improving the biomass productivity and phycocyanin … · 2016-08-30 · tobias valdemar rybner...

61
Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass productivity and phycocyanin concentration by mixotrophic cultivation of Arthrospira platensis Master Thesis, June 2016

Upload: others

Post on 10-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

T o b i a s V a l d e m a r R y b n e r S e c t i o n f o r S u s t a i n a b l e B i o t e c h n o l o g y

A a l b o r g U n i v e r s i t y C o p e n h a g e n

Improvingthebiomassproductivityandphycocyaninconcentrationbymixotrophic

cultivationofArthrospiraplatensis

Master Thesis, June 2016

Page 2: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass
Page 3: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

AalborgUniversityCopenhagen

Copyright©2014.Thisreportand/orappendedmaterialmaynotbepartlyorcompletelypublishedorcopiedwithoutpriorwrittenapprovalfromtheauthors.Neithermaythecontentsbeusedforcommercialpurposeswithoutthiswrittenapproval.

Semester: 3and4Title:ImprovingthebiomassproductivityandphycocyaninconcentrationbymixotrophiccultivationofArthrospiraplatensisProjectperiod:1September,2015–10June,2016 Supervisor:PeterWestermann(AAU)Education:MasterofScienceinSustainableBiotechnologyECTS:60Departmentname:DepartmentofChemistryandBioscienceSectionname:SustainableBiotechnologyNumberofpages:57Appendix:2Student:TobiasRybnerStudynumber:20112770Submitted:10.6.2016

Abstract:ArthrospiraPlatensisisaphototrophicorganismthatnaturallycontainsthepigmentphycocyanin.A.platensisiscultivatedinindustrialautotrophicopenracewaypondsthathaveseveraldrawbacksincludingriskofcontaminationandlowproductivity.Manyofthedisadvantagesassociatedwithopenpondscultivationsystemscanbeimprovedbycultivationinclosedphotobioreactors.Cultivationinclosedsystemsisstillanexpensivemethodmainlyassociatedtoahigh-energyconsumption.Therefore,inordertomakeitmoreprofitabletocultivateinclosedsystems,itisnecessarytoreducetheenergyconsumption.ThiscanbeaccomplishedbyusingLEDlightsourcesforcultivationandbyimprovingtheproductivityofA.platensistoreducecultivationtime.InthisstudytheeffectonproductivityofA.platensiscultivatedmixotrophicwithacetateasorganiccarbonsourceunderdifferentlightconditionswasinvestigated.Theaveragebiomassproductivitywasincreasedwitharound20%forthemixotrophicculturesbutthephycocyanincontentpergrambiomasswasthesameforboththeautotrophicandmixotrophiccultures.Lowerlightintensitiesseemtoimprovethephycocyanincontent.However,cultivatingwithonlyredlightdidnotseemtoeffectphycocyanincontent.Italsoseemslikethereisacorrelationbetweenhighbiomassdensityandlowphycocyanincontent.ThebiomassproductivitywasincreasedwhenA.platensiswascultivatedwithacetateandphycocyanincontentwasincreasedwithlowlightintensities,suggestingthatacetatecouldbeusedasasubstrateforcultivationofA.platensisatlowlightintensitiesinordertoimproveproductionofphycocyaninandreduceenergyconsumption.

Aalborg University Copenhagen A.C. Meyers Vænge 15 2450 København SV, Denmark Secretary: Christina Maxwell Berthou Phone: +45 9940 7651 [email protected]

Page 4: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

AcknowledgementsFirstandforemost,IwouldliketothankmysupervisorPeterWestermannforagoodcooperationandvaluableguidancedoingthemasterthesis.Ihaveenjoyedourcollaborationandtheopportunitytodevelopaprojectwhichliesalittleoutsidethesectionsnormalresearchareas,whichhavebeenextremelyexcitingandeducational.IwillalsoliketothankGitteHinz-BergourheadlabtechnicianforhelpingmeinthelaboratoryandforanalysingmyHPLCsamples.Finally,IwouldliketothanksAalborgUniversitystudyboardofchemistryandenvironmentalengineeringforapprovalofmythesisproject.

Page 5: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

Contents1 Introduction.........................................................................................................61.1 Surplusproductionofwindpower...............................................................71.2 GeneralArthrospiraplatensis.......................................................................71.3 MorphologyandtaxonomyforArthrospira.................................................81.4 EcologyofArthrospira................................................................................101.5 Effectoftemperatures...............................................................................101.6 EffectofpH.................................................................................................101.7 Mixotrophiccultivation..............................................................................111.8 Phycocyaninandthephotosynthesis.........................................................121.9 Markedforphycocyanin.............................................................................131.10 Industrialcultivationofphotosyntheticorganism......................................141.11 PhotobioreactorandartificiallightingwithLightemittingdiode(LED).....16

2 Projectdescription.............................................................................................182.1 Problemstatement.....................................................................................182.2 Objective:...................................................................................................182.3 Selectionoforganismandexperiments.....................................................192.4 Hypotheses:................................................................................................19

3 Materialandmethods........................................................................................203.1 Sterilization.................................................................................................203.2 Microorganism...........................................................................................203.3 Culturemedia.............................................................................................203.4 ArtificialLEDlightsources..........................................................................233.5 Highperformanceliquidchromatography(HPLC).....................................243.6 Biomassproduction....................................................................................243.7 Phycocyaninconcentration........................................................................263.8 Acetobacteriumcultivation........................................................................273.9 TestofgrowthkineticforA.platensis........................................................273.10 TestofphycocyaninextractionmethodsonArthrospiraplatensis............283.11 TestgrowthrateonArthrospiraplatensiswhenculturedAuto-,hetero-andmixotrophic............................................................................................................293.12 TestgrowthforArthrospiraplatensisinamediumforAcetobacteriumsuppliedwithacetate.............................................................................................303.13 Mixotrophiccultivationwithdifferentconcentrationofacetate..............303.14 TestoflowilluminationwithintheredandbluelightspectrainabatchPhotobioreactorsetup...........................................................................................313.15 TestoflowilluminationwithintheredlightspectrainabatchPhotobioreactorsetup...........................................................................................32

4 Resultsanddiscussion........................................................................................334.1 Acetobacteriumsp.cultivation...................................................................334.2 TestofgrowthkineticforArthrospiraplatensis.........................................334.3 TestofphycocyaninextractionmethodsonArthrospiraplatensis............344.4 TestgrowthrateonArthrospiraplatensiswhenculturedAuto-,hetero-andmixotrophic............................................................................................................364.5 TestgrowthforArthrospiraplatensisinamediumusedtoAcetobacteriumsuppliedwithaceticacid........................................................................................394.6 Mixotrophiccultivationwithdifferentconcentrationofsodiumacetate..40

Page 6: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

2

4.7 Photobioreactorcultivationwithlowilluminationintheredandbluelightspectra....................................................................................................................44

5 Conclusion..........................................................................................................496 Perspective.........................................................................................................507 Listofreferences................................................................................................528 Appendices.........................................................................................................578.1 Appendix1.Extractionprotocolforphycocyanin......................................578.2 Appendix2.Experimentaldataandcalculations.......................................57

Page 7: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

3

ListofFiguresFigure1Photosyntheticlightharvestingcomplexincyanobacteria..........................12Figure2Absorbancespectraofdifferentalgaepigments.........................................13Figure3,A)LightspectracultivationlightL2,L3,L4...............................................24Figure4StandardcurveforA.platensisbiomassVS.OD..........................................25Figure5StandardcurvePhycocyaninconcentrationVS.Abs....................................26Figure6.GrowthcurveforArthrospiraplatensiscultivatedinbasalZarroukmedium.

............................................................................................................................34Figure7Phycocyaninyieldfrom1grambiomass[mgPC/gX]from5different

extractionconditions..........................................................................................34Figure8GrowthcurveforArthrospiraplatensiscultivatedautotrophic,mixotrophic,

heterotrophic.....................................................................................................37Figure9GrowthcurveforArthrospiraplatensistestedinDSMZAcetobacterium....39Figure10GrowthcurveforArthrospiraplatensiscultivatedautotrophicand

mixotrophic........................................................................................................41Figure11GrowthcurveforArthrospiraplatensiscultivatedautotrophicmixotrophic.

............................................................................................................................41Figure12sAcetateconsumptionbyArthrospiraplatensis.........................................43Figure13GrowthcurveforArthrospiraplatensiscultivatedmixotrophicunder

differentillumination.........................................................................................45Figure14Acetateconcentrationinthephotobioreactorsovertime.........................47

Page 8: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

4

ListofTablesTable1advantagesanddisadvantagesforopenandclosedphotocultivationsystems

............................................................................................................................16Table2Componentfor1litreBasalZarroukmedium...............................................21Table3Componentstoprepare1litreA5micronutrientsolution............................21Table4Componentstomake1litre1Msodiumacetatesolution............................21Table5Componentsusedtoprepare1litre135aAcetobacteriummedium............22Table6Componentusedtoprepare1litretraceelementsolution..........................22Table7Componentusedtoprepare1litrevitaminsolution....................................23Table8LEDlightsourcesandtheirlightintensity.....................................................23Table9GrowthparametersforA.platensiscultivatedinbasalZarroukmedium.....33Table10Resultfromtestof5extractionmethods....................................................36Table11GrowthparametersforArthrospiraplatensiscultivatedautotrophicand

mixotrophic.1.....................................................................................................38Table12Phycocyanincontentinthebiomassatday23.Cultivatedautotrophicand

mixotrophic1.....................................................................................................38Table13GrowthparametersforArthrospiraplatensiscultivatedautotrophicand

mixotrophic2.....................................................................................................43Table14Phycocyanincontentinthebiomassatday20.cultivatedautotrophicand

mixotrophic2.....................................................................................................44Table15Growthparametersforcultivatedmixotrophicwith1g/Lacetateunder

differentillumination.........................................................................................46Table16Resultsfromphycocyaninextractionfrombiomasscultivatedmixotrophic

with1g/Lacetateunderdifferentilluminationatday30andday35...............48Table17ResultsfromphycocyaninextractionfromArthrospiraplatensisbiomass

cultivatedmixotrophicwith1g/Lacetateunderlowilluminationredlightspectra................................................................................................................48

Page 9: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

5

ListofPicturesPicture1FilamentsofArthrospiraplatensisseenthroughamicroscope....................9Picture2ArthrospiraplatensiscultivatedonsolidZarroukmediumseenthrougha

microscope...........................................................................................................9Picture3Openpondracewaytrackforalgaeproduction.........................................14PictureThreetypesofclosedphotobioreactorsystem.............................................15Picture5.FilamentofArthrospiraplatensisseenthroughamicroscopeafter9days

cultivationinDSMZ135aAcetobacteriummedium..........................................40Picture6CultivationofA.platensiswithdifferentacetateconcentration................42PicturePhotobioreactorRHandsystemusedtoextractbiomass.............................44

Page 10: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

6

1 Introduction.Thetermmicroalgaehasnoformaltaxonomicuprightbutisoftenusedtoembodyahighlydiversegroupofnon-cohesiveO2evolvingphotosyntheticmicroorganisms,whichareabletoliveunderavarietyofdifferentconditions,suchashighandlowtemperatures,lightintensities,pHandsalinity(Barsantietal.,2008).Thegeneraldefinitionofalgaeisthattheyareconsideredsimplephotosyntheticmicroorganismsbecausetheyarenotorganisedintoorgans,likehigherplants(Wijffelsetal.,2013).Microalgaeareanevolutionarilydiversegroupofunicellular,eukaryoticorganisms,althoughprokaryoticcyanobacteriaareoftenincludedinthesamecontext.Theevolutionaryandphylogeneticvarietyofthesephotosyntheticorganismsalsoresultsinawidevarietyofchemicalcompositionswithintheseorganisms.Thebroaddiversityinthechemicalcompositionfoundinmicroalgaeandcyanobacteriahasincreasedtheinterestforthemandthereforemakesthemveryattractiveforbioprospecting,whilstalsohavingpotentialforindustrialproductionofavarietyofbiologicalcompounds(Borowitzka,2013).Microalgaealreadyplayakeyroleinthecommercialproductionofhighvaluechemicalssuchascarotenoid,longchainpolyunsaturatedfattyacidsandphycobilins(KuddusandRamteke,2012).Theprokaryoticcyanobacteria,whichisoftenreferredtoasblue-greenalgae,andeukaryoticmicroalgaeareallpromisingtocommercialproducersofbiochemical,biofuelsandfoodadditive(Wijffelsetal.,2013).Phototrophicorganismsproducesugarandoxygenfromcarbondioxide,water,nutrientsandsunlightbyphotosynthesis(LeuandBoussiba,2014).AbigadvantageofcultivatingPhototrophicorganismsisthattheycanbecultivatedinmarginalorsalinewateronunproductivedryland.Thismeansthattheydonothavetocompetewithagricultureforarablelandandfreshwater.Thesepropertiesmakethemaverypromisingsourceforasustainableproductionofvariousbiomaterials,biochemicalandbiofuels,especiallyonlargeunexploited,sunnyanddrylandareaswhereotheragriculturalactivitiesarenotsuitablebecauseofotherfactorssuchaslackofcleanwaterforirrigationandfertilesoil(LeuandBoussiba,2014).TheideaofculturingmicroalgaeinthelaboratorywasfirstpresentedbyWarburgin1919whereheculturedChlorellaaspartofhisworkstudyingphotosynthesis.Hediscoveredthatsomemicroalgaecoulddailyincreasetheirbiomasssignificantlyandthatthedrymatterfromthemcouldcontainover50%ofcrudeprotein(RichmondandSoeder,1986).ThefirstattempttoupscaletheculturingofChlorellawasperformedinapilotplantinMassachusettsandTokyoin1950s.JapanbecamethefirstcountrytoproduceChlorellabiomassasahealthfood(RichmondandSoeder,1986;Skjånesetal.,2013).Intheearly1960sthefirstcommercialuseoftheeukaryoticmicroalgaeChlorellainalarge-scaleproductionwasstarted,whichwassoonfollowedbythecyanobacteriaArthrospira(sometimereferredtoasSpirulina)inthe1970s.By1980thecommercial

Page 11: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

7

productionoffoodsupplementswiththemicroalgaeChlorellawasestablishedinAsia,India,USA,IsraelandAustraliaandhassincebecomeanimportantmarketandaresoldashealthfoodallovertheworld(Wijffelsetal.,2013).Thealgaebiomassisveryrichinproteinandcanbeusedasanimalfeedorfoodsupplementswhilsttheextractsfromthealgaecanbeusedintheproductionofcosmeticsandpharmaceuticals(Skjånesetal.,2013).Theinterestandresearchformicroalgaebiotechnologyhasincreasedinthelastdecadeandisnowconsideredtobeaverypromisingtechnologyforbiofuelsandbiochemicals,whichmeansthattheresearchinalgaecultivationandprocessingisnotonlyfocusingonimprovingproductsbutalsoonnewproductsandapplications(Wijffelsetal.,2013).

1.1 Surplusproductionofwindpower

Astheeffectsofclimatechangearebecomingmoreconcrete,therehasbeenanincreasedfocusontheproblemscausedbyclimatechangeandthedevelopmentofrenewableenergysourcesinordertoliberateusfromfossilenergysources.Thishascreatedagrowinginterestinwindpower,especiallyinDenmark,butalsoinGermanyandseveralothercountries,whichhasledtomassiveinvestmentinwindenergyprojects.Thishasresultedinamorefrequentsurplusproductionofwindpower(Neslen,2015).AsDenmarkandothernorthEuropeancountriesproducealargeramountoftheirelectricitywithwindpower,therewillbedaysofhighwindswhereelectricityproductionfromwindpowerwillexceedtheamountofelectricityrequired.Duringtheseperiods,theelectricityissoldatverylowpricesoritmayforshortperiodsevencostmoneytogetridoftheelectricity(Wittrup,2013).Therefore,thereisaneedforamethodtostoreorutilizethesurplusproductionofelectricitygenerated.Themostwelltestedstoragemethodforelectricityusedtodayischemicalstorageinbatteries.Theenergyinabatteryisofhighquality,howeverthereisgreatlossofenergyassociatedwithstoringelectricityinthisway.Inrelationtotheamountofenergythatwillneedtobestored,itisnotpossibletheenergycouldbestoredinthiswayand,inaddition,batteriesareveryexpensivemakingitaveryuneconomicalwaytostoreelectricity(Energinet.dk,2011).Thus,untilbettertechnologiesforstoringsurplusproductionofelectricitygeneratedbecomesavailableortheprocessbecomescheapertherewillbeafoundationfortransformingtheenergytootherproducts.Forinstance,toconvertthesurplusproductionofelectricityintohydrogenbyelectrolysis(Mogensen,2015).

