inp hbt digital ics and mmics in the 140-220 ghz band flared contact : ~ ln(1/ ) use schottky: 0...

44
InP HBT Digital ICs and MMICs in the 140-220 GHz band [email protected] 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara Collaborators Z. Griffith, V. Paidi, N. Parthasarathy, C. Sheldon, U. Singisetti ECE Dept., University of California, Santa Barbara Prof. A. Gossard, Dr. A. Jackson, Mr. J. English Materials Dept., University of California, Santa Barbara M. Urteaga, R. Pierson , P. Rowell, B. Brar Rockwell Scientific Company X. M. Fang, D. Lubyshev, Y. Wu, J. M. Fastenau, W.K. Liu International Quantum Epitaxy, Inc. Lorene Samoska, Andy Fung Jet Propulsion Laboratories S. Lee, N. Nguyen, and C. Nguyen Global Communication Semiconductors Plenary, IRMMW-THz 2005; Joint 30 th International Conference on Infrared & mm-waves & 13 th International Conference on THz Electronics Sponsors J. Zolper, S. Pappert, M. Rosker DARPA (TFAST, ABCS, SMART) D. Purdy, I. Mack, M. Yoder Office of Naval Research

Upload: phamnhan

Post on 27-Apr-2018

216 views

Category:

Documents


3 download

TRANSCRIPT

InP HBT Digital ICs and MMICs in the 140-220 GHz band

[email protected] 805-893-3244, 805-893-5705 fax

Mark Rodwell University of California, Santa Barbara

CollaboratorsZ. Griffith, V. Paidi, N. Parthasarathy, C. Sheldon, U. SingisettiECE Dept., University of California, Santa BarbaraProf. A. Gossard, Dr. A. Jackson, Mr. J. EnglishMaterials Dept., University of California, Santa BarbaraM. Urteaga, R. Pierson , P. Rowell, B. BrarRockwell Scientific CompanyX. M. Fang, D. Lubyshev, Y. Wu, J. M. Fastenau, W.K. Liu International Quantum Epitaxy, Inc.Lorene Samoska, Andy FungJet Propulsion Laboratories S. Lee, N. Nguyen, and C. NguyenGlobal Communication Semiconductors

Plenary, IRMMW-THz 2005; Joint 30th International Conference on Infrared & mm-waves & 13th International Conference on THz Electronics

SponsorsJ. Zolper, S. Pappert, M. RoskerDARPA (TFAST, ABCS, SMART)D. Purdy, I. Mack, M. YoderOffice of Naval Research

What could we do with 100-350 GHz integrated circuits ?Optical Fiber Transmission

40 Gb/s: InP and SiGe ICs commercially available

80 & 160 Gb/s is feasible80-160 Gb/s InP ICs now clearly feasible ~100 GHz modulators demonstrated100 + GHz photodiodes are easychallenge: fiber dispersion

Radio-wave Transmission / Radar / Imaging65-80 GHz, 120-160 GHz, 220-300 GHz100 Gb/s transmission over 1 km in heavy rain300 GHz imaging for foul-weather aviation

sciencespectroscopy, radio astronomy

Mixed-Signal ICs for Military Radar/Comms direct digital frequency synthesis, ADCs, DACshigh resolution at very high bandwidths sought

40 Gb/s InP HBT fiber chip set (Gtran Inc.)

250 GHz digital radio: 100 Gb/s over 1 km in heavy rain

300 GHz imaging mm-wave sensor networks

Gb/s Wireless Home Networks

Why develop transistors for mm-wave & sub-mm-wave applications ?→ compact ICs supporting complex high-frequency systems.

Frequency Limitsand Scaling Laws of (most)Electron Devices

bottomsR ,

topsR ,

1:4 increases ,/)( limited charge-space

1:4by increase/1

/ /

/ )/1ln(~ :contact flared use

0 :Schottky use1:4by reduce

/ /

/

1:4by reduce/ /1

/1:2by reduce/metransit ti

2max

,

,,

,,

DvVJJ

JJD

IDWLCRqIkTR

DWLCWLR

DCRWLR

DWLC

WDWCRLR

DWLCDvD

electron

junction

junction

ctops

contact

contact

contacttopscontacttops

bottomsbottoms

electron

φ

ρρ

ρρ

ρ

τ

+∝∝

∝∝

=∝∝

∝∝

∝∝

bandwidth doubleto constant timeparameters ngcontributi

diode as example

R/C/τ Limits the Bandwidth of (most) Electron Devices

Effective THz devices must minimize, eliminate, or circumventcontact resistance, capacitance, & transit time

Applies whenever AC signals are removed though Ohmic contacts

capacitanceresistance transit time

device bandwidth

applies to:bipolar transistors, field-effect transistors, Schottky diodesRTDs, photomixers, photodiodes

Why aren't semiconductor lasers R/C/τ limited ?

dielectric waveguide mode confines AC field away from resistive bulk and contact regions.

