integration of the ihcal process into cement plants

14
Advanced Indirectly Heated Carbonate Looping Process This project ANICA is funded through the ACT programme (Accelerating CCS Technologies, Horizon2020 Project No 294766). Financial contributions made from the German Federal Ministry of Economic Affairs and Energy, the Department for Business, Energy and Industrial Strategy of the United Kingdom and the Greek General Secretariat for Research and Technology. Integration of the IHCaL Process into Cement Plants Dr.-Ing. Viktoria Erfurt (VDZ), 6. October 2021

Upload: others

Post on 12-Jun-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Integration of the IHCaL Process into Cement Plants

Advanced Indirectly HeatedCarbonate Looping Process

This project ANICA is funded through the ACT programme (Accelerating CCS Technologies, Horizon2020 Project No 294766). Financial contributions

made from the German Federal Ministry of Economic Affairs and Energy, the Department for Business, Energy and Industrial Strategy of the United

Kingdom and the Greek General Secretariat for Research and Technology.

Integration of the IHCaL Process into Cement Plants

Dr.-Ing. Viktoria Erfurt (VDZ), 6. October 2021

Page 2: Integration of the IHCaL Process into Cement Plants

1

Cement process

Viktoria Erfurt, ANICA Workshop, October 2021

Page 3: Integration of the IHCaL Process into Cement Plants

2

Reference plant (BAT)

cement kiln1450 °C

clinker cooler

Cal

cin

er8

60

°C

Pre

he

ater

tertiary

secondary

silo

primary

raw gas

200 000 kg/h

232 000 Nm³/h

125 000 kg/h

exhaust

Page 4: Integration of the IHCaL Process into Cement Plants

3

Reference plant (BAT)

cement kiln1450 °C

clinker cooler

Cal

cin

er8

60

°C

Pre

he

ater

tertiary

secondary

silo

primary

raw gas

200 000 kg/h

232 000 Nm³/h

125 000 kg/h

exhaustCalcination:𝐶𝑎𝐶𝑂3 → 𝐶𝑎𝑂 + 𝐶𝑂2

Formation of

clinker phases

supply with oxygen and

heat recuperation

Page 5: Integration of the IHCaL Process into Cement Plants

4

com

bu

sto

r

cement kiln clinker cooler

Cal

cin

er

tertiary

silo

carb

on

ato

r

Pre

hea

ter

2

Pre

hea

ter

1

CO2

primary

primary

raw gas

125 000 kg/h

232 000 Nm³/h

200 000 kg/h

exhaust

Concept for the integration of the IHCaL process

Calcination:𝐶𝑎𝐶𝑂3 → 𝐶𝑎𝑂 + 𝐶𝑂2

Carbonation:𝐶𝑎𝑂 + 𝐶𝑂2 → 𝐶𝑎𝐶𝑂3

Page 6: Integration of the IHCaL Process into Cement Plants

5

Concept for the integration of the IHCaL process

com

bu

sto

r

cement kiln clinker cooler

Cal

cin

er

tertiary

silo

carb

on

ato

r

Pre

hea

ter

2

Pre

hea

ter

1

CO2

primary

primary

raw gas

125 000 kg/h

232 000 Nm³/h

200 000 kg/h

exhaust

Remark:

1. More fuel is needed in calciner.

2. Kiln fuel feed has to be decreased.

3. Recycled mass has to be cooled.

Indirect heated calciner

100 % CO2

calcination shifts from 860 °C to 920 °C

Page 7: Integration of the IHCaL Process into Cement Plants

6

Concept for the integration of the IHCaL process

com

bu

sto

r

cement kiln clinker cooler

Cal

cin

er

tertiary

silo

carb

on

ato

r

Pre

hea

ter

2

Pre

hea

ter

1

CO2

primary

primary

raw gas

125 000 kg/h

232 000 Nm³/h

200 000 kg/h

120 000 kg/h, 920 °C 143 000 kg/h, 920 °C

54 000 Nm³/h

exhaust

Page 8: Integration of the IHCaL Process into Cement Plants

7

Concept for the integration of the IHCaL process

com

bu

sto

r

cement kiln clinker cooler

Cal

cin

er

tertiary

silo

carb

on

ato

r

Pre

hea

ter

2

Pre

hea

ter

1

CO2

primary

primary

raw gas

125 000 kg/h

232 000 Nm³/h

200 000 kg/h

120 000 kg/h, 920 °C 143 000 kg/h, 920 °C

heat ex-changer

120 000 kg/h, 650 °C

54 000 Nm³/h

exhaust

more sorbent

more fuel

more heat

demandmore CO2

exhaust

Page 9: Integration of the IHCaL Process into Cement Plants

8

Concept for the integration of the IHCaL process

com

bu

sto

r

cement kiln clinker cooler

Cal

cin

er

tertiary

silo

carb

on

ato

r

Pre

hea

ter

2

Pre

hea

ter

1

CO2

primary

primary

raw gas

125 000 kg/h

232 000 Nm³/h

200 000 kg/h

120 000 kg/h, 920 °C 143 000 kg/h, 920 °C

heat ex-changer

120 000 kg/h, 650 °C

54 000 Nm³/h

44 000 Nm³/h, 854 °C

29 000 Nm³/h, 1140 °C

exhaust

98 000 Nm³/h

70 000 Nm³/h, < 650 °C

Page 10: Integration of the IHCaL Process into Cement Plants

9

Concept for the integration of the IHCaL process

com

bu

sto

r

cement kiln clinker cooler

Cal

cin

er

tertiary

silo

carb

on

ato

r

Pre

hea

ter

2

Pre

hea

ter

1

CO2

primary

primary

raw gas

125 000 kg/h

232 000 Nm³/h

200 000 kg/h

120 000 kg/h, 920 °C 143 000 kg/h, 920 °C

heat ex-changer

120 000 kg/h, 650 °C

54 000 Nm³/h

44 000 Nm³/h, 854 °C

29 000 Nm³/h, 1140 °C

exhaust

98 000 Nm³/h

70 000 Nm³/h, < 650 °C

54 000 Nm³/h, 1010 °C

44 000 Nm³/h, 1080 °C

Challenges:

• Calcination in preheater 1

• CO2 release outside the calciner

• formation of belit in preheater 1

• recirculation of inactive phases

kiln combustor

44

00

0 N

m³/

h

10

80

°C

preheater 1 (< 25 % CO2)

54

00

0 N

m³/

h

10

10

°C

kiln

44

00

0 N

m³/

h

10

80

°C

calciner

11

200

0 N

m³/

h

< 9

00

°C

preheater 1

BAT:

Page 11: Integration of the IHCaL Process into Cement Plants

10

Concept for the integration of the IHCaL process

com

bu

sto

r

cement kiln clinker cooler

Cal

cin

er

tertiary

silo

carb

on

ato

r

Pre

hea

ter

2

Pre

hea

ter

1

CO2

primary

primary

raw gas

125 000 kg/h

232 000 Nm³/h

200 000 kg/h

120 000 kg/h, 920 °C 143 000 kg/h, 920 °C

heat ex-changer

120 000 kg/h, 650 °C

54 000 Nm³/h

44 000 Nm³/h, 854 °C

29 000 Nm³/h, 1140 °C

exhaust

< 650 °C

54 000 Nm³/h, 1010 °C

44 000 Nm³/h, 1080 °C

1020 °Cevap. cooler

< 750 °C

+ 12 000 kg/h

103 000 Nm³/h363 °C

Solution: evaporation cooler

- efficiency loss

+ positive influence of water vapour

on carbonation

solution: cooling the combustion gas

from 1020 °C to < 750 °C

technical limitations due to high

temperature and erosive dust load

currently no appropriate heat exchangers

and turbines available

Page 12: Integration of the IHCaL Process into Cement Plants

11

Concept for the integration of the IHCaL process

Because of erosive dust load a filter is

needed between clinker cooler and the

combustor.

tertiary air < 450 °C !

+ enough oxygen

+ no need of an additional oxygen input

- more air to heat up in the combustor

- need of a preheating zone in the lower

part of combustor

com

bu

sto

r

cement kiln clinker cooler

Cal

cin

er

tertiary

silo

carb

on

ato

r

Pre

hea

ter

2

Pre

hea

ter

1

CO2

primary

primary

raw gas

125 000 kg/h

232 000 Nm³/h

200 000 kg/h

120 000 kg/h, 920 °C 143 000 kg/h, 920 °C

heat ex-changer

120 000 kg/h, 650 °C

54 000 Nm³/h

29 000 Nm³/h, 1140 °C

exhaust

< 650 °C

1010 °C

44 000 Nm³/h, 1080 °C

1020 °Cevap. cooler

< 750 °C

+ 12 000 kg/h

103 000 Nm³/h363 °C

166 000 Nm³/h, < 450 °C

Page 13: Integration of the IHCaL Process into Cement Plants

12

Concept for the integration of the IHCaL process

com

bu

sto

r

cement kiln clinker cooler

Cal

cin

er

tertiary

silo

carb

on

ato

r

Pre

hea

ter

2

Pre

hea

ter

1

CO2

primary

primary

raw gas

125 000 kg/h

232 000 Nm³/h

200 000 kg/h

120 000 kg/h, 920 °C 143 000 kg/h, 920 °C

heat ex-changer

120 000 kg/h, 650 °C

54 000 Nm³/h

29 000 Nm³/h, 1140 °C

exhaust

< 650 °C

1010 °C

44 000 Nm³/h, 1080 °C

1020 °Cevap. cooler

< 750 °C

+ 12 000 kg/h

103 000 Nm³/h363 °C

166 000 Nm³/h, < 450 °C

Page 14: Integration of the IHCaL Process into Cement Plants

13

Thank you for your attention!

www.act-anica.euViktoria Erfurt, ANICA Workshop, October 2021