1.2 GeneralArthrospiraplatensisCyanobacteriabelongtothekingdomofEubacteriaandconstituteoneofthelargestgroupsofprokaryotes.Theyaresomeofthesimplestlifeformsonearthandthecellularstructureisasimpleprokaryote,whichcanperformphotosynthesislikeplantsbutwithouttheplantcellwallsresemblingprimitivebacteria(Stanieretal.,1981).Likeanimalscelltheyalsohavecomplexsugars,suchasglycogen,ontheircell

Page 12: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

8

membrane(Singhetal.,2005).However,theyaretrulyprokaryoticlackingnuclearmembranes,internalorganellesandhistoneproteinassociatedwithchromosomes.CyanobacteriaareabletoliveautotrophicutilisingCO2astheirsolecarbonsourceusingthereductivepentosephosphatepathwayorCalvincycle(StalandMoezelaar,1997).Theyaremainlyaquaticandlargerthanothertypesofbacteria(Mühling,2000).Sincetheyareabletophotosynthesisandareaquatic,theyareoftenmentionedasblue-greenalgae,whichcanbemisleadingsincetheyarenotanalgae(eukaryote).Also,theyareallunicellular,althoughmanygrowincoloniesorfilaments(Singhetal.,2005).Someofthemaretoxicwhileothersareedible.AmongsttheediblegeneraareNostoc,ArthrospiraandAphanizomenon.Arthrospirahavebeencommerciallycultivatedandsoldasafoodsupplementsduetoitshighproteincontent(60-70%ofitdryweight)(Sánchezetal.,2003).Thecyanobacteriabiomassisrichincarotenoid,chlorophyll,phycocyanin,aminoacid,mineralsandmanyotherbioactivecomponents,whichmakesitidealtouseasafoodadditivealongwithmanyotherapplicationswithinbiology,biotechnology,foodandmedicineindustry(Eriksen,2008;Sánchezetal.,2003).Thecompositionofthenutrientsinthebiomassdependsonthegrowthconditionssuchaslightintensity,temperature,pH,salinityetc.,whichcanhaveamajoraffectonthelipidandpigmentcontentinthecells(StalandMoezelaar,1997).ThecyanobacteriumArthrospiraplatensisisgainingmoreattentiononkeybiotechnologyresearchbecauseofitseconomical,ecologicalandnutritionalimportance.A.platensishasagreatpotentialtoprovidetheindustrywithbiologicalproducedingredientsthatcanbeusedforfoodproductionandrelatednutritionalmaterials,suchascolouringagents,vitamins,γ-linolenicacidandenzymesetc.(Borowitzka,2013).TherearemanydifferentproteinspresentinA.platensisincludingphycobilinproteins,whichareafamilyofbrilliantlycoloured,hydrophilicandstablefluorescentpigmentproteinsthatareclassifiedintothreemaingroups:phycocyanin(C-PC),phycoerythrin(C-PE)andallophycocyanin(C-APC)withdifferentinherentcolourandabsorbanceproperties,whichwillbeexaminedlaterinthereport.Phycocyaninisthemainproteininthephycobilinproteinandcanbeusedformorethanjustanutritiveingredientandnaturaldyeinfoodsandcosmetics.Itcanalsobeusedasapotentialtherapeuticagentinoxidativediseasesandasafluorescentmarkerinbiomedicalresearch(Anteloetal.,2010).

1.3 MorphologyandtaxonomyforArthrospiraArthrospiragenusaremulticellularfilamentouscyanobacteria,whichifseenthroughamicroscopeappearasblue-greenfilaments(picture1)(Ciferri,1983).Thebluecolourcomesfromphycocyaninandthegreencolourisfromchlorophyll,howeverthetwopigmentscoverathirdgroupofpigment,thecarotenoids,whichnormalappearsasared,orangeoryellowcolour(RichmondandSoeder,1986).

Page 13: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

9

Picture1showthefilamentsofArthrospiraplatensisseenthroughamicroscope(40x).(photobyT.Rybner)

Thefilamentsarecomposedofcylindricalcellsarrangedinunbranchedhelicoidaltrichomesthatareacharacteristicforthegenus.Thehelicalshapeofthetrichomeischaracteristicforthegenus.However,thehelicalstructurecandifferinlength,pitchandthehelixdimensionfromdifferentspeciesandevenwithinthesamespecies(RichmondandSoeder,1986).Theirfilamentsaremotileglidingalongtheiraxisanddonothaveheterocysts.Theyonlyhavethehelicalshapewhengrowninaliquidmedium.Whengrownonasolidmediumthefilamentsshapetakestheformofaflatspiral(Picture2)(Ciferri,1983;Sánchezetal.,2003).

Picture2showsArthrospiraplatensiscultivatedonsolidZarroukmediumseenthroughamicroscope(40x).

(photobyT.Rybner)

Thediameterofthecellsvariesfrom1to3μminthesmallerspeciesandupto12μminthelargerspecies,suchasA.platensisandA.maxima.Thelargerspecieshaveagranularcytoplasmthatusuallycontainsagasvacuolesandaeasilyvisiblesepta(RichmondandSoeder,1986).ThecellwallinArthrospiraiscomposedoffourlayersnumberedfromtheinnermostandoutwardsasLI,LII,LIII,andLIV.ItistheLIIlayerthatiscomposedof

Page 14: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

10

peptidoglycansubstancesthatgivesthecellwallitsrigiditywhilstthethreeotherlayersareveryweakandprovideonlyalittlestructuralsupport(Ciferri,1983;Sánchezetal.,2003).

1.4 EcologyofArthrospiraArthrospiracanbefoundinmanydifferentenvironmentssuchassoil,marshes,freshwater,brackishwaterandseawater.Arthrospiracolonizemanyextremeenvironmentswhereotherorganismshavedifficultiestolive.AnexampleofthiscanbefoundinsomealkalinelakesinAfricaandMexicowhereA.platensisandA.maximaarethedominantorganisms(VonshakandRichmond,1988).ThiswasextensivelystudiedbyIltisin1967intheAfricanalkalinelakeswithintheChadregionwhereheclassifiedthesedifferentbodiesofwaterintothreecategoriesaccordingtotheirsaltconcentration,whichmainlyconsistedofcarbonateandbicarbonate(Ciferri,1983).Thecategoriesare:

1. Lakeswithsaltconcentrationbelow2.5g/L.2. Mesohalinelakes,saltconcentrationrangingfrom2.5to30g/L.3. Alkalinelakes,saltconcentrationabove30g/L.

Inthefirstcategorywithsaltconcentrationbelow2.5g/LhefoundavariedpopulationofmicroorganismsbelongingtoChlorophyceae,cyanobacteriaanddiatoms.Inthesecondcategorywherethesaltconcentrationwasrangingfrom2.5to30g/Lhefoundthatthecyanobacterialpopulationwaspredominantlycomprisedofmanydifferentspeciessuchas,Synechocystis,Oscilfatoria,ArthrospiraandAnnbaenopsis.Inthethirdcategorywithsaltconcentrationabove30g/LthecyanobacterialpopulationwasalmostmonospecificwithArthrospiratheonlymicroorganismpresent.A.platensishasbeenisolatedfromwaterwithsaltconcentrationreaching270g/L,however,growthseemstobeoptimalwithsaltconcentrationrangingfrom20to70g/L(Ciferri,1983;RichmondandSoeder,1986).

1.5 Effectoftemperatures

Arthrospiraisamesophilemicroorganismthatcantolerateandstillgrowintemperaturesrangingfromuptoaround40˚Canddowntoaround15˚C,althoughthismaydeviatebetweenstrains(RichmondandSoeder,1986).TheoptimaltemperatureforA.platensisgrowthis30˚C,whichhasbeenshownbyOgbondawhoinvestigatedtheeffectoftemperatureandpHonbiomassproductionforArthrospiraspecies(Ogbondaetal.,2007).

1.6 EffectofpH

Cyanobacteriacanbefoundinmanydifferentenvironmentsandconditions.Forexample,Arthrospiraplatensisthrivesinextremealkalineenvironments.However,evenamongcyanobacteria,A.platensis’sabilitytoadapttohighpHvaluesisveryuniquebecauseeventhoughmostcyanobacteriacantoleratealkalineconditions,

Page 15: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

11

theystillhaveoptimalgrowthinaneutralmedium(pH7)(Ciferri,1983).ThisisnotthecaseforA.platensis,whichfailstogrowatpH7orlowerandtheoptimalgrowthisobtainedaroundpH9to10(Ogbondaetal.,2007;Schlesingeretal.,1996).EvenatpH11.5thegrowthrateforA.platensishasbeenapproximately80%oftheoptimalgrowthrateanditcanthereforeclearlybedefinedasanobligatealkaliphilemicroorganism(Schlesingeretal.,1996).

1.7 Mixotrophiccultivation

ThemaincarbonfixationrouteinArthrospiraisbyphotosynthesis.Whenbothlightandanorganiccarbonsourceareavailableduringthecultivation,Arthrospirahavetheabilitytocombineautotrophicphotosynthesiswithheterotrophicassimilationofanorganiccarbonsourceinacombinedprocessknownasmixotrophic(AndradeandCosta,2007).Thephotosyntheticfixationofcarbondioxide(CO2)isregulatedbythelightintensityandtheheterotrophicassimilationoforganiccarbonisregulatedbytheaccessibilitytotheorganiccarbonsource(Zhangetal.,1999).CulturingArthrospiraunderamixotrophicconditionthenthegrowthwillnotstrictlydependonthephotosynthesis,whichmeansthatlightstopsbeingtheonlylimitinggrowthfactor(AndradeandCosta,2007;ChojnackaandNoworyta,2004).Therefore,mixotrophicculturingbecomesaduallimitationprocessinwhichatoohighconcentrationoftheorganiccarbonsourceortoohighlightintensitiescanbelimitingforthegrowth.However,toolowconcentrationoforganiccarbonortoolowlightintensitiescanalsohaveaninhibitingeffectoncellgrowthandthereforelightintensityandorganiccarbonsubstratebecomethetwomostimportantgrowthfactors(ChojnackaandNoworyta,2004;Zhangetal.,1999).MixotrophiccultivationofArthrospiracouldincreasethebiomassconcentration,whilsttheon-goingimprovementinclosedphotobioreactorsformasscultivationofphototrophicmicroorganismcouldalsocontributetomakethemixotrophicgrowthofcyanobacteriaeconomicalfeasible(Chen,1996;ChenandZhang,1997;Marquezetal.,1995).ExperimentswiththefilamentouscyanobacteriaA.platensisandglucoseasanorganiccarbonsourceshowedthatthebiomassandphotosyntheticpigmentproducedwhengrowingmixotrophicwasincreasedby1.5-2foldwhencomparedtoculturesgrownphotoautotrophic.However,thepigmentconcentrationpergrambiomasswasalmostthesameinthemixotrophicandphotoautotrophiccultures(Marquezetal.,1995;Vonshaketal.,2000).

Page 16: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

12

Figure1Showsthephotosyntheticlightharvestingcomplexincyanobacteria.Thephotosyntheticelectron

flowandATPsynthesisinthethylakoidmembrane(Johnson,2006).

1.8 Phycocyaninandthephotosynthesis

InCyanobacteriathreemulticomplexlightharvestingsystemsexist:photosystemI,photosystemIIandphycobilisomes,whichareusedtocapturelightenergyfromthevisiblelightspectra(400nmto700nm)andconvertittochemicalenergybythephotosynthesis(Figure1)(Gaoetal.,2016;Tingetal.,2002).Thethreecommontypesofphycobiliproteinshavethemajorbiologicalroleofphotosyntheticlightharvesting:theredphycoerythrinthatabsorbsmoststronglyatwavelengtharound550nm,thebluephycocyaninwhichabsorbsmaximumaround620nmandallophycocyaninthatabsorbsaround650nm,whichislocatedatwavelengthsinthevisiblelightspectrawherechlorophyllshavelowextinctioncoefficients(absorbspoorly)(Figure2)(Madiganetal.,2012).Thephycobilinproteinsarecombinedintogroupscalledphycobilisomes,whichisattachtothethylakoidmembrane.Allophycocyaninarelocatedinthecentreofthephycobilisomescomplexandsurroundedbyeitherphycocyaninorphycoerythrinorbothdependingontheorganism(Figure1)(Johnson,2006;Madiganetal.,2012).Thephycobilisomesareorganisedsophycocyaninabsorbsathigherenergies(shorterwavelength)thenallophycocyanin,whichisplacedclosertothereactioncentrechlorophyllthatabsorbsatlowerenergies(longerwavelengths)thanallophycocyanin.SotheenergyflowisfromphycocyaninèallophycocyaninèchlorophyllofphotosystemII(Eriksen,2008;Madiganetal.,2012).Therefore,phycobilisomesfacilitatetheenergytransferthatallowscyanobacteriatogrowatverylowlightintensities(Madiganetal.,2012).

Page 17: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

13

Figure2showstheabsorbancespectraofdifferentalgaepigments(WIKI,2014).

1.9 Markedforphycocyanin

PhycocyaninisacommerciallypromisingbiochemicalpresentinA.platensis,however,themajorityofthe3000tonsofdryweightofA.platensisbiomassthatisproducedeveryyeararesoldashealthfoodandanimalfeed,whichhasaloweconomicvalue(around36€perkilo)relativetophycocyanin,whichisconsideredasahighvalueproduct(Borch,2011;Eriksen,2008).DependentofthepurityoftheC-phycocyanin,thesellpriceliesfromaround500US$/kgupto100,000US$/kg,withthecurrentestimatedmarketvalueforphycobiliproteinproductsasgreaterthan60millionUS$(Borowitzka,2013),whilsttheannualmarketforphycocyaninliesbetween5to10millionUS$(Yaakobetal.,2014).ThepurityofC-phycocyaninisdividedintothreeclasses:foodgrade(purityof0.7,definedastheratiobetweentheabsorbanceof620nmto280nm),reactivegrade(purityof3.9)andanalyticalgrade(puritygreaterthan4.0).ThecommercialvalueoffoodgradeC-phycocyaninisaround0.13US$/mgwhilstthereactivegradeisaround1to5US$/mgandtheanalyticalgradecangoashighas15US$/mg(Eriksen,2008;Rito-Palomaresetal.,2001).

Page 18: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

14

Picture3showsanopenpondracewaytrackforalgaeproductionlocatedinWesternAustralia(Watson,2013).

1.10 IndustrialcultivationofphotosyntheticorganismTherearetwocommonlyusedsystemsforcultivatingphotosyntheticmicroorganism:Theopenracewaypondssystem(Picture3)andclosedphotobioreactorsystem(Picture4)(Harunetal.,2010).ThecommercialcultivationofArthrospiraismainlycarriedoutinopenracewaypoundswherethesolarenergyabsorbedbythecyanobacteriaisusedtofixinorganiccarbon(CO2)(Picture3)(Vonshaketal.,2000).Themaindrawbackoftheopenpoundscultivationsystemisthelowcellconcentrationthatisaround0.4-0.8g/l,whichmeansthatrelativelylargecultivationsystemsarerequiredinordertoproduceanefficientamountofphycocyanin(Chenetal.,2006).Otherdisadvantagesofcultivationinanopenpondssystemistheriskofcontaminationfromothermicroorganism,insufficientstirring/mixingandthelackofcontrolofenvironmentalconditionssuchastemperature,evaporationandlightintensity(ChenandZhang,1997).However,theriskofcontaminationcanbesolvedbycultivationunderextremecultureconditions(highsalinityoralkalinity),whichmeansthatonlyasmallamountoforganismsaresuitedforthiscultivationmethod(BrennanandOwende,2010).However,thesearefactorsthatareundesirablewhenproducingaproduct(phycocyanin)forthechemicalandpharmaceuticalindustriessincethecostforproductrecoveryandpurificationcanbecomecostly,especiallyduetothelowcellconcentrationintheopenpondsystems(ChenandZhang,1997).