AC signal is not coupled through electrical contacts

+V (DC)

N+

N-

I

P-

P+

metal

metal

opticalmode

-V (DC)

AC outputfield

high εr

dielectric mode confinement is harder at lower frequencies

Quasi-TEM mode equivalent circuit at lower frequencies

Diode & Transistor Integrated Circuits to ~ 1 THz

100 nm-generation InP DHBTssignal generation with power to ~500 GHz

< 30 nm-generation InP HEMTs30 nm devices now get ~600 GHz ft→ low noise figure at 300 GHz

<50 nm-generation InP or GaAs Schottky mixer diodesmany THz RC and transit time frequencies

10-nm to 100-nm electron drift devices:

And Silicon VLSI for applications below ~150 GHz !

Fast IC Technologies

InP HBT: 500 nm emitter455 GHz fτ / 485 GHz fmax~4 V breakdown150 GHz static dividers178 GHz amplifiers

SiGe HBT: 130 nm emitter300 GHz fτ / 350 GHz fmax96 GHz static dividers77 GHz amplifiers150 GHz push-push VCO- 75 GHz fundamental

CMOS: 90 nm node:~200 GHz fτ / 250 GHz fmax60 GHz 2:1 mux91 GHz amplifiers

InP HBTs: 450 GHz bandwidth at 500 nm scaling Potential for much wider bandwidths at 100 nm scaling

We design HBTs for fast logic, not for high fτ & fmax

clock clock clock clock

inin

out

out

( )

( )

( )

⎟⎟⎠

⎞⎜⎜⎝

⎛+⋅>Δ

⎟⎟⎠

⎞⎜⎜⎝

⎛Δ

+

+

+

+⎟⎟⎠

⎞⎜⎜⎝

⎛ Δ

cexLOGIC

LOGIC

Ccb

becbi

becbC

LOGIC

IRq

kTV

VIR

CCR

CCI

V

4

leastat bemust swing logic The

resistance base the throughcharge stored

collector base Supplying

resistance base the throughcharging ecapacitanc on Depleti

swing logic the throughcharging ecapacitanc on Depleti

:by ermined Delay DetGate

bb

depletion,bb

depletion,

ττ

( )( )

( )

JVRvT

AA

VV

IVC

T)V(VvεJ

CI

CCIV

f

ex

electron

C

CE

LOGIC

C

LOGICcb

cceceelectronKirk

cbC

becbCLOGIC

cb

highat low for low very bemust 22

/2

objective. design key HBTa is / High

total.of 80%-55% is

withcorrelated not well Delay delay; totalof 25%-10y typicall)(

logic

emitter

collector

min,

2depletion full,operating ,max,

depl,

Δ

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛Δ=

Δ⇒

+=

+

τ

ττ

Bipolar Transistor Scaling Laws & Scaling Roadmaps

unchangedbase contact resistivity(if contacts do not lie above collector junction)

decrease 4:1base contact resistivity(if contacts lie above collector junction)

increase 4:1current density

decrease 4:1emitter resistance per unit emitter area

decrease 4:1collector junction width

decrease 4:1emitter junction width

decrease 1.414:1base thickness

decrease 2:1collector depletion layer thickness

required changekey device parameter

Scaling Laws:design changes required to double transistor bandwidth

WE

WBC

WEB

Δx

L E

base

emitter

base

collector

WC

InP Technology Roadmap 40 / 80 / 160 Gb/s digital clock rate

Key scaling challengesemitter & base contact resistivitycurrent density→ device heatingcollector-base junction width scaling& Yield !

key figures of merit

for logic speed

Transistors & ICs at 500-600 nm Scaling Generation

1.3 μm base-collector mesa1.7 μm base-collector mesa

Zach Griffith

600 nm emitter width

0

5

10

15

20

25

30

35

109 1010 1011 1012

Gai

ns (d

B)

