institute/faculty/vocational school & …

68
T+P INSTITUTE/FACULTY/VOCATIONAL SCHOOL & PROGRAMME: FACULTY OF ENGINEERING-ELECTRICAL&ELECTRONIC ENGINEERING DIVISION COURSE DETAILS Title Code Medium of Instruction Type Semester Credit s ECTS Power Systems Analysis II EEM 414 Turkish Departmental Elective 8 3+0 3 4 Prerequisites NONE Instructor -- Teaching Assistants -- Objectives As much as power consumption, generation, power transmission is also the popular optimal solution comparing other power types. The main course goal is to provide students with a complete overview of power system analysis and design using learning acquired other courses such as, Mathematics, Electric Circuits, Fields, Electric Machines, and High Voltage Learning outcomes 1. Comprehend and Model major types of components used in electrical power systems 2. Analyze three-phase networks under balanced and un-balanced conditions 3. Analyze the power flow of a interconnected power system 4. Use techniques/procedures in analysis of faulted power transmission systems

Upload: others

Post on 22-Oct-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

T+P

INSTITUTE/FACULTY/VOCATIONAL SCHOOL & PROGRAMME: FACULTY OF ENGINEERING-ELECTRICAL&ELECTRONIC ENGINEERING DIVISION

COURSE DETAILS

Title Code Medium of Instruction Type

Semester Credit

s ECTS

Power Systems

Analysis II EEM 414 Turkish Departmental

Elective 8 3+0 3 4

Prerequisites NONE

Instructor --

Teaching Assistants --

Objectives

As much as power consumption, generation, power transmission is also the popular optimal solution comparing other power types. The main course goal is to provide students with a complete overview of power system analysis and design using learning acquired other courses such as, Mathematics, Electric Circuits, Fields, Electric Machines, and High Voltage

Learning outcomes

1. Comprehend and Model major types of components used in

electrical power systems

2. Analyze three-phase networks under balanced and un-balanced

conditions

3. Analyze the power flow of a interconnected power system

4. Use techniques/procedures in analysis of faulted power

transmission systems

Page 2: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

TEACHING PLAN

We ek

Preliminary Topics Method

1 The basic concepts: representation, phasor diagrams,

2 Symmetric models of power transmission systems

3 Application to power transmission systems of p.u system

4 Components of power transmission systems: generators, transformer, loads

5 Network and transmission line modeling, Medium line and Long lines

6 Nominal and equivalent circuits of Transmission line parameter computation

7 Review of sequence components

8 Midterm exam

9 Perform to sequence components in voltage and current instabilities

10 Sequence components of Generator, transformer, transmission line and sequence networks

11 Faults, short circuits, equivalent circuits, solution methods

12 Faults, short circuits, equivalent circuits, solution methods

13 Bus-impedance matrix, bus admittance matrix and the building algorithm

14 Basic concepts of Power Transmission

REFERENCES

Text book/Lecture Notes

The instructor’s lectures will be used

Other References 1-Elektrik Güç Sistemlerinin Analizi (Hüseyin ÇAKIR, YTÜ) 2-Güç Sistemlerinin Bilgisayar Destekli Analizi, (Uğur ARİFOĞLU,A. Yayınları,ISBN:975-297-022-2) 2-Schaum´s Electric Power Systems ( McGraw-Hill,1989, ISBN: 0070459177) 3-Elements of Power System Analysis (WD. Stevenson, Mc-Graw Hill, 1994)

Types of Activity Grading Percentage

Midterm Exam 40

Final Exam 60

Total 100

Page 3: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

COURSE CONTRIBUTION TO PROGRAM OUTCOMES

No Program Outcomes Contribution degree

1 2 3 4 5

1 To achieve insights on mathematics and physical sciences and to gain

analytical thinking skills.

2 To accumulate knowledge on basic subjects about electrical and

electronics engineering. X

3

To achieve specifying, defining, formulating and solving skills for

engineering problems and to gain ability to choose and apply

appropriate analysis and modelling methods for these purposes. X

4 To gain system analysis and design abilities.

X

5 To apply theoretical knowledge to laboratory and project studies.

6 To use up-to-date software and hardware efficiently.

7 To gain ability to work in a team and individually.

8 To achieve skills on oral and written communication. To use a foreign

language effectively in professional life.

9

To become aware of importance of lifelong learning, to be able to gather information, to follow advances in science and technology and to gain ability to renew oneself.

10 To achieve professional and ethical responsibility.

ECTS/WORKLOAD TABLE Workload per hour

Inside the classroom Course Hour ( 14 x weekly course hour) 42

Outside the classroom

Assignments 5

Research 10

Preliminary and Strengthening Works 10

Other Activities 10

Exams Midterm exam (Exam number x Exam time) 10

Final exam 15

Total workload 102

Total workload/25,5 hours 4

ECTS Credits 4

Page 4: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

ENSTİTÜ/FAKÜLTE/YÜKSEKOKUL ve PROGRAM: MÜHENDİSLİK FAKÜLTESİ-ELEKTRIK-ELEKTRONIK MÜHENDİSLİĞİ BÖLÜMÜ

DERS BİLGİLERİ

Adı Kodu Dili Türü Yarıyıl T+U Saati

Kredi AKTS

Güç Sistemleri Analizi II EEM 414 Türkçe Bölüm

Seçmeli 8 3+0 3 4

Ön Koşul Dersleri YOK

Ders Sorumluları --

Ders Sorumlu Yardımcıları

--

Dersin Amacı

Elektrik enerjisi kullanımı ve üretimi kadar iletimi de diğer enerji türleri ile kıyaslandığında en optimum/yaygın çözümdür. Dersin amacı da; Matematik, Devreler, Alanlar, Elektrik Makineleri ve Yüksek Gerilim gibi derslerde edinilen bilgileri de kullanarak, iletim sistemlerinin analizlerini ve tasarımı yapacak bilgi ve beceri kazandırmaktır

Dersin Öğrenme Çıktıları

1. Enerji iletim sistemlerinin; makinalar, hatlar, yükler gibi ana

bileşenlerini modeller

2. Enerji iletim sistemlerinin dengeli ve dengesiz çalışma

koşullarında çözümlemelerini yapabilir

3. Yük akışı hesaplamaları ve analizleri yapabilir

4. İletim sistemlerinde değişik arıza analizİ yapar

DERS PLANI

Hafta Ön

Hazırlık Konular/Uygulamalar Metot

1 Giriş, Sürekli sinüsoidal hal, fazör diyagramları Ders

2 Enerji iletim sistemlerinin dengeli modelleri Ders

3 Birim Değerler (pü), enerji iletim sistemlerine uygulanması Ders

4 Enerji iletim sistemi elemanları; generatörler, trafolar, yükler Ders

5 Enerji iletim hatları; kısa, orta, uzun mesafeli hatların modellenmesi

Ders

6 Orta uzunluktaki hatların nominal devreleri, uzun hatların eşdeğer modelleri

Ders

7 Simetrili bileşenler, tanımı, temel teoremleri, güç ifadesi Ders

8 Ara sınav Ders

9 Gerilim ve akım dengesizliklerinde simetrili bileşenlerin uygulanması

Ders

10 Generatör, trafo, iletim hattı ve yüklerin dizi bileşenleri ve dizi bileşen devreleri

Ders

11 Arızalar, kısa devreler; tanımlar, eşdeğer devreler, çözüm yöntemleri

Ders

12 Bara empedans ve admitans modelleri, modeller üzerinde değişiklikler

13 Enerji nakli, Yük akışı, temel kavramlar

14 Kararlılık problemine giriş

Page 5: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

KAYNAKLAR

Ders Kitabı veya Notu Dersi veren öğretim üyesinin ders notları kullanılacaktır.

Diğer Kaynaklar 1-Elektrik Güç Sistemlerinin Analizi (Hüseyin ÇAKIR, YTÜ) 2-Güç Sistemlerinin Bilgisayar Destekli Analizi, (Uğur ARİFOĞLU,A. Yayınları, 3-Schaum´s Electric Power Systems ( McGraw-Hill,1989,)

DEĞERLENDİRME SİSTEMİ

Etkinlik Türleri Katkı Yüzdesi

Ara Sınav

40

Yarıyıl Sonu Sınavı

60

Toplam

100

DERSİN PROGRAM ÇIKTILARINA KATKISI

No

Program Çıktıları

Katkı Düzeyi

1

2

3

4

5

1

Matematik ve fen bilimleri hakkında genel kavrama yeteneği edinmek

ve analitik düşünme alışkanlığı kazandırmak

2

Elektrik-Elektronik Mühendisliği ile ilgili temel konularda bilgi birikimi

oluşturmak

X

3

Mühendislik problemlerini saptama, tanımlama, formüle etme ve

çözme becerisi ile bu amaca uygun analiz ve modelleme yöntemlerini

seçme ve uygulama yeteneği kazandırmak.

X

4 Sistemleri analiz etme ve tasarlama yeteneği ve becerisi kazandırmak

X

5

Kuramsal bilgileri laboratuar ve proje çalışmalarıyla uygulamaya

dönüştürmek

6 Güncel yazılım ve donanımları etkin bir biçimde kullanmak

7 Takım içinde ve bireysel çalışabilme becerisi kazanmak

8

Sözlü ve yazılı iletişim kurma becerisi kazanmak. Yabancı bir dili

meslekî yaşamda etkin biçimde kullanmak

9

Yasam boyu öğrenmenin gerekliliği bilinci; bilgiye erişebilme, bilim ve teknolojideki gelişmeleri izleme ve kendini sürekli yenileme becerisi kazanmak

10 Mesleki sorumluluk ve etik bilinç kazanmak

Page 6: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

T+P

AKTS / İŞ YÜKÜ TABLOSU İş Yükü (Saat)

Ders İçi Ders Saati ( 14 x Haftalık Ders Saati) 42

Ders Dışı

Ödev 5

Araştırma 10

Ön Hazırlık, Pekiştirme Çalışmaları 10

Diğer Faaliyetler 10

Sınavlar Ara Sınav (Ara Sınav Sayısı x Ara Sınav Süresi) 10

Yarıyıl Sonu Sınavı 15

Toplam İş Yükü 102

Toplam İş Yükü / 25,5 (s) 4

Dersin AKTS Kredisi 4

INSTITUTE/FACULTY/VOCATIONAL SCHOOL & PROGRAMME: FACULTY OF ENGINEERING-ELECTRICAL&ELECTRONIC ENGINEERING DIVISION

COURSE DETAILS

Title Code Medium of Instruction Type

Semeste r

Credit

s ECTS

Power Transmission

Systems EEM 414 Turkish

Departmental Elective

2 3+0 3 4

Prerequisites NONE

Instructor --

Teaching Assistants --

Objectives

As much as power consumption, generation, power transmission is also the popular optimal solution comparing other power types. The main course goal is to provide students with a complete overview of power system analysis and design using learning acquired other courses such as, Mathematics, Electric Circuits, Fields, Electric Machines, and High Voltage

Learning outcomes

1. Comprehend and Model major types of components used in

electrical power systems

2. Analyze three-phase networks under balanced and un-balanced

conditions

3. Analyze the power flow of a interconnected power system

4. Use techniques/procedures in analysis of faulted power

transmission systems

Page 7: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

TEACHING PLAN

We ek

Preliminary

Topics

Method

1 The basic concepts: representation, phasor diagrams, 2 Symmetric models of power transmission systems 3 Application to power transmission systems of p.u system

4 Components of power transmission systems: generators,

transformer, loads

5 Network and transmission line modeling, Medium line and Long

lines

6 Nominal and equivalent circuits of Transmission line parameter

computation

7 Review of sequence components 8 Midterm exam

9 Perform to sequence components in voltage and current instabilities

10 Sequence components of Generator, transformer, transmission line and sequence networks

11 Faults, short circuits, equivalent circuits, solution methods 12 Faults, short circuits, equivalent circuits, solution methods

13 Bus-impedance matrix, bus admittance matrix and the building

algorithm

14 Basic concepts of Power Transmission

REFERENCES

Text book/Lecture Notes

The instructor’s lectures will be used

Other References 1-Elektrik Güç Sistemlerinin Analizi (Hüseyin ÇAKIR, YTÜ) 2-Güç Sistemlerinin Bilgisayar Destekli Analizi, (Uğur ARİFOĞLU,A. Yayınları,ISBN:975-297-022-2) 2-Schaum´s Electric Power Systems ( McGraw-Hill,1989, ISBN: 0070459177) 3-Elements of Power System Analysis (WD. Stevenson, Mc-Graw Hill, 1994)

Types of Activity Grading Percentage

Midterm Exam

40

Final Exam

60

Total

100

Page 8: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

COURSE CONTRIBUTION TO PROGRAM OUTCOMES

No

Program Outcomes

Contribution degree

1

2

3

4

5

1

To achieve insights on mathematics and physical sciences and to gain

analytical thinking skills.

