introduction to computational topology notes › courses › cs468-02-fall › notes ›...

25
S URFACE T OPOLOGY CS 468 – Lecture 2 10/2/2 Afra Zomorodian – CS 468 Lecture 2 - Page 1

Upload: others

Post on 30-Jun-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to Computational Topology Notes › courses › cs468-02-fall › notes › slides02.pdf– Topology studiesinvariantproperties – Classification? •This lecture: –

SURFACE TOPOLOGY

CS 468 – Lecture 2

10/2/2

Afra Zomorodian – CS 468 Lecture 2 - Page 1

Page 2: Introduction to Computational Topology Notes › courses › cs468-02-fall › notes › slides02.pdf– Topology studiesinvariantproperties – Classification? •This lecture: –

OVERVIEW

• Last lecture:

– Manifolds: locally Euclidean

– Homeomorphisms: bijective bi-continuous maps

– Topology studiesinvariantproperties

– Classification?

• This lecture:

– Topological Type

– Basic 2-Manifolds

– Connected Sum

– Classification Theorem

– Conway’s ZIP proof

Afra Zomorodian – CS 468 Lecture 2 - Page 2

Page 3: Introduction to Computational Topology Notes › courses › cs468-02-fall › notes › slides02.pdf– Topology studiesinvariantproperties – Classification? •This lecture: –

PARTITIONS

• A partition of a setis a decomposition of the set into subsets (cells)

such that every element of the set is in one and only one of the

subsets.

• Let∼ be a relation on a nonempty setS so that for alla, b, c ∈ S:

1. (Reflexive)a ∼ a.

2. (Symmetric) Ifa ∼ b, thenb ∼ a.

3. (Transitive) Ifa ∼ b andb ∼ c, a ∼ c.

Then,∼ is anequivalence relationonS.

• Homeomorphism is an equivalence relation.

Afra Zomorodian – CS 468 Lecture 2 - Page 3

Page 4: Introduction to Computational Topology Notes › courses › cs468-02-fall › notes › slides02.pdf– Topology studiesinvariantproperties – Classification? •This lecture: –

TOPOLOGICAL TYPE

• (Theorem)Let S be a nonempty set and let∼ be an equivalence

relation onS. Then,∼ yields a natural partition ofS, where

a = {x ∈ S | x ∼ a}. a represents the subset to whicha belongs to.

Each cella is anequivalence class.

• Homeomorphism partitions manifolds with the same

topological type.

• Can we compute this?

– n = 1: too easy

– n = 2: yes (this lecture)

– n = 3: ?

– n ≥ 4: undecidable! [Markov 1958]

Afra Zomorodian – CS 468 Lecture 2 - Page 4

Page 5: Introduction to Computational Topology Notes › courses › cs468-02-fall › notes › slides02.pdf– Topology studiesinvariantproperties – Classification? •This lecture: –

BASIC 2-MANIFOLDS:

SPHERES2

v

Afra Zomorodian – CS 468 Lecture 2 - Page 5

Page 6: Introduction to Computational Topology Notes › courses › cs468-02-fall › notes › slides02.pdf– Topology studiesinvariantproperties – Classification? •This lecture: –

BASIC 2-MANIFOLDS:

TORUST2

v

v v

v

a a

b

b

Afra Zomorodian – CS 468 Lecture 2 - Page 6

Page 7: Introduction to Computational Topology Notes › courses › cs468-02-fall › notes › slides02.pdf– Topology studiesinvariantproperties – Classification? •This lecture: –

BASIC 2-MANIFOLDS:

M OBIUS STRIP

w

v

v

w

a a

b

b

Afra Zomorodian – CS 468 Lecture 2 - Page 7

Page 8: Introduction to Computational Topology Notes › courses › cs468-02-fall › notes › slides02.pdf– Topology studiesinvariantproperties – Classification? •This lecture: –

BASIC 2-MANIFOLDS:

PROJECTIVEPLANE RP2

v

v

v

b

b

a a

v

Afra Zomorodian – CS 468 Lecture 2 - Page 8

Page 9: Introduction to Computational Topology Notes › courses › cs468-02-fall › notes › slides02.pdf– Topology studiesinvariantproperties – Classification? •This lecture: –

BASIC 2-MANIFOLDS:

MODELS OFRP2

(a) Cross cap (b) Boy’s Surface (c) Steiner’s Roman

Surface

Afra Zomorodian – CS 468 Lecture 2 - Page 9

Page 10: Introduction to Computational Topology Notes › courses › cs468-02-fall › notes › slides02.pdf– Topology studiesinvariantproperties – Classification? •This lecture: –

BASIC 2-MANIFOLDS:

KLEIN BOTTLE K2

v

v

v

v

b

b

a a

Afra Zomorodian – CS 468 Lecture 2 - Page 10

Page 11: Introduction to Computational Topology Notes › courses › cs468-02-fall › notes › slides02.pdf– Topology studiesinvariantproperties – Classification? •This lecture: –

BASIC 2-MANIFOLDS:

IMMERSION OFK2

(a) Klein Bottle (b) Mobius Strip

Afra Zomorodian – CS 468 Lecture 2 - Page 11

Page 12: Introduction to Computational Topology Notes › courses › cs468-02-fall › notes › slides02.pdf– Topology studiesinvariantproperties – Classification? •This lecture: –

CONNECTEDSUM

• Theconnected sumof two n-manifoldsM1, M2 is

M1 # M2 = M1 − Dn1

⋃∂Dn

1 =∂Dn2

M2 − Dn2 ,

whereDn1 , Dn

2 aren-dimensional closed disks inM1, M2,

respectively.

