given as

The total universal mobility averaged over the subband occupation is described by

Nano Electronics Physics Lab @ NCTU 26

Electron Mobility ModelElectron Mobility Model

2 2 2 4 4 4

1 1 1 1 1 1,

( ) ( ) ( ) ( ) ( ) ( )i i i i i iphonon SR phonon SRE E E E E E

'

'2 4

2 4'

2 4

( ) ( )( ) ( ) ( )( ),

( )( ) ( )( )

i i

i i

i ii iE Ei i

c i c iE E

f fe E E E dE e E E E dE

E Ef f

m E E dE m E E dEE E

'2 4 '

'

( )i ii i

i iuni

s

N N

N

Page 27: IEE5328 Nanodevice Transport Theory                 and Computational Tools

The physical parameters for phonon and surface-roughness

electron mobility used for Si in this work

Nano Electronics Physics Lab @ NCTU 27

Electron Mobility ModelElectron Mobility Model

Page 28: IEE5328 Nanodevice Transport Theory                 and Computational Tools

The Universal mobility Curve - Universal electron mobility includes phonon scattering and surface roughness

scattering, which is independent of process parameters, especially when plotted versus of high effective field (Eeff).

Nano Electronics Physics Lab @ NCTU 28

Electron Mobility ModelElectron Mobility Model

0

( ), 0.5inv dep

effsi

e N NE

• : total inversion layer charge densityinvN

• :the surface concentration of the depletion charge

depN

10-1 100101

102

103

104

Dk=11.5x108 eV/cm Dac=13 eV

=14.9x10-8 cm =2.9x10

-8 cm

Eff

ective

Mobility

(cm

2 / V

s)

Eeff

(MV/cm)

Nsub

=7.7X1017cm-3

Nsub

=3.0X1017cm

-3 N

sub=7.2X10

16cm-3

Nsub

=2.0X1016cm-3 N

sub=3.9X10

15cm-3

Dots:Exp.(Takagi,et al.[10])Lines:Sim.(This work)

Npoly

=1x1020cm-3

T=300KT

ox=25nm

0.1 1102

103

104

Lines:Sim. total mobility cosists of uni

&imp

(This work)

T=397 K T=347 K T=297 K T=242 K

Exp. T(K) 397

347

297

242

Nsub

=3.9X1015cm

-3

T=397 K T=347 K T=297 K T=242 K

Mobili

ty (c

m2/V

s)

Eeff

(MV/cm)

=14.9x10-8 cm =2.9x10

-8 cm

Dk=11.5x108 eV/cm Dac=13 eV

Dots:Exp. data (Takagi, et al [10] )

Page 29: IEE5328 Nanodevice Transport Theory                 and Computational Tools

Electron Effective Mobility:Thick Oxides

IEE5328 Prof. MJ Chen NCTU 29

Current NEP-electron-mobility simulator was developed under the parabolic band approximation, the isotropic scattering approximation, the elastic scattering approximation (surface roughness and impurity scattering), and the momentum relaxation approximation.

Page 30: IEE5328 Nanodevice Transport Theory                 and Computational Tools

30

Ionized Impurity

Scattering

2

4D

r

Ls

si

qU e

r

2si B

D

k TL

q n

34 2 2 222

1[ln(1 ) ]

( ) 116 2I

imp si

N qE

E m

2

22

8 DmEL

The perturbing potential is the screened Coulomb potential:

r: the distance from the scattering centerLD: Debye length

n: 3-D density of the mobile carriers and equal to Ninv/Zav

Through the Fermi’s Golden Rule, the relaxation time due to ionized impurity

scattering is:

NI: 3-D impurity concentration, which is about equal to

Nsub

Here, q means the elementary charge.

Page 31: IEE5328 Nanodevice Transport Theory                 and Computational Tools

31

Impurity Scattering

The momentum relaxation time for scattering of 2-D carriers from uth subband to vth subband:

34 22 2 222

, 22, 2/4 3

1 ( )[ln(1 ) ] ( ) ( )

( ) 1 ( )16 2I D

u vu vimp Dsi

N q g EE z z dz

E g Em

P.S. Only consider intra-subband

K. Hirakawa and H. Sakaki, “Mobility of the two-dimensional electron gas at selectively doped n-type AlxGa1-xAs/GaAs heterojunctions with controlled electron concentrations,” Phys. Rev. B, Condens. Matter, vol. 33, no. 12, 8291-8303, Jun. 1986.

M. Lundstrom, “Fundamentals of carrier transport,” Cambridge University Press, 2000.

Page 32: IEE5328 Nanodevice Transport Theory                 and Computational Tools

32

Phonon Scattering

1. intravalley phonon scattering model: (acoustic phonon) the momentum-relaxation time for scattering from the uth subband to the vth subband

2, 2/4 2 2 1

, ( 2/4) ( 2/4), ( 2/4),, 3 2int ( 2/4) , ( 2/4)

1 1( ) , ( ( ) ( ) )

( )d ac B

v u v u vu vra l u v

m D k TU E E W z z dz

E s W

kB : Boltzmann constant , Dac : deformation potential due to acoustic phonons ρ : crystal density , Sι: sound velocityU(x): step function

S. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, “Comparative study of phonon-limited mobility of two-dimensional electrons in strained and unstrained Si metal-oxide-semiconductor field-effect transistors,” J. Appl. Phys., vol. 80, no. 3, pp. 1567-1577, Aug. 1996.