2

To accumulate knowledge on basic subjects about electrical and

electronics engineering.

X

3

To achieve specifying, defining, formulating and solving skills for

engineering problems and to gain ability to choose and apply

appropriate analysis and modelling methods for these purposes.

X

4 To gain system analysis and design abilities.

X

5 To apply theoretical knowledge to laboratory and project studies.

6 To use up-to-date software and hardware efficiently.

7 To gain ability to work in a team and individually.

8

To achieve skills on oral and written communication. To use a foreign

language effectively in professional life.

9

To become aware of importance of lifelong learning, to be able to gather information, to follow advances in science and technology and to gain ability to renew oneself.

10 To achieve professional and ethical responsibility.

ECTS/WORKLOAD TABLE

Workload per hour

Inside the classroom Course Hour ( 14 x weekly course hour) 42

Outside the classroom

Assignments 15

Research 15

Preliminary and Strengthening Works 22

Other Activities 10

Exams Midterm exam (Exam number x Exam time) 10

Final exam 15

Total workload 129

Total workload/30 hours 4.3

ECTS Credits 4

Page 9: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

INSTITUTE/FACULTY/VOCATIONAL SCHOOL & PROGRAMME:

FACULTY OF ENGINEERING-ELECTRICAL&ELECTRONIC ENGINEERING DIVISION

COURSE DETAILS

Title Code Medium of

Instruction Type Semester T+P Credits ECTS

Lighting Techniques EEM 415 Turkish Department

-al Elective 7 3+0 3 4

Prerequisites None

Instructor --

Teaching Assistants --

Objectives

Light engineering and project applications, the basic information to

troubleshoot problems that may arise, the project Drawing and making

detailed calculations of the basic issues and gain the ability to draw on the

project.

Learning outcomes

After completing the course, the students should be able to:

1. Knows the properties of the elements used for lighting andrunning.

2. Gas discharges, arc, incandescent, sodium, mercury vapor lamps used in lighting and fixtures, etc. knows the structure.

3. Knows the required items of Regulation (regulations),4. Lighting technique, knows the importance of the project

planning process.5. Light units, photocell lighting accounts aggregates and knows.

TEACHING PLAN

Week Preliminary Topics Method

1 The purpose of the lighting, defines Lecture

2 light sources and units Lecture

3 photocell aggregates, light, and light distribution diagrams of the

economy, Lecture

4 Light sources used in the circuit components (ballast, dimmers,

etc.), Lecture

5 Relevant provisions of the Electrical Interior Facilities Lecture

6 Regulation (regulations), Lecture

7 Examination of natural and artificial lighting installations, Lecture

8 Midterm Exam Written Exam

9 Lighting schemes for residential, Lecture

10 Lighting accounts Lecture

11 Lighting project, drawing Lecture

Page 10: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

12

Lighting project delivery, (site plan, a list of symbols, lighting

calculations, the strong current project, a weak current project, the

column circuit, load schedules, the voltage drop and current

control calculation, cost estimation, preparation of specifications

and forms).

Lecture

13 Lighting project delivery Lecture

14 Lighting project delivery Lecture

REFERENCES

Text book/Lecture Notes Lecture Notes

Other References 1. ÜNAL, Erdem,/ ÖZENÇ, Serhat, Aydınlatma Tasarımı ve Proje

Uygulamaları, İstanbul 2004.3

ASSESSMENT PLAN

Types of Activity Grading Percentage

Midterm Exam 20

Quiz 20

Assignments/Presentation 20

Final Exam 40

Total 100

COURSE CONTRIBUTION TO PROGRAM OUTCOMES

No Program Outcomes Contribution degree

1 2 3 4 5

1 To achieve insights on mathematics and physical sciences and to gain

analytical thinking skills.

2 To accumulate knowledge on basic subjects about electrical and

electronics engineering.

3

To achieve specifying, defining, formulating and solving skills for

engineering problems and to gain ability to choose and apply

appropriate analysis and modelling methods for these purposes.

4 To gain system analysis and design abilities.

X

5 To apply theoretical knowledge to laboratory and project studies.

6 To use up-to-date software and hardware efficiently.

X

Page 11: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

7 To gain ability to work in a team and individually.

X

8 To achieve skills on oral and written communication. To use a foreign

language effectively in professional life.

9

To become aware of importance of lifelong learning, to be able to

gather information, to follow advances in science and technology and to

gain ability to renew oneself.

10 To achieve professional and ethical responsibility.

ECTS/WORKLOAD TABLE Workload per hour

Inside the classroom Course Hour ( 14 x weekly course hour) 42

Outside the classroom

Assignments 10

Research 10

Preliminary and Strengthening Works 10

Other Activities 10

Exams

Midterm exam (Exam number x Exam time) 20

Final exam 10

Total workload 112

Total workload/25,5 hours 4.4

ECTS Credits 4

Page 12: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

ENSTİTÜ/FAKÜLTE/YÜKSEKOKUL ve PROGRAM: MÜHENDİSLİK FAKÜLTESİ-ELEKTRIK-ELEKTRONIK MÜHENDİSLİĞİ BÖLÜMÜ

DERS BİLGİLERİ

Adı Kodu Dili Türü Yarıyıl T+U Saati

Kredi AKTS

Aydınlatma Tekniği ve Projesi EEM 415 Türkçe Bölüm

Seçmeli 7 3+0 3 4

Ön Koşul Dersleri Yok

Ders Sorumluları --

Ders Sorumlu Yardımcıları

--

Dersin Amacı

Aydınlatma tekniği ve proje uygulamalarında çıkabilecek sorunları gidermeye yönelik temel bilgiler, proje çizimiyle ilgili temel konulara ilişkin ayrıntılı hesaplamalar yapabilme ve ilgili projeyi çizebilme becerisi kazandırılması.

Dersin Öğrenme Çıktıları

1. Aydınlatmada kullanılan elemanların özelliklerinin veçalışmasının öğrenilmesi.

2. Gaz deşarjları, arklı, akkor, sodyum, cıva buharlı v.b.aydınlatmada kullanılan lambaların ve armatürlerin yapısınınbilinmesi.

3. Elektrik İç Tesisleri Yönetmeliğinin ilgili maddelerininbilinmesi.

4. Öğrenci aydınlatma tekniğinde projelendirmenin önemininbilir.

5. Öğrenci aydınlatma projesine ilişkin hesapları yaparakprojeyi çizebilir.

Page 13: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

DERS PLANI

Hafta Ön

Hazırlık Konular/Uygulamalar Metot

1 Aydınlatmanın amacı, tanımlar Ders

2 ışık kaynakları ve birimleri Ders

3 fotosel büyüklükler, ışık ekonomisi ve ışık dağılımı diyagramları,

Ders

4 Aydınlatmada kullanılan lamba ve armatürler, arklı, akkor, sodyum ve cıva buharlı lambalar

Ders

5 Işık kaynaklarıyla birlikte kullanılan devre elemanları (balast, dimmer v.b.),

Ders

6 Elektrik İç Tesisleri Yönetmeliğinin ilgili maddeleri (ilgili yönetmelikler),

Ders

7 Doğal ve yapay aydınlatma tesislerinin incelenmesi, Ders

8 Arasınav Yazılı

9 Konutlar için aydınlatma düzenleri, Ders

10 Aydınlatma hesapları, Ders

11 Aydınlatma projesi çizimi Ders

12

Aydınlatma projesi teslimi, (vaziyet planı, sembol listesi, aydınlatma hesapları, kuvvetli akım projesi, zayıf akım projesi, kolon devresi, yükleme cetveli, gerilim düşümü ve akım kontrol hesabı, maliyet hesabı, şartname ve formların hazırlanması).

Ders

13 Aydınlatma projesi teslimi Grup

Çalışması

14 Aydınlatma projesi teslimi Grup

Çalışması

KAYNAKLAR

Ders Kitabı veya Notu Ders materyalleri olarak ders öncesi hazırlanmış not fotokopisi verilecektir.

Diğer Kaynaklar 1. ÜNAL, Erdem,/ ÖZENÇ, Serhat, Aydınlatma Tasarımı ve Proje

Uygulamaları, İstanbul 2004.

DEĞERLENDİRME SİSTEMİ

Etkinlik Türleri Katkı Yüzdesi

Ara Sınav 20

Kısa Sınav 20

Ödev, Proje 20

Yarıyıl Sonu Sınavı 40

Toplam 100

Page 14: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

DERSİN PROGRAM ÇIKTILARINA KATKISI

No Program Çıktıları Katkı Düzeyi

1 2 3 4 5

1 Matematik ve fen bilimleri hakkında genel kavrama yeteneği edinmek

ve analitik düşünme alışkanlığı kazandırmak

2 Elektrik-Elektronik Mühendisliği ile ilgili temel konularda bilgi birikimi

oluşturmak

3

Mühendislik problemlerini saptama, tanımlama, formüle etme ve

çözme becerisi ile bu amaca uygun analiz ve modelleme yöntemlerini

seçme ve uygulama yeteneği kazandırmak.

4 Sistemleri analiz etme ve tasarlama yeteneği ve becerisi kazandırmak

X

5 Kuramsal bilgileri laboratuar ve proje çalışmalarıyla uygulamaya

dönüştürmek

6 Güncel yazılım ve donanımları etkin bir biçimde kullanmak

X

7 Takım içinde ve bireysel çalışabilme becerisi kazanmak

X

8 Sözlü ve yazılı iletişim kurma becerisi kazanmak. Yabancı bir dili

meslekî yaşamda etkin biçimde kullanmak

9

Yasam boyu öğrenmenin gerekliliği bilinci; bilgiye erişebilme, bilim ve teknolojideki gelişmeleri izleme ve kendini sürekli yenileme becerisi kazanmak

10 Mesleki sorumluluk ve etik bilinç kazanmak

AKTS / İŞ YÜKÜ TABLOSU İş Yükü (Saat)

Ders İçi Ders Saati ( 14 x Haftalık Ders Saati) 42

Ders Dışı

Ödev 10

Araştırma 10

Ön Hazırlık, Pekiştirme Çalışmaları 10

Diğer Faaliyetler 10

Sınavlar Ara Sınav (Ara Sınav Sayısı x Ara Sınav Süresi) 20

Yarıyıl Sonu Sınavı 10

Toplam İş Yükü 112

Toplam İş Yükü / 25,5(s) 4.4

Dersin AKTS Kredisi 4

Page 15: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

INSTITUTE/FACULTY/VOCATIONAL SCHOOL & PROGRAMME:

FACULTY OF ENGINEERING-ELECTRICAL&ELECTRONIC ENGINEERING DIVISION

COURSE DETAILS

Title Code Medium of

Instruction Type Semester T+P Credits ECTS

Lighting Techniques EEM 415 Turkish Department

-al Elective Fall 3+0 3 4

Prerequisites None

Instructor --

Teaching Assistants --

Objectives

Light engineering and project applications, the basic information to

troubleshoot problems that may arise, the project Drawing and making

detailed calculations of the basic issues and gain the ability to draw on the

project.

Learning outcomes

After completing the course, the students should be able to:

1. Knows the properties of the elements used for lighting and running.

2. Gas discharges, arc, incandescent, sodium, mercury vapor lamps used in lighting and fixtures, etc. knows the structure.

