if a < b < c, then for any number b between a and c, the integral from a to c is the integral...

21
If a < b < c, then for any number b between a and c, the integral from a to c is the integral from a to b plus the integral from b to c. Theorem: ∫ ( ) =ΒΏΒΏ ∫ ( ) + ΒΏΒΏ ∫ ( ) Section 4.4 – Properties of Definite Integrals

Upload: linette-logan

Post on 04-Jan-2016

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: If a < b < c, then for any number b between a and c, the integral from a to c is the integral from a to b plus the integral from b to c. Theorem: Section

If a < b < c, then for any number b between a and c, the integral from a to c is the integral from a to b plus the integral from b to c.

Theorem:

βˆ«π‘Ž

𝑐

𝑓 (π‘₯ )𝑑π‘₯=ΒΏΒΏβˆ«π‘Ž

𝑏

𝑓 (π‘₯ )𝑑π‘₯+ΒΏΒΏβˆ«π‘

𝑐

𝑓 (π‘₯ )𝑑π‘₯

Section 4.4 – Properties of Definite Integrals

Page 2: If a < b < c, then for any number b between a and c, the integral from a to c is the integral from a to b plus the integral from b to c. Theorem: Section

Section 4.4 – Properties of Definite Integrals

𝑓 (π‘₯ )={βˆ’ π‘₯+6 π‘“π‘œπ‘Ÿ π‘₯ ≀ 2π‘₯2 π‘“π‘œπ‘Ÿ π‘₯>2

Example:

Calculate the area under the given curve between and

βˆ«βˆ’3

3

𝑓 (π‘₯ ) 𝑑π‘₯=ΒΏΒΏβˆ«βˆ’3

2

(βˆ’π‘₯+6 )𝑑π‘₯+¿¿∫2

3

π‘₯2𝑑π‘₯

βˆ’π‘₯2

2+6 π‘₯ΒΏ

π‘₯3

3 |32βˆ«βˆ’3

3

𝑓 (π‘₯ ) 𝑑π‘₯=ΒΏΒΏ

ΒΏ32.5+ΒΏ6.3333

βˆ«βˆ’3

3

𝑓 (π‘₯ ) 𝑑π‘₯=38.8333

Page 3: If a < b < c, then for any number b between a and c, the integral from a to c is the integral from a to b plus the integral from b to c. Theorem: Section

Section 4.4 – Properties of Definite Integrals

𝑓 (π‘₯ )={βˆ’ 2π‘₯+4 π‘“π‘œπ‘Ÿ π‘₯≀ 22 π‘₯βˆ’ 4 π‘“π‘œπ‘Ÿ π‘₯>2

Example:

Calculate the area under the given curve between and

βˆ«βˆ’1

6

𝑓 (π‘₯ )𝑑π‘₯=ΒΏΒΏ

βˆ«βˆ’1

2

(βˆ’2 π‘₯+4 )𝑑π‘₯+¿¿∫2

6

(2π‘₯βˆ’ 4 )𝑑π‘₯

βˆ’2π‘₯2

2+4 π‘₯ ΒΏ 2π‘₯2

2βˆ’ 4 π‘₯|62

ΒΏ9+ΒΏ16 βˆ«βˆ’1

6

𝑓 (π‘₯ )𝑑π‘₯=25

𝑓 (π‘₯ )=|2 π‘₯βˆ’ 4| 2 π‘₯βˆ’ 4=0π‘₯=2

βˆ’π‘₯2+4 π‘₯ ΒΏπ‘₯2βˆ’ 4 π‘₯|62 β†’

Page 4: If a < b < c, then for any number b between a and c, the integral from a to c is the integral from a to b plus the integral from b to c. Theorem: Section

Section 4.4 – Properties of Definite Integrals

Copyright 2010 Pearson Education, Inc.

As the number of rectangles increased, the approximation of the area under the curve approaches a value.

If a continuous function, f(x), has an antiderivative, F(x), on the interval [a, b], then

𝑨𝒓𝒆𝒂 π‘©π’†π’•π’˜π’†π’†π’π‘ͺ𝒖𝒓𝒗𝒆𝒔

Page 5: If a < b < c, then for any number b between a and c, the integral from a to c is the integral from a to b plus the integral from b to c. Theorem: Section

Copyright 2010 Pearson Education, Inc.

