iii the sommerfeld free electron theory of metals 2000 solid state physics

Upload: christian-julian-forero

Post on 19-Feb-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    1/25

    The Sommerfel d free-electro n theor y o f metals

    1. Q u an tum th eory of the free-electrongas 7 7

    2.

    Ferm i-D irac d is tr ibu tio function and chem ica p o ten tia 8 2

    3.

    E lectro ni specific he at i n m et als and ther m od yn am ifunctions 8 6

    4.Therm ioni emission from m eta ls 8 8

    A pp en di A . O utline of st a tis tic a ph ysics and th er m o d yn am ire la tions 8 9

    A l .

    M icrocanonicaensembl and therm od yn am iq uantit ies 8 9

    A2.Ca non ica ensem bl and the rm od yn am iq u an tit ies 9 1

    A3.G ra nd cano nica ens em bl and th er m o dy n am iq uan tit ies 9 3

    Ap pen di B . Ferm i-Dirac and Bo se -Ein steis ta tis tic for ind ep en de n pa rtic les . 9 5

    Ap pe nd i C . Modified Fe rm i-D irac sta tis tic i n a m od e of cor relatio effects . . . 9 8

    Fu rth e read ing 10 0

    In th is ch apte w e dis cu s the free-elec tronth eo ry o f m eta ls origin ally develope b y

    Som merfel and oth er s T he free-electronm od el w ith its pa ra bo li en erg y-w avevec to

    disp ersio cu rve prov ides a re as ona blde sc rip tio for con du ctio ele ctr on i n sim ple

    m et als i t als o m ay giv e use fu gu ide lines fo r o th er m eta ls w it h m ore co m pU cated

    co nd uc tio b an d s Be caus of the sim plic ity of t he m od e and its de ns ity-o f-st ate sw e

    can work out exphcitly thermodynam ipro p ert ie s and i n p art ic u la the spec ific heat

    and the th er m io ni em iss ion I n the Appe ndice w e sim om ariz for a gen er a q u an tum

    sy stem the th erm od yn am ifu nc tions o f m ore frequentuse i n sta tis tic a ph ys ics T h e

    Ferm i-D irac and Bo se-E in st e i d is tr ib ution func tions fo r ind epen den ferm ions an d

    bo so n are disc ussedfinally we ob ta in the mod ified Fe rm i-D ir ac dis tr ib u tio fun ctio n

    in a m od e case of c or re la tio am ong elect ro n i n loc alized st a te s

    1 Q u an tu m theor y o f th e free -elec tro n ga s

    An ele ct ron i n a cr ys ta feels th e p o te nti a en ergy due t o al l the nu clei and al l th e

    o th er elec tro ns T he de te rm in a tio o f t he cr ys tal lin p o te n tia i n specific m ateria ls i s

    a ra th er de m an din pr ob lem (see C h ap te r I V and V ) . How ever i n seve ra m et als i t

    tu rns out reas on ab l t o ass ume th at th e co nductio elec tro ns feel a p o te n ti a which

    is co ns tan th ro u g h ou th e sa m ple th is m od el sug ge ste b y So mmerfel i n 1928, i s

    77

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    2/25

    78

    II I TH E SOMMBRFEL D FREE-ELECTRO N THEOR Y O F METAL S

    Ef

    ^vac

    Ep+

    ^c-^

    vacuum

    vacuum

    ' ' ' ' ' . . ' . ' . ' . ' ' . ' . ' .

    meta

    S^^^m^^t

    W

    ^ F ^ c

    E ( k ) = E c + ^

    2m

    -k.

    (a)

    (b)

    kp k z

    F ig. 1 (a ) Th e Sommerfel model for a meta l Th e energy Ec denote the bo ttom o f the

    conductio ban d ^vac denote the energy of an elec tron at rest in the vacuum the electron

    affinity i s x = ^vac

    Ec Th e Fermi energy i s denoted b y EF, and the work function W

    equals x ~ ^F - (b ) Free-electro energy dispersio curve along a direc tion say /c^, in the

    reciproca space At T = 0 all the states with k < kp are occupie by two electron of e ith er

    spin

    still o f value fo r a n orienta tive und er st an d in o f a nu m ber o f p ro pe rtie o f sim ple

    m eta ls

    I n the Sommerfel mo del t he Sc hrod ing e equ at ion for co nduc tio elec tro n inside

    the me tal takes the sim ple form

    p + F

    2^^^'^

    ^{T) = E^{V),

    (1)

    whe re Ec de no tes a n ap p ro pr ia t co n st an specific o f t he me tal im der inv es tiga tio

    (see Fig. 1) . Th e nu m be o f free elec tron s o f the m et al i s as sm ne t o co rres po n

    to th e nu m ber o f ele ctro ns i n th e m ost ex te rn a she ll o f t he co m po sin ato m s Fo r

    in sta nc i n alka li m eta ls w e ex pe c on e free elec tron per at o m, since an alkali a tom

    has ju st on e ele ctr on i n the m ost ex te rn a sh ell. I n alum in um (atom ic co nfigu ratio

    l5^,25^2p^,3s^3p^w e ex pec th ree free elec tro n per ato m.