3. Knows the required items of Regulation (regulations), 4. Lighting technique, knows the importance of the project

planning process. 5. Light units, photocell lighting accounts aggregates and knows.

Page 16: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

TEACHING PLAN

Week Preliminary Topics Method

1 The purpose of the lighting, defines Lecture

2 light sources and units Lecture

3 photocell aggregates, light, and light distribution diagrams of the

economy, Lecture

4 Light sources used in the circuit components (ballast, dimmers,

etc.), Lecture

5 Relevant provisions of the Electrical Interior Facilities Lecture

6 Regulation (regulations), Lecture

7 Examination of natural and artificial lighting installations, Lecture

8 Midterm Exam Written Exam

9 Lighting schemes for residential, Lecture

10 Lighting accounts Lecture

11 Lighting project, drawing Lecture

12

Lighting project delivery, (site plan, a list of symbols, lighting

calculations, the strong current project, a weak current project, the

column circuit, load schedules, the voltage drop and current

control calculation, cost estimation, preparation of specifications

and forms).

Lecture

13 Lighting project delivery Lecture

14 Lighting project delivery Lecture

REFERENCES

Text book/Lecture Notes Lecture Notes

Other References 1. ÜNAL, Erdem,/ ÖZENÇ, Serhat, Aydınlatma Tasarımı ve Proje

Uygulamaları, İstanbul 2004.3

ASSESSMENT PLAN

Types of Activity Grading Percentage

Midterm Exam 20

Quiz 20

Assignments/Presentation 20

Final Exam 40

Total 100

Page 17: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

COURSE CONTRIBUTION TO PROGRAM OUTCOMES

No Program Outcomes Contribution degree

1 2 3 4 5

1 To achieve insights on mathematics and physical sciences and to gain

analytical thinking skills.

2 To accumulate knowledge on basic subjects about electrical and

electronics engineering.

3

To achieve specifying, defining, formulating and solving skills for

engineering problems and to gain ability to choose and apply

appropriate analysis and modelling methods for these purposes.

4 To gain system analysis and design abilities.

X

5 To apply theoretical knowledge to laboratory and project studies.

6 To use up-to-date software and hardware efficiently.

X

7 To gain ability to work in a team and individually.

X

8 To achieve skills on oral and written communication. To use a foreign

language effectively in professional life.

9

To become aware of importance of lifelong learning, to be able to

gather information, to follow advances in science and technology and to

gain ability to renew oneself.

10 To achieve professional and ethical responsibility.

ECTS/WORKLOAD TABLE Workload per hour

Inside the classroom Course Hour ( 14 x weekly course hour) 42

Outside the classroom

Assignments 13

Research 15

Preliminary and Strengthening Works 10

Other Activities 10

Exams

Midterm exam (Exam number x Exam time) 20

Final exam 10

Total workload 120

Total workload/30 hours 4

ECTS Credits 4

Page 18: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

INSTITUTE/FACULTY/VOCATIONAL SCHOOL & PROGRAMME: FACULTY OF ENGINEERING-ELECTRICAL&ELECTRONIC ENGINEERING DIVISION

COURSE DETAILS

Title Code

Medium of

Instructio n

Type Semester T+P Credit

s ECTS

Microprocessors II EEM 416 Turkish Departmental

Elective 8 3+0 3 4

Prerequisites EEM 419 Microprocessors I

Instructor

Teaching Assistants

Objectives

Providing basics of Advanced Microcontroller architecture and its peripheral devices, different interrupt resource usage, developing problem solving algorithms, improving the ability of multi-processor communication realization

Learning outcomes

1. A comprehension of advanced microcontroller architecture

2. Improved the problem solving algorithms

3. A comprehension of signal converter and pulse width modulation

4. Ability of building synchronous asynchronous serial

communication and Multi-processor network

Page 19: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

TEACHING PLAN

We ek

Preliminary Topics Method

1 Introduction to advanced microcontrollers Lecture

2 Advanced microcontrollers architecture (ADUC841, intel-8051 based)

Lecture

3 Analog-Digital converter and their modes (ADC) Lecture

4 Analog-Digital converter and their modes (ADC) Lecture

5 Digital-Analog converter (DAC) Lecture

6 Pulse width modulation peripheral device and their modes (PWM Lecture

7 Additional timers and counters Lecture

8 Midterm exam Lecture

9 Watchdog timer and software security Lecture

10 Power supply monitor and processor security Lecture

11 Dual data pointer and external RAM usage Lecture

12 Internal data memory and EEPROM usage Lecture

13 Asynchronous serial communication and its modes Lecture

14 Multi-processor network Lecture

REFERENCES

Text book/Lecture Notes

The instructor’s lectures will be used

Other References 1. ADUC841 datasheet2. The 8051 microcontroller : architecture, programming, and applications,Kenneth J Ayala 3. Soft microcontroller data book, Dallas semiconductor

Types of Activity Grading Percentage

Midterm Exam 40

Final Exam 60

Total 100

Page 20: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

COURSE CONTRIBUTION TO PROGRAM OUTCOMES

No Program Outcomes Contribution degree

1 2 3 4 5

1 To achieve insights on mathematics and physical sciences and to gain

analytical thinking skills.

2 To accumulate knowledge on basic subjects about electrical and

electronics engineering. X

3

To achieve specifying, defining, formulating and solving skills for

engineering problems and to gain ability to choose and apply

appropriate analysis and modelling methods for these purposes. X

4 To gain system analysis and design abilities.

X

5 To apply theoretical knowledge to laboratory and project studies.

6 To use up-to-date software and hardware efficiently.

7 To gain ability to work in a team and individually.

8 To achieve skills on oral and written communication. To use a foreign

language effectively in professional life.

9

To become aware of importance of lifelong learning, to be able to gather information, to follow advances in science and technology and to gain ability to renew oneself.

10 To achieve professional and ethical responsibility.

ECTS/WORKLOAD TABLE Workload per hour

Inside the classroom Course Hour ( 14 x weekly course hour) 42

Outside the classroom

Assignments 5

Research 15

Preliminary and Strengthening Works 15

Other Activities 10

Exams Midterm exam (Exam number x Exam time) 10

Final exam 15

Total workload 112

Total workload/25,5 hours 4.4

ECTS Credits 4

Page 21: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

ENSTİTÜ/FAKÜLTE/YÜKSEKOKUL ve PROGRAM: MÜHENDİSLİK FAKÜLTESİ-ELEKTRIK-ELEKTRONIK MÜHENDİSLİĞİ BÖLÜMÜ

DERS BİLGİLERİ

Adı Kodu Dili Türü Yarıyıl T+U Saati

Kredi AKTS

Mikroişlemciler II EEM 416 Türkçe Bölüm

Seçmeli 8 3+0 3 4

Ön Koşul Dersleri EEM 419

Ders Sorumluları --

Ders Sorumlu Yardımcıları

--

Dersin Amacı

Gelişmiş mikrodenetleyici mimarisi ve çevre birimlerinin görülmesi, farklı kesme kaynaklarının kullanılabilmesi, problem çözüm algoritmalarının geliştirilmesi, çoklu işlemci haberleşme gerçekleştirilebilme yeteneklerinin geliştirilmesi.

Dersin Öğrenme Çıktıları

1. Gelişmiş mikrodenetleyici mimarisi tanır

2. Problem çözüm algoritmalarının geliştirir

3. İşaret dönüşümleri ve modülasyon gerçekleyebilir

4. Senkron , asenkron seri haberleşme ve çoklu işlemcili ağ kurabilir

DERS PLANI

Hafta Ön

Hazırlık Konular/Uygulamalar Metot

1 Gelişmiş mikrodenetleyici ve karşılaştırılması Ders

2 Gelişmiş mikrodenetleyici mimarisi (ADUC841 intel_8051 tabanlı) Ders

3 Analog-Dijital çevre birimi ve modları (ADC) Ders

4 Analog-Dijital çevre birimi ve modları (ADC) Ders

5 Dijital -Analog çevre birimi (DAC) Ders

6 Darbe-genişlik modulasyon çevre birimi ve modları (PWM) Ders

7 İlave zamanlayıcı ve sayıcılar Ders

8 Ara sınav Ders

9 Watchdog zamanlayıcı ve yazılım güvenliği Ders

10 Besleme kaynak izleyicisi ve işlemci güvenliği Ders

11 Çift veri göstergesi ve harici RAM kullanımı Ders

12 Dahili veri belleği eeprom kullanımı Ders

13 Asenkron haberleşme ve modları Ders

14 Çok-işlemci ağ Ders

Page 22: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

KAYNAKLAR

Ders Kitabı veya Notu Dersi veren öğretim üyesinin ders notları kullanılacaktır.

Diğer Kaynaklar 1. ADUC841 datasheet2. The 8051 microcontroller : architecture, programming, and applications,Kenneth J Ayala 3. Soft microcontroller data book, Dallas semiconductor

DEĞERLENDİRME SİSTEMİ

Etkinlik Türleri Katkı Yüzdesi

Ara Sınav 40

Yarıyıl Sonu Sınavı 60

Toplam 100

DERSİN PROGRAM ÇIKTILARINA KATKISI

No Program Çıktıları Katkı Düzeyi

1 2 3 4 5

1 Matematik ve fen bilimleri hakkında genel kavrama yeteneği edinmek

ve analitik düşünme alışkanlığı kazandırmak

2 Elektrik-Elektronik Mühendisliği ile ilgili temel konularda bilgi birikimi

oluşturmak X

3

Mühendislik problemlerini saptama, tanımlama, formüle etme ve

çözme becerisi ile bu amaca uygun analiz ve modelleme yöntemlerini

seçme ve uygulama yeteneği kazandırmak. X

4 Sistemleri analiz etme ve tasarlama yeteneği ve becerisi kazandırmak

X

5 Kuramsal bilgileri laboratuar ve proje çalışmalarıyla uygulamaya

dönüştürmek

6 Güncel yazılım ve donanımları etkin bir biçimde kullanmak

7 Takım içinde ve bireysel çalışabilme becerisi kazanmak

8 Sözlü ve yazılı iletişim kurma becerisi kazanmak. Yabancı bir dili

meslekî yaşamda etkin biçimde kullanmak

9

Yasam boyu öğrenmenin gerekliliği bilinci; bilgiye erişebilme, bilim ve teknolojideki gelişmeleri izleme ve kendini sürekli yenileme becerisi kazanmak

10 Mesleki sorumluluk ve etik bilinç kazanmak

Page 23: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

AKTS / İŞ YÜKÜ TABLOSU İş Yükü (Saat)

Ders İçi Ders Saati ( 14 x Haftalık Ders Saati) 42

Ders Dışı

Ödev 5

Araştırma 15

Ön Hazırlık, Pekiştirme Çalışmaları 15

Diğer Faaliyetler 10

Sınavlar Ara Sınav (Ara Sınav Sayısı x Ara Sınav Süresi) 10

Yarıyıl Sonu Sınavı 15

Toplam İş Yükü 112

Toplam İş Yükü / 25,5 (s) 4.4

Dersin AKTS Kredisi 4

INSTITUTE/FACULTY/VOCATIONAL SCHOOL & PROGRAMME: FACULTY OF ENGINEERING-ELECTRICAL&ELECTRONIC ENGINEERING DIVISION

COURSE DETAILS

Title Code

Medium of

Instructio n

Type Semester T+P Credit

s ECTS

Microprocessors II EEM 416 Turkish Departmental

Elective 2 3+0 3 4

Prerequisites EEM 419

Instructor

Teaching Assistants

Objectives

Providing basics of Advanced Microcontroller architecture and its peripheral devices, different interrupt resource usage, developing problem solving algorithms, improving the ability of multi-processor communication realization

Learning outcomes

1. A comprehension of advanced microcontroller architecture

2. Improved the problem solving algorithms

3. A comprehension of signal converter and pulse width modulation

4. Ability of building synchronous asynchronous serial

communication and Multi-processor network

Page 24: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

TEACHING PLAN

We ek

Preliminary Topics Method

1 Introduction to advanced microcontrollers Lecture

2 Advanced microcontrollers architecture (ADUC841, intel-8051 based)

Lecture

3 Analog-Digital converter and their modes (ADC) Lecture

4 Analog-Digital converter and their modes (ADC) Lecture

5 Digital-Analog converter (DAC) Lecture

6 Pulse width modulation peripheral device and their modes (PWM Lecture

7 Additional timers and counters Lecture

8 Midterm exam Lecture

9 Watchdog timer and software security Lecture

10 Power supply monitor and processor security Lecture

11 Dual data pointer and external RAM usage Lecture

12 Internal data memory and EEPROM usage Lecture

13 Asynchronous serial communication and its modes Lecture

14 Multi-processor network Lecture

REFERENCES

Text book/Lecture Notes

The instructor’s lectures will be used

Other References 1. ADUC841 datasheet2. The 8051 microcontroller : architecture, programming, and applications,Kenneth J Ayala 3. Soft microcontroller data book, Dallas semiconductor

Types of Activity Grading Percentage

Midterm Exam 40

Final Exam 60

Total 100

Page 25: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

COURSE CONTRIBUTION TO PROGRAM OUTCOMES

No Program Outcomes Contribution degree

1 2 3 4 5

1 To achieve insights on mathematics and physical sciences and to gain

analytical thinking skills.