=#

Afra Zomorodian – CS 468 Lecture 2 - Page 12

Page 13: Introduction to Computational Topology Notes › courses › cs468-02-fall › notes › slides02.pdf– Topology studiesinvariantproperties – Classification? •This lecture: –

CLASSIFICATION THEOREM

• (Theorem)Every closed compact surface is homeomorphic to a

sphere, the connected sum of tori, or connected sum of projective

planes.

• Known since 1860’s

• Seifert and Threlfall proof

• Conway’sZero Irrelevancy Proofor ZIP (1992)

• Francis and Weeks (1999)

Afra Zomorodian – CS 468 Lecture 2 - Page 13

Page 14: Introduction to Computational Topology Notes › courses › cs468-02-fall › notes › slides02.pdf– Topology studiesinvariantproperties – Classification? •This lecture: –

CONWAY ’ S ZIP:

CAP

Afra Zomorodian – CS 468 Lecture 2 - Page 14

Page 15: Introduction to Computational Topology Notes › courses › cs468-02-fall › notes › slides02.pdf– Topology studiesinvariantproperties – Classification? •This lecture: –

CONWAY ’ S ZIP:

CROSSCAP

Afra Zomorodian – CS 468 Lecture 2 - Page 15

Page 16: Introduction to Computational Topology Notes › courses › cs468-02-fall › notes › slides02.pdf– Topology studiesinvariantproperties – Classification? •This lecture: –

CONWAY ’ S ZIP:

HANDLE

Afra Zomorodian – CS 468 Lecture 2 - Page 16

Page 17: Introduction to Computational Topology Notes › courses › cs468-02-fall › notes › slides02.pdf– Topology studiesinvariantproperties – Classification? •This lecture: –

CONWAY ’ S ZIP:

CROSSHANDLE

Afra Zomorodian – CS 468 Lecture 2 - Page 17

Page 18: Introduction to Computational Topology Notes › courses › cs468-02-fall › notes › slides02.pdf– Topology studiesinvariantproperties – Classification? •This lecture: –

CONWAY ’ S ZIP:

PERFORATIONS

Afra Zomorodian – CS 468 Lecture 2 - Page 18

Page 19: Introduction to Computational Topology Notes › courses › cs468-02-fall › notes › slides02.pdf– Topology studiesinvariantproperties – Classification? •This lecture: –

CONWAY ’ S ZIP:

ORDINARY SURFACES

• Every (compact) surface is homeomorphic to a finite collection of

spheres, each with a finite number of handles, crosshandles,

crosscaps, and perforations.

• That is, all surfaces areordinary.

Afra Zomorodian – CS 468 Lecture 2 - Page 19

Page 20: Introduction to Computational Topology Notes › courses › cs468-02-fall › notes › slides02.pdf– Topology studiesinvariantproperties – Classification? •This lecture: –

CONWAY ’ S ZIP:

ZIP-PAIRS

Afra Zomorodian – CS 468 Lecture 2 - Page 20

Page 21: Introduction to Computational Topology Notes › courses › cs468-02-fall › notes › slides02.pdf– Topology studiesinvariantproperties – Classification? •This lecture: –

CONWAY ’ S ZIP:

LEMMA 1: XHANDLE = 2 XCAPS

Afra Zomorodian – CS 468 Lecture 2 - Page 21

Page 22: Introduction to Computational Topology Notes › courses › cs468-02-fall › notes › slides02.pdf– Topology studiesinvariantproperties – Classification? •This lecture: –

CONWAY ’ S ZIP:

LEMMA 2: XHANDLE + XCAP = HANDLE + XCAP

[Dyck 1888]

Afra Zomorodian – CS 468 Lecture 2 - Page 22

Page 23: Introduction to Computational Topology Notes › courses › cs468-02-fall › notes › slides02.pdf– Topology studiesinvariantproperties – Classification? •This lecture: –

CONWAY ’ S ZIP:

PROOF

• Otherwise, we have handles, crosshandles, and crosscaps

• Lemma 1: crosshandle = 2 crosscaps

• Lemma 2: crosshandle + crosscap = handle + crosscap

• So, handle + crosscap = 3 crosscaps

• We get sphere, sphere with handles, or sphere with crosscaps. QED

Afra Zomorodian – CS 468 Lecture 2 - Page 23

Page 24: Introduction to Computational Topology Notes › courses › cs468-02-fall › notes › slides02.pdf– Topology studiesinvariantproperties – Classification? •This lecture: –

SPHEREEVERSIONS

• Sphere is orientable (two-sided)

• So, turn it inside out!

• Smale 1957

• Morin 1979

• “Turning a Sphere Inside Out” [Max 1977]

• “Outside In” [Thurston 1994]

• “The Optiverse” [Sullivan 1998]

Afra Zomorodian – CS 468 Lecture 2 - Page 24

Page 25: Introduction to Computational Topology Notes › courses › cs468-02-fall › notes › slides02.pdf– Topology studiesinvariantproperties – Classification? •This lecture: –

TWO EVERSIONS

Outside In [Thurston 94]

• The Optiverse [Sullivan 98]

Afra Zomorodian – CS 468 Lecture 2 - Page 25