D.Esseni, A. Abramo, L. Selmi, and E. Sangiorgi, “Physically Based modeling of Low Field Electron Mobility in Ultrathin Single- and Double-Gate SOI n-MOSFETs”, IEEE Trans. Electron Devices, vol. 50, no.12, pp.2445-2455, 2003.

K. Uchida, A. Kinoshita, and M. Saitoh, “Carrier transport in (110) nMOSFETs: Subband structures, non parabolicity, mobility characteristics, and uniaxial stress engineering,” in IEDM Tech. Dig., pp.1019-1021, 2006.

Page 33: IEE5328 Nanodevice Transport Theory                 and Computational Tools

33

Phonon Scattering model (Correct Version)

2. intervalley phonon scattering model: (optical phonon) (a) From uth subband in twofold valleys to the vth subband in twofold valleys:

(b) From uth subband in twofold valleys to the vth subband in fourfold valleys:

(c)From uth subband in fourfold valleys to the vth subband in twofold valleys:

(d)From uth subband in fourfold valleys to the vth subband in fourfold valleys:

,

2{ } 1,, 2 ' 2 2

, , 2, 2, 2,, 'int , 2 2 , ,

1 ( )1 1 1 1( ) ( ), ( ) ( )

( ) 2 2 2 1 ( ) u v

gk gd k

k g k g v u vu vker k g u v

f E Em DN U E E E W z z dz

E E W f E

2{ },, 4 2 2 1

, , 4, , 2, 4,,int , 2 4 , ,

1 ( )41 1 1 1( ) ( ), ( ( ) ( ) )

( ) 2 2 2 1 ( )

fk fd k

k f k f v u v u vu vker k f u v

f E Em DN U E E E W z z dz

E E W f E

2{ },, 2 2 2 1

, , 2, , 4, 2,,int , 4 2 , ,

1 ( )21 1 1 1( ) ( ), ( ( ) ( ) )

( ) 2 2 2 1 ( )

fk fd k

k f k f v u v u vu vker k f u v

f E Em DN U E E E V z z dz

E E V f E

2{ },, 4

, , 4,, 'int , 4 4 , ,

2{ },, 4 ' 2 2 1

, , 4, , 4, 4,', ,

1 ( )21 1 1 1( ) ( )

( ) 2 2 2 1 ( )

1 ( )1 1 1( ) ( ), ( ( ) ( ) )

2 2 2 1 ( )

fk fd k

k f k f vu vker k f u v

gk gd k

k g k g v u v u vk k g u v

f E Em DN U E E E

E E V f E

f E Em DN U E E E V z z dz

E V f E

Page 34: IEE5328 Nanodevice Transport Theory                 and Computational Tools

34

2

4

4 4

4

f-type

f-type

f-typef-

typ

e f-typ

ef-type

f-typef-typ

e

Acoustic phonon

Acoustic phonon

Acoustic phonon

Acoustic phononAcoustic phonon

g-type

g-type

g-type

Page 35: IEE5328 Nanodevice Transport Theory                 and Computational Tools

35

Surface Roughness Scattering2 22 2 2 2 2

4, 3

0

2 2 22

( )1( ) (1 cos )

( ) 2

2 ( )where 2 1 cos and

i qDOS eff

ii iSR

DOS j

m E e EU E E e d

E

m E Eq k ( θ) k

0( ) ( )i i i

eff

dVE z z dz

dz

ki

kjq

E1

E2

P.S. Only consider intra-subband

Yamakawa, H. Ueno, K. Taniguchi, C. Hamaguchi, K. Miyatsuji, K. Masaki, and U. Ravaioli, “Study of interface roughness dependence of electron mobility in Si inversion layers using the Monte Carlo method,” J. Appl. Phys., vol. 79, no. 2, pp. 911-916, Jan. 1996.

D.Esseni, “On the Modeling of Surface Roughness Limited Mobility in SOI MOSFETs and its Correlation to the Transistor Effective Field”, IEEE TED, Vol.51 NO.3, pp.394-401, 2004.

Page 36: IEE5328 Nanodevice Transport Theory                 and Computational Tools

36

Three-Dimensional Stress Effect on Electron Mobility

-3000 -1500 0 1500 30000

1

2

(001)/<110> nMOSFETSimulation of DG-NEP at E

eff=1MV/cm

Long./Tran. Vert. Biax.

Mobility R

atio

Stress (MPa)-3000 -1500 0 1500 30000

1

2

3

4

5M

obility R

atio

Stress (MPa)

(110)/<1-10> nMOSFETSimulation of DG-NEP at E

eff=1MV/cm

Long./Vert. Tran. Biax.

-3000 -1500 0 1500 30000

1

2

3

Mobility R

atio

Stress (MPa)

(111)/<1-10> nMOSFETSimulation of DG-NEP at E

eff=1MV/cm

Long. Tran. Biax. Vert.