2 To accumulate knowledge on basic subjects about electrical and

electronics engineering. X

3

To achieve specifying, defining, formulating and solving skills for

engineering problems and to gain ability to choose and apply

appropriate analysis and modelling methods for these purposes. X

4 To gain system analysis and design abilities.

X

5 To apply theoretical knowledge to laboratory and project studies.

6 To use up-to-date software and hardware efficiently.

7 To gain ability to work in a team and individually.

8 To achieve skills on oral and written communication. To use a foreign

language effectively in professional life.

9

To become aware of importance of lifelong learning, to be able to gather information, to follow advances in science and technology and to gain ability to renew oneself.

10 To achieve professional and ethical responsibility.

ECTS/WORKLOAD TABLE Workload per hour

Inside the classroom Course Hour ( 14 x weekly course hour) 42

Outside the classroom

Assignments 5

Research 15

Preliminary and Strengthening Works 15

Other Activities 10

Exams Midterm exam (Exam number x Exam time) 10

Final exam 15

Total workload 112

Total workload/25,5 hours 4.4

ECTS Credits 4

Page 26: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

INSTITUTE/FACULTY/VOCATIONAL SCHOOL & PROGRAMME: FACULTY OF ENGINEERING-ELECTRICAL&ELECTRONIC ENGINEERING DIVISION

COURSE DETAILS

Title Code Medium of Instruction

Type Semester T+P Credits ECTS

Optoelectronic EEM 420 Turkish Departmental

Elective 8 3+0 3 4

Prerequisites None

Instructor

Teaching Assistants

Objectives

The course aims to represent informations about optics, optoelectronics, optics band of the electromagnetic spectrum, the parameters and the components of the optoelectronic system and the scanning systems with their applications.

Learning outcomes

1. Defining electromagnetic spectrum and semi-conductor photon

sensors

2. Understanding optical components

3. Understanding optoelectronics

Page 27: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

TEACHING PLAN

We

ek Preliminary Topics Method

1 Definition of the electromagnetic spectrum, semi-conductor photon sensors

Lecture

2 Definition of the electromagnetic spectrum, semi-conductor photon sensors

Lecture

3 Optics components Lecture

4 The optoelectronics Lecture

5 The optoelectronics Lecture

6 The electromagnetic spectrum, the effects of the atmosphere Lecture

7 The electromagnetic spectrum, the effects of the atmosphere Lecture

8 Midterm exam Lecture

9 Night vision system, thermal camera, photometer Lecture

10 Absorbent and reflector filters Lecture

11 Absorbent and reflector filters Lecture

12 Absorbent and reflector filters Lecture

13 The parameters of the optical systems Lecture

14 The series and the parameters of the optoelectronic detectors Lecture

REFERENCES

Text book/Lecture Notes

The instructor’s lectures will be used

Other References 1. E.Uiga ,Optoelectronics,Prentice Hall,Englewood Cliffs,N.J.,1995.2. M.Tischler,Optoelectronics:Fiber Optics and Lasers,Macmillan/Mc Graw-Hill(Glencoe), Columbus,Ohio,1992

Types of Activity Grading Percentage

Midterm Exam 40

Final Exam 60

Total 100

Page 28: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

COURSE CONTRIBUTION TO PROGRAM OUTCOMES

No Program Outcomes

To achieve insights on mathematics and physical sciences and to gain

Contribution degree

1 2 3 4 5

1 analytical thinking skills.

To accumulate knowledge on basic subjects about electrical and 2 electronics engineering. X

To achieve specifying, defining, formulating and solving skills for

3 engineering problems and to gain ability to choose and apply X

appropriate analysis and modelling methods for these purposes.

4 To gain system analysis and design abilities.

X

5 To apply theoretical knowledge to laboratory and project studies.

6 To use up-to-date software and hardware efficiently.

7 To gain ability to work in a team and individually.

To achieve skills on oral and written communication. To use a foreign language 8 effectively in professional life.

To become aware of importance of lifelong learning, to be able to gather

9 information, to follow advances in science and technology and to gain ability to renew oneself.

10 To achieve professional and ethical responsibility.

ECTS/WORKLOAD TABLE Workload per hour

Inside the classroom Course Hour ( 14 x weekly course hour) 42

Outside the classroom

Assignments 5

Research 15

Preliminary and Strengthening Works 15

Other Activities 10

Exams Midterm exam (Exam number x Exam time) 10

Final exam 15

Total workload 112

Total workload/25,5 hours 4.4

ECTS Credits 4

Page 29: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

ENSTİTÜ/FAKÜLTE/YÜKSEKOKUL ve PROGRAM: MÜHENDİSLİK FAKÜLTESİ-ELEKTRIK-ELEKTRONIK MÜHENDİSLİĞİ BÖLÜMÜ

DERS BİLGİLERİ

Adı Kodu Dili Türü Yarıyıl T+U Saati

Kredi AKTS

Optoelektronik EEM 420 Türkçe Bölüm

Seçmeli 8 3+0 3 4

Ön Koşul Dersleri --

Ders Sorumluları --

Ders Sorumlu Yardımcıları

--

Dersin Amacı

Optik, elektrooptik, optoelektronik, elektromanyetik spektrumun optik bandı, optoelektronik sistem bileşen ve parametreleri, tarama (scanning) sistemleri, infrared ışıma konularında tanım ve temel bilgilerin uygulama örnekleri ile birlikte sunulması amaçlanmaktadır.

Dersin Öğrenme Çıktıları

1. Elektromanyetik spektrumun tanimi,yari-iletken foton

algılayıcılarını öğrenir

2. Optik bileşenler hakkında bilgi sahibi olur

3. Optoelektronik cihazlar ve çalışma prensiplerini öğrenir

DERS PLANI

Hafta Ön

Hazırlık Konular/Uygulamalar Metot

1 Elektromanyetik spektrumun tanımı,yari-iletken foton algılayıcıları

Ders

2 Elektromanyetik spektrumun tanımı,yari-iletken foton algılayıcıları

Ders

3 Optik bileşenler, elektrooptik(Kerr Hücresi Ders

4 Optoelektronik,optronik Ders

5 Optoelektronik,optronik Ders

6 Elektromagnetik spektrum,atmosferin etkileri Ders

7 Elektromagnetik spektrum,atmosferin etkileri Ders

8 Ara sınav Ders

9 Elektromagnetik spektrum,atmosferin etkileri Ders

10 Gece görüş sistemi, termal kamera, fotometri, radyometri uygulamaları

Ders

11 Absorblayıcı,yansıtıcı filtreler,soğuk/sıcak ayna Ders

12 Absorblayıcı,yansıtıcı filtreler,soğuk/sıcak ayna Ders

13 Optik sistem parametreleri Ders

14 Optoelektronik Dedektör Parametre ve Dizileri Ders

Page 30: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

KAYNAKLAR

Ders Kitabı veya Notu Dersi veren öğretim üyesinin ders notları kullanılacaktır.

Diğer Kaynaklar 1. E.Uiga ,Optoelectronics,Prentice Hall,Englewood Cliffs,N.J.,1995.2. M.Tischler,Optoelectronics:Fiber Optics and Lasers,Macmillan/Mc Graw-Hill(Glencoe), Columbus,Ohio,1992

DEĞERLENDİRME SİSTEMİ

Etkinlik Türleri Katkı Yüzdesi

Ara Sınav 40

Yarıyıl Sonu Sınavı 60

Toplam 100

DERSİN PROGRAM ÇIKTILARINA KATKISI

No Program Çıktıları Katkı Düzeyi

1 2 3 4 5

1 Matematik ve fen bilimleri hakkında genel kavrama yeteneği edinmek

ve analitik düşünme alışkanlığı kazandırmak

2 Elektrik-Elektronik Mühendisliği ile ilgili temel konularda bilgi birikimi

oluşturmak X

3

Mühendislik problemlerini saptama, tanımlama, formüle etme ve

çözme becerisi ile bu amaca uygun analiz ve modelleme yöntemlerini

seçme ve uygulama yeteneği kazandırmak. X

4 Sistemleri analiz etme ve tasarlama yeteneği ve becerisi kazandırmak

X

5 Kuramsal bilgileri laboratuar ve proje çalışmalarıyla uygulamaya

dönüştürmek

6 Güncel yazılım ve donanımları etkin bir biçimde kullanmak

7 Takım içinde ve bireysel çalışabilme becerisi kazanmak

8 Sözlü ve yazılı iletişim kurma becerisi kazanmak. Yabancı bir dili

meslekî yaşamda etkin biçimde kullanmak

9

Yasam boyu öğrenmenin gerekliliği bilinci; bilgiye erişebilme, bilim ve teknolojideki gelişmeleri izleme ve kendini sürekli yenileme becerisi kazanmak

10 Mesleki sorumluluk ve etik bilinç kazanmak

Page 31: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

AKTS / İŞ YÜKÜ TABLOSU İş Yükü (Saat)

Ders İçi Ders Saati ( 14 x Haftalık Ders Saati) 42

Ders Dışı

Ödev 5

Araştırma 15

Ön Hazırlık, Pekiştirme Çalışmaları 15

Diğer Faaliyetler 10

Sınavlar Ara Sınav (Ara Sınav Sayısı x Ara Sınav Süresi) 10

Yarıyıl Sonu Sınavı 15

Toplam İş Yükü 112

Toplam İş Yükü / 25,5 (s) 4.4

Dersin AKTS Kredisi 4

INSTITUTE/FACULTY/VOCATIONAL SCHOOL & PROGRAMME: FACULTY OF ENGINEERING-ELECTRICAL&ELECTRONIC ENGINEERING DIVISION

COURSE DETAILS

Title Code Medium of Instruction

Type Semester T+P Credits ECTS

Optoelectronic EEM 420 Turkish Departmental

Elective 2 3+0 3 4

Prerequisites EEM 204

Instructor

Teaching Assistants

Objectives

The course aims to represent informations about optics, optoelectronics, optics band of the electromagnetic spectrum, the parameters and the components of the optoelectronic system and the scanning systems with their applications.

Learning outcomes

1. Defining electromagnetic spectrum and semi-conductor photon

sensors

2. Understanding optical components

3. Understanding optoelectronics

Page 32: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

TEACHING PLAN

We

ek

Preliminary

Topics

Method

1 Definition of the electromagnetic spectrum, semi-conductor

photon sensors

Lecture

2 Definition of the electromagnetic spectrum, semi-conductor

photon sensors

Lecture

3 Optics components Lecture

4 The optoelectronics Lecture

5 The optoelectronics Lecture

6 The electromagnetic spectrum, the effects of the atmosphere Lecture

7 The electromagnetic spectrum, the effects of the atmosphere Lecture

8 Midterm exam Lecture

9 Night vision system, thermal camera, photometer Lecture

10 Absorbent and reflector filters Lecture

11 Absorbent and reflector filters Lecture

12 Absorbent and reflector filters Lecture

13 The parameters of the optical systems Lecture

14 The series and the parameters of the optoelectronic detectors Lecture

REFERENCES

Text book/Lecture Notes

The instructor’s lectures will be used

Other References 1. E.Uiga ,Optoelectronics,Prentice Hall,Englewood Cliffs,N.J.,1995. 2. M.Tischler,Optoelectronics:Fiber Optics and Lasers,Macmillan/Mc Graw- Hill(Glencoe), Columbus,Ohio,1992

Types of Activity Grading Percentage

Midterm Exam

40

Final Exam

60

Total

100

Page 33: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

COURSE CONTRIBUTION TO PROGRAM OUTCOMES

No Program Outcomes

To achieve insights on mathematics and physical sciences and to gain

Contribution degree

1 2 3 4 5

1 analytical thinking skills.