    At first s ight i t co uld app ear surp ris ing th at th e co nd uc tion elec tro ns i n actu al

    met a ls (o r i n any ty pe o f solid) feel a n ap pr o xim at el co ns tan po te n tia l a s st ro ng

    sp atia variations of t he cr yst al lin po te n ti a occur near the nu clei Ho wever the co n-

    du ction ele ctrons are hard ly sens itiv to the region close to the nuc lei becaus of the

    orthogonalizat ioeffects due to the co re e le ctron s ta tes th us the effective p o te n tia l

    or pseudopotential(se e Sec tion V-4 ) fo r co nductio e lectro ns m ay ind eed beco me

    a sm oo th l vary ing qu an tity eve ntua ll ap pr ox im ate w ith a c on sta ntthese are the

    un de rly in rea so ns fo r th e succes o f t he free-ele ctro m od el (o r o f th e nearly-free

    ele ctr on im ple m en tat ion si n a nu m be of a ctu a m eta ls

    T he eigen functio n o f t he Schro dinge equati on (1 ) , no rm aliz e to one in the volu me

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    3/25

    SOLID STAT E PHYSIC S 7 9

    V o f the m eta l are the plane waves

    V;{k,r) = - ^ e * ' ;(2 )

    the p la ne waves are ju st a p art ic u la case of Bloch fu nctio ns w hen the period ic mod-

    u la ting p a rt i s co ns ta ntT h e eigen value of E q. (1 ) a re

    For sim plic ity th ro u g h o u th is chapte r w e set the ze ro of ener gy at the bo t tom Ec of

    the con duct io band and th us take Ec = 0 ; wheneve necessarywe can re in s ta t the

    ac tu a va lue of Ec by an app ro pria t shift i n the en ergy scale [I n some sit ua tio n sfor

    in sta nc i n the discus sio of p hoto e lectro em iss ion i t can be mo re co nv en ien t o set

    the zero of energy at the vacuum level, i.e. Evac = 0 ; in oth er pro ble m s for in sta nc i n

    the discu ss io of m any-b od effects th e ze ro of en er gy is ge ne ra ll taken at t he Fer mi

    level i.e. Ep = 0 ; of c our se any choice i s lawful, pro vided on e keeps i n m ind which

    choice has b eendone]

    Co ns ide no w a n elec tron gas w ith N fre e elec tro ns i n a vo lume V , and elec tron

    de ns it n = N/V. T o specif the electron de ns it of a me ta it is cu st o m ar to co ns ide

    the dim ens ionlesp ar am et e r ^ co nn ec te t o n b y the re lat ion

    w he re as = 0.529 A i s the Bohr rad iu s Vsasrepr es en t the ra d ius of t he sph ere that

    conta in i n ave ra ge one electron

    We eva luate r ^ fo r alkali m eta ls (fo r insta nc e) Li , Na , K , R b have bcc st ru ct u re

    w ith cube edge a equa t o 3.4 9 A , 4.23 A , 5.2 3 A an d 5.5 9 A , respectively I n th e

    vo lume a^ we have two at o ms and tw o conductio e lectrons From E q. (4 ) w e ob ta in

    (4/3 )7rrf a| = a^/2 an d th us

    as 2 yirj

    the va lues for r ^ ar e 3 .25, 3.94, 4.87 and 5.2 0 for Li , Na , K and R b, resp ec tive ly A

    sim ila re as onin can be do ne for o th er crys ta ls For insta nce the cry st a s tr u c tu r of

    Al i s fee, w ith la tt ice co nsta n a = 4 .0 5 A. I n the vo lume a^ we ha ve four a to ms and

    twelve co ndu ct io elec tro ns from Eq. (4 ) we ha ve {4:/3 )Trr^a %= a^ /12 and

    Vg

    = 2.07.

    M eta llic de ns itie of c on du ctio ele ctro n occin mo stly i n the ra nge 2 ksT th e

    dis tribu tio function app roach e un ity; i f f j - / i > fc^T, f{E) fall s exp one ntiall t o

    ze ro w ith a B oltz m ann ta il. A t T = 0 the F erm i-D irac d is tr ib u tio fun ction be co m es

    the st ep fu nctionQ{IJLQ

    E), wh ere /i o de no tes the Fermi energy a t T = 0 ; at zero

    t emp er a t u r eal l t he s ta tes w ith ener gy lower t h an/X Qa re oc cu pie a nd al l t he s ta tes

    w ith en er gy hig her th an /i o are em pty A t finite te m p e ra tu r T , f{E) de viat e s fro m

    the st ep function on ly i n the th erm a energy range of ord er fcjgT aro und /x(T) .