Frequency (Hz)

ft = 391 GHz, f

max = 505 GHz

U

H21

Ajbe

= 0.6 x 4.3 um2

Ic = 13.2 mA, V

ce = 1.54 V

Je = 5.17 mA/um2, V

cb= 0.6 V

200

300

400

500

1 2 3 4 5 6

GH

z

Je (mA/um2)

ft

fmax

Vcb

= 0.6 V

InP DHBT: 600 nm lithography, 150 nm thick collector, 30 nm thick base

Average β ≈ 36, VBR,CEO = 5.1 V (Ic = 50 μA)Emitter contact (from RF extraction), Rcont = 10.1 Ω⋅μm2

Base (from TLM) : Rsheet = 564 Ω/sq, Rcont = 9.6 Ω⋅μm2

Collector (from TLM) : Rsheet = 11.9 Ω/sq, Rcont = 5.4 Ω⋅μm2 10-12

10-10

10-8

10-6

10-4

0.01

0 0.2 0.4 0.6 0.8 1

I b, Ic (A

)

Vbe

(V)

VCB

= 0.3 V (solid)

VCB

= 0.0 V (dashed)

Ic

Ib

nc = 1.17

nb = 1.38

Ajbe

= 0.6 x 4.3 μm2

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.50

4

8

12

16

J e (m

A/μ

m2 )

Vce

(V)

Ajbe

= 0.6 x 4.3 μm2

Ib step

= 85 uA

Vcb

= 0 V

Ic (mA

)

Peak fτ, f

max

Ccb/Ic ~0.5 ps/V

Zach Griffith

β ≈ 40, VBR,CEO = 3.9 V. Emitter contact Rcont < 10 Ω⋅μm2

Base : Rsheet = 610 Ω/sq, Rcont = 4.6 Ω⋅μm2

Collector : Rsheet = 12.1 Ω/sq, Rcont = 8.4 Ω⋅μm2

Vcb

= -0.3 V

0

2

4

6

8

10

0 2.5 5 7.5 10 12.50

5

10

15

20

25

Ccb

/Ae (

fF/μ

m2 )

Je (mA/μm2)

Ccb (fF

)

-0.2 V

0.0 V

0.2 V

Vcb

= 0.6 V

Ajbc

= 1.3 x 6.5 μm2

Ccb

/Ic=0.2 ps/V

0.4 ps/V

0.6 ps/V

0.8 ps/V

1.0 ps/V1.5ps/V

Ajbe

= 0.6 x 4.3 μm2

Zach Griffith

0

5

10

15

20

25

30

35

109 1010 1011 1012

Gai

ns (d

B)

Frequency (Hz)

U

Ajbe

= 0.6 x 4.3 um2

Ic = 20.6 mA, V

ce = 1.53 V

Je = 8.0 mA/um2, V

cb= 0.6 V

ft = 450 GHz, f

max = 490 GHz

h21

10-12

10-10

10-8

10-6

10-4

0.01

0 0.25 0.5 0.75 1

I b, Ic (A

)

Vbe

(V)

VCB

= 0.0 V (dashed)V

CB = 0.3 V (solid)

Ic

Ib

nc = 1.12

nb = 1.41

Gummel characteristics

InP DHBT: 600 nm lithography, 120 nm thick collector, 30 nm thick base

0

5

10

15

20

25

30

35

109 1010 1011 1012

Gai

ns (d

B)

Frequency (Hz)

ft = 491 GHz, f

max = 415 GHz

U

H21

Ajbe

= 0.6 x 4.3 um2

Ic = 27.8 mA, V

ce = 1.37 V

Je = 10.3 mA/um2, V

cb= 0.4 V

MSG/MAG

Summary of device parameters—Average β ≈ 40, VBR, CEO = 3.1 V (Ic = 50 μA)Emitter contact (from RF extraction), Rcont ≈ 7.8 Ω⋅μm2

Base (from TLM) : Rsheet = 629 Ω/sq, Rcont = 6.2 Ω⋅μm2

Collector (from TLM) : Rsheet = 12.9 Ω/sq, Rcont = 4.0 Ω⋅μm2 10-12

10-10

10-8

10-6

10-4

0.01

0 0.2 0.4 0.6 0.8 1

I b, Ic (A

)

Vbe

(V)

VCB

= 0.0 V (solid)

VCB

= 0.3 V (dashed)

Ic

Ib

nc = 1.12

nb = 1.44

Ajbe

= 0.6 x 4.3 μm2

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

0 0.5 1 1.5 2 2.50

10

20

30

40

50

J e (m

A/μ

m2 )

Vce

(V)

Ajbe

= 0.6 x 4.3 μm2

Ib step

= 180 uA

Vcb

= 0 V

Ic (mA

)