To accumulate knowledge on basic subjects about electrical and 2 electronics engineering. X

To achieve specifying, defining, formulating and solving skills for

3 engineering problems and to gain ability to choose and apply X

appropriate analysis and modelling methods for these purposes.

4 To gain system analysis and design abilities.

X

5 To apply theoretical knowledge to laboratory and project studies.

6 To use up-to-date software and hardware efficiently.

7 To gain ability to work in a team and individually.

To achieve skills on oral and written communication. To use a foreign language 8 effectively in professional life.

To become aware of importance of lifelong learning, to be able to gather

9 information, to follow advances in science and technology and to gain ability to renew oneself.

10 To achieve professional and ethical responsibility.

ECTS/WORKLOAD TABLE

Workload per hour

Inside the classroom Course Hour ( 14 x weekly course hour) 42

Outside the classroom

Assignments 15

Research 15

Preliminary and Strengthening Works 22

Other Activities 10

Exams

Midterm exam (Exam number x Exam time) 10

Final exam 15

Total workload 129

Total workload/30 hours 4.3

ECTS Credits 4

Page 34: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

INSTITUTE/FACULTY/VOCATIONAL SCHOOL & PROGRAMME: FACULTY OF ENGINEERING-ELECTRICAL&ELECTRONIC ENGINEERING DIVISION

COURSE DETAILS

Title Code Medium of Instruction

Type Semester T+P Credit

s ECTS

Antennas and Propagation

EEM422 Turkish Departmental

Elective 2 3+0 3 4

Prerequisites EEM 314 Electromagnetic Wave Theory

Instructor

Teaching Assistants

Objectives

This course is designed to give students the fundamentals of antenna theory, to constitute a knowledge-base about the characteristics of various antenna types and antenna design, to prepare the students to the advanced antenna theory courses.

Learning outcomes

1. Understanding the fundamentals of antenna theory

2. Comprehending the basic properties of various types of antennas

and analyze methods

3. Understanding the principles of the propagation of radio waves

4. Developing the skills of solving the engineering problems and

design

Page 35: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

TEACHING PLAN

We ek

Preliminary Topics Method

1 Introduction to Antenna Theory Lecture

2 Fundamental Antenna Parameters Lecture

3 Fundamental Antenna Parameters Lecture

4 Radiation Integrals Lecture

5 Linear Wire Antennas Lecture

6 Loop Antennas Lecture

7 Antenna Arrays Lecture

8 Midterm exam Lecture

9 Antenna Arrays Lecture

10 Broadband Antennas Lecture

11 Aperture Antennas Lecture

12 Horn Antennas Lecture

13 Microstrip Antennas Lecture

14 Reflector Antennas Lecture

REFERENCES

Text book/Lecture Notes

The instructor’s lectures will be used

Other References 1. C.A.Balanis, “Advanced Engineering Electromagnetics”, JohnWiley & Sons2. Stutzman and Thiele, “Antenna Theory and Design”, Wiley3. J.D.Kraus, “Antennas for All Applications”, McGrawHill4. İ. Akkaya, “Antenler ve Propagasyon” , Sistem Yay.

Types of Activity Grading Percentage

Midterm Exam 40

Final Exam 60

Total 100

Page 36: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

COURSE CONTRIBUTION TO PROGRAM OUTCOMES

No Program Outcomes Contribution degree

1 2 3 4 5

1 To achieve insights on mathematics and physical sciences and to gain

analytical thinking skills.

2 To accumulate knowledge on basic subjects about electrical and

electronics engineering. X

3

To achieve specifying, defining, formulating and solving skills for

engineering problems and to gain ability to choose and apply

appropriate analysis and modelling methods for these purposes. X

4 To gain system analysis and design abilities.

X

5 To apply theoretical knowledge to laboratory and project studies.

6 To use up-to-date software and hardware efficiently.

7 To gain ability to work in a team and individually.

8 To achieve skills on oral and written communication. To use a foreign

language effectively in professional life.

9

To become aware of importance of lifelong learning, to be able to gather information, to follow advances in science and technology and to gain ability to renew oneself.

10 To achieve professional and ethical responsibility.

ECTS/WORKLOAD TABLE Workload per hour

Inside the classroom Course Hour ( 14 x weekly course hour) 42

Outside the classroom

Assignments 5

Research 15

Preliminary and Strengthening Works 15

Other Activities 10

Exams Midterm exam (Exam number x Exam time) 10

Final exam 15

Total workload 112

Total workload/25,5 hours 4.4

ECTS Credits 4

Page 37: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

ENSTİTÜ/FAKÜLTE/YÜKSEKOKUL ve PROGRAM: MÜHENDİSLİK FAKÜLTESİ-ELEKTRIK-ELEKTRONIK MÜHENDİSLİĞİ BÖLÜMÜ

DERS BİLGİLERİ

Adı Kodu Dili Türü Yarıyıl T+U Saati

Kredi AKTS

Antenler ve Yayılma EEM422 Türkçe Bölüm

Seçmeli 8 3+0 3 4

Ön Koşul Dersleri EEM 314

Ders Sorumluları --

Ders Sorumlu Yardımcıları

--

Dersin Amacı

Elektrik-Elektronik Mühendisliği öğrencilerine anten teorisinin temellerinin verilmesi, çeşitli tipteki antenlerin karakteristikleri ve tasarımları konusunda temel bilgi düzeyinin sağlanması, öğrencilerin daha ileri düzeydeki anten teorisi derslerine hazırlanması.

Dersin Öğrenme Çıktıları

1. Anten teorisinin temellerinin kavrar

2. Çeşitli tipteki antenlerin temel özelliklerinin ve analiz

yöntemlerini kavrar

3. Radyo dalgalarının yayılım prensiplerinin anlar

4. Mühendislik problemlerini çözme ve tasarım becerisi kazanır

DERS PLANI

Hafta Ön

Hazırlık Konular/Uygulamalar Metot

1 Anten Teorisine Giriş Ders

2 Temel Anten Parametreleri Ders

3 Temel Anten Parametreleri Ders

4 Işıma İntegralleri Ders

5 Doğrusal Çubuk Antenler Ders

6 Halka Antenler Ders

7 Anten Dizileri Ders

8 Ara sınav Ders

9 Anten Dizileri Ders

10 Geniş Bantlı Antenler Ders

11 Açıklık Antenler Ders

12 Horn Antenler Ders

13 Mikroşerit Antenler Ders

14 Yansıtıcı Antenler Ders

Page 38: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

KAYNAKLAR

Ders Kitabı veya Notu Dersi veren öğretim üyesinin ders notları kullanılacaktır.

Diğer Kaynaklar 1. C.A.Balanis, “Advanced Engineering Electromagnetics”, JohnWiley & Sons2. Stutzman and Thiele, “Antenna Theory and Design”, Wiley3. J.D.Kraus, “Antennas for All Applications”, McGrawHill4. İ. Akkaya, “Antenler ve Propagasyon” , Sistem Yayıncılık

DEĞERLENDİRME SİSTEMİ

Etkinlik Türleri Katkı Yüzdesi

Ara Sınav 40

Yarıyıl Sonu Sınavı 60

Toplam 100

DERSİN PROGRAM ÇIKTILARINA KATKISI

No Program Çıktıları Katkı Düzeyi

1 2 3 4 5

1 Matematik ve fen bilimleri hakkında genel kavrama yeteneği edinmek

ve analitik düşünme alışkanlığı kazandırmak

2 Elektrik-Elektronik Mühendisliği ile ilgili temel konularda bilgi birikimi

oluşturmak X

3

Mühendislik problemlerini saptama, tanımlama, formüle etme ve

çözme becerisi ile bu amaca uygun analiz ve modelleme yöntemlerini

seçme ve uygulama yeteneği kazandırmak. X

4 Sistemleri analiz etme ve tasarlama yeteneği ve becerisi kazandırmak

X

5 Kuramsal bilgileri laboratuar ve proje çalışmalarıyla uygulamaya

dönüştürmek

6 Güncel yazılım ve donanımları etkin bir biçimde kullanmak

7 Takım içinde ve bireysel çalışabilme becerisi kazanmak

8 Sözlü ve yazılı iletişim kurma becerisi kazanmak. Yabancı bir dili

meslekî yaşamda etkin biçimde kullanmak

9

Yasam boyu öğrenmenin gerekliliği bilinci; bilgiye erişebilme, bilim ve teknolojideki gelişmeleri izleme ve kendini sürekli yenileme becerisi kazanmak

10 Mesleki sorumluluk ve etik bilinç kazanmak

Page 39: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

AKTS / İŞ YÜKÜ TABLOSU İş Yükü (Saat)

Ders İçi Ders Saati ( 14 x Haftalık Ders Saati) 42

Ders Dışı

Ödev 5

Araştırma 15

Ön Hazırlık, Pekiştirme Çalışmaları 15

Diğer Faaliyetler 10

Sınavlar Ara Sınav (Ara Sınav Sayısı x Ara Sınav Süresi) 10

Yarıyıl Sonu Sınavı 15

Toplam İş Yükü 112

Toplam İş Yükü / 30 (s) 4.4

Dersin AKTS Kredisi 4

INSTITUTE/FACULTY/VOCATIONAL SCHOOL & PROGRAMME: FACULTY OF ENGINEERING-ELECTRICAL&ELECTRONIC ENGINEERING DIVISION

COURSE DETAILS

Title Code Medium of Instruction

Type Semester T+P Credit

s ECTS

Antennas and Propagation

EEM422 Turkish Departmental

Elective 2 3+0 3 4

Prerequisites EEM 311

Instructor

Teaching Assistants

Objectives

This course is designed to give students the fundamentals of antenna theory, to constitute a knowledge-base about the characteristics of various antenna types and antenna design, to prepare the students to the advanced antenna theory courses.

Learning outcomes

1. Understanding the fundamentals of antenna theory

2. Comprehending the basic properties of various types of antennas

and analyze methods

3. Understanding the principles of the propagation of radio waves

4. Developing the skills of solving the engineering problems and

design

Page 40: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

TEACHING PLAN

We ek

Preliminary

Topics

Method

1 Introduction to Antenna Theory Lecture

2 Fundamental Antenna Parameters Lecture

3 Fundamental Antenna Parameters Lecture

4 Radiation Integrals Lecture

5 Linear Wire Antennas Lecture

6 Loop Antennas Lecture

7 Antenna Arrays Lecture

8 Midterm exam Lecture

9 Antenna Arrays Lecture

10 Broadband Antennas Lecture

11 Aperture Antennas Lecture

12 Horn Antennas Lecture

13 Microstrip Antennas Lecture

14 Reflector Antennas Lecture

REFERENCES

Text book/Lecture Notes

The instructor’s lectures will be used

Other References 1. C.A.Balanis, “Advanced Engineering Electromagnetics”, JohnWiley & Sons 2. Stutzman and Thiele, “Antenna Theory and Design”, Wiley 3. J.D.Kraus, “Antennas for All Applications”, McGrawHill 4. İ. Akkaya, “Antenler ve Propagasyon” , Sistem Yay.

Types of Activity Grading Percentage

Midterm Exam

40

Final Exam

60

Total

100

Page 41: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

COURSE CONTRIBUTION TO PROGRAM OUTCOMES

No

Program Outcomes

Contribution degree

1

2

3

4

5

1

To achieve insights on mathematics and physical sciences and to gain

analytical thinking skills.