    We conside now th e prop ert ies o f the function {df/dE). A t T = 0 w e have

    {df/dE)= S{E / io) . A t f in it e tem pe ratu r T < ^ Tp , i t holds approxim atel

    that{df/dE) 6{E

    /i) (see Fig. 4) . I n fact, a t finite te m p er a tu r th e func tion

    {df/dE)i s very steep w ith its m axim um at E = / i a nd differs sig nif ica ntl from ze ro

    in the energy ra nge of the ord er of fc^ T ar ou nd /i . I t i s easy to verify t h at{df/dE)

    is an ev en fun ction o f E aro und / i a nd va nis he ex po nen tia llfo rIE *

    / i | fc^T; w e

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    7/25

    SOLID STAT E PHYSIC S

    83

    (iU=*'=* '

    J

    i i

    . i l l

    H

    9E/T;^ i i

    Fig. 4 Th e Ferm i-Dirac distr ibu tion function f{E) an d energy derivative{-df/dE)a t

    T = 0 and at a finite tem pe raturT , with T

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    8/25

    8 4

    II I

    T H E S OM ME RF EL D F RE E-E LE CT RO N T HE OR Y O F M ETAL S

    inse rtin th is expressio into Eq. (14), and using Eq. (13 ), we ob ta in

    Odd powersof{E-/x )inthe expansio have been om itted becaus they give zero

    contributionThe coefficien o f G {^ )can be written as

    1 C^ ^ 8f 1

    /*

    JE-fj,)/kBT 1

    -2L ( ^ - ^ - a l ' ^ - L ..,ii-ST ^

    ^0

    r+00

    (e^+1)2'

    (in the last passag

    we

    have denote by x the dimensionlesvariabl

    x

    = {E ^i)/kBT).

    To perform the integra in thexvariable we notice that

    0J o

    -2x

    \dx

    _

    ( 1 1 1 \ _ 7r2

    This explains the numerica coefficien i n front of G {^)i n expressio (15). Successiv

    terms in expansio (15) can be calcu late i n

    a

    sim ila way.

    Equation (15 ) i s known as the Som m erfeld

    expansion.

    T o appreciat the fact th at

    it isarapidl convergen expansio forT

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    9/25

    SOLID STAT E PHYSIC S 8 5

    Temperature dependence of the chemical potential

    T he ch em ica p o te nt ia /i d ep en d (slightly on the te m p era tu rein the stu dy of se vera

    t ransporpro pert ie s the te m p era tu r dep en de nc of the ch em ica po te n tia (w ha tev e

    sm al i t m ig ht app ear a t first sigh t) has qu ite im p o rt an co ns eq ue nc esa nd now w e

    wo rk out ex pl ic itly the beh av iou o fIJL{T).

    Let D{E) b e the (single-pa rticle den sity-of-sta tefo r bo th sp in d irections for th e

    metallic sam ple of volu me V; no p ar tic u la as su m pt io on D{E) o r on the co nd uc tio

    ba nd en ergy jB(k ) i s do ne a t thi s st ag e Le t N b e th e to tal n u m ber o f co nd uc tion

    electron o f th e sam ple A t an y tem pe ratu r T , w e have th at / i (T ) i s determ ined

    (im phci tly en forc ing the equal ity

    /

    + 0 0

    D{E) f{E) dE .

    -oo

    Such an in te gra has in gene ra a ra th e co m plex s tr u ctu re Ho wever i f T

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    10/25

    86 II I TH E SOMMERFEL D FREE-ELECTRO N THEOR Y O F METAL S

    3 E le ctroni c specifi c hea t i n m e ta l s a n d t he rm odynam i c func tion s

    T he hea t cap acityat con stantvolumeof a sam ple i s def ined b y

    w he re 8Q i s the am ou n o f he at tran sfe rre fro m th e ex ter na wo rld t o the syste m

    and dT i s the co rre sp on din ch an ge i n te m p e ra tu r o f the sys tem ke pt a t co ns ta n

    vo lume V. T h e h eat ca pa city i s an exte ns iv qu an tity i.e. a q u an tity pr op or tio na t o

    the volu me of t he sam ple for th is re ason depend in on the nat inre of the system u nder

    investigat ioni t may beco me preferabl t o in tr o du c the specificheat per m ole, or th e

    specifi heat per un it vo lu m e or per u n it ce ll, or p er co m po sin a to ms or elec trons

    W e can ex pr ess the he at capacity (22 ) i n co nv en ien al te rn at ive forms. From th e

    first la w of therm ody nam icsw e kn ow th at th e ch an ge dU o f t he in te rn a en ergy of a

    sy ste m i n a tra nsfo rm at io i n which an infin ites im a q u an ti ty o f h eat 6Q i s received

    by the system and 8L i s the work do ne on t he system by exte rna forces i s given by

    dU = 6Q^6L.