Page 19: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

15

Picture4showsthreetypesofclosedphotobioreactorsystem(A)Columnphotobioreactor(Yeomans,2013).

(B)Horizontaltubularphotobioreactor(Bennekom,2014).(C)Flatplatephotobioreactor(AGICAL,2013).

Someofthedrawbacksforopenpondsystemscanbeavoidedbyculturinginaclosedphotobioreactor,whichprovidesasystemthatcancontrolandevenmanipulatecultivationparametersuchasthenutrientsupplyforgrowth,temperature,pH,dissolvedCO2,lightintensitiesandspecificwavelengthoflightandculturescanbemaintainedaxenic(Eriksen,2008;Harunetal.,2010;Ugwuetal.,2008).Closedphotobioreactorsystemsincludethetubular,flatplateandcolumnphotobioreactors(Picture4).Severalstudieshaveindicatedthatthetypeofphotobioreactorandespeciallycultureconditionsuchas:pHofthemedium,typeofmedia,CO2supply,nitrogenconcentrationandlightintensitysignificantlyaffectthebiomassproductionandphycocyaninaccumulationinArthrospiracultures(Chenetal.,2013;Leemaetal.,2010;Zengetal.,2012).TheseconditioncanbecontrolledinaclosedphotobioreactorandithasbeenshownthattheproductivityofArthrospiraculturesisincreasedwhentheyareculturedinclosedphotobioreactor(Chenetal.,2013).Ishasbeenreportedthatvolumetricbiomassproductivityinclosedphotobioreactorscanbe5to20timesabovewhatcanbeobtaininanopenracewaypondandthatthevolumetricproductivityofphycocyaninisthereforealsoincreasedwhenA.platensisisculturedinaclosedphotobioreactorsystem(Eriksen,2008).ThismayfavourusingaclosedphotobioreactorsystemforcommercialproductionofC-phycocyaninbutthecostofproducingphycocyanininclosedphotobioreactorstillneedstobereducedconsiderablyinordertomakeiteconomicallyfeasibleonanindustrialscale(Xieetal.,2015).Thecostinvolvedforestablishing,runningandmaintainingaclosedphotobioreactorsystemismuchhigherthanthatofanopen

Page 20: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

16

racewaypondsystem,whichismainlycausedbytheequipmentrequirementandenergyconsumptioninvolvedintheclosedphotobioreactorsystem(Harunetal.,2010).Someoftheadvantagesanddisadvantagesforculturinginopenpondsandclosedphotobioreactorsystemsareoutlinedbelow(Table1).Cultivationsystem Advantages Disadvantages

Tubularphotobioreactor Largesurfaceareaèlightutilization.Noneedforagriculturalland.Goodbiomassproductivity.Suitableforoutdoormassculturing.

Wallgrowthèfouling.Largeareaoflandrequired.Limitationonlengthoftubes.Maintenance.

Flatplatephotobioreactor Highbiomassproductivity.Easytosterilise.LowaccumulationofdissolvedO2.Highphotosyntheticefficiency.Largesurfaceareaèlightutilization.

Difficulttoscaleup.Temperaturecontrol.Wallgrowthèfouling.

Columnphotobioreactor Controlofgrowthconditions.Efficientmixing.Highvolumetricmasstransferrates.Lowcostcomparedtotheotherclosedsystems.Compactandeasytooperate.

Smallilluminationarea.Expensivecomperedtoopenponds.

Openracewayponds Relativelycheaptoconstruct.Easytoclean.Lowenergyinput.Noneedforagriculturalland.Lowenergyinput.Easymaintenance.

Lowbiomassproductivity.Largeareaoflandrequired.Fewphototrophicorganismsaresuited.InsufficientmixingèlightandCO2utilization.Riskofcontamination.

Table1outlinessomeoftheadvantagesanddisadvantagesforopenandclosedcultivationsystemsfor

phototrophicorganism(BrennanandOwende,2010).

1.11 PhotobioreactorandartificiallightingwithLightemittingdiode

(LED).

AmajorobstacletomakeiteconomicalefficientandenvironmentalfriendlytouseartificiallightforcultivatingphototrophicmicroorganismsuchasA.platensisinordertoproducebiofuels,biochemicaletc.isthehighenergyinputassociatedwithtraditionalagriculturallightingsystemsusedforphotosyntheticcultivation(Faunceetal.,2013).Themajorityofclosedphotobioreactorsystemsusedtodayaretubularphotobioreactorswithtubesindifferentsizesandshapesdependingonthereactordesign.Regardlessofthereactordesignused,thebiotechnologicalobjectiveistoensureoptimalcultivationconditions.Thetwoimportant

Page 21: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

17

parameterstoensuringforoptimalgrowthconditionsforthephototrophicorganismareturbulence(mixing)andillumination(Pulz,2001).Thesetwoparametersareimportanttocontrolinordertoinsureanefficientcultivationprocess.Thecontroloftheilluminationisprobablythemostimportantparameterwhendesigningaclosedphotobioreactorforaphototrophiccultivationprocessthatoperates24hoursperday.Thisisbecausemostoftheenergyusedinaphotobioreactorisforlightningandlightwavelengthmayalsoinfluencethecompositionofthecellsinrelationtopigments,protein,polysaccharidesandlipids(Kocetal.,2013;Rivkin,1989).Therefore,thedesignofaphotobioreactorwillhavetobeeconomical,robust,reliableandhaveaneffectivelightsourceinordertomakeitsuitableforindustrialproduction(BeardallandRaven,2013).Whenchoosingasuitablelightsourceforthephotobioreactoritisimportantthatthespectralcharacteristicsofthelightfluxandthewavelengthrangearerightbecausedifferenttypesofphototrophicmicroorganismmayrequiredifferentlightintensity(photonfluxdensity),durationandwavelengthoflight.Toohighalightintensitymayleadtophotooxidationandphotoinhibition,whilsttoolowlightintensitymaybecomegrowthlimiting(Carvalhoetal.,2011).Asuitablelightsourceforphotobioreactorscouldbelightemittingdiode(LED)becausetheyhaveahighluminousefficiency,lowenergyconsumption,coolemittingtemperature,theoptiontoselectspecificwavelengthandtheyareveryrobust,andhavealonglifetimecomparedtootheragriculturallightsources(Massaetal.,2008).TheLEDtechnologyhasrelativelynarrowwavelengthbandsthatmakesitpossibletoproducespecificwavelength,whichinadditiontomakingitpossibletoilluminatethemicrobeswithlightinthespecificwavelengthsuitedforoptimalgrowthanddesiredproduct,LEDalsohasapositiveeffectontheenergyconsumption,andthusmakingtheprocessmoreenergyefficient.LEDcanreducestressconditionsassociatedtoexcessiveilluminationofthemicrobes,whichoftenappearswithotheragriculturallightsystemsbecausewiththeLEDsystemsthelightintensitycaneasilyberegulated(Kocetal.,2013;YamandHassan,2005).TheLEDtechnologyalsohastheadvantagesofalowheadconductioncomparedtootherlightsystems,whichpreventoverheatingofthegrowthmediumandtherebyreducingtheenergyinputforstabilisingthetemperatureinthephotobioreactor.Finally,LEDaresmallinstructureandeasytoinstall(Kocetal.,2013).AlltheseadvantagesmakeLEDsverysuitableasalightsourceforaphotobioreactor,whilstalsomoreenvironmentallyfriendlythanotheragriculturallightsystems.Therefore,inordertojustify(inasustainableperspective)usingartificiallighttocultivatephotosyntheticorganism,theutilizationoftheenergyinputshouldbeaseffectiveaspossible.ThiscanbeachievedbyusingLEDtechnologythathasahighenergyefficiencyandisabletoprovidelightinthespecificwavelengthandintensitythatisrequiredforthephototrophicorganismtocarryouttheirphotosynthesis(Faunceetal.,2013).

Page 22: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

18

2 ProjectdescriptionTheincreasinginternationalfocusonsustainabilityandutilizationofbiologicalandrenewableresourceshasresultedinanincreasinginterestinfindingalternativesolutionstothecrudeoilbasedproductionofenergy,fuelsandchemicals.PhycocyaninisahighvalueproductwithmanyapplicationsthatexistnaturallyinA.platensis.PhycocyaninisproducedbycultivationofA.platensisinopenracewaypondsthathavedrawbacksofriskofcontaminationandlowproductivity.ThiscouldbesignificantlyimprovedifA.platensiswascultivatedinclosedphotobioreactorsystems,however,thisisstillaveryexpensivesolution.Therefore,iftheproductivitycouldbeincreasedmorebycultivationA.platensismixotrophicwithacheapandrenewablecarbonsourceitcouldhelpmakeitmoreeconomicalfeasibletocultivateinclosedphotobioreactors.Thus,theideabehindthisprojectisthatthesurplusproductionfromwindturbinescouldbeconvertedtohydrogen(H2)byelectrolysis,andsubsequentlytheH2isusedtoproduceacetatewithhomoacetogenicbacteriabyanaerobicfermentationwithH2plusCO2.TheeffluentcontainingacetatecouldbeusedformixotrophiccultivationofA.platensistoincreaseproductivityofcultivation.Afterthecultivationthephycocyanincanbeextractedfromthebiomassandtherebythesurpluswindpowerproductioncouldbeusedtoincreasetheproductivityofphycocyaninproduction.BasedonthisacetatewasusedasorganiccarbonsourceinthisstudytotestmixotrophiccultivationofA.platensiswithaviewtoextractphycocyanin.

2.1 Problemstatement

CantheproductivityofArthrospiraplatensiscultivatedatlowlightintensitiesbeincreasedifacetateisaddedtothegrowthmedium?CanthephycocyaninconcentrationpergramofbiomassbeincreasedifArthrospiraplatensis,undercultivation,isilluminatedonlywithlightintheredlightspectra?

2.2 Objective:

Theoverallobjectiveforthis60-ECTSmasterthesisistoinvestigatetheeffectonbiomassproductionandphycocyaninphycocyaninconcentrationinA.platensiswhencultivatedmixotrophicwithacetateasanorganiccarbonsource.AlsotoinvestigatewhetheritispossibletocultivateA.platensisinthefermentationbrothfromanaerobicacetateproductionbyAcetobacteriumsp.Furthermore,theobjectiveistoupscalethecultivationofS.platensisina2-litrebatchphotobioreactorsetupunderredandblueilluminationwithdifferentlightintensities.

Page 23: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

19

2.3 Selectionoforganismandexperiments

A.platensiscanbecultivatedmixotrophic,andhasalreadybeentestedwithanumberofdifferentorganiccarbonsources,whichhaveshowntoincreasethebiomassgrowthrate(AndradeandCosta,2007;ChojnackaandNoworyta,2004;Marquezetal.,1993;Vonshaketal.,2000).

2.4 Hypotheses:

1. TheoverallhypothesisisthatA.platensiscanincreaseitsgrowratewhencultivatedmixotrophicwithacetate.

2. FermentationbrothfromanaerobicfermentationofacetatebyAcetobacteriumsp.canbeusedtocultivateSpirulinaplatensismixotrophic.

3. Alsowhencultivatedmixotrophicwithlowlightintensitiesintheredandbluelightspectra,S.platensiswillstillgrowwellandtheconcentrationphycocyaninpergramofbiomasswillstillbehigh,sincephycocyaninabsorbslightintheredspectra.

4. Theprocesscanbecomemoreenergyeffectivebecauseweonlyuselightintherelevantlightspectra’sformaintaininggrowth(redandbluelight)andbyusingLEDtechnologyforillumination.

Page 24: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

20

3 Materialandmethods

3.1 Sterilization

ThegrowthmediumandglasswareusedforculturingArthrospiraplatensisweresteamsterilizedinanautoclaveat121°Candasteampressureof1barfor15-20min.Tracemetal,micronutrientandvitaminsolutionswerefiltersterilizedthrougha0,2μmcelluloseacetatemembranefilterandaddedtothemediumsafterautoclavingtoavoidprecipitation.

3.2 Microorganism

ThemicroorganismusedinthisstudywasArthrospiraplatensis.ThepurecultureofA.platensiswasprocuredfromExperimentalPhycologyandCultureCollectionofAlgaeattheuniversityofGöttingen(EPSAG),strainnumber21.99.ThestrainwasmaintainedinabasalZarroukmedium,butfromarecipefoundinR.GuptaPh.D.thesis(Gupta,2007;Zarrouk,1966).MaintainingandculturingofstartercultureswascarriedoutunderilluminationofL3andL4LEDlightbolts403lux(Table8).

3.3 Culturemedia

AutotrophiccultivationofA.platensiswascarriedoutinabasalZarrouk(BZ)medium(Table2and3).ThepHofthemediumwasadjustedtoapHvaluearound9to9,5withpotassiumhydroxide(KOH).Cultureswereincubatedinacultureroomat30±3°Candilluminatedwithartificiallightintheredandbluespectra(Table8).ForthemixotrophiccultivationofA.platensistheBZmediumwassuppliedwithandorganiccarbonsourcefromeitheraceticacid99.8-100.5%obtainedfromSigmaAldrichoracetatefroma1Msodiumacetatesolution(Table4).FortheacetateproductionwithhomoacetogenicbacteriabyanaerobicfermentationwithH2plusCO2.Acetobacteriumsp.werecultivatedinDSMZAcetobacteriummedium135aandthecompositionofitisshownbelowintable5,6and7.

Page 25: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

21

BasalZarroukmedium SolutionI Sodiumbicarbonate(NaHCO3) 18.00gPotassiumphosphatedibasic(K2HPO4) 0.50gDe-ionizedwater(dH2O) 500mlSolutionII Sodiumnitrate(NaNO3) 2.50gPotassiumsulphate(K2SO4) 1.00gSodiumchloride(NaCl) 1.00gMagnesiumsulphate(MgSO4) 0.20gCalciumchloride(CaCl2) 0.04gIronsulphate(FeSO4) 0.01gEthylenediaminetetraacetate(C10H16N2O8) 0.08gDe-ionizedwater(dH2O) 500mlA5micronutrientsolution* 1mlAutoclavesolutionIandIIseparately,assembleaftercoolingandaddsolutionA5insterilesolution.

Table2showsthecomponentfor1litreBasalZarroukmedium(Gupta,2007;Zarrouk,1966).

*PreparationofA5micronutrientsolution Boricacid(H3BO3) 2.860gManganese(II)chloride(MnCl2) 1.810gZincsulphate(ZnSO4) 0.222gSodiummolybdate(Na2MoO4) 0.0177gCopper(II)sulphate(CuSO4) 0.079gDe-ionizedwater(dH2O) 1000mlFiltersterileifsterileconditionisrequired.

Table3showsthecomponentstoprepare1litreA5micronutrientsolutionusedtopreparethebasalZarrouk

medium(Gupta,2007;Zarrouk,1966).

1MSodiumacetatesolution Sodiumacetate(C2H3O2Na) 82gDe-ionizedwater(dH2O) 1000ml

Table4showsthecomponentstomake1litre1Msodiumacetatesolution.