2

To accumulate knowledge on basic subjects about electrical and

electronics engineering.

X

3

To achieve specifying, defining, formulating and solving skills for

engineering problems and to gain ability to choose and apply

appropriate analysis and modelling methods for these purposes.

X

4 To gain system analysis and design abilities.

X

5 To apply theoretical knowledge to laboratory and project studies.

6 To use up-to-date software and hardware efficiently.

7 To gain ability to work in a team and individually.

8

To achieve skills on oral and written communication. To use a foreign

language effectively in professional life.

9

To become aware of importance of lifelong learning, to be able to gather information, to follow advances in science and technology and to gain ability to renew oneself.

10 To achieve professional and ethical responsibility.

ECTS/WORKLOAD TABLE

Workload per hour

Inside the classroom Course Hour ( 14 x weekly course hour) 42

Outside the classroom

Assignments 15

Research 15

Preliminary and Strengthening Works 22

Other Activities 10

Exams Midterm exam (Exam number x Exam time) 10

Final exam 15

Total workload 129

Total workload/30 hours 4.3

ECTS Credits 4

Page 42: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

INSTITUTE/FACULTY/VOCATIONAL SCHOOL & PROGRAMME: FACULTY OF ENGINEERING-ELECTRICAL&ELECTRONIC ENGINEERING DIVISION

COURSE DETAILS

Title Code Medium of Instruction

Type Semester T+P Credit

s ECTS

Microwave Techniques

EEM 423 Turkish Departmental

Elective 7 3+0 3 4

Prerequisites EEM 314 Electromagnetic Wave Theory

Instructor

Teaching Assistants

Objectives Obtaining the basic knowledge related to the microwave theory and applications

Learning outcomes

1. Comprehending basic issues about the transmission lines and

waveguides

2. Developing the skills of design and analyze passive microwave

components and impedance matching Networks

3. Realizing the filter design

4. Developing the basic skills of problem solving in the field of

microwave engineering

Page 43: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

TEACHING PLAN

We ek

Preliminary Topics Method

1 Introduction and repetition of the fundamental issues Lecture

2 Transmission Lines Lecture

3 Transmission Lines Lecture

4 Waveguides Lecture

5 Waveguides Lecture

6 Equivalent Circuit Analysis in Waveguides and Scattering Matrix Lecture

7 Equivalent Circuit Analysis in Waveguides and Scattering Matrix Lecture

8 Midterm exam Lecture

9 Impedance Transformation and Matching Techniques Lecture

10 Impedance Transformation and Matching Techniques Lecture

11 Microwave Resonators Lecture

12 Power Dividers, Directional Couplers Lecture

13 Microwave Filters Lecture

14 Active Microwave Circuits Lecture

REFERENCES

Text book/Lecture Notes

The instructor’s lectures will be used

Other References 1. David M. Pozar, “Microwave Engineering”, Addision-Wesley

Publishing Company2. R.S. Elliott, An Introduction to Guided Waves and Microwave Circuits,

Prentice-Hall3. R. E. Collin, “Foundations for Microwave Engineering”, McGraw-Hill

Types of Activity Grading Percentage

Midterm Exam 40

Final Exam 60

Total 100

Page 44: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

COURSE CONTRIBUTION TO PROGRAM OUTCOMES

No Program Outcomes Contribution degree

1 2 3 4 5

1 To achieve insights on mathematics and physical sciences and to gain

analytical thinking skills.

2 To accumulate knowledge on basic subjects about electrical and

electronics engineering. X

3

To achieve specifying, defining, formulating and solving skills for

engineering problems and to gain ability to choose and apply

appropriate analysis and modelling methods for these purposes. X

4 To gain system analysis and design abilities.

X

5 To apply theoretical knowledge to laboratory and project studies.

6 To use up-to-date software and hardware efficiently.

7 To gain ability to work in a team and individually.

8 To achieve skills on oral and written communication. To use a foreign

language effectively in professional life.

9

To become aware of importance of lifelong learning, to be able to gather information, to follow advances in science and technology and to gain ability to renew oneself.

10 To achieve professional and ethical responsibility.

ECTS/WORKLOAD TABLE Workload per hour

Inside the classroom Course Hour ( 14 x weekly course hour) 42

Outside the classroom

Assignments 5

Research 15

Preliminary and Strengthening Works 15

Other Activities 10

Exams Midterm exam (Exam number x Exam time) 10

Final exam 15

Total workload 112

Total workload/30 hours 4.4

ECTS Credits 4

Page 45: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

ENSTİTÜ/FAKÜLTE/YÜKSEKOKUL ve PROGRAM: MÜHENDİSLİK FAKÜLTESİ-ELEKTRIK-ELEKTRONIK MÜHENDİSLİĞİ BÖLÜMÜ

DERS BİLGİLERİ

Adı Kodu Dili Türü Yarıyıl T+U Saati

Kredi AKTS

Mikrodalga Tekniği EEM 423 Türkçe Bölüm

Seçmeli 7 3+0 3 4

Ön Koşul Dersleri EEM 314

Ders Sorumluları --

Ders Sorumlu Yardımcıları

--

Dersin Amacı Mikrodalga teorisi ve uygulamalarıyla ilgili temel bilgi düzeyine erişilmesi

Dersin Öğrenme Çıktıları

1. İletim hatları ve dalga kılavuzları ile ilgili temel konuların kavrar

2. Pasif mikrodalga devre elemanları ve empedans uyumlandırır,

devrelerinin tasarım ve analizlerinin yapılabilir

3. Temel filtre tasarımlarını yapar

4. Mikrodalga devre ve sistemleri içeren problemlerin çözer

DERS PLANI

Hafta Ön

Hazırlık Konular/Uygulamalar Metot

1 Giriş, temel konularının tekrarı Ders

2 İletim Hatları Ders

3 İletim Hatları Ders

4 Dalga Kılavuzları Ders

5 Dalga Kılavuzları Ders

6 Dalga kılavuzlarında eşdeğer devre analizi ve saçılma matrisleri Ders

7 Dalga kılavuzlarında eşdeğer devre analizi ve saçılma matrisleri Ders

8 Ara sınav Ders

9 Empedans dönüşümü ve uyumlandırma teknikleri Ders

10 Empedans dönüşümü ve uyumlandırma teknikleri Ders

11 Mikrodalga Rezonatörler Ders

12 Güç Bölücüler, yönlü kuplörler Ders

13 Mikrodalga Filtreler Ders

14 Aktif Mikrodalga Devreleri Ders

Page 46: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

KAYNAKLAR

Ders Kitabı veya Notu Dersi veren öğretim üyesinin ders notları kullanılacaktır.

Diğer Kaynaklar 1. David M. Pozar, “Microwave Engineering”, Addision-Wesley Publishing Company 2. R.S. Elliott, An Introduction to Guided Waves and Microwave Circuits, Prentice-Hall 3. R. E. Collin, “Foundations for Microwave Engineering”, McGraw-Hill

DEĞERLENDİRME SİSTEMİ

Etkinlik Türleri Katkı Yüzdesi

Ara Sınav

40

Yarıyıl Sonu Sınavı

60

Toplam

100

DERSİN PROGRAM ÇIKTILARINA KATKISI

No

Program Çıktıları

Katkı Düzeyi

1

2

3

4

5

1

Matematik ve fen bilimleri hakkında genel kavrama yeteneği edinmek

ve analitik düşünme alışkanlığı kazandırmak

2

Elektrik-Elektronik Mühendisliği ile ilgili temel konularda bilgi birikimi

oluşturmak

X

3

Mühendislik problemlerini saptama, tanımlama, formüle etme ve

çözme becerisi ile bu amaca uygun analiz ve modelleme yöntemlerini

seçme ve uygulama yeteneği kazandırmak.

X

4 Sistemleri analiz etme ve tasarlama yeteneği ve becerisi kazandırmak

X

5

Kuramsal bilgileri laboratuar ve proje çalışmalarıyla uygulamaya

dönüştürmek

6 Güncel yazılım ve donanımları etkin bir biçimde kullanmak

7 Takım içinde ve bireysel çalışabilme becerisi kazanmak

8

Sözlü ve yazılı iletişim kurma becerisi kazanmak. Yabancı bir dili

meslekî yaşamda etkin biçimde kullanmak

9

Yasam boyu öğrenmenin gerekliliği bilinci; bilgiye erişebilme, bilim ve teknolojideki gelişmeleri izleme ve kendini sürekli yenileme becerisi kazanmak

10 Mesleki sorumluluk ve etik bilinç kazanmak

Page 47: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

AKTS / İŞ YÜKÜ TABLOSU İş Yükü (Saat)

Ders İçi Ders Saati ( 14 x Haftalık Ders Saati) 42

Ders Dışı

Ödev 5

Araştırma 15

Ön Hazırlık, Pekiştirme Çalışmaları 15

Diğer Faaliyetler 10

Sınavlar Ara Sınav (Ara Sınav Sayısı x Ara Sınav Süresi) 10

Yarıyıl Sonu Sınavı 15

Toplam İş Yükü 112

Toplam İş Yükü / 30 (s) 4.4

Dersin AKTS Kredisi 4

INSTITUTE/FACULTY/VOCATIONAL SCHOOL & PROGRAMME: FACULTY OF ENGINEERING-ELECTRICAL&ELECTRONIC ENGINEERING DIVISION

COURSE DETAILS

Title Code Medium of Instruction

Type Semester T+P Credit

s ECTS

Microwave Techniques

EEM 423 Turkish Departmental

Elective 2 3+0 3 4

Prerequisites EEM203

Instructor

Teaching Assistants

Objectives Obtaining the basic knowledge related to the microwave theory and applications

Learning outcomes

1. Comprehending basic issues about the transmission lines and

waveguides

2. Developing the skills of design and analyze passive microwave

components and impedance matching Networks

3. Realizing the filter design

4. Developing the basic skills of problem solving in the field of

microwave engineering

Page 48: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

TEACHING PLAN

We ek

Preliminary

Topics

Method

1 Introduction and repetition of the fundamental issues Lecture

2 Transmission Lines Lecture

3 Transmission Lines Lecture

4 Waveguides Lecture

5 Waveguides Lecture

6 Equivalent Circuit Analysis in Waveguides and Scattering Matrix Lecture

7 Equivalent Circuit Analysis in Waveguides and Scattering Matrix Lecture

8 Midterm exam Lecture

9 Impedance Transformation and Matching Techniques Lecture

10 Impedance Transformation and Matching Techniques Lecture

11 Microwave Resonators Lecture

12 Power Dividers, Directional Couplers Lecture

13 Microwave Filters Lecture

14 Active Microwave Circuits Lecture

REFERENCES

Text book/Lecture Notes

The instructor’s lectures will be used

Other References 1. David M. Pozar, “Microwave Engineering”, Addision-Wesley

Publishing Company 2. R.S. Elliott, An Introduction to Guided Waves and Microwave Circuits,

Prentice-Hall 3. R. E. Collin, “Foundations for Microwave Engineering”, McGraw-Hill

Types of Activity Grading Percentage

Midterm Exam

40

Final Exam

60

Total

100

Page 49: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

COURSE CONTRIBUTION TO PROGRAM OUTCOMES

No

Program Outcomes

Contribution degree

1

2

3

4

5

1

To achieve insights on mathematics and physical sciences and to gain

analytical thinking skills.

2

To accumulate knowledge on basic subjects about electrical and

electronics engineering.

X

3

To achieve specifying, defining, formulating and solving skills for

engineering problems and to gain ability to choose and apply

appropriate analysis and modelling methods for these purposes.

X

4 To gain system analysis and design abilities.

X

5 To apply theoretical knowledge to laboratory and project studies.

6 To use up-to-date software and hardware efficiently.

7 To gain ability to work in a team and individually.

8

To achieve skills on oral and written communication. To use a foreign

language effectively in professional life.

9

To become aware of importance of lifelong learning, to be able to gather information, to follow advances in science and technology and to gain ability to renew oneself.