    I n the case the exte rn a forces are only m echanic a forces exert ing a pre ssur p on the

    syste m w e ha ve 8L =

    pdV\

    i f t he vo lume V o f t he sy st em i s ke pt co nst an during

    the tra ns fo rm at io th en 6L = 0; it follows dU = 6Q and

    C . = ( f ) ^ . (23 a )

    I n th e case o f reversibl tra ns for m atio nst h e second la w o f therm od yn am ics ta tes

    t h at 6Q = T dS ,w he re S i s the entropy o f t he syst em W e ha ve th us

    C=T{

    (23b )

    W e now calcula t the h eat capacit of an ele ctron gas using Eq. (2 3 a). The in te rn a

    energy o f t he Fermi gas i s

    /

    + 00

    ED{E)f{E)dE

    -oo

    = ED{E) dE + ^klT^[Difx) + tiD'{^)] + 0{T^) , (24 )

    w he re the s ta n d ar So mmerfe l ex pa nsio (17 ) has been us ed B y diffe ren tiatin w it h

    res pe c t o the tem p er a tu r b o th m em be rs o f Eq . (24) , and keep ing only th e m ost

    re lev an am ong the te rms co nt ainin (d // /d T ), we ha ve

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    11/25

    S O LI D S T A T E PH Y SIC S

    87

    Fig. 5 Electronic con trib utio Cv{T) t o the heat capacit of a meta at cons tan volume as

    a function o f tem pe raturethe same expressio holds for the electroni contributio t o the

    entropy

    Using Eq. (19) , and re placingD{IJL)w ith JD(/xo)j we o b ta in

    CviT) = -klTD{^o)

    (25)

    Prom Eq. (2 3 b), i t can be no ticed th at ex pres sio (25 ) repre sen talso the entr opy of

    the electron syste m

    The specific h eat p er u n it vo lume cy = Cy/V b ecom e s

    cv{T)= ^klT

    DJtM))

    V

    iT,

    where

    1

    KQ

    V

    (26a)

    (26b)

    T he co n trib ut io t o the specific he at from co nd uc tio ele ctr ons i s pr o po rtion at o T

    for al l te m p era tu re o f in te re st since T i s alw ays m uch less th an Tp- T h e ele ctr on ic

    con trib utio bec om e the lead ing one at sufficientl low te m p era tu re sw here it preva ils

    over the T^ D eb y e co n tributio orig in at ed b y the lat tice vib ra tions (see Se ction IX -

    5).

    W e also no tice th at th e kno wledge o f th e de ns ity-o f-sta teD{f io) a t th e Fermi

    en ergy /i o co m ple tel de te rm ine Cy ; th is gives a first ins ight o n the imp or ta nc o f

    the electro ni s ta tes a t o r near th e Fe rmi surface i n me ta ls I n disc ussin tr an sp o r

    phenomenaim p u ri ty screen ing e tc. w e will fu rth er see the bas ic role play ed b y th e

    electron i s ta tes lyin g i n th e th er m a interv al o f th e ord er ksT ar ou n d th e Ferm i

    en ergy

    I t i s inte res tin t o specify Eq . (25 ) fo r th e case o f t h e free-electrongas , where

    D{fjLo

    = (3 /2 ) N/fio ac co rding to E q. (11 ) . W e have

    7r2 T

    Cv{T) = -jkBN.

    (27)

    For com pa ris on w e rec al th at th e cla ss ica s ta tis tic a m ec ha nic wou ld give the ex-

    press io Cv = iS/2)kBNfo r the he at cap ac it of a gas of

    TV

    no n- in te ra ct in pa rtic les

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    12/25

    88 II I -TH E SOMMERFEL D FREE-ELECTRO N THEOR Y O F METAL S

    T he co rre c resu l (27 ) c an be in te rp re te not ic ing th at on ly t he elec tro n in t he ther-

    m al in te rv a ksT aro und the Fe rmi en er gy/X Q= ksTp ca n va ry th e ir energ y and th us

    the effective nu m ber o f elec tron w ith classica be ha vio ur i s not N b u t ra th er th e

    fraction T/Tp o f N.

    4 Th erm io ni c em issio n fro m m eta l s

    W e can ap ply th e Ferm i-D irac s ta tis tics t o st u dy un der ve ry simp lified con ditio ns

    the ther m ion ic em ission from m et als i.e. th e em ission o f e lec tron from a m etal i n

    the vac uum bec au se o f t he effect o f a finite te m p e ra tu re Fo r our sem i-q uan tit a tiv

    considerat ionsw e do n ot co ns ide i n det a i po ss ib l reflection o f ele ct ro n im ping ing

    at the su rfac e w e sim ply as sume th at al l t he e le ctron th at arr ive at the su rface wit h

    an en er gy sufficien t o overcome th e surface b arr ier ar e tra nsfer re t o th e vac uum

    (a nd sw ept aw ay by some sm al app hed elect ric field w ithout accim iu la tio o f space

    charge)T he m od e elect ro ni s tr u c tu r of t he m eta l with e lectron affinity x s^nd work

    fun ction W , i s illu str at e i n Fig. 1 ; we wish to ob ta in the num be o f elec tro n which

    es cap from the m eta l ke pt a t te m pe ra tu r T .