Page 26: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

22

DSMZ135aAcetobacteriummedium Sodiumchloride(NaCl) 20.00gAmmoniumchloride(NH4Cl) 1.00gMonopotassiumphosphate(KH2PO4) 0.33gDipotassiumphosphate(K2HPO4) 0.45gMagnesiumsulphateheptahydrate(MgSO4x7H2O) 0.10gTraceelementsolution* 20.00mLYeastextract 2.00gSodiumbicarbonate(NaHCO3) 5.00gResazurin 1.00mgVitaminsolution** 10.00mLEthyleneglycol 1.25gL-Cysteine-HCLxH2O 0.50gSodiumsulphidenonahydrate(Na2Sx9H2O) 0.50gDe-ionizedwater(dH2O) 1000.00mLThemediumwaspreparedanaerobicallywithN2andCO2gasmixture.

Table5showsthecomponentsusedtoprepare1litre135aAcetobacteriummedium(DSMZ,2016).

*Preparationoftraceelementsolution Nitrilotriaceticacid 1.50gMgSO4x7H2O 3.00gMnSO4xH2O 0.50gNaCl 1.00gFeSO4x7H2O 0.10gCoSO4x7H2O 0.18gCaCl2x2H2O 0.10gZnSO4x7H2O 0.18gCuSO4x5H2O 0.01gKAI(SO4)2x12H2O 0.02gH3BO3 0.01gNa2MoO4x2H2O 0.01gNiCl2x6H2O 0.03gNa2SeO3x5H2O 0.30mgNa2WO4x2H2O 0.40mgDistilledwater 1000.00mL

Table6Showthecomponentusedtoprepare1litretraceelementsolutionusedinthe135aAcetobacterium

medium(DSMZ,2016).

Page 27: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

23

**Preparationofvitaminsolution Biotin 2.00mgFolicacid 2.00mgPyridoxine-HCL 10.00mgThiamine-HCLx2H2O 5.00mgRiboflavin 5.00mgNicotinicacid 5.00mgD-Ca-pantothenate 5.00mgVitamineB12 0.10mgp-Aminobenzoicacid 5.00mgLipoicacid 5.00mgDistilledwater 1000.00mL

Table7showsthecomponentusedtoprepare1litrevitaminsolutionusedinthe135aAcetobacterium

medium(DSMZ,2016).

3.4 ArtificialLEDlightsources

TheilluminationforthedifferentexperimentalsetupswasprovidedwithartificialLEDlightintheredandbluespectra,whichisillustratedbelow(Table8).Unit Description Spectra LightintensityE(lux)

L1 Photobioreactorlightingplatform Red,blue 349L1 Photobioreactorlightingplatform red 175

L2 LEDlightpanels Red,blue 839L3 LEDlightbolt Red,blue 403L4 LEDlightbolt Red,blue 403

Table8ShowsthedifferentLEDlightsourcesandtheirlightintensityinlux.

ThewavelengthandlightintensityforL2,L3,andL4wasmeasuredwithaspectralmeter(MetrueSIM-2plus),whichwasprovidedfromStatensByggeInstitute(SBI)(Figure3).ThelightintensityofL1wasmeasuredwithaLuxmeterapp(LuxLightMeter)onanIPhoneSE(Table8).

Page 28: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

24

Figure3,A)ShowsthelightspectraforL2,B)showsthelightspectraforL3andC)showsthelightspectrafor

L4.

3.5 Highperformanceliquidchromatography(HPLC)

HPLCanalysiswasusedtomonitoranddeterminetheconcentrationofacetateintheBZmediuminordertodeterminetheresidualacetateconcentrationinthemedium.1mLsamplewasextractedsimultaneouswithopticaldensity(OD)measurementforbiomassdeterminationandstoredinthe-20°Cforlateranalysis.ThesamplewasanalysedinaDionexUltimate3000withRI(refractiveindex)detector,eluent4mMsulphuricacid,columnBIORADAminexHPX-87Hat60°C.

3.6 Biomassproduction

ThebiomassconcentrationforA.platensiswasevaluatedbymeasuringtheopticaldensity(OD)ofthesampleatawavelengthof675nm,whichwasfoundbyperformingawavelengthscanofabiomasssampleonaspectrophotometer(modelDR3800™BenchtopSpectrophotometer).AstandardcalibrationcurveofopticaldensityversusA.platensisbiomassconcentrationwasmadebyperformingadilutionseriesintripletsandmeasuringtheopticaldensityofthesampleandplottingtheagentsofthebiomassconcentrationofthesample,whichwasfoundbydryingintriplets3mlofthedilutedbiomasssamplesinanovenat104˚Cuntiltheweightwasstable(Figure4).

Page 29: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

25

Figure4showsthestandardcurveforA.platensisusedtodeterminethebiomassconcentrationwithoptical

density(OD)measurement.

TheOD675nmvalueswereconvertedtobiomassconcentrationbytheformulaobtainfromthecalibrationcurve:

!"#$%&& ' ( =*+,-. − 0.0229

33.835×109, ; = 0.99

Thespecificgrowthrate(μ=day-1)forA.platensiscultureswasdetermentforthegrowthperiodbytheequation:

<(>%?@A) =ln(E)F

I.e.themaximumslopeofaplotoflnXversustime.WhereXisthebiomassconcentration(gram/litre)andtisthecultivationtime(days)(HillandRobinson,1974;Xieetal.,2015).Theproductivityistheratiobetweenthedifferencesinbiomassconcentrationforaperiodoftime,whichwascalculatedbytheequation:

G =(EH − EI)

FH

WhereP=productivity(gramperLitre/day),Xi=biomassconcentrationattimei(gram/litre),X0=theinitialcellconcentrationandti=isthetimerange(days)betweenXiandX0(AndradeandCosta,2007;Walteretal.,2011).

Page 30: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

26

Figure5showstheStandardcurvemadetodeterminephycocyaninconcentrationfrommeasuringmaximal

absorbance(Abs).

3.7 Phycocyaninconcentration

TheabsorbanceofPhycocyaninsampleswasmeasuredwithUV/Visspectrophotometer(MecasysOptizenPOPBIO).ThedeterminationofphycocyaninconcentrationwascarriedoutbymakingadilutionseriesofaPCsamplepurchasefromSigmaAldrichandusingittocalibratetheabsorbancecurveat620nmofdilutedsamples(Figure5).Themaximumabsorbance(Abs)ofphycocyaninwasfoundbyconductingawavelengthscan.TheAbsofextractionsampleswerecalculatedbytheequationobtainfromthecalibrationcurve:

Gℎ?K#K?%L"L $' $( =MN&,OI + 0.016

74.721×TUVWXYZT[\]]Z^

, ; = 0,99

WhereAbs620istheabsorbanceat620nmandVsampleisthevolumeofthebiomasssampleandVbufferisthevolumeofthebufferaddedintheextraction.ToevaluatetheyieldofphycocyaninaccumulatedpergramofA.platensisbiomassthefollowingequationwasused:

_̀ abcdcbVeHe(Gf' !"#') =hℎ?K#K?%L"L(' i)N"#$%&&(' i)

Thepurityofthephycocyaninfractionafterextractionwasevaluatedbasedontheratiobetweenabsorbanceofphycocyaninmeasuredat620nmandtheabsorbanceofsomeoftheaminoacidspresentintheproteinsinthesampleat280nm(Walteretal.,2011).

GfX\^Hjb =MN&,OIMN&OkI

Page 31: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

27

ThephycocyaninsampleswithanAbs620/Abs280ratiohigherthan0.7areconsideredasfoodgradewhileandratiohigherthan4areconsideredasanalyticalgrade(Eriksen,2008).ThemeasurementofAbsorbanceforPhycocyaninwasconductedonaMecasysOptizenPOPBIOspectrometer.

3.8 Acetobacteriumcultivation.

ObjectiveofexperimentTheobjectiveofperformingthisexperimentwastotrytocultivateAcetobacteriumsp.(DSM:2396)inaDSMZ135amediumsuppliedwithhydrogen(H2)andcarbondioxide(CO2)toseeifitwillproduceacetate.TheideaisthatthefermentationbrothcontainingacetatecouldlaterbeusedassubstrateformixotrophiccultivationofA.platensis.ExperimentalsetupThetestwascarriedoutindupletsin20mlvialswith10mlDSMZ135aAcetobacteriummediumunderanaerobicconditions.ThevialswerestartedwithanAcetobacteriumsp.freezeculture(DSM:2396)obtainedfromDSMZculturecollection.Thevialswereinstalledinanincubatorat30°C.Afterstartingthecultures,thevialwasfeedwithhydrogen(H2)twotothreetimesaweek.

3.9 TestofgrowthkineticforA.platensisObjectiveofexperimentThisexperimentwasperformedinordertomakeagrowthcurveforA.platensis.ThegrowthcurvewasusedtodeterminewhenstarterculturesofA.platensisareintheexponentialphaseofgrowthandreadyforinoculationandtodeterminehowoftenIhavetomeasuregrowthinmylaterexperiment.ExperimentalsetupTheexperimentwascarriedoutin250mLbluecapbottlesintripletswith100mlbasalZarroukmediumineachbottle.TheBottleswasinoculatedwith5mLA.platensis(21.99)startercultureprovidedfromEPSAG.Afterinoculationthebottleswereinstalledinanincubatorroom(temperature30±2°C)withagitation(180RPM)andunderconstantartificiallighting(L2-LEDlightpanels839lux).BiomassaccumulationwasmonitoredbyOD675nmmeasurementandplottedinanexcelsheetVStimetoformagraphofthegrowth.1mLbiomasssamplesforOD675nmmeasurementwasextractedevery6hoursinthebeginningbutwaslaterchangedtoevery8andthen12hoursbytheend.TheexperimentranuntilOD675nmmeasurementwasdecreasingforallthreebottles.

Page 32: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

28

3.10 TestofphycocyaninextractionmethodsonArthrospiraplatensis.ObjectiveofexperimentTheobjectiveforperformingthisexperimentwastofindthemostsuitableprocedureforharvestingandextractingthephycocyaninpigmentfromtheA.platensisbiomassandoptimizeitformyexperiment.Thiswasdoneinordertoevaluatethephycocyaninconcentrationpergramofbiomassandthepurityoftheextractedphycocyanin.Theresultsandexperiencefromtheexperimentwereusedtoconductaprotocolforextractingthephycocyanin,whichwasusedinmylaterwork(appendix1).ExperimentalsetupBasedonaliteraturereview,fiveproceduresweredevelopedandtestedonA.platensisbiomass(Horváthetal.,2013;Lawrenzetal.,2011).Theywerenamedmethod1,2,3,4and5.TheexperimentwasperformedintripletsandtheA.platensisbiomasscamefromthesameculturewhichhadaOD675nm=1.562whichisequaltoacelldensityof45.49g/L.Method1Extractbyfiltration.10mLofA.platensisbiomasssamplewasharvestedandthewaterwasremovedbyvacuumfiltrationthroughaGF/Ffilter.Afterfiltrationthefiltersweretransferredtoa50mLfalcontubeandimmediatelyfrozenat-80°Cuntilfurtherprocessing.Thefilterswerethensubjectedtotwofreeze-thawcyclesof24hourseachat-80°Cand5°C.Afterthefreeze-thawcyclesthefiltersweremechanicallydisruptedbygrindingthefilterswithanicecooledmortarandpestleuntilthefilterwascompletelydisintegratedtoahomogeneousslurry.Duringthegrinding0.5ml0,1MphosphatebufferpH6wasadded.Theslurrywasthentransferredtoa50mLfalcontubeand4mLphosphatebufferwasaddedtothefalcontubes.Inordertoremoveallthefilterparticles,thetubeswerefirstcentrifugedfor30minat10000gand4°C.AfterthecentrifugationthesupernatantcontainingthephycocyaninwasvacuumfilteredthroughacleanGF/Ffilterfollowedbyfiltrationthroughasyringefilterwitha0.45μmcelluloseacetatemembranefilter.Thephycocyaninconcentrationandpurityofthesamplewasthendeterminedwiththemethoddescribedabove.Method2Extractionbycentrifugationandonefreeze-thawcycle.10mLofA.platensisbiomasssamplewasharvestedandcentrifugedina15mLfalcontubefor60minat10000gand4°C.Afterthecentrifugationthesupernatantwasdecantedawayandthecellswerere-suspendedin4mL0,1MphosphatebufferpH6andimmediatelyfrozenat-80°C.thesampleswereexposedtoonefreeze-thawcycleof48hourseach.Afterthefreeze-thawtreatmentthesampleswerecentrifugedfor30minat10000gand4°Candthephycocyanincontainingsupernatantwasextractedandfilteredthroughasyringefilterwitha0.45μmcelluloseacetatemembranefiltertoremoveimpurities.Thephycocyaninconcentrationandpurityofthesamplewasdeterminedwiththemethoddescribedabove.

Page 33: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

29

Method3Extractionbycentrifugationandtwofreeze-thawcycle.Theprocedurewasthesameasinmethod2butwithtwofreeze-thawcyclesof48hoursinsteadofone.Method4Extractionbycentrifugationandthreefreeze-thawcycle.Sameprocedureasinmethod2butwiththreefreeze-thawcyclesof48hoursinsteadofone.Method5Extractionbycentrifugationandsonication.10mLofA.platensisbiomasssamplewasharvestedandcentrifugedina15mLfalcontubefor60minat10000gand4°C.Afterthecentrifugationthesupernatantwasdecantedawayandthecellswerere-suspendedin4mL0.1MphosphatebufferpH6andsonicatedfor60secondsat50W.Thesampleswereimmediatelyfrozenat-80°Candexposedtoonefreeze-thawcycleof48hours.Thedeterminationofphycocyaninconcentrationandpurityofthesampleswerecarriedoutwiththesameprocedureasdescribedabove.

3.11 TestgrowthrateonArthrospiraplatensiswhenculturedAuto-,hetero-andmixotrophic.

ObjectiveofexperimentTheobjectiveofperformingthisexperimentwastotesttheeffectthataceticacidhasonthegrowthrateofA.platensis.TotestthisA.platensiswascultivatedautotrophic,heterotrophicandmixotrophicwithaceticacidavailableasorganiccarbonsourceforhetero-andmixotrophiccultures.ExperimentalsetupTheexperimentwasperformedintripletsin250mLbluecapbottlesunderdifferentconditions:(A)autotrophiccultivationwith100mLBZmediumineachbottle.(B)mixotrophiccultivation100mLBZmediumwithaconcentrationof2g/Laceticacidineachbottle.(C)heterotrophiccultivation100mLBZmediumwith2g/Laceticacidconcentration.ThepHwasadjustedtoaroundpH9-9,5witha1Mpotassiumhydroxide(KOH)solution.Theystartedwith5mLinoculumwithacelldensityof41.14g/Landgrownasbatchcultures.CultureAandBwasinstalledinanincubatorroom(temperature30±2°C)withagitation(180RPM)andunderconstantartificiallighting(L2-LEDlightpanels839lux).CultureCwaswrappedwithaluminiumfoilandcultivatedwithoutlightintheincubatorroom(temperature30±2°C)withagitation(180RPM).Theywerecultivatedfor25daysandcellconcentrationwasmonitoredeverydaybymeasuringtheOD675nmwiththemethoddescribedearlier.Attheendoftheexperimentthegrowthrateandthephycocyaninconcentrationwasdeterminedinanexcelsheetasdescribedearlier.