𝑨𝒓𝒆𝒂 π‘©π’†π’•π’˜π’†π’†π’π‘ͺ𝒖𝒓𝒗𝒆𝒔

h𝑙𝑒𝑛𝑔𝑑 π‘œπ‘“ π‘Ÿπ‘’π‘π‘‘π‘Žπ‘›π‘”π‘™π‘’= 𝑓 (π‘₯ )βˆ’π‘” (π‘₯)

h𝑀𝑖𝑑𝑑 π‘œπ‘“ π‘Ÿπ‘’π‘π‘‘π‘Žπ‘›π‘”π‘™π‘’=𝑑π‘₯h𝑙𝑒𝑛𝑔𝑑 π‘œπ‘“ π‘Ÿπ‘’π‘π‘‘π‘Žπ‘›π‘”π‘™π‘’=π‘’π‘π‘π‘’π‘Ÿ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›βˆ’ π‘™π‘œπ‘€π‘’π‘Ÿ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›

If a continuous function, f(x), has an antiderivative, F(x), on the interval [a, b], then

Section 4.4 – Properties of Definite Integrals

Page 6: If a < b < c, then for any number b between a and c, the integral from a to c is the integral from a to b plus the integral from b to c. Theorem: Section

Example:Calculate the area bounded by the graphs of and

π΄π‘Ÿπ‘’π‘Ž=βˆ«π‘Ž

𝑏

[ 𝑓 (π‘₯ ) βˆ’π‘” (π‘₯)]𝑑π‘₯

0.8333 βˆ’(βˆ’1.8333)

Section 4.4 – Properties of Definite Integrals

π΄π‘Ÿπ‘’π‘Ž=βˆ«βˆ’1

1

[ (π‘₯2+1 ) βˆ’ (π‘₯ ) ] 𝑑π‘₯

π‘₯3

3+π‘₯βˆ’

π‘₯2

2 | 1βˆ’1

2.6667

Page 7: If a < b < c, then for any number b between a and c, the integral from a to c is the integral from a to b plus the integral from b to c. Theorem: Section

Example:Calculate the area bounded by the graphs of

π΄π‘Ÿπ‘’π‘Ž=βˆ«π‘Ž

𝑏

[ 𝑓 (π‘₯ ) βˆ’π‘” (π‘₯)]𝑑π‘₯

10.6667βˆ’ 0

Section 4.4 – Properties of Definite Integrals

4 π‘₯2

2βˆ’π‘₯3

3 |40

10.6667

Find the points of intersection

𝑓 (π‘₯ )=𝑔 (π‘₯ )π‘₯2=4 π‘₯

π‘₯2βˆ’ 4 π‘₯=0π‘₯ (π‘₯βˆ’ 4)=0π‘₯=0 , 4

π΄π‘Ÿπ‘’π‘Ž=∫0

4

[ ( 4 π‘₯ )βˆ’ (π‘₯2) ]𝑑π‘₯

2 π‘₯2 βˆ’π‘₯3

3 |40

Page 8: If a < b < c, then for any number b between a and c, the integral from a to c is the integral from a to b plus the integral from b to c. Theorem: Section

Average Value of a Continuous Function

Copyright 2010 Pearson Education, Inc.

π΄π‘£π‘’π‘Ÿπ‘Žπ‘”π‘’π‘‰π‘Žπ‘™π‘’π‘’= 1π‘βˆ’π‘Žβˆ«π‘Ž

𝑏

𝑓 (π‘₯ )𝑑π‘₯

Section 4.4 – Properties of Definite Integrals

Page 9: If a < b < c, then for any number b between a and c, the integral from a to c is the integral from a to b plus the integral from b to c. Theorem: Section

Average Value of a Continuous FunctionFind the average value of the function over the interval

𝐴𝑉= 13βˆ’1

∫1

3

(π‘₯2+2   )𝑑π‘₯

𝐴𝑉=12 ( π‘₯

3

3+2π‘₯)|31

𝐴𝑉=12 [( 27

3+6)βˆ’( 1

3+2)]

𝐴𝑉=12 [15 βˆ’

73 ]

𝐴𝑉=193

=6.3333

Section 4.4 – Properties of Definite Integrals

6.3333

Page 10: If a < b < c, then for any number b between a and c, the integral from a to c is the integral from a to b plus the integral from b to c. Theorem: Section

Section 4.4 – Properties of Definite IntegralsA company’s marginal revenue and marginal cost functions are as follows:

a) Find the total profit from the first 10 days.

b) Find the average daily profit from the first 10 days.