    I n the m eta l the elec tro n are d is tr ib u te i n en er gy ac co rd ing to the F erm i-D ir ac

    stat ist icsLet us in dic at w ith z the d irection n o rm a to the su rfa ce the curre n density

    of e sc ap in ele ctr on i s given by

    w he re Vz = hkz /m. Not ic e th at ex pres sio (28) , i n the case Vz is ju st rep laced b y a

    drift velo city v in dep en den o n k (an d th e int egra tion over kz extends from oo t o

    -hoc , wo uld give the s ta nd ar de ns ity Js = {e)nv.Th e Um itation i n Eq. (28 ) fo r

    the int eg ra tion o n kz i s ju st t o m ake sure th at th e es ca ping elect ro ns have enough

    kinetic en ergy fi?kl/2m> x i n ^^z dir ec tion to leave the m et a l

    I n ord er t o pe rfo rm th e in te gra (28) , let us notice th at

    Sin ce i n gen era the work funct ion V F > fc^T , we can safely neglec the im ity i n the

    Fe rm d is tri bu tio fun ction i n Eq. (28) . W e th us o b ta in

    _ ( - e ) h T ^ / kzdkz / dkx / dkyexD

    oo o o

    W e now use the stan d ar re su lt for G au ss ia fun ct ions

    hHkl +k l+kp

    ksT2mkBT

    L

    + 0 0

    dkxexp

    2mkBT

    y/2'KmkBT

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    13/25

    SOLID STATE PHYSICS 8 9

    T ab le 1 Experimen ta values of the work function W for some meta ls

    meta

    Li

    N a

    K

    Cs

    Ag

    A u

    W(eV)

    2.49

    2.28

    2.24

    1.81

    4.3

    5.2

    meta

    Al

    Ga

    Sn

    Pb

    Pt

    W

    W(eV)

    4.2

    4.1

    4.4

    4.0

    5.6

    4.5

    and obtain

    * 5 = ^ 2 T~ / k^dk^exp /^

    ft2fc2

    ksT2mkBT

    The integra can be easily pe rforme wit h the ch an ge of va ria b le (ft^fc^/2m

    /x = a:,

    and w e ar rive at th e R icha rd so ex pressio

    T he abso lu t va lue of the nu m er ica fac tor i n the R ichard so law (29 ) i s

    ^ ^ = 120.4 a mp

    c m '

    .

    K '^ , (30 )

    in many m eta ls m easure va lues are in de ed i n the ra n ge 5 0

    120 amp

    cm~^

    K~^.

    A q u an ti ta ti v tr ea tm en o f t he elec tron em iss io from m eta ls requ ires a num be of

    ref inementof t he sim plified m ode here co nsider edI n the m od e of Fig. 1 , the m e t a l-

    va cu um bo u n d ar i s re pr es en te by an a b ru p disc ont in ui t i n the po te n tia lI n re al ity

    an elect ron ou ts ide the m etal feels a n a tt racti ve im age p o te n ti a (t o b e dete rm in ed

    in prin cip le q u an tiun m ech an ically w it h con sequ en ceo n th e reflec tion coefficient

    of es ca pin ele ct ro ns T h e im age po te n tia also lea ds t o a re d uction o f t he ap pare n

    work fun ction i n th e pres en c o f ap plied ele ctr ic fields (S ch ot tky effect). T h e work

    fu nction i s also sensit iv to various effects fo r in stance surface im purit ies and charge

    m od ification a t th e su rface Obs erved va lues o f t he work fun ction fo r some m eta ls

    are rep o rted i n Ta ble 1 ; for a m ore co m ple te Us t see for insta nce H . B . Mich ae lson

    H an db oo of C he m is tr and Ph ys ics ed ited by R. C . We as (CR C Pr es s Cleve land

    1962); D . E. E a s tm a n P h ys Re v. B2, 1 (1970) and refe ren ce q uoted th ere in

    A P P E N D IX A . Outlin e o f sta tis tic a l physic s a nd the rm odynam i c

    relations

    A l.

    Microcanonical ensemble and the rmody nam i q uan tities

    T he ba sic pr in ciples o f c la ss ic a and quantimr s ta tis tics ca n b e foim d i n st an d ard

    te x tb o o k on sta tis tic a ph ys ics the pu rp o s of t his ap p en di i s sim ply to sum m ariz

    the rec ipes for the co nn ec tio be tw een st at is tic and th erm od yn am ic s

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    14/25

    90 II I TH E SOMMERFELD FREE-ELECTRON THEOR Y OF METAL S

    Let

    US

    co nsid e a p hysica system co m pose by N identica pa rt ic les confin ed w it h in

    a volu me V. Q u an tum mechanic pro vid es for th is co nfined system discre tiz e energy

    levels

    we labe w ith an integ e nu m b e m al l the d is tin c eige ns tate of t he sy stem i n

    increasin energy order Em {--- < Em < Em-\-i . {A23 )

    rrifS

    Fo llow ing m u ta tis m u ta n d is th e rea so nin do ne i n the A pp en dix A2 , we can easi ly

    est ab lis th at the gra nd ca non ica p o te n ti a eq ua ls

    g r a nd = C / - T 5 - i V / i = - f c ^ T h i Z g , a n d ( T F , / i) {A24)

    wh ere U i s th e m ean inte rnal energy an d N i s th e m ean particle nu m ber i n th e

    gra nd canonica d is tr ib ution R ela tion (^424) i s the basic re sul of the gra nd canonic a

    ap p ar a t u sall the oth er the rm od yn am irelat io nsh ip follow from it .

    From the first and se co nd prin ciples of th erm o dyn am icw e have

    dU = TdS-p dV -]'fidN.