Page 34: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

30

3.12 TestgrowthforArthrospiraplatensisinamediumfor

Acetobacteriumsuppliedwithacetate.ObjectiveofexperimentTheobjectiveofthisexperimentwastotestwhetherA.platensiscangrowinDSMZ135aAcetobacteriummediumsuppliedwithaceticacidindifferentconcentrations(2g/L,3g/Land4g/L).ThiswasconductedtosimulatethefermentationbrothfromanaerobicfermentationwithAcetobacteriumsp.(DSM:2396)andtotestwhetherA.platensiscangrowinitornot.Thelowestconcentrationofaceticacid(2g/L)inthisexperimentwaschosenbecauseA.platensishaspreviouslyshowntogrowwellatthatconcentration.AlsoIhavepreviouslytriedtocultivateAcetobacteriumsp.inDSMZa135mediumandreachanacetateconcentrationof1.9g/L.ExperimentalsetupTheexperimentwascarriedoutasbatchcultivationin250mLbluecapbottlesandperformedintriplets.ThemediumusedintheexperimentwasDSMZAcetobacteriummedium135a,exceptresazurin(usedtoindicateifO2ispresent),Ethyleneglycerol(carbonsourceandIassumethatIwillbeusedupinthefermentationbroth)andSodiumsulphate(usedtohelpkeepthemediumanaerobic).ThecompositionofDSMZ135amediumcanbefoundintable5,6and7.Eachbottlehad100mlDSMZ135amediumwithdifferentaceticacidconcentration:(A)2g/Laceticacid,(B)3g/Laceticacidand(C)4g/Laceticacid.ThepHwasadjustedtopH9with1Mpotassiumhydroxide(KOH).10mLfromthreestartercultureswasusedtostarttheexperimentwithcelldensity:(A)starterculture45.07g/L.(B)starterculture38.25g/L.(C)starterculture26.04g/L.Afterinoculationthebottleswereplacedinanincubatorroom(temperature30±2°C)withagitation(180RPM)andunderconstantartificiallighting(L2-LEDlightpanels839lux).GrowthwasmonitoredbyOD675nmmeasurementasdescribedearlier.

3.13 Mixotrophiccultivationwithdifferentconcentrationofacetate.

ObjectiveofexperimentTheobjectiveofthisexperimentwastoinvestigatewhateffectdifferentconcentrationofacetatewillhaveonthebiomassproduction.Inordertodothis,Iwilltryfourdifferentconcentrationofacetate(1g/L,2g/L,3g/Land4g/L)tofindtheacetateconcentrationbestsuitedformixotrophiccultivationofA.platensis.ExperimentalsetupTheBZmediumwaspreparedasdescribedinthesectionculturemediabutinsteadofusingaceticacidinthemedium,1MsodiumacetatesolutionwasusedinsteadtosupplytheBZmediumwithanorganiccarbonsourceformixotrophiccultivation.Thiswasconductedbasedonexperiencefromtheauto-,heteroand

Page 35: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

31

mixotrophiccultivationexperimentwithA.platensiswhereaceticacidwasusedasorganiccarbonsource.Theexperimentwasperformedintripletsandcultivatedasbatchin250mLbluecapbottleswithdifferentacetateconcentrationinthemediumandonewithoutacetate:(A)autotrophicculturewith100mLBZmedium.(B)mixotrophicculture,100mLBZmediumwithanacetateconcentrationof1g/L.(C)mixotrophicculture,100mLBZmediumwithaacetateconcentrationof2g/L.(D)mixotrophicculture,100mLBZmediumwithaacetateconcentrationof3g/L.(E)mixotrophicculture,100mLBZmediumwithaacetateconcentrationof4g/L.Theyallstartedwith10mLinoculumwithacelldensityof52.70g/Landplacedinanincubatorroom(temperature30±2°C)withagitation(230RPM)andunderconstantartificiallighting(L2-LEDlightpanels839lux).GrowthwasmonitoredbyOD675nmmeasurementasdescribedearlier.Attheendoftheexperimentphycocyanincontentfromthebiomasswasdetermined.

3.14 Testoflowilluminationwithintheredandbluelightspectraina

batchPhotobioreactorsetup.

ObjectiveofexperimentTheobjectiveofperformingthisexperimentwastotestA.platensisinBZmediumsupplementedwithacetateatlowlightintensitieswithredandbluelight.Thiswasconductedtoseewhataffectmixotrophiccultivationwillhaveonthephycocyaninconcentrationandthecelldensitywhencultivatedatlowlightintensities.ExperimentalsetupTheexperimentwascarriedoutasbatchcultivationina2litrebluecapbottlewith1500mLBZmediumandanacetateconcentrationof1g/L.Thephotobioreactorwasstartedwith150mLstarterculturewithacelldensityof39.37g/L.Aftertheinoculationthereactorwasplacedinanincubatorroom(temperature30±2°C)underconstantilluminationwithredandbluelightbyL1lightingplatform(349lux).Thephotobioreactorwasmixed/agitatedbypumpingatmosphericairthroughtheaquaticphase.Theevaporationofwaterfromtheaquaticphaseinthephotobioreactorwasadjustedbytheadditionofsterilewater,whichwascorrectedaccordingtomarksplacedonthesideofthereactor.TheadditionofsteriledH2Owascarriedouteveryday.Liquidsampleswerecollectedfromtheculturebrothwithatimeintervalof48hourstodeterminebiomassconcentration,pHandresidualacetateconcentration.Theexperimentranfor35daysandattheendoftheexperimentthephycocyaninconcentrationwasdetermined.

Page 36: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

32

3.15 Testoflowilluminationwithintheredlightspectrainabatch

Photobioreactorsetup.

ObjectiveofexperimentThisexperimentwascarriedouttotestA.platensisinBZmediumsupplementedwithacetateatlowlightintensitieswithonlyredlight.Thiswasconductedtoseewhataffectmixotrophiccultivationwillhaveonthephycocyaninconcentrationandthecelldensitywhencultivatedmixotrophicwithonlyredlightandlowillumination.ExperimentalsetupTheexperimentwascarriedoutunderthesameconditionasforthebatchphotobioreactorwithredandblueilluminationexceptthatinthisexperimentalsetupthephotobioreactorwasilluminatedonlywithredlightbyL1lightingplatform(175lux).Thephotobioreactorwasstartedwithastarterculturewithcelldensity44.34g/L.

Page 37: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

33

4 ResultsanddiscussionInthissectiontheexperimentalresultsandexperiencesmadefromtheexperimentalworkwillbecommentedonanddiscussedandwillformthebasisfortheconclusion.Alltheexperimentalresultsandcalculationscanbefoundinappendix2.

4.1 Acetobacteriumsp.cultivationTheAcetobacteriumsp.startedfromafreezecultureandwassubsequentlycultivatedforabout1month.ThepurposeofthiswastousethemasastartercultureforaceticacidproductioninalargervolumewheretheeffluentfromthefermentationcouldbeusedtotestwhetheritwassuitableasasubstrateforamixotrophiccultivationofA.platensis.Duetomanyotherexperimentalsetupsandaboundedamountoftime,itwasdecidedtofirsttestA.platensisinthe135amediumenrichedwithaceticacidtoseeifthemediawouldbeinhibitorytoA.platensisbeforeafermentationofacetateinalargervolumewouldbecarriedout.Therefore,anHPLCanalysisfromthestarterculturewascarriedouttodeterminetheacetateconcentrationinthestartercultures.TheHPLCanalysisshowsthattheAcetobacteriumhaveproducedacetate,andthattheacetateconcentrationwas1.9g/L.Thisacetateconcentration(1.9≈2g/L)wasusedtodesignotherexperimentalsetupsformixotrophiccultivationofA.platensis.

4.2 TestofgrowthkineticforArthrospiraplatensisInfigure6,wecanseethatthegrowthcurveisdividedintwobyareddottedline.ThisistoindicatewhenanextraLEDlightsourcewasaddedtotheexperimentalsetupandtoindicatetwodifferentgrowthtrends,oneuptoday16andoneafterday16.Theextralightsourcewasaddedtotheexperimentalsetupbecauseafter15daysofcultivationthegrowthcurveresembledazeroorderreaction,whichcouldindicatethatsomethingwasinhibitingtheprocess.Thegrowthrateincreasedsignificantlyafterday16andtheextralightsourcewasappliedtotheexperimentalsetup,whichshowsthatlightwasthelimitingfactorandthattheL2-LEDlightpaneldoesnotprovideenoughenergy(839lux)tosupportA.platensisfullphotosyntheticpotential(table.9).

Sample Xmax1 Xmax2 P1 P2 μmax1 μmax2

[g/L] [g/L] [gL-1/d] [gL-1/d] [d-1] [d-1]A.platensis 18.47±1.63 69.88±4.91 1.01±0.09 7.91±1.00 2.87±0.08 3.80±0.08

Table9showsthegrowthparametersforA.platensiscultivatedinabasalZarroukmedium.

Page 38: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

34

Figure6.showsthebiomassproductionofArthrospiraplatensiscultivatedinbasalZarroukmedium.The

dottedredlineindicateday16whereandextralightsourcewasadded.

Figure7showsthephycocyaninyieldfrom1grambiomass[mgPC/gX]from5differentextractionconditions.

4.3 TestofphycocyaninextractionmethodsonArthrospiraplatensis.DuringthetestingofdifferentextractionmethodsofphycocyaninfromArthrospiraplatensis,severalobstaclesemergealongthewayandwillbediscussedinthissection.Thiswascarriedouttofindthemostsuitedmethodforextracting

Page 39: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

35

phycocyaninfromA.platensisthatwouldbeusedtodeterminethephycocyanincontentinthebiomassthroughoutthiswork.Infigure7itcanbeseenthatmethodM5(sonicationwithonefreeze-thawcycle)gavethehighestphycocyaninyieldpergrambiomass(1.402±0.096[mg/g])ofallthefiveextractionmethodstested,andwithastrongstatisticalevident(T-Test:0.01<p<0.05)whentestedagainstmethodM3(twofreeze-thawcycles)andM4(threefreeze-thawcycles)whicharetheonesclosesttoM5(Figure7).ExtractionmethodM5hadthebestresultswithinthe3parameters(concentration,yieldandpurity)usedtoevaluatethe5extractionmethodsandwascalculatedbasedontheAbs(620nmand280nm)measurementoftheextractedphycocyaninsamples,whichareshownintable10.Thereisnostatisticalevidence(T-Test:p>0.10)thatcouldsupportthatMethodM3ismoreefficientthanM4becausetheirresultsareveryclosetoeachotherandmethodM3hasaverylargestandarddeviation(figure7).However,theresultsobtainfromM3andM4couldindicatethatthethirdfreeze-thawcycledoesn’thaveanysignificanteffectontheextractionofphycocyaninandthereforeareredundantfortheextractionprocess.Thelargestandarddeviationsobservedforthecentrifugedsamplesisproperlycausedbydifficultyofgettingthebiomasssamplesseparatedintotwoperfectphases(solidandliquid)bycentrifugationandthereforecouldeasilylosesomeofthebiomasswhentheliquidphaseisdecantedaway.ExtractionmethodM2hadthelowestphycocyaninyieldofthecentrifugedsamplesandalsoalargestandarddeviation.However,itcanbeseenfromtheresultsthatthereisapositiveeffectontheamountofextractedphycocyaninifthebiomasssamplesareexposedtotwofreeze-thawcyclesinsteadofonefreeze-thawcycleandwithgoodstatisticevidence(T-Test:0.01<p<0.05)(table10).However,thereisnostatisticalevidenceindicatingwhethertwoorthreefreeze-thawcycleshasthebesteffectontheamountofextractedphycocyanin(T-Test;p>0.10).Itiscleartoseefromfigure7andtheresultsshownintable10thatextractionofphycocyaninbyfiltrating(methodM1)thebiomasssamplesisnotasefficientascentrifugingthesamples.Thismaybecausedbythewaythefiltratedsamplesarestoredunderthefreeze-thawcycles.WhenthebiomasssampleswerefilteredthroughaGF/Ffilterpapertheyweresubjectedtofreeze-thawcycleswithoutaphosphatebuffer,whichcouldhavecausedadegradationofthephycocyaninpigmentduringthethawperiodinthefreeze-thawcycle.AsecondfactorthathasanegativeeffectontheconcentrationofphycocyaninextractedinmethodM1isduetothelossofbiomassinthemortarwhentransferringtheslurry(biomassandfilterpaper)toacentrifugetubeafterthemechanicaldisruptionoftheGF/Ffilterpapersinthemortar,therebyalsocontributingtoaloweryield.

Page 40: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

36

Sample Variable Phycocyanin Yield Purity

[mg/mL] [mgPC/gX] [A620nm/A280nm]

M1 Filtration 0.003±0.000 0.058±0.004 0.18±0.03M2 Onefreeze-thawcycle 0.019±0.010 0.428±0.217 4.44±0.83M3 Twofreeze-thawcycles 0.053±0.005 1.171±0.103 7.57±1.57M4 Threefreeze-thawcycles 0.052±0.001 1.141±0.031 7.33±3.36M5 Sonication,onefreeze-thaw

cycle0.064±0.004 1.402±0.096 8.94±4.82

Table10showstheresultfromthetestof5extractionmethodsfroma10mlbiomasssampleswithacell

densityof45.49g/L.

Basedontheresultsofthetestofextractionmethodsitcanbeseenthatsonicationfollowedbyonefreeze-thawcycleisthemosteffectivemethodtodisruptthecellandextractthephycocyaninpigmentfromthebiomass(table10).TheseresultscorrespondwellwiththeobservationsfromLawrenzandHorvathastudieswherebothsuggestedthatonefreeze-thawcyclefollowedbysonicationwasthemostefficientextractionmethodforphycocyaninextractionfromfilamentouscyanobacteria(Horváthetal.,2013;Lawrenzetal.,2011).TheexperienceandresultsobtaineddoingthistestofextractionmethodswereusedtoconstructaprotocolforextractionphycocyaninpigmentsfromtheA.platensisbiomass(appendix1).TheextractionprotocolwasusedtoextractphycocyaninpigmentfromtheA.platensisbiomassthroughoutthisproject.

4.4 TestgrowthrateonArthrospiraplatensiswhenculturedAuto-,hetero-andmixotrophic.

ThegrowthcurveofArthrospiraplatensiscultivatedunderthreeconditions:(A)autotrophic,(B)mixotrophicand(C)heterotrophicareshowninFigure8.Fromthegrowthcurve(Figure8)itcanbeseenthatthemixotrophic(B)cultureshadalackphaseinthebeginningofthecultivation(day0today4),whichismostlikelyduetotheaceticacidinthemediumandmetabolicadjustmenttothenewsubstrate.Theheterotrophic(C)culturesshowednegativeornogrowthandthesmallvariationsonthegrowthcurve(Figure8)aremostprobablycausedbycelldebrisfloatingaroundinthegrowthmedium.TheresultsfortheheterotrophicandmixotrophicculturescorrespondwellwithRichmondandSoederwhowritethatA.platensisisanobligatephotoautotrophandcannotgrowinthedarkwithorganiccarbonsources(heterotroph)butcanutilizeorganiccarbonsourceswhencultivatedwithlight(mixotrophic)(RichmondandSoeder,1986).TheresultsarealsoinagreementwithHaxthausenwhoshowedthatwhenChrorellasorokinianawascultivatedheterotrophicinthedarkwithacetateasanorganiccarbonsource,thegrowthwasnegativeorequaltozero(Haxthausen,2015).TheresultsdonotfitwithMarquezresults,whichshowedthatA.platensiscanbecultivatedheterotrophicinthedarkinanutrientmediumenrichedwithglucoseasorganiccarbonsource

Page 41: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

37

(Marquezetal.,1993).ThiscouldindicatethatA.platensisisabletouseglucose(sugar)ascarbonsourcetosupportgrowthwhencultivatedheterotrophicinthedarkbutnotacetate(carboxylicacid)whencultivatedwithoutlight.AsA.platensiswasabletogrowwithacetateasacarbonsourcewhencultivatedmixotrophicwithlightbutnotheterotrophicwithoutlightcouldindicatethatA.platensiscanmetabolisesugarsintoenergybutnotacetateintoenergy,andinsteadstoreitascellularcarboninsteadofmetabolisingittoCO2.Thisisonlyapresumedconclusionandwillrequirefurtherresearchinordertoprovideananswer.Ascanbeseenfromthegrowthcurve(Figure8)noneoftheculturesreachedastablegrowthtrend(exponentialphase),whichisproperlycausedbythelowillumination(839lux)thatalsowasdiscussedintestforgrowthkineticofA.platensis.Therefore,thespecificgrowthratewascalculatedbylinearregressionofthedataplots(Figure8).

Figure8showsbiomassproductionofArthrospiraplatensiscultivatedA)autotrophic,B)mixotrophic(2g/L

aceticacid)andC)heterotrophic(2g/Laceticacid).