Peak ft, f

max

Zach Griffith

InP DHBT: 600 nm lithography, 100 nm thick collector, 30 nm thick base

Average β ≈ 50, BVCEO = 3.1 V, BVCBO = 3.4 V (Ic = 50 μA)Emitter contact (from RF extraction), Rcont ≈ TBD Ω⋅μm2

Base (from TLM) : Rsheet = 805 Ω/sq, Rcont = 16 Ω⋅μm2

Collector (from TLM) : Rsheet = 12.0 Ω/sq, Rcont = 4.7 Ω⋅μm2

0

5

10

15

20

25

30

35

109 1010 1011 1012

Gai

ns (d

B)

Frequency (Hz)

ft = 525 GHz, f

max = 330 GHz

U

h21

Ajbe

= 0.65 x 4.2 um2

Ic = 27.1 mA, V

ce = 1.387 V

Je = 10.0 mA/um2, V

cb= 0.3 V

MSG/MAG

0.0

4.0

8.0

12.0

16.0

20.0

0 0.5 1 1.5 2 2.5

J e (m

A/μ

m2 )

Vce

(V)Ajbe

= 0.65 x 4.2 μm2

Ib step

= 185 uAVcb

= 0 V

20 / 25 mW/μm2

failure

10-12

10-10

10-8

10-6

10-4

0.01

0 0.2 0.4 0.6 0.8 1

I b, Ic (A

)

Vbe

(V)

VCB

= 0.3 V (solid)

VCB

= 0.0 V (dashed)

Ic

Ib

nc = 1.15

nb = 1.47

Ajbe

= 0.65 x 4.2 μm2

InP DHBT: 600 nm lithography, 75 nm thick collector, 25 nm thick baseZach Griffith

Summary of published HBT performance

)( ),/( ),/( ),/(

hence , :digital

power DCassociated gain, associated

, F:amplifiers noiselow

mW/ gain, associated

PAE, :amplifierspower

)11(

2/) (

min

1max

max

max

cb

cbb

cex

ccb

clock

ττVIRVIRIVC

f

m

ff

ff

ff

+ΔΔ

Δ

+

+

μ

τ

τ

τ

:metrics better

:metrics popular

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

ft (GHz)

f max

(GH

z)

IBM SiGe

IBM SiGe

NGSTDHBT

SFUDHBT

Pohang SHBT

UCSB150 nm

500 GHz400 GHz300 GHz200 GHz

150 nm

HRLDBHT

UIUCSHBT

Updated Sept, 2005

maxffτ=

UCSB120 nm

UCSB100 nm

65 nm

75 nm

100 nm

150 nm200 nm

150 nm

RSCDHBT

120 nm

150 nm

NTTDHBT150 nm

UCSB210 nm

250 nm

100 nm

62.5nm

Fujitsu HEMTVitesse

150 nm

Stated dimensions are collector thicknessDevices are DHBTs except when labelled otherwise

UCSB75 nm

UCSB results are @ 600 nm; further progress requires scaling to 250 nm

Digital circuits: towards 200 GHz

clock rate

Z Griffith

underlying technology:400-500 GHz InP transistors

142 GHz latch from NNIN @ UCSB, 150 GHz ICs from UCSB/GSC/RSC 200 GHz is the next goal

Static Frequency Divider: Standard Digital Benchmark

ECL Master-Slave Latch with Inverting Feedback

Forms 2:1 Frequency Divider.

Maximum clock frequency is measureof technology speed.

Standard circuit configuration for consistent benchmarking - no tricks.

Small inductive peaking (L/R~1.3 ps).

+V +V +V

0V

kz

Microstrip mode Substrate modes

+V

0VCPW mode

0V 0V

CPW has parasitic modes, coupling from poor ground plane integrity

kz

Microstrip has high via inductance, has mode coupling unless substrate is thin.

We prefer (credit to NTT) thin-film microstrip wiring, inverted is best for complex ICs

-V 0V +V

0VSlot mode

ground straps suppress slot mode, but multiple ground breaks in complex ICs produce ground return inductanceground vias suppress microstrip mode, wafer thinning suppresses substrate modes

M. Urteaga, Z. Griffith, S. Krishnan

0.860.740.990.59psec / VCcb/Ic

3583010.6

4.40.5 x 4.5

clock current steering

GHzGHz

V

mA/μm2

μm2

units

280268358fmax

280260301fτ

1.700.6Vcb

4.44.46.9currentdensity

0.5 x 5.50.5 x 4.50.5 x 3.5size

clock emitter

followers

data emitter

followers

data current steering

UCSB / RSC / GCS 150 GHz Static Frequency Dividers

-40

-30

-20

-10

0

10

20

0 20 40 60 80 100 120 140 160

Min

imum

inpu

t pow

er (d

Bm

)

frequency (GHz)