    By diffe rentia tin grand and using the above ex press ionwe obtain

    dfigrand = dC/ ~ TdS - SdT - Wdfi - ^idN = -SdT - pdV - Ndfi .

    It follows:

    'T , /x

    J^_ _ / ^ ^ g r a n d \

    'T ,V

    N = -( ^IH^I^. (A27 )

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    19/25

    SOLID STAT E PHYSIC S 9 5

    R ela tion (^425) p ro vid e the en tr op of the sy ste m re la tion (^426) pro vide the eq uation

    of Sta te; rela tion (^427) p ro vides th e m ean n um ber o f part ic le s al l oth er therm ody

    n amic fun ctio ns can b e eas ily o bta in ed from the eq uation so far establis hed

    A P P E N D IX B . Fe rm i -D i ra c an d Bose -E inste i n s ta tis tic s fo r

    independent particle s

    Fermi-Diracstatistics

    W e co ns ide a ph ys ica sy st em com po se b y N ide nt ical p artic les confined wit h in a

    vo lm ne V. T h e part ic les of the system are re g ard e as no n-in teracting(exce pt for a n

    ar bi tra r sm all intera ctio n t o en su re th er m od yn am iequ ilib riu m ) W e th us dis cu ss

    the energy levels of the m any-b od system in te rms of in dependenone-partic lesta tes.

    Q u an tum m ec hanics pro vides fo r a sin gle pa rt ic le confined with in th e vo lume V

    disc retize en ergy leve ls we labe w ith an in tege num be i all the d is tin c eigen st ates

    of en ergies e^, o f t he sin gle-par tic l q u an tum pro blem Since the part ic les are non-

    in te ra ctin g th e to tal en ergy o f t he many-b o d s ys tem i s the sum o f t he en erg ies of

    the in dividu a parti c les

    i

    w here n^ de note the num be of p art ic les w ith en ergy e ; the to tal n um be of p art ic les

    is

    Ar = ^ n i. {B 2)

    i

    W e now c onside specificall a system of id entic a Fermi p art ic le s as a co ns eq uen c

    of t he Pa u li pr inc iple the possibl values o f t he oc cu pa tio nu m be rs Ui are eit her 0

    or 1 . T he mo st gen era accessib l s ta te fo r th e sy stem o f ind istin gu ish ab lpa rtic les

    is defined b y a set o f n um bers {n^ } (i.e. any sequ enc of in tege n um be rs equa to 0

    or 1) . Th e g ra nd part iti on fun ction {A21) fo r a q u an tum sys tem o f n on -in ter ac tin

    fe rm io ns becom es

    T h is sum can be ca rr ied o ut exactly and giv es

    i

    T he pa ss ag from E q. (S 3 ) t o E q. (B 4 ) can be do ne for in stance w ith the following

    reasoningC onside first the part ic u la s it u ati on of a sys tem w ith a singleon e-elec tro

    level say 1 ; in th is case the sum i n Eq. {B3) prov ides Z i = 1 -h exp[ ^(e

    /x)].

    Consid e th en the pa rt ic u la s it uati on of a sy stem with only two levels say1a nd 2;

    the sum defined i n Eq. ( S 3) pro vid es Z = Z1 Z2 . Sim ilarly for a sy stem w ith n levels

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    20/25

    96

    II I T H E SOMMERFEL D FR EE-ELECTRO N THEOR Y O F METAL S

    i,

    2,

    .

    ,

    ^n, the sum dej&ned in Eq. ( 5 3 ) pro vid es Z = Z1Z 2 . .. ^n and for a s ystem

    w ith any n m nbe o f levels w e o b ta in E q. {B4),

    Now t h at the gra nd canonic a p ar ti t ion fu nction i s know n we can calc ula t w hate ve

    desired the rm od yn am iq uan tit y For ins ta nc we can ca lcu la t the av erage oc cup atio

    num be f{ei) o f a given st a te {. W e ha ve

    fisi) =

    {rii

    = J2 ^i

    -PE^ji^j-t^)

    gra nd

    {nj}

    T he sum over th e co nfig ura tion {rij} ca n b e easily ca rried ou t following, m u ta tis

    m u ta n dis the proced ur do ne for the ca lcu la tio o f Zgrand W e ha ve

    - / 3 ( i - M )

    ^ e r a nd . . ^ L J 1

    'g ra nd

    Ji^i)

    ^ g - ^ ( e i - / i )

    We th us recove im m ed iate l the F erm i-D irac s ta tis tics

    f{ei) =

    1

    el3(ei-n)+ 1

    (B5)

    W e can ob ta in the ex press io o f the free ene rgy and o f the entr opy of a system of

    non-in te ra ctin ferm ions W e st a r from the ex pres sio of the grand ca nonica p o te n ti a

    a

    grand = ^keTIn Zgran d =

    ^ B T

    J] I n [1+

    e-^(^^-^

    ] .