Page 42: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

38

Sample Xmax P μ

[g/L] [gL-1/d] [d-1]A 49.23±2.84 2.08±0.12 1.91±0.29B 61.59±4.16 2.61±0.16 2.78±0.32

Table11showsthegrowthparametersforArthrospiraplatensiscultivatedA)autotrophicandB)mixotrophic.

Xmax=maximumbiomassconcentration,μ=specificgrowthrate,P=productivity.

Themixotrophic(B)cultureshadahigherspecificgrowthratethantheautotrophic(A)culturesandwithgoodstatisticalevidentfortheresults(T-Test;p=0,03)(table11).TheseresultsareinagreementwiththosefromVonshakwhoalsofoundthatmixotrophiccultivationofA.platensiswith2g/Lglucoseinthegrowthmediumhadahighergrowratethanthosecultivatedautotrophic.Vonshakalsosuggestedthatthemixotrophicculturesrequiredlesslightforgrowth,althoughmixotrophicculturesdonotutilizelightenergymoreeffectivelyatlowlightlevelsbutareabletousemorelightenergythantheautotrophiccultures(Vonshaketal.,2000).Ascanbeseenfromthep-valuesonthegrowthcurve(Figure8)thereisnostatisticalevidenceforthebiomassconcentrationbetweentheautotrophicandmixotrophicculturesbeforeday21.After23daysofcultivationthebiomassconcentrationforthemixotrophic(B)cultureswas61.59±4.16g/Landtheautotrophic(A)cultures49.23g/L(T-Test;p=0,02)(table11).Theaverageacetateconsumptionrateforthemixotrophiccultureswas0.021g/L.Themixotrophic(B)cultureshadaproductivityof2.61±0.16[gL-1/d],whichisapproximately20%higherthantheautotrophic(A)culturesandwithstrongstatisticalevidencefortheresult(T-Test;p=0,01)(table11).Intable12theresultsofphycocyaninextractionfromtheautotrophicandmixotrophicculturesareshown.Fromtheresultsshownintable12itdoesnotseemthatmixotrophiccultivationwithacetatehasaneffectonthephycocyaninconcentrationpergramofbiomassandthepurityofthephycocyaninisalsoveryhighforbothsamples(table12).However,themixotrophic(B)sampleshavearelativelyhighstandarddeviation,althoughthisisprobablycausedbylossofbiomassduringtheextractionprocess.

Sample Phycocyanin Yield Purity

[mg/mL] [mgPc/gX] [A620nm/A280nm]

A 0.039±0.002 0.801±0.006 7.89±1.22B 0.049±0.009 0.798±0.199 10.53±4.73

Table12Showsthephycocyanincontentinthebiomassatday23.A)autotrophiccultivatedinbasalZarrouk

medium,B)mixotrophiccultivatedinbasalZarroukmediumwith2g/Laceticacid.

Fromtheresultsitdoesnotseemasthoughmixotrophiccultivationwithacetatehasaneffectonphycocyanincontentpergramofbiomass.However,itdoeshaveasignificanteffectonbiomassproductivity.

Page 43: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

39

Basedontheresultsitcannotbesaidwhethermixotrophiccultivationwillhaveanyeffectonthemaximumbiomassconcentrationastheexperimentonlyranfor23daysandthereforeitisnotknownwhetherthemixotrophiccultureswouldgetahigherbiomassconcentrationthantheautotrophicculturesovertime.However,basedontheexperimentitisconcludethatA.platensiswhencultivatedmixotrophicwithaceticaciditcanachieveahighbiomassconcentrationfasterthanbyautotrophiccultivation.TheseresultsindicatethepotentialofaceticacidasanorganicsubstrateformixotrophiccultivationofS.platensistoincreasebiomassproductivity.

4.5 TestgrowthforArthrospiraplatensisinamediumusedto

Acetobacteriumsuppliedwithaceticacid.

Figure9ShowsArthrospiraplatensistestedinDSMZAcetobacteriummedium135amixedwithaceticacid.The

figureshowsthebiomassconcentrationin3differentaceticacidconcentration.

Figure9showsthattheArthrospiraplatensiswereunabletogrowthinDMSZ135amedium.ThiscouldindicatethatsomethingintheDMSZmediumhasaninhibitoryeffectonA.platensis,sincepreviousexperimentswithaceticacidinthebasalZarroukmediumhaveshownthataddingaceticacidtothegrowthmediumhasapositiveeffectongrowthforA.platensis(figure8).Therefore,itmustbesomethingintheDMSZmediumthatA.platensiscan’ttolerateoranabsenceinthemediumsinceA.platensiscan’tgrow.Cysteine-HClcouldbetheinhibitingfactorintheDSMZmediumasitisarelativelystrongreductant,however,thiswouldrequirefurtherinvestigationstodeterminewhetherthisistrue.Afterinoculationthecellconcentrationdropped.Thenafteronly2daysofincubationthecellsconcentrationwasalmostzeroforallbottles,whichshowsthatallthecellsweredead(figure9).Thiscanalsobeseenfrompicture5whichshowswhatbelievedtobeadeadA.platensiscellthepictureisfromoneofcultureAbottlesafter9daysofincubationinDSMZ135amedium.

Page 44: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

40

BasedonthisexperimentitcanbeconcludedthatA.platensiscannotgrowintheDSMZAcetobacterium(135a)medium.InordertousethecombinationtoproduceacetatewithAcetobacteriumst.andusetheeffluenttoincreasethebiomassproductivityofA.platensisthemediumusedforproducingacetatemustbemodifiedoranewmediumshouldbeusedbeforetheeffluentcanbeusedtocultivateA.platensis.

Picture5.ShowafilamentofArthrospiraplatensisseenthroughamicroscope(40x)frombottleA(2g/L

acetate)after9dayscultivationinDSMZ135aAcetobacteriummedium.(photobyT.Rybner).

4.6 Mixotrophiccultivationwithdifferentconcentrationofsodium

acetate.

Theobjectiveofthisexperimentwastotestfourconcentrationsofacetate(1,2,3,4[g/L])inZarrouk’sgrowthmediuminordertofindtheconcentrationbestsuitedformixotrophiccultivationofA.platensismeasuredbygrowthrate,productivityandmaximalbiomassconcentration.AsodiumacetatesolutionwasusedinsteadofaceticacidasitmakesiteasiertocontrolpHwhenpreparingthegrowthmedium.Duetoanerrormadeinthelaboratory,theacetateconcentrationbecameonlyonetenthofwhatwasplannedsoinsteadof1g/Litbecame0.1g/Lacetateandsoon.Therefore,thisexperimentcannotbeusedtodeterminewhichacetateconcentrationwasbestsuitedformixotrophiccultivationofA.platensis.Insteadtheexperimentwillbeusedtolookatphycocyanincontentinthebiomass,autotrophicandmixotrophiccultivationandtheacetateconsumptionrateforthemixotrophiccultures.

Page 45: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

41

Figure10showsthegrowthcurveforArthrospiraplatensiscultivatedautotrophic(A)andmixotrophic(Band

C).Theverticalredlineindicateday8.TheP-valuesforbiomassconcentrationatday8and23areshown

downintherightcorner.

Figure11showsthegrowthcurveforArthrospiraplatensiscultivatedautotrophic(A)andmixotrophic(Dand

E).Theverticalredlineindicateday8.Thep-valuesforbiomassconcentrationatday8and25areshowndown

intherightcorner.

Page 46: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

42

Theautotrophiccultures(A)hadthelowestgrowthrate,productivityandachievedthelowestbiomassconcentration,althoughthedifferencetothemixotrophiccultures(B,C,D,E)areverysmallandtheresultsareallveryclose(table13).Thisisprobablybecausethemixotrophiccultureshadtoolittleacetateandthereforetheacetateconcentrationinthegrowthmediumwasnotenoughtomakeasignificantdifferenceongrowth.Therewasastopinthegrowthforallculturesonaroundday8,whichisindicatedbyareddottedlineonthegrowthcurvesinfigure10and11.Thisisprobablycausedbydifficultytakinganentirelyhomogeneoussamplefromtheculturebottlesandthatthesamplesweretakenwithonlyonedayapartinsteadoftwodays.CulturesA,BandChadmaximumbiomassconcentrationsaroundday23andDandEaroundday25(figure10and11).Thebiomassconcentrationsintheculturesdifferconsiderably,whichisalsoreflectedinerrorbarsandp-valuesinfigure10and11.Thisisprobablyduetodifferenceingrowthratebetweentripletcultures.Thedifferenceingrowthratebetweensamplescouldbeduetoanunequaldistributionoflightbetweensamplesbecauseofhowtheywereplacedintheshakerduringincubation(picture6).Therefore,thebottlesweremovedaroundduringcultivationtotrytocompensatefortheunequallightdistributionintheshaker.

Picture6showshowthebottleswereplacedintheshakerduringcultivationofA.platensiswithdifferentacetateconcentration.

Astherewasnoclearexponentialgrowthphaseprobablyduetolowillumination(839lux)(figure10and11).Thespecificgrowthratewascalculatedbylinearregressionofthedatasetsfromday0to20fortheautotrophiccultures(A)andfromday0to17forthemixotrophiccultures(B,C,D,E)(table13).

Page 47: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

43

Sample Xmax P μ

[g/L] [gL-1/d] [d-1]A 60.12±2.91 2.80±0.12 3.04±0.16B 64.55±1.31 3.18±0.23 3.36±0.25C 61.63±3.13 2.98±0.23 3.15±0.31D 64.18±1.12 3.07±0.25 3.05±0.18E 64.22±2.70 3.02±0.10 3.09±0.09

Table13showsthegrowthparametersforArthrospiraplatensiscultivatedautotrophicandmixotrophic.Xmax

=maximumbiomassconcentration,μ=specificgrowthrate,P=productivity

Theacetateconsumptionrateforthemixotrophicculturesisshowninfigure12andwasdeterminedbylinearregressionofacetateconcentrationVStime.Theacetateconsumptionrateisalmostthesameforallcultures,respectivelyB=0.017,C=0.017,D=0.018,E=0.019day-1.TheseresultscouldindicatethattheconsumptionrateofacetateforA.platensiscultivatedmixotrophicdependsontheilluminationandnottheacetateconcentrationinthemedium.However,thiswillrequirefurtherinvestigation.

Figure12showtherateofacetateconsumptionbyArthrospiraplatensis

Phycocyaninyieldismoreorlessthesameforallcultures,andpurityofthephycocyaninsamplesisalsohighforallcultures(table14).ThephycocyaninyieldwasmuchlowerforA.platensisinthiscultivationthaninpreviouscultivations.Thebiomasssampleswerebyamistakeonlysonicatedfor30secondsat30Winsteadof60secondsby50W,astheyshouldhavebeenthereforetheyweresonicatedagainfor30secondsat50Wwhichmayhaveinfluencedtheresultsand,thereforetheresultscannotbeusedtocomparewithpreviousexperiments.Thedifferenceinphycocyaninconcentrationpergrambiomassandthepurityofthesamplesismorelikelyduetofactorassociatedtotheextractionprocessthanthecultivationconditions.

Page 48: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

44

Sample Phycocyanin Yield Purity

[mg/mL] [mgPc/gX] [A620nm/A280nm]

A 0.020±0.001 0.342±0.022 5.96±0.94B 0.021±0.001 0.344±0.028 6.84±2.27C 0.022±0.001 0.359±0.037 6.02±1.75D 0.023±0.001 0.386±0.009 10.37±5.54E 0.019±0.001 0.318±0.008 8.55±0.22

Table14Showsthephycocyanincontentinthebiomassatday20.

Theresultsofthisexperimentcouldindicatethatacetateaddedtothegrowthmediumincreasesthegrowthrate,productivityandmaximalbiomassconcentrationofA.platensis.However,thereisnostatisticalevidenceofthisstatementfromtheseresults(T-Test:p>0.10).Theresultscouldalsoindicatethatthereisacorrelationbetweenacetateconsumptionandlightintensity,althoughitisonlycircumstantialevidenceandwillrequirefurtherinvestigation.

4.7 Photobioreactorcultivationwithlowilluminationintheredand

bluelightspectra.

ForthephotobioreactorexperimentthecultivationofA.platensiswasperformedintwoexperimentalsetupswithdifferentilluminationlevels,respectively175luxatonlyredlightand349luxbyacombinationofbothredandbluelight.Inthisdiscussion,theywillbereferredtoasRLforreactoratlowillumination(175lux)andRHforreactoratthehighillumination(349lux).

Picture7showsthephotobioreactorRHandsystemusedtoextractbiomasssamplesduringcultivation.

RH=Reactorhighillumination(349lux)redandbluelightspectra.(photobyT.Rybner)

Page 49: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

45

Figure13showsthegrowthcurveforArthrospiraplatensiscultivatedmixotrophicwith1g/Lacetateunder

differentillumination.RH=Reactorhighillumination(349lux)redandbluelightspectra,RL=Reactorlow

illumination(175lux)redlightspectra.

Fromthegrowthcurve(figure13)ofthetwomixotrophiccultivationsofA.platensisthatisusedtoillustratetheirgrowthpatternsitcanbeseenthatgrowthwasalmostidenticalforbothprocesses.Fromthegrowthcurveitcanalsobeseenthatbyday33anduntiltheendoftheexperimentRHincreasedsuddenly(figure13).ItisdifficulttosaywhatthesuddengrowthinRHwascausedby;however,onereasoncouldbethewaybiomasssampleswereextractedduringcultivation.Duringcultivationthebiomasssamplesweretakenasepticallywitha60mLsyringethroughatubeinthelidofthephotobioreactor(Picture7).Attheendoftheexperimentthelidwasremovedandthebiomasssampleweretakendirectlyfromthephotobioreactor.Extractionofsamplesthroughthetubemayhavecausedproblemsofgettingahomogenoussampleasthebiomassdensitybecamehighercausingthebiomass(cells)toclomptogetherandtherebymakingbiggerclompsofbiomassthatwereunabletobeextractedthroughthetube.Alargeclumpofbiomassinthesampletakenattheendoftheexperimentcanthereforebethereasonforthesuddenincreaseinthebiomassconcentration.GenerallyithasbeendifficultthroughoutthisstudyofA.platensistodeterminetheexactbiomassconcentrationbecauseA.platensistendtoclumptogethermakingitdifficulttogetacompletelyhomogenoussampletaken.TheproblemofA.platensisclumpingtogetheralsomeansthatwhenthebiomassconcentrationisdeterminedbyODmeasurementsinaspectrophotometer,themeasurementsdeviatealotandalsocontributestotheuncertaintyofthebiomassconcentration.ThiscouldperhapsofbeensolvedbydisruptingthecellsfirstbysonicationbeforetheODmeasurementtoensureahomogeneoussample.

Page 50: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

46

Theseproblemsalsoemphasizethenecessityofhavinganeffectivecirculationinaphotobioreactor,whichwillalsoensureabetterdistributionofnutrientsandlightenergy(photons)tothephototrophicmicroorganismcultivated.TheimportanceofcirculationandhomogeneityinthephotobioreactorisalsooneofthethingsthatPulzhighlightsinhisreviewofproductionsystemsforphototrophicmicroorganismsasaveryimportantfactortoensureoptimalcultivationconditionsinaphotobioreactor(Pulz,2001).

Sample Xmax P μ

[g/L] [gL-1/d] [d-1]RH 33.75 0.89 0.62RL 24.00 0.59 0.56

Table15showsthegrowthparametersforArthrospiraplatensiscultivatedmixotrophicwith1g/Lacetate

underdifferentillumination.RH=Reactorhighillumination(349lux)redandbluelightspectra,RL=Reactorlow

illumination(175lux)redlightspectra.Xmax=maximumbiomassconcentration,μ=specificgrowthrate,P=productivity.