IC design: Z. Griffith, UCSBHBT design: RSC / UCSB / GCSIC Process / Fabrication: GCSTest: UCSB / RSC / Mayo

-80

-70

-60

-50

-40

-30

74.9975 74.9987 75.0000 75.0012 75.0025

Out

put P

ower

(dB

m)

frequency (GHz)

-90

-80

-70

-60

-50

-40

-30

-20

-10

0.00 19.00 38.00 57.00 76.00

Out

put P

ower

(dBm

)

frequency (GHz)

probe station chuck @ 25°C

PDC,total = 659.8 mWdivider core without output buffer ≈ 594.7 mW

UCSB 142 GHz Master-Slave Latches (Static Frequency Dividers)

-90

-80

-70

-60

-50

-40

-30

-20

-10

0.0 15.0 30.0 45.0 60.0 75.0

Out

put P

ower

(dB

m)

frequency (GHz)

Static 2:1 divider:Standard digital benchmark.Master-slave latch with inverting feedback.Performance comparison between digital technologies

UCSB technology 2004:InP mesa HBT technology12-mask process600 nm emitter width142 GHz maximum clock.

Implications:160 Gb/s fiber ICs

100 + Gb/s serial links

Target is 260 GHz clock rate at 300 nm scaling generation

Z. Griffith, M. Dahlström

25o C

Reducing Digital Circuit DissipationECL with impedance-matched 50 Ohm bus:25 Ohm load→ switch 12 mA 12 mA x 7 x 4 V = 336 mW/latch

CML with impedance-matched 50 Ohm bus:25 Ohm load→ switch 12 mA 12 mA x 3 x 3 V = 108 mW/latch

Low-Power CML100 Ohm loaded → switch 3 mA 3 mA x 3 x 3 V = 27 mW/latch

Significant dissipation in the clock emitter-follower level-shifters;some published work omits this from stated dissipation

12 mA12 mA 12 mA

50 Ohm bus 50 Ohm 50 Ohm

12 mA

50 Ohm bus 50 Ohm 50 Ohm

50 Ohm bus100 Ohm

3 mA

3 mA 3 mA

padcbwiring CC ,low ,low power low @ speed High =

100 Ohm

Zach Griffith

Low Power CML Static Divider Designs

Divide-by-4 at 128.6 GHz, S3 RSC Technology

-80

-60

-40

-20

0

0 10 20 30 40 50

Out

put P

ower

(dBm

)

frequency (GHz)

Measurements performed at UCSB, GUNN Source Used For CLK InputRSC Wafer # xxxx, Divider ID: R3C2 #5A, Fabricated at RSC, Design at UCSBVclk offset = -0.45 V, VEE, div1,2 = -3.4 V, IEE, total = 192 mA – Idiv1,2 at fclk,max ≤ 65 mA per divider cktPower dissipation of input divider core w/out output buffer < 221 mW — room temp, no cooling

128.6 GHz input 5 GHz input test to prove static operation

-80

-60

-40

-20

0

0 10 20 30 40 50

Out

put P

ower

(dBm

)frequency (GHz)

Zach Griffith

Phase II divide by 2—Ultra low power CML divider47

0 μm

443 μm

Simulated divider speed…

With Collector PedestalAjbe = 1.0 μm2, fmax = 100 GHz

Pdivider core, ≈ 31 mW

Zach Griffith

Ultra Low Power CML Static Divider Design

Ultra low-power RSC / UCSB CML dividers

Output waveform @ 6.0 GHz, fclk = 12 GHz

The divider is operational from 12 GHz to 51 GHzAt fclk = 51 GHz, Pflip-flop = 29.2 mW Latch power × delay = 143 fJ, no emitter followers = 79.0 fJ

Output waveform @ 25.5 GHz, fclk = 51 GHz

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0 125 250 375 500

Out

put S

igna

l (V)

time (ps)

Confirms the circuit is fully static

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0 50 100 150 200

Out

put S

igna

l (V)

time (ps)

Zach Griffith

Deep Submicron Bipolar Transistors for 140-220 GHz Amplification

0

10

20

30

40

10 100 1000

Tran

sist

or G

ains

, dB

Frequency, GHz

U

UMSG/MAG

H21

unbounded U

-4

-2

0

2

4

6

8

140 150 160 170 180 190 200 210 220

S21

, dB

Frequency, GHz

1-transistor amplifier: 6.3dB @ 175 GHz

-30

-20

-10

0

10

140 150 160 170 180 190 200 210 220

gain

, dB

Frequency (GHz)