    F rom E q. {A24 ) w e have for t he free en er gy

    -P{ei-ti)

    (S6)

    (S7)

    F rom Eq. ( ^ 2 5 ), w e have for the en tropy

    i i

    W e use the id enti ty

    /3(i ~ /x ) = I n

    where fi denotes by b rev ityf{ei).W e o b t a in

    S=kBY^

    - l n ( l - / i ) + / i l n

    l-fi

    fi

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    21/25

    S OL ID S T AT E P H Y S IC S

    97

    amd finally

    S = -kB Yl [fi I n /i + ( 1 - fi) l n ( l - fi)]

    (58)

    which i s the de sired exp ress io for t he en tr opy of non-in te ra ctin fermion s

    A noth e im p o rt an ex pre ss io can be prov ed for the to ta nu m be of p arti cl es Fr om

    Eq. (i427), we have

    N

    ^ _ f d n ^\

    ^ ^ B T T - ^

    ln [ l +

    e-^^^-'^)

    g - / 3 ( e i - / x )

    2^

    1 -f- e-/5(et-M)i

    Fin al ly for t he equation of s ta te (^ 2 6) w e have

    E/^-

    p =

    T he en ergy eigenvalue o f a parti cle confined i n a cu bic box of v olu me V L^ ar e

    given by

    ^ = ^ ( l ) ('^ x + 'iy + ^ z) n ^,n j n ^ = 1 ,2 ,3 , . . .

    W e ha ve th us de/dL = 2e/L and also

    ae _ a e a L _ _ 2

    dV~dLdV~ZV

    Exp ress io (B 9 ) th us be co m es

    (BIO)

    and then

    P V = -U .

    (511)

    Bo se-E insteinstatistics

    I n th is ca se diflFerently fro m th e pre vio us tr e a tm e n tth e sequ enc { n j ca n con tain

    any integ er from zero to infin ity. T h e gra nd pa rti ti on func tion fo r a system o f non-

    in te ra ctin bosons i s st ill given by ex pressio ( 5 3 ) , keep ing i n m ind th at rii can now

    take any in tege va lue from ze ro to infin ity. T h e sum (J53) can be carr ied out exactly

    and gives for b osons

    2grand(T, F, / i) = J J ^ _ -0{e,-n) '

    (B12)

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    22/25

    98

    II I TH E SOMMERFEL D FREE-ELECTRO N THEOR Y O F METAL S

    T he pas sa g from Eq. ( 5 3 ) t o Eq. {B12 ) ca n be do ne (as before co ns ide rin first th e

    p art ic u la ca se of a sin gle on e- par tic l leve l, say ei. I n th is case the sum i n Eq. ( 5 3 )

    become

    n i = 0

    -/3(ei-M)

    1 _ e - / 3 ( 6 : i - M )

    For a s ys tem wi th a rb it ra ry nu m be o f on e- pa rtic l levels we th us o b ta in E q. ( 5 1 2 ) .

    T he g ra nd ca no nic a p o te n tia for a sy st em of ind ep en denbosons i s

    a

    rand = ^ B T l n Z g ra n d = fc^ T^ ^ln [ l - e'^^^^^) ]

    (513)

    W e can now ob tain all the th er m od yn am iqu an tit ies o f in te res fo r a system o f non

    in te ra ctin bos ons T he av erage occupatio num be of a given st a te i s given by

    m)

    1

    e0(^i-fi) - 1

    Sim ila rly the entr opy o f a system of n on-in te ra ctin bosons i s given by

    S = -kBY ^[fi Infi - ( 1 + fi) hi(l -f fi)]

    (514)

    (515)

    A P P E N D I X C . M o d ifie d Fe rm i -D i ra c statistic s i n a m o d e l o f

    correlation effect s

    I n the pre vious A pp en dix we have co ns ider e a p hy sica system co m pos e by N in dis-

    t inguishabln on-in te ra ctin ferm ion s con fined wit h in a vo lume V. Sup po se th at th e

    on e-elec tro H am ilt o n ian do es not rem ove the spin de ge ne racy i n the ind ep enden

    part icle app roxim ationt he occu patio prob ab iUt of the spaceorbital (of en ergy e^),

    regardlessof the spin deg eneracy ,i s th en given by

    w here the factor 2 account for t he spin de ge ner ac of t he orb ita leve l.

    In Ch ap te X II I , i n the stu dy of d op ed sem icond uctorsw e ne ed to kn ow n ot on ly

    the oc cu pa tio pro ba bility o f valence and co ndu ct io st a tes (de sc rib ed b y s ta n d ard

    deloca lize Bloch wave func tions)b ut also the oc cu pa tio p ro b ab ih t o f im pu rity lo-

    ca hzed st a tes i n the en ergy gap. I n se ve ra s ituation (fo r insta nce fo r do nor levels)

    the Coulo mb repuls ion betw een electro ns m ay preventdouble occupationof a given

    loca lizedorbital. W e now dis cu ss how th is effect (whic h i s th e sim ples exam ple o f

    cor re la tio be yo nd th e on e-e lec tro ap pro x im atio n modifies th e F erm i-D irac d is tr i-

    b u tion fun ctio n

    For sake of c larity consid e a b and sta te i n an allowed energy region of the cry sta

    and de sc rib e b y a Bloch wavefu nc tion a b and level can b e em pty o r oc cu pied b y

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    23/25

    S OL ID ST A T E PH Y S IC S

    99

    E=0

    N=0

    4-

    N=l

    E = E i

    N = l

    E = 2 e j

    N=2

    case (a)

    E=0

    N=0

    4 -

    E=ei

    N=l

    E=ei

    N=l

    case (b)

    4

    E=ei

    N=l

    N=l

    44^

    N=2

    case (c)

    Fig. 6 Schemati illustratio of possibl occupatio of a given spa tia orb ita of energy {.