RHachievedthehighestbiomassconcentrationof33.75g/LwhereasRLonlyreached24.00g/L(table15).ThehighestspecificgrowthrateandproductivitywasalsoobservedinRH(table15).TheseresultsareperhapsalittlemisleadingsinceRHandRLwerealmostidenticaluntilday33asseenfrombiomassconcentrationmeasurements(figure13).However,theactualbiomassconcentrationinRHandRLmayhavebeenhigherforthesamereasonasjustdiscussedaboveabouthomogeneityofthebiomasssamplesfromthephotobioreactor.Asthephotobioreactorexperimentswerenotperformedindoubletsortriplets,thereisnostatisticalevidencetosaywhethertheresultsaresignificant.ComparedwiththeothercultivationexperimentsofA.platensisperformedinthisstudy,theRHandRLexperimentsachievedonlyapproximately50%ofthebiomassconcentrationthatwasachievedinthepreviousautotrophicandmixotrophiccultivationofA.platensisatalightintensityof839lux(table9,11and13).Duringtheexperiment,thepHincreasedinbothRHandRLandattheendoftheexperiment(day35)thepHvalueinRHwaspH10.3andpH10.4inRL.Infigure14,theacetateconcentrationinRHandRLareshownovertime.Theacetateconsumptionratewasdeterminedbylinearregression,whichisillustratedbytheredandbluedottedlineinfigure14.TheacetateconsumptionrateisalmostthesameforA.platensiscultivatedinRHredandbluelight(349lux)andRLonlyredlight(175lux).However,theacetateconsumptionratewasslightlyloweratRL(175lux)thanatRH(349lux),respectivelyaround0.004day-1inRLand0.005day-1inRH(figure14).

Page 51: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

47

Figure14showstheacetateconcentrationinthephotobioreactorovertime.RH=Reactorhighillumination(349

lux)redandbluelightspectra,RL=Reactorlowillumination(175lux)redlightspectra.

Basedontheresultsofacetateconsumptionrate,maximalbiomassconcentrationandlightintensityfromthemixotrophicandheterotrophiccultivationexperimentsconductedinthisstudy,itcouldindicatethattherateA.platensisutilizeacetatedependsinthelightintensity.However,thisisjustanobservationbasedonacetateconcentrationinthemediumandthelightintensityusedduringthecultivationofA.platensisandwillthereforerequirefurtherinvestigationinordertodeterminewhetherthisisthecase.Ascanbeseenfromtable16,theyieldofphycocyanininmgpergramofbiomassisgoodforbothRHandRLcomparedtopreviousphycocyaninyield,yetthepurityofthephycocyaninsamplesisnotasgoodasthepreviousphycocyaninsamples(table12and14).FromtheexperimentalresultsofRHandRLitseemsunlikelythatthereareanypositiveeffectsonthephycocyanincontentinA.platensiswhencultivatedwithonlyredlightastheRLsamplesislowerthanRHsamplesforbothday30andday35(table16).AccordingtoT-TestperformedonthephycocyaninyieldresultsforRHandRLfromday30andday35thereisverystrongstatisticalevidenceagainstthisobservationatday30(T-Test:p<0.01)andstrongstatisticalevidenceagainstthisobservationatday35(T-Test:0.01<p<0.05).However,basedontheresultsfromthisexperimentitcannotbesaidwhetherthisiscausedbytheredlightorthedifferenceinlightintensity.AlthoughresearchconductedbyDanesiwithA.platensisshowedthatlowerlightintensitiesincreasedthepigmentcontent(Danesietal.,2004).Thus,bymakingtheassumptionthatthepigmentcontentshouldbehigheratlowerlightintensitiesandthatredlightshould

Page 52: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

48

favourphycocyaninIdonotthinkthatthereisasignificanteffectonthephycocyanincontent,cultivatingA.platensiswithonlyredlight,however,thiswillrequirefurtherexperimenttoconfirm.

Sample Phycocyanin Yield Purity

[mg/mL] [mgPC/gX] [A620nm/A280nm]

RH(day30) 0.022±0.000 1.093±0.021 3.25±2.50RL(day30) 0.016±0.001 0.822±0.032 2.61±0.60RH(day35) 0.030±0.002 0.945±0.065 3.22±0.75RL(day35) 0.017±0.000 0.705±0.004 2.68±0.60

Table16ShowstheresultsfromphycocyaninextractionfromArthrospiraplatensisbiomasscultivated

mixotrophicwith1g/Lacetateunderdifferentilluminationatday30andday35.RH=Reactorhighillumination

(349lux)redandbluelightspectra,RL=Reactorlowillumination(175lux)redlightspectra.

ThebiomasssamplesweretakenfromRLtodeterminethephycocyanincontentinthebiomassatday20,25,30and35.ThiswasconductedtoseeifthereisachangeinphycocyanincontentinA.platensisduringcultivation(table17).Ascanbeseenfromtable17,thereisnosignificantchangeinthephycocyanincontentpergrambiomass,whichisaround0.8mgphycocyaninpergrambiomassforallsamples.Thedifferencebetweenthesamplesisverysmallandisprobablycausedbyvaryingefficiencyoftheextractionprocess(table17).ThisisalsosupportedbyaT-TestperformedonthephycocyaninyieldofA.platensisfromRL,whichshowedthatthephycocyaninyieldwasnotsignificantly(T-Test:p>0.10)influencedovertimeexceptforday35(T-Test:p<0.01).TheseresultsindicatethatthephycocyanincontentisconstantoronlychangelittleinA.platensisduringcultivation.However,thisobservationconflictswithXiewhoreportedthatbyfed-batchcultivationofA.platensisthephycocyanincontentincreasedovertimebutafterawhiledecreasedagain,whichwasattributedtothelowercellviabilityassociatedwiththeextendedcultivationtime(Xieetal.,2015).ThiscouldexplainwhyphycocyaninyieldishigherforbothRHandRLatday30thanatday35,eventhoughthebiomassconcentrationishigheratday35forbothcultures.Whetherthisisthecaseorwhetheritisduetootherfactors,suchaslossofbiomassdoingextractionisnotknown.

Sample Phycocyanin Yield Purity

[mg/mL] [mgPC/gX] [A620nm/A280nm]

RL(day20) 0.012±0.000 0.806±0.017 1.89±0.53RL(day25) 0.016±0.001 0.835±0.036 2.48±0.48RL(day30) 0.016±0.001 0.822±0.032 2.61±0.60RL(day35) 0.017±0.000 0.705±0.004 2.68±0.60

Table17ShowstheresultsfromphycocyaninextractionfromArthrospiraplatensisbiomasscultivated

mixotrophicwith1g/Lacetateunderlowillumination(175lux)redlightspectra.

Page 53: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

49

5 ConclusionFromthisstudyofmixotrophiccultivationofA.platensisusingacetateasorganiccarbonsourceitseemsunlikelythatacetatehasaneffectonthephycocyanincontentinthebiomass.TheresultsinthestudyalsoindicatethatthephycocyanincontentinA.platensisisconstantoronlychangeslittleduringcultivation,yetdoeschangewithdifferentlightintensities.Furthermore,thisstudyshowsthatthereisnoorlittleeffectonthephycocyanincontentwhencultivatingA.platensiswithonlyredlight,however,itwouldseemthatthereisacorrelationbetweenahighcelldensityandlowerphycocyanincontent.Although,thisitisnotpossibletodeterminefromthisstudy,astherearemanyuncertainfactorsthatmaybeaffectingtheresults.Thebestresultsforextractionofphycocyaninwereachievedbydisruptingthecellwithsonicationfollowedbyonefreeze-thawcycle,whichisinagreementwithwhatsimilarstudieshaveshown.ResultsfromthemixotrophiccultivationofA.platensiswithacetateinthegrowthmediumshowedthatwhencultivatedatlightintensitiesof839luxorlowerA.platensisdidn’treachastablegrowthpattern,indicatingthatlightintensitiesarestillakeylimitingfactorforgrowthofA.platensis.ThestudyalsoindicatedthatA.platensis’sabilitytoutilizeacetateasorganiccarbonsourceisdependentonlightenergy,sincewhencultivatedatlowerlightintensitiestheacetateconsumptionratedecreased.AnotherfactorcontributingtothisobservationwasthatA.platensiswasn’tabletogrowheterotrophicwithacetate.However,A.platensisinsimilarstudieswithglucoseandamylaseinthegrowthmediumhavebeenshowntogrowheterotrophic.ItwasnotpossibletocultivateA.platensisinanAcetobacteriummediumenrichedwithacetate.Ifthishadbeenpossible,itcouldbeusedforconvertingsurplusoutputelectricityfromwindturbinestohighvalueproductssuchasphycocyaniniftheelectricitywasconvertedtohydrogen,whichcouldbeusedtofeedAcetobacteriumtoproduceacetateandusetheeffluentformixotrophiccultivationofA.platensis.Inthisway,surplusproductionfromwindturbinescouldbeusedtoproduceahighvalueproductlikephycocyanin.However,basedonthisstudyanewmediaforAcetobacteriumwouldhavetobeusedinordertofulfilthisidea.FromthisstudyitcannotbesaidwhethermixotrophiccultivationwithacetatecanincreasethemaximumbiomassconcentrationofA.platensis.However,mixotrophiccultivationofA.platensiswithacetatecanincreaseproductivityandinthiswaycontributetomakeitmoreprofitabletoproducephycocyaninbyreducingcultivationtime.TheeconomyofphycocyaninproductionwithA.platensiscouldfurtherbeimprovedbysellingthesolidfraction(celldebris)thatisleftafterthephycocyaninisextracted.Thesolidfractioncontainingcelldebrisisveryrichonproteinandthereforecouldbesoldasfoodsupplements,animalfeed,substrateforbiogasplantsorusedonan

Page 54: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

50

onsitebiogasplanttoproduceelectricity,whichcouldlowerenergycostfortheproductionfacility.Finally,theresultsfromthisstudyindicateacetatepotentialasanorganiccarbonsourceformixotrophiccultivationofA.platensisandthatacetateissuitableasasubstrateforproductionofhighvalueproductssuchasphycocyanin.

6 PerspectiveForfutureworkwithA.platensisitcouldbeinterestingtolookatfed-batchandcontinuescultivationsincethisisanareawhereitmightbepossibletoincreasetheproductivityandmaximalbiomassconcentrationevenmore(Xieetal.,2015).Subsequently,itcouldalsobeinterestingtoupscaletheprocessandlookmoreintophotobioreactordesignssinceshape,circulation,andilluminationseemtohaveahugeimpactonallgrowthparametersinvolvedinasuccessfulcultivationandthattheparameterswillproperlychancewhenupscalingtoahighervolume.Therefore,thisisanareawhereitreallyispossibletomakeimprovementsthatcouldreallymakeadifferenceandmakephycocyaninproductionmoreeconomicalfeasible(Carvalhoetal.,2011;Pulz,2001).Basedontheexperienceobtaineddoingthisstudyitcouldalsobeinterestingtolookmoreintoextractionmethodsasitultimatelycomesdowntohowmuchphycocyanincanbeextractedfromthebiomass,whichcouldmakeiteasierinfutureworktodeterminetheactualphycocyanincontentinthebiomass.Amajorchallengeintheextractionofphycocyanininthisstudyhasbeentoisolatethebiomasswithoutloss.Thiscouldperhapsbeimprovedbyusingamembraneinsteadofcentrifugationtoseparatethebiomassfromtheliquidwhereithasbeendifficultbycentrifugationtoestablishaclearphaseseparationbetweentheliquidandbiomassthathasresultedinalossofbiomass.Ifamembranecouldbeusedtoseparatetheliquidfromthebiomassandsubsequentlywashingthebiomassoffthemembranewiththephosphatebufferusedintheextractionprocessofphycocyanin,thelossofbiomasswouldbeminimizedensuringahomogeneitybetweensamples.Itcouldalsobeinterestingtofurtheroptimizetheefficiencyofthesonicationbytestingdifferentsonicationtimeandtheintensity(watt)ofthesonicationinordertofindtheoptimalcombination.Inconnectionwiththis,itwouldalsoberelevanttofindabettermethodtooextractmorehomogenousbiomasssamplesandmeasuringthebiomassconcentrationwithopticaldensity(OD).Abettercirculation/stirringinthegrowthmediummightensuremorehomogeneityandextractionofalargervolumeofbiomassthatcouldhelpachieveamoreaccuratesample.TheproblemsassociatedwithODmeasurementscouldperhapsbereducedifthebiomasssamplesweresonicatedbeforeODmeasurementsisperformedinordertoinsuremorestableresults.

Page 55: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

51

BasedontheresultsfrommixotrophiccultivationofA.platensiswithacetateinthegrowthmedium,itcouldberelevanttolookfurtherintohowA.platensisutilizeacetateunderdifferentlightconditionsastheresultsfromthisstudyindicatethattherewasaconnectionbetweenacetateconsumptionandlightintensities.Inaddition,furtherworkinthiscontextcouldalsolookathowacetateisincorporatedintheTCA-cycleandhowA.platensisutilizedifferentcarbonsourcesbecauseitwasnotpossiblefromthisstudytoexplainwhyA.platensiscouldnotbecultivatedheterotrophicwithacetateasorganiccarbonsourcebutinsimilarstudieshaveshowntogrowthheterotrophicwithglucose(Marquezetal.,1993).ItcouldalsobeinterestingtofurtherinvestigatehowthesurplusproductionfromwindturbinescouldbeconvertedtoacetatethatcouldsupportamixotrophiccultivationofA.platensis.ItwillbenecessarytoinvestigatewhyA.platensisdidnotgrowintheAcetobacteriummediumandhowthisinhibitioncouldbemanaged.Finally,itwouldalsobeinterestingtolookfurtherintotheeffectofdifferentlightspectresandlightintensitiesandtheeffectthatthishasonthepigmentcontentinA.platensis.Inordertoseehowdifferentwavelengthsandintensitiesoflightwouldaffectthepigmentcontentofthepigmentsinvolvedinlightharvestingandnotonlyonthephycocyanincontent.

Page 56: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

52

7 ListofreferencesAGICAL(2013).AGICAL.URL:http://www.agical.eu/technology.php,Data

Accessed:15.5.2016.Andrade,M.R.,andCosta,J.A.V.(2007).Mixotrophiccultivationofmicroalga

Spirulinaplatensisusingmolassesasorganicsubstrate.Aquaculture264,130–134.

Antelo,F.S.,Anschau,A.,Costa,J.aV,andKalil,S.J.(2010).ExtractionandPurificationofC-phycocyaninfrom.JournaloftheBrazilianChemicalSociety21,921–926.

Barsanti,L.,Coltelli,P.,Evangelista,V.,Frassanito,A.M.,Passarelli,V.,Vesentini,N.,andGualtieri,P.(2008).OdditiesandCuriositiesintheAlgalWorld.InNATOSecuritythroughScienceSeriesC:EnvironmentalSecurity,pp.353–391.

Beardall,J.,andRaven,J.A.(2013).LimitstoPhototrophicGrowthinDenseCulture:CO2SupplyandLight.InAlgaeforBiofuelsandEnergy,M.A.Borowitzka,andN.R.Moheimani,eds.(Dordrecht:SpringerNetherlands),pp.91–97.

Bennekom(2014).Bennekom,AlgaePARC.URL:http://www.solartours.nu/2014/algaeparc/,DataAccessed:15.5.2016.

Borch,M.M.(2011).Screeningandoptimizationofcasespecificsustainablemixotrophicmicroalgaemedium.TechnicaluniversityofDenmark–DTU.

Borowitzka,M.A.(2013).High-valueproductsfrommicroalgae—theirdevelopmentandcommercialisation.JournalofAppliedPhycology25,743–756.

Brennan,L.,andOwende,P.(2010).Biofuelsfrommicroalgae—Areviewoftechnologiesforproduction,processing,andextractionsofbiofuelsandco-products.RenewableandSustainableEnergyReviews14,557–577.

Carvalho,A.P.,Silva,S.O.,Baptista,J.M.,andMalcata,F.X.(2011).Lightrequirementsinmicroalgalphotobioreactors:Anoverviewofbiophotonicaspects.AppliedMicrobiologyandBiotechnology89,1275–1288.

Chen,F.(1996).Highcelldensitycultureofmicroalgaeinheterotrophicgrowth.TrendsinBiotechnology14,421–426.