Reminder:

π‘·π’“π’π’‡π’Šπ’•=𝑹 (𝒕 )βˆ’π‘ͺ (𝒕)

𝑻𝒐𝒕𝒂𝒍 π‘¨π’„π’„π’–π’Žπ’–π’π’‚π’•π’†π’… π‘·π’“π’π’‡π’Šπ’•=βˆ«π’‚

𝒃

(𝑹 β€² (𝒕 )βˆ’π‘ͺ β€²(𝒕 )   )

a) 𝑻𝒐𝒕𝒂𝒍 π‘¨π’„π’„π’–π’Žπ’–π’π’‚π’•π’†π’… π‘·π’“π’π’‡π’Šπ’•=∫𝟎

𝟏𝟎

(πŸ•πŸ“π’†π’•βˆ’πŸπ’•βˆ’(πŸ•πŸ“βˆ’πŸ‘π’•)   )𝒅𝒕

¿∫𝟎

𝟏𝟎

(πŸ•πŸ“π’†π’•+π’•βˆ’75   )π’…π’•ΒΏπŸ•πŸ“π’†π’•+ π’•πŸ

𝟐+πŸ•πŸ“ 𝒕|𝟏𝟎𝟐 ΒΏ $𝟏 ,πŸ”πŸ“πŸ ,πŸπŸŽπŸ— .πŸ—πŸ’

Page 11: If a < b < c, then for any number b between a and c, the integral from a to c is the integral from a to b plus the integral from b to c. Theorem: Section

Section 4.4 – Properties of Definite IntegralsA company’s marginal revenue and marginal cost functions are as follows:

a) Find the total profit from the first 10 days.

b) Find the average daily profit from the first 10 days.

Reminder:

b) π‘¨π’—π’†π’“π’‚π’ˆπ’†π‘«π’‚π’Šπ’π’š π‘·π’“π’π’‡π’Šπ’•= πŸπŸπŸŽβˆ’πŸŽβˆ«

𝟎

𝟏𝟎

(πŸ•πŸ“π’†π’• βˆ’πŸπ’•βˆ’(πŸ•πŸ“βˆ’πŸ‘π’•)   )𝒅𝒕

¿ 𝟏𝟏𝟎∫

𝟎

𝟏𝟎

(πŸ•πŸ“π’†π’•+π’•βˆ’ 75   )𝒅𝒕¿ 𝟏𝟏𝟎 (πŸ•πŸ“π’†π’•+

π’•πŸ

𝟐+πŸ•πŸ“ 𝒕)|𝟏𝟎𝟐 ΒΏ $πŸπŸ”πŸ“ ,𝟏𝟐𝟎 .πŸ—πŸ—

π΄π‘£π‘’π‘Ÿπ‘Žπ‘”π‘’π‘‰π‘Žπ‘™π‘’π‘’= 1π‘βˆ’π‘Žβˆ«π‘Ž

𝑏

𝑓 (π‘₯ )𝑑π‘₯

π΄π‘£π‘’π‘Ÿπ‘Žπ‘”π‘’π·π‘Žπ‘–π‘™π‘¦ π‘ƒπ‘Ÿπ‘œπ‘“π‘–π‘‘= 1π‘βˆ’π‘Žβˆ«π‘Ž

𝑏

𝑅 β€² (𝑑 ) βˆ’πΆ β€² (𝑑)

Page 12: If a < b < c, then for any number b between a and c, the integral from a to c is the integral from a to b plus the integral from b to c. Theorem: Section

Section 4.4 – Properties of Definite Integrals

Page 13: If a < b < c, then for any number b between a and c, the integral from a to c is the integral from a to b plus the integral from b to c. Theorem: Section

Differentiation Review:

Copyright 2010 Pearson Education, Inc.