    (a) The given level can accep tw o electron of eith e sp in (this i s the common situation for

    band states (b ) T he given level can accep only one electro of either spin (th is situ ation

    is common for donor impurity levels i n sem iconductors(c ) T h e given level can accom

    modat one or two electro ns hut not ze ro (this situation i s common for accepto levels in

    semiconductors)

    one electron o f e ith er sp in, or by tw o electro n of opposit spin; the four poss ib ilit ie

    are illu stra te i n Fig. 6a. Co ns ide now an imp urity s ta te wi th in the ene rgy gap and

    de sc ribe b y a loca lized wavefu nc tion a do nor leve l, for in sta n ce can b e em pty, o r

    occu pie b y one ele ctron o f eit her sp in, bu t no t b y tw o elec tro ns o f opposit spin,

    be ca us of the penal ty in the ele ctro sta tirep uls io en ergy the si tu ation i s ill ustra te

    in Fig. 6b.

    We calcu late fo r bo th s it ua tio ns th e av erage num ber o f elec tro ns i n th e st a te {

    (re ga rd les of the sp in dir ection) the average nu m be i s given by

    {rii)

    (3{Em,N-fiN)

    (C2)

    In the ca se of F ig. 6a, Eq. (C 2 ) gives

    (rii)

    M ) ]

    [i4-e-/3( i-M)]^'^7^^

    1 + e-/5(^

    as ex pe cte d the res ul ( C I ) i s reco vere

    /^)-hl

    (C3)

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    24/25

    100

    II I T H E SO MM ERFEL D FR EE-ELEC TRO N THEOR Y O F METAL S

    4f(e)

    F ig. 7 Average occup atio nu mbe (dashed line) for an orbita of energy e th at can accep

    up to two electron of eithe spin (sta nd ar Fermi-D irac statis tic s)T he average occu pa tio

    num be (so lid line) for an o rb ita of en ergy e that can accep only one elec tron of eithe spin

    is also reported For e

    fi ^ ks T th e two curves coincide

    In the case of F ig. 6b, w e have inste ad

    g- /3 (e i- / x) _| _ g-/3 (et - /x)

    {rii)

    I -| _ g -/ 3 (e i- /x) _| _ ^-f3{ei-tM)

    le/3(ei-M) + 1

    (C4)

    T he oc cu rre nc of the fac tor 1/ 2 i n E q. (C 4 ) , can be eas ily un d ers to o qu ali tat ive ly

    in the lim it ing case of a B o lt zm ann ta il (see Fig. 7 ) .

    For sake of com plet en es swe consid e also the st a ti s ti c of the ac cepto leve ls wh ose

    electro ni s tr u c tu r i s st ud ied i n C h a p te X III . A n ac ce pto level can be oc cu pie by

    two pa ir ed electrons or one of ei th e sp in b ut ca n no be em p ty be ca us of the pe na lty

    in electrostatirep uls ion ener gy betw een the two holes the s it u ation i s sc hem atic al l

    ind ica te i n Fig. 6c. T he ap plic atio of E q. (C 2 ) gives

    1 g-^(e,-M + 1

    If we indica te by {pi) 2

    (rii) the m ean nm nb e o f ho les we o b ta in

    1

    (Pi) =

    l e / 3 ( M - i) - f 1

    (C5)

    (C6)

    Further readin g

    N.W. As hcrof and N . D. Me rm in Solid S ta te Phys ics (Holt, Ri n eh ar and W in sto n

    New Y ork 1976)

  • 7/23/2019 III the Sommerfeld Free Electron Theory of Metals 2000 Solid State Physics

    25/25

    SOLID STAT E PHYSIC S 10 1

    H. B . Callen Th erm od yn am ic and a n Int ro du cti o t o Th erm os tat ics(Wiley , New

    York 1985, seco n ed itio n)

    K . Hua ng S ta tistica M ec han ics (W iley , Ne w Yo rk 1987, seco nd edition)

    C. Kit tel Ele m en tar Sta tis tic a Ph ys ics (Wiley , New York 1958)

    R. K ubo S ta tis tic a M ec ha nic s (N or th -H oll an d A m ste rd am 1988, seve nt ed ition

    A. Miinster Sta tistic a Th er m od yn am ic sVols . I and H (Spr ing er Berl in 1969)

    R. K . Pa thr ia S ta tis tic a Mec ha nic s (P er gam on Pre ss Oxford 1972 )

    L. E . Re ich A M od ern Coin-se in S ta tis tica Phy sics (A rn old, Lo nd on 1980)

    A . H . W ilson Th e T h eory o f M eta ls ( Cam brid ge Unive rs ity P ress 1954)