10 To achieve professional and ethical responsibility.

ECTS/WORKLOAD TABLE

Workload per hour

Inside the classroom Course Hour ( 14 x weekly course hour) 42

Outside the classroom

Assignments 15

Research 15

Preliminary and Strengthening Works 22

Other Activities 10

Exams Midterm exam (Exam number x Exam time) 10

Final exam 15

Total workload 129

Total workload/30 hours 4.3

ECTS Credits 4

Page 50: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

INSTITUTE/FACULTY/VOCATIONAL SCHOOL & PROGRAMME:

FACULTY OF ENGINEERING-ELECTRICAL&ELECTRONIC ENGINEERING DIVISION

COURSE DETAILS

Title Code Medium of

Instruction Type Semester T+P Credits ECTS

Optimization Methods EEM

428 Turkish

Derpartme

ntal

Elective

8 3+0 3 4

Prerequisites MAT 281 Differantial Equations

Instructor --

Teaching Assistants --

Objectives The non-linear problem or the solution obtained in the model building and

to ensure optimum

Learning outcomes

After completing the course, the students should be able to:

1. . Mathematical model of building and solving skills.2. Optimization techniques to use it efficiently.3. Modelling with simulation and linearization methods via

programming techniques.4. Learning about duality and simplex techniques.

TEACHING PLAN

Week Preliminary Topics Method

1 Modeling and simulation concepts Lecture

2 Linear programming Lecture

3 Graphic solution Lecture

4 Simplex method Lecture

5 Duality and sensitivity analysis Lecture

6 Transport models Lecture

7 Distribution problems Lecture

8 Midterm Exam Written Exam

9 Classical optimization theory Lecture

10 Newton-Raphson method Lecture

11 Non-linear programming Lecture

12 Algorithms are not limited Lecture

13 Restricted algorithms Lecture

14 Applications Lecture

Page 51: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

REFERENCES

Text book/Lecture Notes Lecture Notes

Other References 1. Hamdy A. Taha, Prentice Hall, 2000.Optimization in

operations research , Ronald L. Rardin, Upper Saddle River :Prentice Hall, 2000.

2. Ronald L. Rardin Optimization in operations research , ,Upper Saddle River : Prentice Hall, 2000.

ASSESSMENT PLAN

Types of Activity Grading Percentage

Midterm Exam 20

Quiz 20

Assignments/Presentation 20

Final Exam 40

Total 100

COURSE CONTRIBUTION TO PROGRAM OUTCOMES

No Program Outcomes Contribution degree

1 2 3 4 5

1 To achieve insights on mathematics and physical sciences and to gain

analytical thinking skills. X

2 To accumulate knowledge on basic subjects about electrical and

electronics engineering.

3

To achieve specifying, defining, formulating and solving skills for

engineering problems and to gain ability to choose and apply

appropriate analysis and modelling methods for these purposes. X

4 To gain system analysis and design abilities.

X

5 To apply theoretical knowledge to laboratory and project studies.

6 To use up-to-date software and hardware efficiently.

7 To gain ability to work in a team and individually.

Page 52: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

8 To achieve skills on oral and written communication. To use a foreign

language effectively in professional life.

9

To become aware of importance of lifelong learning, to be able to

gather information, to follow advances in science and technology and to

gain ability to renew oneself.

10 To achieve professional and ethical responsibility.

ECTS/WORKLOAD TABLE Workload per hour

Inside the classroom Course Hour ( 14 x weekly course hour) 42

Outside the classroom

Assignments 10

Research 10

Preliminary and Strengthening Works 10

Other Activities 10

Exams

Midterm exam (Exam number x Exam time) 20

Final exam 10

Total workload 112

Total workload/25,5 hours 4.4

ECTS Credits 4

Page 53: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

ENSTİTÜ/FAKÜLTE/YÜKSEKOKUL ve PROGRAM: MÜHENDİSLİK FAKÜLTESİ-ELEKTRIK-ELEKTRONIK MÜHENDİSLİĞİ BÖLÜMÜ

DERS BİLGİLERİ

Adı Kodu Dili Türü Yarıyıl T+U Saati

Kredi AKTS

Optimizasyon Teknikleri EEM 428 Türkçe Bölüm

Seçmeli 8 3+0 3 4

Ön Koşul Dersleri MAT 281 Diferansiyel Denklemler

Ders Sorumluları --

Ders Sorumlu Yardımcıları

--

Dersin Amacı Bu derste doğrusal olan yada olmayan problemlerde model kurma ve optimum çözümü elde etmeyi sağlamak amaçlanmıştır.

Dersin Öğrenme Çıktıları

1. Matematiksel model kurma ve çözme becerisi kazanmak.2. Optimizasyon tekniklerini verimli bir şekilde kullanabilmeyi

öğrenmek.3. Modelleme ve simülasyon kavramlarının yanı sıra

lineerleştirme ve programlama tekniklerinin öğrenilmesi.

4. Dualite ve simpleks metodlarının öğrenilmesi.

DERS PLANI

Hafta Ön

Hazırlık Konular/Uygulamalar Metot

1 Modelleme ve simülasyon kavramları Ders

2 Lineer programlama Ders

3 Grafik çözüm Simulasyon

4 Simpleks metot Ders

5 Dualite ve duyarlılık analizi Ders

6 Taşıma modelleri Ders

7 Dağıtım problemleri Ders

8 Arasınav Yazılı

9 Klasik optimizasyon teorisi Simulasyon

10 Newton-Raphson metot Ders

11 Lineer olmayan programlama Ders

12 Kısıtlı olmayan algoritmalar Ders

13 Kısıtlı algoritmalar Simulasyon

14 Modelleme ve simülasyon kavramları Ders

Page 54: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

KAYNAKLAR

Ders Kitabı veya Notu Ders materyalleri olarak ders öncesi hazırlanmış not fotokopisi verilecektir.

Diğer Kaynaklar 1. Yöneylem Araştırması, Hamdy A. Taha, Prentice Hall, 2000

DEĞERLENDİRME SİSTEMİ

Etkinlik Türleri Katkı Yüzdesi

Ara Sınav 20

Kısa Sınav 20

Ödev, Proje 20

Yarıyıl Sonu Sınavı 40

Toplam 100

DERSİN PROGRAM ÇIKTILARINA KATKISI

No Program Çıktıları Katkı Düzeyi

1 2 3 4 5

1 Matematik ve fen bilimleri hakkında genel kavrama yeteneği edinmek

ve analitik düşünme alışkanlığı kazandırmak X

2 Elektrik-Elektronik Mühendisliği ile ilgili temel konularda bilgi birikimi

oluşturmak

3

Mühendislik problemlerini saptama, tanımlama, formüle etme ve

çözme becerisi ile bu amaca uygun analiz ve modelleme yöntemlerini

seçme ve uygulama yeteneği kazandırmak. X

4 Sistemleri analiz etme ve tasarlama yeteneği ve becerisi kazandırmak

X

5 Kuramsal bilgileri laboratuar ve proje çalışmalarıyla uygulamaya

dönüştürmek

6 Güncel yazılım ve donanımları etkin bir biçimde kullanmak

7 Takım içinde ve bireysel çalışabilme becerisi kazanmak

8 Sözlü ve yazılı iletişim kurma becerisi kazanmak. Yabancı bir dili

meslekî yaşamda etkin biçimde kullanmak

9

Yasam boyu öğrenmenin gerekliliği bilinci; bilgiye erişebilme, bilim ve teknolojideki gelişmeleri izleme ve kendini sürekli yenileme becerisi kazanmak

10 Mesleki sorumluluk ve etik bilinç kazanmak

Page 55: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

AKTS / İŞ YÜKÜ TABLOSU İş Yükü (Saat)

Ders İçi Ders Saati ( 14 x Haftalık Ders Saati) 42

Ders Dışı

Ödev 13

Araştırma 15

Ön Hazırlık, Pekiştirme Çalışmaları 10

Diğer Faaliyetler 10

Sınavlar Ara Sınav (Ara Sınav Sayısı x Ara Sınav Süresi) 20

Yarıyıl Sonu Sınavı 10

Toplam İş Yükü 120 140

Toplam İş Yükü / 30 (s) 4 4.6

Dersin AKTS Kredisi 4 5

INSTITUTE/FACULTY/VOCATIONAL SCHOOL & PROGRAMME:

FACULTY OF ENGINEERING-ELECTRICAL&ELECTRONIC ENGINEERING DIVISION

COURSE DETAILS

Title Code Medium of

Instruction Type Semester T+P Credits ECTS

Optimization Methods EEM

428 Turkish

Derpartme

ntal

Elective

Fall 3+0 3 4

Prerequisites MAT 281

Instructor --

Teaching Assistants --

Objectives The non-linear problem or the solution obtained in the model building and

to ensure optimum

Learning outcomes

After completing the course, the students should be able to:

1. . Mathematical model of building and solving skills. 2. Optimization techniques to use it efficiently. 3. Modelling with simulation and linearization methods via

programming techniques. 4. Learning about duality and simplex techniques.

Page 56: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

TEACHING PLAN

Week Preliminary Topics Method

1 Modeling and simulation concepts Lecture

2 Linear programming Lecture

3 Graphic solution Lecture

4 Simplex method Lecture

5 Duality and sensitivity analysis Lecture

6 Transport models Lecture

7 Distribution problems Lecture

8 Midterm Exam Written Exam

9 Classical optimization theory Lecture

10 Newton-Raphson method Lecture

11 Non-linear programming Lecture

12 Algorithms are not limited Lecture

13 Restricted algorithms Lecture

14 Applications Lecture

REFERENCES

Text book/Lecture Notes Lecture Notes

Other References 1. Hamdy A. Taha, Prentice Hall, 2000.Optimization in

operations research , Ronald L. Rardin, Upper Saddle River : Prentice Hall, 2000.

2. Ronald L. Rardin Optimization in operations research , , Upper Saddle River : Prentice Hall, 2000.

ASSESSMENT PLAN

Types of Activity Grading Percentage

Midterm Exam 20

Quiz 20

Assignments/Presentation 20

Final Exam 40

Total 100

Page 57: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

COURSE CONTRIBUTION TO PROGRAM OUTCOMES

No Program Outcomes Contribution degree

1 2 3 4 5

1 To achieve insights on mathematics and physical sciences and to gain

analytical thinking skills. X

2 To accumulate knowledge on basic subjects about electrical and

electronics engineering.

3

To achieve specifying, defining, formulating and solving skills for

engineering problems and to gain ability to choose and apply

appropriate analysis and modelling methods for these purposes. X

4 To gain system analysis and design abilities.

X

5 To apply theoretical knowledge to laboratory and project studies.

6 To use up-to-date software and hardware efficiently.

7 To gain ability to work in a team and individually.

8 To achieve skills on oral and written communication. To use a foreign

language effectively in professional life.

9

To become aware of importance of lifelong learning, to be able to

gather information, to follow advances in science and technology and to

gain ability to renew oneself.