Chen,F.,andZhang,Y.(1997).HighcelldensitymixotrophiccultureofSpirulinaplatensisonglucoseforphycocyaninproductionusingafed-batchsystem.EnzymeandMicrobialTechnology20,221–224.

Chen,C.Y.,Kao,P.C.,Tsai,C.J.,Lee,D.J.,andChang,J.S.(2013).EngineeringstrategiesforsimultaneousenhancementofC-phycocyaninproductionandCO2fixationwithSpirulinaplatensis.BioresourceTechnology145,307–312.

Chen,T.,Zheng,W.,Yang,F.,Bai,Y.,andWong,Y.S.(2006).Mixotrophiccultureofhighselenium-enrichedSpirulinaplatensisonacetateandtheenhancedproductionofphotosyntheticpigments.EnzymeandMicrobialTechnology39,103–107.

Page 57: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

53

Chojnacka,K.,andNoworyta,A.(2004).EvaluationofSpirulinasp.growthinphotoautotrophic,heterotrophicandmixotrophiccultures.EnzymeandMicrobialTechnology34,461–465.

Ciferri,O.(1983).Spirulina,theediblemicroorganism.MicrobiologicalReviews47,551–578.

Danesi,E.D.G.,Rangel-Yagui,C.O.,Carvalho,J.C.M.,andSato,S.(2004).EffectofreducingthelightintensityonthegrowthandproductionofchlorophyllbySpirulinaplatensis.BiomassandBioenergy26,329–335.

DSMZ,Z.D.sammlungvonmikroorganismenund(2016).Details:DSM-2396.URL:https://www.dsmz.de/catalogues/details/culture/DSM-2396.html?tx_dsmzresources_pi5%5BreturnPid%5D=304,DateAccessed:9.6.2016.

Energinet.dk(2011).StatusforlagringsteknologieriDanmark.URL:http://www.energinet.dk/SiteCollectionDocuments/Danskedokumenter/Forskning-PSO-projekter/Lagringafenergi.pdf,DateAccessed:6.6.2016.

Eriksen,N.T.(2008).Productionofphycocyanin-Apigmentwithapplicationsinbiology,biotechnology,foodsandmedicine.AppliedMicrobiologyandBiotechnology80,1–14.

Faunce,T.a.,Lubitz,W.,Rutherford,a.W.(Bill),MacFarlane,D.,Moore,G.F.,Yang,P.,Nocera,D.G.,Moore,T.a.,Gregory,D.H.,Fukuzumi,S.,Yoon,K.B.,Armstrong,F.a.,Wasielewski,M.R.,andStyring,S.(2013).Energyandenvironmentpolicycaseforaglobalprojectonartificialphotosynthesis.Energy&EnvironmentalScience6,695.

Gao,X.,Sun,T.,Pei,G.,Chen,L.,andZhang,W.(2016).Cyanobacterialchassisengineeringforenhancingproductionofbiofuelsandchemicals.AppliedMicrobiologyandBiotechnology3401–3413.

Gupta,R.(2007).BiotechnologyofmassproductionofSpirulinawithspecialreferencetothebiologicalcompounds.BundelkhandUniversity.

Harun,R.,Singh,M.,Forde,G.M.,andDanquah,M.K.(2010).Bioprocessengineeringofmicroalgaetoproduceavarietyofconsumerproducts.RenewableandSustainableEnergyReviews14,1037–1047.

Haxthausen,K.R.(2015).Optimizingculturingparametersofmicroalgae,forincreasedyieldoftarget.TechnicaluniversityofDenmark–DTU.

Hill,G.A.,andRobinson,C.W.(1974).Measurementofaerobicbatchculturemaximumspecificgrowthrateandrespirationcoefficientusingadissolvedoxygenprobe.BiotechnologyandBioengineering16,531–538.

Horváth,H.,Kovács,A.W.,Riddick,C.,andPrésing,M.(2013).Extractionmethodsforphycocyanindeterminationinfreshwaterfilamentouscyanobacteriaandtheirapplicationinashallowlake.EuropeanJournalofPhycology48,278–286.

Page 58: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

54

Johnson,J.D.(2006).TheOriginofLife-theriseoftheOxygenEvolvingComplex|FloridaStateUniversity.URL:http://www.chm.bris.ac.uk/motm/oec/motm.htm,DateAccessed:11.5.2016.

Koc,C.,Anderson,G.A.,andKommareddy,A.(2013).UseofRedandBlueLEDsandFluorescentLampsasLightSourcestoGrowMicroalgaeinaPhotobioreactor(PBR).TheIsraeliJournalofAquaculture8.

Kuddus,M.,andRamteke,P.W.(2012).Recentdevelopmentsinproductionandbiotechnologicalapplicationsofcold-activemicrobialproteases.CriticalReviewsinMicrobiology38,330–338.

Lawrenz,E.,Fedewa,E.J.,andRichardson,T.L.(2011).Extractionprotocolsforthequantificationofphycobilinsinaqueousphytoplanktonextracts.JournalofAppliedPhycology23,865–871.

Leema,J.T.M.,Kirubagaran,R.,Vinithkumar,N.V,Dheenan,P.S.,andKarthikayulu,S.(2010).HighvaluepigmentproductionfromArthrospira(Spirulina)platensisculturedinseawater.BioresourceTechnology101,9221–9227.

Leu,S.,andBoussiba,S.(2014).AdvancesintheProductionofHigh-ValueProductsbyMicroalgae.IndustrialBiotechnology10,169–183.

Madigan,M.T.,Martinko,J.M.,Stahl,D.A.,andClark,D.P.(2012).BrockBiologyofMicroorganisms,13thEdition(PearsonEducation,Inc).ISBN:0-321-73551-x

Marquez,F.J.,Sasaki,K.,Kakizono,T.,Nishio,N.,andNagai,S.(1993).GrowthcharacteristicsofSpirulinaplatensisinmixotrophicandheterotrophicconditions.JournalofFermentationandBioengineering76,408–410.

Marquez,F.J.,Nishio,N.,Nagai,S.,andSasaki,K.(1995).EnhancementofbiomassandpigmentproductionduringgrowthofSpirulinaplatensisinmixotrophicculture.JournalofChemicalTechnologyANDBiotechnology62,159–164.

Massa,G.D.,Kim,H.H.,Wheeler,R.M.,andMitchell,C.A.(2008).PlantproductivityinresponsetoLEDlighting.HortScience43,1951–1956.

Mogensen,M.B.(2015).Elektrolysegøralenergifravindmøllerværdifuld|Videnskab.dk.URL:http://videnskab.dk/miljo-naturvidenskab/elektrolyse-gor-al-energi-fra-vindmoller-vaerdifuld,DateAccessed:6.6.2016.

Mühling,M.(2000).CHARACTERIZATIONOFARTHROSPIRA(SPIRULINA)STRAINS.UniversityofDurham.

Neslen,A.(2015).Windpowergenerates140%ofDenmark’selectricitydemand|Environment|TheGuardian.URL:http://www.theguardian.com/environment/2015/jul/10/denmark-wind-windfarm-power-exceed-electricity-demand,DateAccessed:6.6.2016.

Ogbonda,K.H.,Aminigo,R.E.,andAbu,G.O.(2007).InfluenceoftemperatureandpHonbiomassproductionandproteinbiosynthesisinaputativeSpirulinasp.BioresourceTechnology98,2207–2211.

Page 59: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

55

Pulz,O.(2001).Photobioreactors:productionsystemsforphototrophic

microorganisms.AppliedMicrobiologyandBiotechnology57,287–293.Richmond,A.E.,andSoeder,C.J.(1986).Microalgaculture.CriticalReviewsin

Biotechnology4,369–438.Rito-Palomares,M.,Nuñez,L.,andAmador,D.(2001).Practicalapplicationof

aqueoustwo-phasesystemsforthedevelopmentofaprototypeprocessforc-phycocyaninrecoveryfromSpirulinamaxima.JournalofChemicalTechnology&Biotechnology76,1273–1280.

Rivkin,R.B.(1989).Influenceofirradianceandspectralqualityonthecarbonmetabolismofphytoplankton.I.Photosynthesis,chemicalcompositionandgrowth.MarineEcologyProgressSeries55.

Sánchez,M.,Bernal-Castillo,J.,Rozo,C.,andRodríguez,I.(2003).Spirulina(arthrospira):anediblemicroorganism:areview.UniversitasScientiarum8,7–24.

Schlesinger,P.,Belkin,S.,andBoussiba,S.(1996).SODIUMDEPRIVATIONUNDERALKALINECONDITIONSCAUSESRAPIDDEATHOFTHEFILAMENTOUSCYANOBACTERIUMSPIRULINAPLATENSIS1.JournalofPhycology32,608–613.

Singh,S.,Kate,B.N.,andBanerjee,U.C.(2005).Bioactivecompoundsfromcyanobacteriaandmicroalgae:anoverview.CriticalReviewsinBiotechnology25,73–95.

Skjånes,K.,Rebours,C.,andLindblad,P.(2013).Potentialforgreenmicroalgaetoproducehydrogen,pharmaceuticalsandotherhighvalueproductsinacombinedprocess.CriticalReviewsinBiotechnology33,172–215.

Stal,L.J.,andMoezelaar,R.(1997).Fermentationincyanobacteria.FEMSMicrobiologyReviews21,179–211.

Stanier,R.Y.,Pfennig,N.,andTrüper,H.G.(1981).IntroductiontothePhototrophicProkaryotes.InTheProkaryotes,(Berlin,Heidelberg:SpringerBerlinHeidelberg),pp.197–211.

Ting,C.S.,Rocap,G.,King,J.,andChisholm,S.W.(2002).Cyanobacterialphotosynthesisintheoceans:theoriginsandsignificanceofdivergentlight-harvestingstrategies.TrendsinMicrobiology10,134–142.

Ugwu,C.U.,Aoyagi,H.,andUchiyama,H.(2008).Photobioreactorsformasscultivationofalgae.BioresourceTechnology99,4021–4028.

Vonshak,A.,andRichmond,A.(1988).Massproductionoftheblue-greenalgaSpirulina:Anoverview.Biomass15,233–247.

Vonshak,A.,Cheung,S.M.,andChen,F.(2000).MIXOTROPHICGROWTHMODIFIESTHERESPONSEOFSPIRULINA(ARTHROSPIRA)PLATENSIS(CYANOBACTERIA)CELLSTOLIGHT.JournalofPhycology36,675–679.

Page 60: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

56

Walter,A.,Carvalho,J.C.de,Soccol,V.T.,Faria,A.B.B.de,Ghiggi,V.,and

Soccol,C.R.(2011).StudyofphycocyaninproductionfromSpirulinaplatensisunderdifferentlightspectra.BrazilianArchivesofBiologyandTechnology54,675–682.

Watson,E.(2013).Couldalgaebethenextbigthingintheproteinmarket?Parttwo:AuroraAlgae.URL:http://www.foodnavigator-usa.com/Markets/Could-algae-be-the-next-big-thing-in-the-protein-market-Part-two-Aurora-Algae,DateAccessed:15.5.2016.

Wijffels,R.H.,Kruse,O.,andHellingwerf,K.J.(2013).Potentialofindustrialbiotechnologywithcyanobacteriaandeukaryoticmicroalgae.CurrentOpinioninBiotechnology24,405–413.

WIKI,B.(2014).MainPage/BIOL4160/AbsorbingLight-BiologyWiki.URL:http://biologywiki.apps01.yorku.ca/index.php?title=Main_Page/BIOL_4160/Absorbing_Light,DataAccessed:13.5.2016.

Wittrup,S.(2013).Glemlagringafvindmøllestrøm:Brintviaelektrolyseerfremtiden|Ingeniøren.URL:https://ing.dk/artikel/glem-lagring-af-vindmoellestroem-brint-elektrolyse-er-fremtiden-136632,DateAccessed:6.6.2016.

Xie,Y.,Jin,Y.,Zeng,X.,Chen,J.,Lu,Y.,andJing,K.(2015).Fed-batchstrategyforenhancingcellgrowthandC-phycocyaninproductionofArthrospira(Spirulina)platensisunderphototrophiccultivation.BioresourceTechnology180,281–287.

Yaakob,Z.,Ali,E.,Zainal,A.,Mohamad,M.,andTakriff,M.(2014).Anoverview:biomoleculesfrommicroalgaeforanimalfeedandaquaculture.JournalofBiologicalResearch-Thessaloniki21,6.

Yam,F.K.,andHassan,Z.(2005).InnovativeadvancesinLEDtechnology.MicroelectronicsJournal36,129–137.

Yeomans,M.(2013).Newphotobioreactormakesmicroalgaecultivationeasierfortheindustry.URL:http://www.cosmeticsdesign-europe.com/Formulation-Science/New-photobioreactor-makes-microalgae-cultivation-easier-for-the-industry,DateAccessed:15.5.2016.

Zarrouk,C.(1966).ContributionaletudedunecyanophyceeinfluencedediversfacteursphysiquesetchimiquessurlacroissanceetlaphotosynthesedeSpirulinamaxima(SetchetGardner)Geitler.UniversitedeParis.

Zeng,X.,Danquah,M.K.,Zhang,S.,Zhang,X.,Wu,M.,Chen,X.D.,Ng,I.S.,Jing,K.,andLu,Y.(2012).AutotrophiccultivationofSpirulinaplatensisforCO2fixationandphycocyaninproduction.ChemicalEngineeringJournal183,192–197.

Zhang,X.-W.,Zhang,Y.-M.,andChen,F.(1999).ApplicationofmathematicalmodelstothedeterminationoptimalglucoseconcentrationandlightintensityformixotrophiccultureofSpirulinaplatensis.ProcessBiochemistry34,477–481.

Page 61: Improving the biomass productivity and phycocyanin … · 2016-08-30 · Tobias Valdemar Rybner Section for Sustainable Biotechnology Aalborg University Copenhagen Improving the biomass

57

8 Appendices

8.1 Appendix1.ExtractionprotocolforphycocyaninExtractionofphycocyaninwithcentrifugationandsonication:

1. extract5-10mLbiomassandtransferto15mlfalcontubesandcentrifugethemfor60minat10,000g(RCF)at4°Candremovethesupernatant(usea1000µLpipettoremovethefloatingcellsfromthesupernatantandpourtherestofthesupernatantaway)

2. Resuspendthebiomassin5mLphosphatebufferpH63. Sonicatethebiomassin60secondat50watt4. Freezeat-80°Cuntilfurthertreatment(min2hours)5. Performonefreeze-thawcycleof48hoursat5°C6. Centrifugeagainfor60minat10,000g(RCF)at4°Candremovethe

supernatantcontainingthephycocyanin7. Removeremainingimpuritiesbyfiltratingthesupernatantthroughaclean

syringefilter(poresize0.45µmcelluloseacetatemembrane)8. Thephycocyaninconcentrationinthesupernatantcannowbedetermined

usingspectrophotometerandtheformulabelowSpectrophotometricquantification:

1. Absorbance(Abs)fromthepurifiedextractsismeasuredat620nminaphotospectrometerin1cmquartzglasscuvettesagainstthephosphatebufferasblank.

2. Purityoftheextractionsampleisdeterminedfromtheratiobetweentheabsorbancemeasuredat620nmand280nm(purity=Abs620nm/Abs280nm)

3. ThephycocyaninconcentrationcanbecalculatedwiththefollowingequationwhichwasfoundbymakingacalibrationcurvefromapurchasedphycocyaninsamplefromSigmaAldrich

4. Gℎ?K#K?%L"L $' $( = l[UmnopI.IA,-q.-OA

× rstuvwx

ryz{{x|, ; = 0,99

8.2 Appendix2.ExperimentaldataandcalculationsAsthisisaneducationwithfocusonsustainabilitytheexcelsheetwasnotprintedonpaperbutinsteadavailableelectronicallyonaUSB-Driveattachedtothereportordownloadedfromthelinkbelow:https://www.dropbox.com/sh/64a0r67itv92q6v/AADiavI6-ICPK7FvnBbMFZkua?dl=0