3-transistor amplifier: 8 dB @ 195 GHz

raw 0.3 μm transistor: high power gain @ 200 GHz

M. Urteaga

7.5 mW output power

Mesa DHBT Power Amplifiers for 100-200 GHz Communications

7 dB gain measured @ 175 GHz

175 GHz Power Amplifier Demonstrated in a 300 GHz fmax process500 GHz fmax DHBTs available now, 600 GHz should be feasible soon

→ feasibility of power amplifiers to 350 GHz→ Ultra high frequency communications

2 fingers x 0.8 um x 12 um, ~250 GHz fτ, 300 GHz fmax , Vbr ~ 7V, ~ 3 mA/um2 current density

V. Paidi, Z. Griffith, M. Dahlström

Common-Base Has Highest Gain, but Layout Parasitics Matter !

0

5

10

15

20

25

10 100

MSG

/MAG

F requency, G Hz

W ithou t Cce

, Lb

W ith Cce

W ith Cce

and Lb

base plug

emitter

semi-insulating InPN+ subcollector

N- collector

base

collector

N+ subcollector

Lb

CceCce

base

interconnect metal

0

5

10

15

20

25

30

10 100

MS

G/M

AG, d

B

Frequency, GHz

Common base

Common Collector

Common emitter

U ignores layout parasitics

V. Paidi, Z. Griffith, M. Dahlström

Single-Sided Collector Contacts Improve Common-Base Gain

base plug

emitter

semi-insulating InPN+ subcollector

N- collector

base

collector

N+ subcollector

Lb

base

interconnect metal

0

5

10

15

20

25

30

10 100

MSG

/MA

G

Frequency, GHz

Single sided collector

Double sided collector

amplifier designs

V. Paidi, Z. Griffith, M. Dahlström

172 GHz Common-Base Power Amplifier

8.3 dBm saturated output power 4.5-dB associated power gain at 172 GHz DC bias: Ic=47 mA, Vcb=2.1V.

-10

-5

0

5

10

140 150 160 170 180 190

S 21,S

11,S

22, d

B

Frequency, GHz

S11

S22

S21

RLVin Vout

Input Matching Network Output Loadline Match

-10

-5

0

5

10

15

0

1

2

3

4

5

-15 -10 -5 0 5

Gai

n, d

B, O

utpu

t Pow

er, d

Bm

PAE (%

)

Input Power, dBm

Gain

Output Power

PAE

V. Paidi, Z. Griffith, M. Dahlström

6 dB gain

176 GHz Two-Stage Amplifier7-dB gain at 176 GHz8.1 dBm output power, 6.3 dB power gain at 176 GHz9.1 dBm saturated output power at 176 GHz

-10

-5

0

5

10

15

140 150 160 170 180 190 200

S 21, S

11, S

22 d

B

Frequency, GHz

S21

S11

S22

0

2

4

6

8

10

0

1

2

3

4

5

-6 -4 -2 0 2 4 6 8 10

Gai

n, d

B, O

utpu

t Pow

er ,

dBm

PAE (%

)

Input Power, dBm

PAEGain

Output Power

RLVoutVin

50 Ohms 50 Ohms

InputMatchingNetwork

OutputLoadlineMatchingNetwork

InputMatchingNetwork

OutputLoadlineMatchingNetwork

λ/4 at f0

λ/4 at f0

Veb,bias

Vcb,bias

V. Paidi, Z. Griffith, M. Dahlström

Transistor ICs → compact sub-mm-wave systems

Compact, Single-Chip Monolithic Frequency Multiplier Chains

Frequencydoubler

Frequencydoubler

100 GHz400 GHz50 mW ?

200 GHz100 mW

Frequencydoubler

800 GHz10 mW ?

Sub-mm-wave Frequency Generation by phase-locked source

600 GHz

300 GHzpush-pushVCO

Gilbert-cellharmonic mixer

15 GHzreference

150 GHz

300 GHz poweramplifier

HBTactivefrequencydoubler

static ordynamicfrequencydivider75 GHz

Today: InP DHBTs @ 500 nm Scaling Generation

Device Performance:~ 400 GHz fτ and ~500 GHz fmax

Has enabled 150 GHz digital clock rate (static dividers)

Should enable 300 GHz power amplifiers (175 GHz realized with 300 GHz fmax)