10 To achieve professional and ethical responsibility.

ECTS/WORKLOAD TABLE Workload per hour

Inside the classroom Course Hour ( 14 x weekly course hour) 42

Outside the classroom

Assignments 10

Research 10

Preliminary and Strengthening Works 10

Other Activities 10

Exams

Midterm exam (Exam number x Exam time) 20

Final exam 10

Total workload 112

Total workload/25,5 hours 4.4

ECTS Credits 4

Page 58: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

INSTITUTE/FACULTY/VOCATIONAL SCHOOL&PROGRAMME:FACULTY

OFENGINEERING‐ELECTRICAL&ELECTRONICENGINEERINGDIVISION

COURSEDETAILS

Title Code MediumofInstruction Type Semester T+P Credits EC

TS

FiniteElementMethod EEM431 Turkish Selective 7 3+0 3 4

PrerequisitesInstructor

TeachingAssistants Objectives Toteachanumericalmethodsuchasfiniteelementmethodforcomputer

aideddesignandanalysisworks,Tocreateanenvironmentforusinganddevelopingofmathematical,electromagneticfields,basicelectricalengineering,andcomputerknowledge,

Learningoutcomes

1.Design,analysisandevaluationofanyelectricaldeviceandequipmentpointofviewelectromagneticfieldapproximation,2.Numericalmodellinganddescriptionfortheelectricalandnon‐electricalproblems

TEACHINGPLAN

Page 59: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

Week Preliminary

Topics Method

1Basicconcepts:Maxwellequations;electro‐kinetic,electro‐static,magneto‐static,magnetodynamicproblems;typesofsecond‐orderpartialdifferentialequations;typesofboundaryconditions;initialandboundaryvalueproblems

Lecture

2 Electromagneticfieldanalysismethods:analytical,analogueandnumericalmethods

Lecture

3 Numericalmethodsforelectricalandmagneticfieldanalysis:FiniteDifferenceMethod,MonteCarloMethod,ChargeSimulationMethod,BoundaryElementMethod

Lecture

4 Continuefrompreviousweek Lecture5 Finiteelementmethod(FEM),variational approximationconcept,

RitzandGalerkinMethodsLecture

6 Solutionof2DelectrostaticfieldproblemsusingFEM Lecture

7 SolutionofmagneticfieldproblemsusingFEM Lecture8 Midtermexam Exam9 Applicationsof2Dsimulation Lecture10 Applicationsof2Dsimulation Lecture11 Applicationsof2Dsimulation Lecture12 Applicationsof2Dsimulation Lecture13 Applicationsof2Dsimulation Lecture14 Applicationsof2Dsimulation Lecture

Page 60: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

REFERENCES

Textbook/LectureNotes

1.N.Arı,Ş.Özen,Ö.H.Çolak,A.Y.Teşneli,ElektromanyetikteSonluFarklarMetodu,Palmeyayıncılık,Ankara,2008.2.O.Gürdal,ElektrikMakinalarınınTasarımı,Atlas+NobelYayınevi,Ankara,2001.

OtherReferences 1. S.S.Rao,TheFiniteElementMethodinEngineering,ElsevierButterworth–Heinemann,Boston,USA,2005,FourthEd.2010.

2. G.Meunier,TheFiniteElementMethodforElectromagneticModeling,Wiley,NewJersey,2008.

3. K.H.Huebner,TheFiniteElementMethodforEngineers,Wiley,NewYork,2001.

4. P.P.Silvester,R.L.Ferrari,FiniteElementsforElectricalEngineers,CambridgeUniversityPress,Cambridge,3rdEd.1996.

ASSESSMENTPLAN

TypesofActivity GradingPercentage

Midterm Exam 30Homework,Project 30FinalExam 40Total 100

Page 61: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

COURSECONTRIBUTIONTOPROGRAMOUTCOMES

No

ProgramOutcomes

Contributiondegree

1 2 3 4 5

1To achieve insights onmathematicsandphysical sciences and togainanalyticalthinkingskills.

2

To accumulate knowledge on basic subjects about electrical andelectronicsengineering.

X

3

To achieve specifying, defining, formulating and solving skills forengineeringproblemsandtogainabilitytochooseandapplyappropriateanalysisandmodelingmethodsforthesepurposes.  X

4 Togainsystemanalysisanddesignabilities. X

5 Toapplytheoreticalknowledgetolaboratoryandprojectstudies.

6 Touseup‐to‐datesoftwareandhardwareefficiently. X

7 Togainabilitytoworkinateamandindividually.

8

Toachieveskillsonoralandwrittencommunication.Touseaforeignlanguageeffectivelyinprofessionallife.

9

Tobecomeawareofimportanceoflifelonglearning,tobeabletogatherinformation,tofollowadvancesinscienceandtechnologyandtogainabilitytorenewoneself.

Page 62: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

10 Toachieveprofessionalandethicalresponsibility.

ECTS/WORKLOADTABLE WorkloadperhourInside the classroom Course Hour ( 14xweekly course hour) 42

Outsidetheclassroom

Assignments 15

Research 10

Preliminary and StrengtheningWorks 10

Other Activities

ExamsMidterm exam (Examnumber xExamtime) 10

Final exam 15

Totalworkload 102Totalworkload/25.5 hours 4ECTS Credits 4

Page 63: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

AKTS /İŞYÜKÜ TABLOSU İşYükü (Saat)

Dersİçi DersSaati ( 14 x HaftalıkDers Saati) 42

DersDışı

Ödev 15

Araştırma 10

ÖnHazırlık, Pekiştirme Çalışmaları 10

Diğer Faaliyetler

Sınavlar Ara Sınav(Ara Sınav Sayısı x Ara Sınav Süresi) 10

YarıyılSonu Sınavı 15

ToplamİşYükü 102ToplamİşYükü/25.5 (s) 4DersinAKTS Kredisi 4

INSTITUTE/FACULTY/VOCATIONAL SCHOOL&PROGRAMME:FACULTYOFENGINEERING‐ELECTRICAL&ELECTRONICENGINEERINGDIVISION

COURSEDETAILS

Title Code MediumofInstruction Type Semester T+P Credits EC

TS

IndustrialAutomationSystems EEM432 Turkish Selective 8 3+0 3 4

Prerequisites None

Instructor

TeachingAssistants

Objectives Students´learningdesigninautomationworldandproducingautomationalsolutonsforprinciplesituations,arrangingtoprogrammentality,gettingconvenientmediumsfordecreasingmaterialandcostinprocesses

Learningoutcomes

AbilityofusinglogicalstatementsAbilityofproducingtimediagramsforinorderprocessAbilityofmanagingcommunicationsoffield(openplace)componentsAbilityofreachingtofullsolutioningroupsComprehendingsoftwareengineeringspectrumAbilityofsolutiondesigning   

Page 64: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

 

 

TEACHINGPLAN

Week

 Preliminary Topics

 Method

 1   Logicalstatementsandautomationdevices     Lecture

2   Programmablelogiccontrollerstructure   Lecture3   Programandcommandconcepts   Lecture4   Programmableeditors   Lecture5   Commandsforfundemantellogicalswitchings   Lecture6   Timers   Lecture7   Counters   Lecture8   Check(comparision)commands Lecture9   Sub‐programs(subroutins)   Lecture10   Arithmeticoperationcommands   Lecture11   Realtimecommands   Lecture12   Industrialapplications   Lecture13   Interruptsubprograms   Lecture14   Analogueoperations   Lecture

  

REFERENCES 

Textbook/LectureNotes 

Theinstructor’slectureswillbeused 

OtherReferences 1.PLCProgramlamaveS7/1200,YavuzEminoğlu2.PLCileEndüstriyelOtomasyon,SalmanKurtulan

   

ASSESSMENTPLAN

TypesofActivity GradingPercentage

MidtermExam 40

FinalExam 60

Total 100

Page 65: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

COURSECONTRIBUTIONTOPROGRAMOUTCOMES

No ProgramOutcomes

Toachieveinsightsonmathematicsandphysicalsciencesandtogainanalytical

Contributiondegree

1 2 3 4 5

1 thinkingskills.To accumulate knowledge on basic subjects about electrical and electronics

2 engineering. X

Toachievespecifying,defining,formulatingandsolvingskills forengineering

3 problems and to gain ability to choose and apply appropriate analysis and Xmodellingmethodsforthesepurposes.

4 Togainsystemanalysisanddesignabilities. X

5 Toapplytheoreticalknowledgetolaboratoryandprojectstudies.

6 Touseup‐to‐datesoftwareandhardwareefficiently. X

7 Togainabilitytoworkinateamandindividually. X

Toachieveskillsonoralandwrittencommunication.Touseaforeignlanguage8 effectivelyinprofessionallife.

Tobecomeawareofimportanceoflifelonglearning,tobeabletogather9 information,tofollowadvancesinscienceandtechnologyandtogainabilityto

renewoneself.

10 Toachieveprofessionalandethicalresponsibility.

ECTS/WORKLOADTABLE Workloadperhour

Insidetheclassroom CourseHour ( 14 x weekly course hour) 42

Outsidetheclassroom

Assignments 15

Research 10

Preliminary and StrengtheningWorks 10

OtherActivities

ExamsMidtermexam (Examnumber xExamtime) 10

Finalexam 15

Totalworkload 102Totalworkload/25,5hours 4ECTSCredits 4

Page 66: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

INSTITUTE/FACULTY/VOCATIONAL SCHOOL&PROGRAMME:FACULTYOFENGINEERING‐ELECTRICAL&ELECTRONICENGINEERINGDIVISION

 

COURSEDETAILS

 Title

 Code Mediumof

Instruction Type Semester T+P

 Credits EC

TS

IndustrialApplicationsOfPowerElectronics EEM 434 Turkish Selective 8 3+0 3 4

 

Prerequisites None           

Instructor

TeachingAssistants Objectives BasicKnowledgeandanAbilitytoAnalysisandDesignofStaticIndustrial

ApplicationsofPowerElectronics

     Learningoutcomes

 

1)Anabilityofstudyingonareasinwhichpowerelectronicsareused2)Comprehendingrelationshipbetweentheotherequipmentandpowerelectronicscircuits3)AnabilityofdesigningaplicationsofpowerelectronicscircuitsonMATLAB‐Simulink

Page 67: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

 

 

TEACHINGPLAN

Week

 Preliminary Topics

 Method

 1   OperationPrinciples,PropertiesandTypesofUninterruptible

PowerSupplies(UPS)    Lecture

2   AnalysisofVariousUninterruptiblePowerSupplies   Lecture3   DesignofUninterruptiblePowerSupplies   Lecture4   OperationPrinciples,PropertiesandTypesofSwitchModePower   Lecture5   AnalysisofVariousSwitchModePowerSupplies   Lecture6   DesignofSwitchModePowerSupplies   Lecture7   OperationPrinciples,PropertiesandTypesofResonantMode   Lecture8   AnalysisofVariousSeriesResonantPowerSupplies Lecture9   OperationPrinciples,PropertiesandTypesofInductionHeating   Lecture10   AnalysisofVariousInductionHeatingSystems   Lecture11   OperationPrinciples,PropertiesandTypesofElectronicBallasts   Lecture12   AnalysisofVariousElectronicBallasts   Lecture13   AnalysisofBasicPowerFactorCorrection(PFC)Circuits   Lecture14   AnalysisofBasicActiveFilter(AF)Circuits   Lecture

  

REFERENCES 

Textbook/LectureNotes 

Theinstructor’slectureswillbeused 

OtherReferences PowerElectronics:Converters,Applications,andDesign3rdEdition,NedMohan,ToreM.Undeland,WilliamP.RobbinsGüçElektroniği(TemelAnalizveSayısalUygulamalar)HacıBodur,BirsenYayınevi,2010.

   

ASSESSMENTPLAN

TypesofActivity GradingPercentage

MidtermExam 40

FinalExam 60

Total 100

Page 68: INSTITUTE/FACULTY/VOCATIONAL SCHOOL & …

COURSECONTRIBUTIONTOPROGRAMOUTCOMES

No ProgramOutcomes

Toachieveinsightsonmathematicsandphysicalsciencesandtogainanalytical

Contributiondegree

1 2 3 4 5

1 thinkingskills.To accumulate knowledge on basic subjects about electrical and electronics

2 engineering. X

Toachievespecifying,defining,formulatingandsolvingskills forengineering

3 problems and to gain ability to choose and apply appropriate analysis and Xmodellingmethodsforthesepurposes.

4 Togainsystemanalysisanddesignabilities. X

5 Toapplytheoreticalknowledgetolaboratoryandprojectstudies.

6 Touseup‐to‐datesoftwareandhardwareefficiently. X

7 Togainabilitytoworkinateamandindividually. X

Toachieveskillsonoralandwrittencommunication.Touseaforeignlanguage8 effectivelyinprofessionallife.

Tobecomeawareofimportanceoflifelonglearning,tobeabletogather9 information,tofollowadvancesinscienceandtechnologyandtogainabilityto

renewoneself.

10 Toachieveprofessionalandethicalresponsibility.

ECTS/WORKLOADTABLE Workloadperhour

Insidetheclassroom CourseHour ( 14x weekly course hour) 42

Outsidetheclassroom

Assignments 15

Research 10

Preliminary and StrengtheningWorks 10

OtherActivities

ExamsMidtermexam (Examnumber xExamtime) 10

Finalexam 15

Totalworkload 102Totalworkload/25,5hours 4ECTSCredits 4