π’š=(πŸ“ 𝒙+πŸ” )πŸ’

π’…π’š=πŸ’ (πŸ“π’™+πŸ” )πŸ‘ (πŸ“ )𝒅𝒙

Integration:

: 𝒖=π’ˆ(𝒙)𝒅𝒖=π’ˆ β€² (𝒙)𝒅𝒙

βˆ«π’…π’š=∫𝟐𝟎 (πŸ“ 𝒙+πŸ” )πŸ‘π’…π’™

Section 4.5 – Integration Techniques: Substitution

Page 14: If a < b < c, then for any number b between a and c, the integral from a to c is the integral from a to b plus the integral from b to c. Theorem: Section

Copyright 2010 Pearson Education, Inc.

Integration:

: 𝒖=𝟐 π’™πŸ+πŸ‘π’…π’–=πŸ’ 𝒙 𝒅𝒙

βˆ«π’…π’š=βˆ«πŸ’ 𝒙 (𝟐 π’™πŸ+πŸ‘)πŸπ’…π’™

βˆ«π’…π’š=∫ (𝟐 π’™πŸ+πŸ‘)πŸπŸ’ 𝒙𝒅𝒙 βˆ«π’…π’š=βˆ«π’–πŸπ’…π’–π’š+𝒄=π’–πŸ‘

πŸ‘+𝒄

π’š=πŸπŸ‘π’–πŸ‘

+π‘ͺ

π’š=πŸπŸ‘

(𝟐 π’™πŸ+πŸ‘)πŸ‘

+π‘ͺ

Section 4.5 – Integration Techniques: Substitution

Page 15: If a < b < c, then for any number b between a and c, the integral from a to c is the integral from a to b plus the integral from b to c. Theorem: Section

Copyright 2010 Pearson Education, Inc.

Integrate:

: 𝒖=πŸ“ 𝒙+πŸ”π’…π’–=πŸ“π’…π’™

βˆ«π’…π’š=∫𝟐𝟎 (πŸ“ 𝒙+πŸ” )πŸ‘π’…π’™

βˆ«π’…π’š=𝟐𝟎∫ (πŸ“ 𝒙+πŸ” )πŸ‘π’…π’™βˆ«π’…π’š=𝟐𝟎∫ 𝟏

πŸ“βˆ™πŸ“ (πŸ“ 𝒙+πŸ”   )πŸ‘π’…π’™ π’š+𝒄=πŸ’π’–

πŸ’

πŸ’+𝒄

π’š=π’–πŸ’+π‘ͺ

π’š=(πŸ“ 𝒙+πŸ”)πŸ’+π‘ͺβˆ«π’…π’š=𝟐𝟎 βˆ™πŸπŸ“βˆ«πŸ“ (πŸ“ 𝒙+πŸ”   )πŸ‘π’…π’™

βˆ«π’…π’š=πŸ’βˆ« (πŸ“ 𝒙+πŸ”   )πŸ‘πŸ“π’…π’™

βˆ«π’…π’š=πŸ’βˆ«π’–πŸ‘π’…π’–

Section 4.5 – Integration Techniques: Substitution

Page 16: If a < b < c, then for any number b between a and c, the integral from a to c is the integral from a to b plus the integral from b to c. Theorem: Section

Integrate:

: 𝒖=𝟏+𝒆𝒙

𝒅𝒖=𝒆 𝒙𝒅𝒙

βˆ«π’…π’š=∫ 𝒆𝒙

𝟏+𝒆𝒙 𝒅𝒙

π’š=𝒍𝒏𝒖+π‘ͺ

βˆ«π’…π’š=∫ 𝟏𝟏+𝒆𝒙 𝒆

𝒙𝒅𝒙

βˆ«π’…π’š=∫ πŸπ’–π’…π’–

π’š=𝒍𝒏 (𝟏+𝒆 𝒙 )+π‘ͺ

Section 4.5 – Integration Techniques: Substitution

Page 17: If a < b < c, then for any number b between a and c, the integral from a to c is the integral from a to b plus the integral from b to c. Theorem: Section

Copyright 2010 Pearson Education, Inc.