InGaAs base

BC grade

collector

N+ sub collector

S.I. InP substrate

emitter

emitter contact

base contact

N- drift collector

emitter: 500 nm width, 15 Ω⋅μm2 contact resistivity

base contact: 300 nm width, 20 Ω⋅μm2 contact resistivity

collector: 150 nm thick, 5 mA/μm2 current density10 mW/μm2 power density @ 2V15 K/(mW/μm2) thermal resistance

Next: 250 nm Scaling Generation, 1.414:1 fasterGoals: 500 GHz fτ and 700 GHz fmax

230 GHz digital clock rate (static dividers)400 GHz power amplifiers

InGaAs base

BC grade

collector

N+ sub collector

S.I. InP substrate

emitter

emitter contact

base contact

N- drift collector

emitter: 250 nm width7.5 Ω⋅μm2 contact resistivity base contact:

150 nm width, 10 Ω⋅μm2 resistivity

collector: 110 nm thick, 10 mA/μm2 current density20 mW/μm2 power density @ 2V7.5 K/(mW/μm2) thermal resistance

Direct, brute-force scaling

Requires innovations in emitter & base contacts: processes & metallurgy

extrinsic base

intrinsic base

drift collector

N+ sub collector

S.I. InP substrate

pedestal

current-block layer

regrown emitter

emitter contact

base contact

Parasitic Reduction

regrown emitter with wide contact: reduces access resistance

collector pedestal: reduces capacitance under base contacts,allows wider & more resistive base contacts

Requires implants and regrowth processes

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

0.00 0.50 1.00 1.50 2.00 2.50

Vce (V)

Ic (m

A)

Manufacturable Emitter Dielectric Sidewall ProcessesFirst-Generation: UCSB and Rockwell Scientific Miguel Urteaga

266 GHz ft , 133 GHz fmax, , Ccb/Ic=0.4 ps/V

Si3N4

thin emitterbase contacts byplanarization& etch-back

Urteaga, Rodwell , Pierson, Rowell , Brar, Nguyen, Nguyen: UCSB, RSC, GCS

electroplatedemitter andbase contacts

2nd-Generation: Rockwell Scientific Miguel Urteaga, Petra Rowell

Urteaga, Rowell, Pierson, Brar: RSC

250 nm emitter

HBT with Epitaxial Extrinsic Emitter C. Kadow

0

1 0

2 0

3 0

4 0

0 0 .5 1 1 .5 2 2 .5 30 .0 0

0 .2 0

0 .4 0

0 .6 0

0 .8 0

1 .0 0

I c [mA

]

Vce

[V ]

Ib , s te p

= 2 m A

Jc [m

A/um2]

10-7

10-6

10-5

10-4

10-3

10-2

10-1

0 0.5 1 1.5

I b, Ic [A

]

Vbe

[V]

Voffset

= 0.0 V

IC

IB

Max( β ) = 7.0WE = 1.0 µm

Subcollector & Pedestal Implant Navin Parthasarathy

Fe

N+S.I.

N+

Epitaxial growth JunctionFabrication

N+ N+FeFe

N+S.I.

N+N+ N+Fe

Pedestal Implant

Fe

N+S.I.

N+N+ N+Fe

Fe Implant

S.I.

Fe

Subcollector Implant

N+S.I.

Fe

collector contact

pedestal implantsubcollector implantbase metal

emitter

Subcollector implant eliminates Ccbin base pad area -key for high speed in lower-power logic.Pedestal further reduces Ccb.

0

5

10

15

20

25

30

35

109 1010 1011 1012

Gai

ns (d

B)

Frequency (Hz)

ft = 352 GHz, f

max = 365 GHz

U

h21

Ajbe

= 0.65 x 4.3 μm2

Ic = 13.95 mA, V

ce = 1.834 V

Je = 5.0 mA/μm2, V

cb ~ 0.6 V

U

0.0

2.0

4.0

6.0

8.0

10.0

0 0.5 1 1.5 2 2.5 3 3.50

5

10

15

20

25

J e (m

A/μ

m2 )

Vce

(V)

Ajbe

= 0.65 x 4.3 μm2

Ib step

= 100 uA

Vcb

= 0 V

Ic (mA

)

failure

0

2

4

6

8

10

12

0 2 4 6 8 100

0.51

1.52

2.53

3.54

Ccb /A

e (fF/um

2)

Je (mA/μm2)

Ccb

(fF

)

Vcb

= 0.6 V

26% Ccb

reduction -- 28% predicted

Ajbc

~ 1.3 x 8.5 μm2

sub-collector implanted

sub-collector grown

sub-collector w/ pedestal

10-12

10-10

10-8

10-6

10-4

0.01

0 0.2 0.4 0.6 0.8 1I b, I

c (A)

Vbe

(V)

VCB

= 0.3 V (solid)

VCB

= 0.0 V (dashed)

Ic

nc = 1.18

Ajbe

= 0.65 x 4.3 μm2

Ib

50 pA

nb = 1.53

Roadmap for the 125 nm Scaling Generation

Target transistor performance: 700 GHz fτ , 1100 GHz fmax , comparable improvement of other key parameters: CcbΔV/Ic, RexIc /ΔV, RbbIc/ΔV

Target circuit performance330 GHz digital clock rate (static dividers)600 GHz power amplifiers

What would be needed to obtain this ?