Integrate:

: 𝒖=πŸ‘+πŸπ’™πŸ‘

𝒅𝒖=πŸ” π’™πŸπ’…π’™

βˆ«π’…π’š=∫ πŸ” π’™πŸ

βˆšπŸ‘+𝟐 π’™πŸ‘π’…π’™

π’š=𝒖

𝟏𝟐

𝟏𝟐

+𝒄 π’š=πŸπ’–πŸπŸ+π‘ͺ

βˆ«π’…π’š=βˆ«π’–βˆ’πŸπŸ 𝒅𝒖

βˆ«π’…π’š=βˆ«πŸ” π’™πŸ (πŸ‘+𝟐 π’™πŸ‘ )βˆ’πŸπŸ 𝒅𝒙

βˆ«π’…π’š=∫ (πŸ‘+πŸπ’™πŸ‘ )βˆ’πŸπŸ πŸ” π’™πŸπ’…π’™

π’š=𝟐 (πŸ‘+𝟐 π’™πŸ‘)𝟏𝟐+π‘ͺβ†’ β†’

Section 4.5 – Integration Techniques: Substitution

Page 18: If a < b < c, then for any number b between a and c, the integral from a to c is the integral from a to b plus the integral from b to c. Theorem: Section

Integrate:

: 𝒖=𝒍𝒏𝒙𝒅𝒖=

πŸπ’™π’…π’™

βˆ«π’…π’š=∫ (𝒍𝒏𝒙 )𝟐

𝒙𝒅𝒙

βˆ«π’…π’š=βˆ«π’–πŸπ’…π’–βˆ«π’…π’š=∫ (𝒍𝒏 𝒙 )𝟐 𝟏

𝒙𝒅𝒙

π’š=π’–πŸ‘

πŸ‘+π’„β†’π’š=

πŸπŸ‘

(𝒍𝒏𝒙 )πŸ‘+𝒄

Section 4.5 – Integration Techniques: Substitution

Page 19: If a < b < c, then for any number b between a and c, the integral from a to c is the integral from a to b plus the integral from b to c. Theorem: Section

Copyright 2010 Pearson Education, Inc.

Integrate:

: 𝒖=πŸ’ π’™πŸ‘

𝒅𝒖=πŸπŸπ’™πŸπ’…π’™

βˆ«π’…π’š=βˆ«π’™πŸπ’†πŸ’π’™ πŸ‘

𝒅𝒙

βˆ«π’…π’š=∫ 𝟏𝟏𝟐

βˆ™πŸπŸπ’™πŸπ’†πŸ’π’™ πŸ‘

𝒅𝒙

π’š= 𝟏𝟏𝟐

𝒆𝒖

+π‘ͺ

βˆ«π’…π’š=πŸπŸπŸβˆ«πŸπŸπ’™πŸπ’†πŸ’ π’™πŸ‘

𝒅𝒙

βˆ«π’…π’š=πŸπŸπŸβˆ«π’†π’–π’…π’–

π’š= 𝟏𝟏𝟐

π’†πŸ’π’™ πŸ‘

+π‘ͺβ†’

Section 4.5 – Integration Techniques: Substitution

Page 20: If a < b < c, then for any number b between a and c, the integral from a to c is the integral from a to b plus the integral from b to c. Theorem: Section

Integrate:

: 𝒖=𝒙 βˆ’πŸπ’…π’–=𝒅𝒙

βˆ«π’…π’š=∫ 𝒙(π’™βˆ’πŸ )πŸ‘

𝒅𝒙

π’š=π’–βˆ’πŸ

βˆ’πŸ+𝒖

βˆ’πŸ

βˆ’πŸ+π‘ͺ

βˆ«π’…π’š=∫ π’™π’–πŸ‘ 𝒅𝒖

βˆ«π’…π’š=∫ π’–π’–πŸ‘+

πŸπ’–πŸ‘ 𝒅𝒖

𝒖+𝟏=𝒙

βˆ«π’…π’š=∫ 𝒖+πŸπ’–πŸ‘ 𝒅𝒖

βˆ«π’…π’š=∫ (π’–βˆ’πŸ+π’–βˆ’πŸ‘ )𝒅𝒖

π’š=βˆ’ (π’™βˆ’πŸ )βˆ’πŸβˆ’πŸπŸ

(π’™βˆ’πŸ )βˆ’πŸ+π‘ͺ

Section 4.5 – Integration Techniques: Substitution

Page 21: If a < b < c, then for any number b between a and c, the integral from a to c is the integral from a to b plus the integral from b to c. Theorem: Section

Section 4.4 – Properties of Definite Integrals