InGaAs base

BC grade

collector

N+ sub collector

S.I. InP substrate

emitter

emitter contact

base contact

N- drift collector

emitter: 125 nm width, 5 Ω⋅μm2 contact resistivity

base contact: 75 nm width, ~5 Ω⋅μm2 contact resistivity

collector: 75 nm thick, 20 mA/μm2 current density40 mW/μm2 power density @ 2V4 K/(mW/μm2) thermal resistance

Indium Phosphide HBTs for 100-600 GHz ICs

InP HBT now: at 500 nm scaling generation 455 GHz ft & 485 GHz fmax150 GHz static dividers & 180 GHz amplifiers demonstrated200 GHz digital latches & 300 GHz amplifiers are feasible

InP HBT: future, at 125 nm scaling generation2:1 increase in bandwidth (?)700 GHz ft & 1.1 THz fmax , 330 GHz digital latches & 600 GHz amplifiers ?demands 4:1 better Ohmic contactsdemands 4:1 increased current density.

Applications:160+ Gb/s fiber ICs, 300 GHz MIMICs for communications, radar, & imagingGHz ADCs / DACs / DDFS / etc.& applications unforeseen & unanticipated

Submicron diodes for sub-millimeter-waves

Hierarchy of ECL Static Frequency Divider

Zo

ECL NAND/NOR Gate Level Shifters Logic Gate Core Level Shifters

C

D Q

ECL Latch: level-clocked memory element

Master-Slave Latch: transition-clocked memory element

Q

Q

D

C

Q

Q

D

C

Q

Q

DC

Q

Q

D

C

2:1 Static Frequency Divider

Q

Q

DC

Transit time Modulation Causes Ccb Modulation

( ) ),(//1)(constant0 cbccbc

T

celectronsbase

holesbase VIfTAVdxTxAxqnQQ c =+−++= ∫ ε

cb

f

c

cb

c

holesbasef

cb

holesbasecb VI

CI

QV

QC∂∂

−=∂

∂⇒

∂∂

≡∂

∂−≡

ττ

Camnitz and Moll, Betser & Ritter, D. Root holesbaseb ΔQI ,

E

drift collectorbase

-

+

+

+

+

-

-

-

--

-

-

-2

-1

0

1

2

0 100 200 300 400

eV

nm

ΓL

-2

-1

0

1

2

0 100 200 300 400

eV

nm

0 0 <∂∂⇒>∂∂ ccbcbf ICVτ :Modulation Velocity Collector

0 0 >∂∂⇒<∂∂ ccbcbf ICVτ : Effect Kirk

2

3

4

5

6

7

8

0 2.5 5 7.5 10 12.5

Ccb

/Ae (

fF/μ

m2 )

Je (mA/μm2)

-0.2 V

0.0 V

0.2 V

Vcb

= 0.6 Vcbb

cb

C

by of modulation and- collector into pushout base-

both to due is in Increase

100

200

300

400

500

0 2 4 6 8 10 12

f τ (GH

z)

Je (mA/um2)

fτ, -0.3 V

cb

0.0 Vcb

-0.2 Vcb

0.2 Vcb

0.6 Vcb

DHBTs InP in effect weak- SHBTs InGaAs in effect strong-

reduced with in Increase cbcbc CVτ →

Transit time Modulation → Negative Resistance → Infinite Gain

electrondensity

time

collectorcurrent

collectorvoltage

Je/V0

Je/(V0+ΔV)

ΔV is negative

ΔJ=Je(ΔV/ V0)

time

(V0+ΔV)

ΔT=2τc

(V0+ΔV)

-

-

- -

-

subcollector

E

subcollector

-

-

--

--

-- -

-- - -

V0

base

M. Urteaga

( )cbfccanccb VIC ∂∂−= /ecapacitanc negative

, τ

)3/(2resistance negative

,canccbc CR τ=

econductanc negativeG positive 12

= econductanc negativeG negative 22

=