introduction to hawking radiation in the tunneling...

14
Black Holes WKB approximation in Q.M. Radial null geodesic method Complex path method Introduction to Hawking Radiation in The Tunneling Pictures Haryanto M. Siahaan 1 [email protected] MTA Lendület Holographic QFT Group, Wigner Research Centre for Physics, Konkoly-Thege Miklós u. 29-33, 1121 Budapest , Hungary 1 Funded by The Tempus Public Foundation. Haryanto M. Siahaan Introduction to Hawking Radiation

Upload: others

Post on 19-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to Hawking Radiation in The Tunneling …glu.elte.hu/~statfiz/eloadasok/siahaan-ea.pdfIntroduction to Hawking Radiation in The Tunneling Pictures Haryanto M. Siahaan1

Black Holes WKB approximation in Q.M. Radial null geodesic method Complex path method

Introduction to Hawking Radiation in The Tunneling Pictures

Haryanto M. Siahaan1

[email protected]

MTA Lendület Holographic QFT Group, Wigner Research Centre for Physics,Konkoly-Thege Miklós u. 29-33, 1121 Budapest , Hungary

1Funded by The Tempus Public Foundation.

Haryanto M. Siahaan Introduction to Hawking Radiation

Page 2: Introduction to Hawking Radiation in The Tunneling …glu.elte.hu/~statfiz/eloadasok/siahaan-ea.pdfIntroduction to Hawking Radiation in The Tunneling Pictures Haryanto M. Siahaan1

Black Holes WKB approximation in Q.M. Radial null geodesic method Complex path method

Outline

1 Black Holes

2 WKB approximation in Q.M.

3 Radial null geodesic method

4 Complex path method

Haryanto M. Siahaan Introduction to Hawking Radiation

Page 3: Introduction to Hawking Radiation in The Tunneling …glu.elte.hu/~statfiz/eloadasok/siahaan-ea.pdfIntroduction to Hawking Radiation in The Tunneling Pictures Haryanto M. Siahaan1

Black Holes WKB approximation in Q.M. Radial null geodesic method Complex path method

Black hole = (true) singularity + event horizonFrom Newtonian gravity: vesc =

√2GMr−1

Intro: flat spacetimeds2 = c2dτ2 = −c2dt2 + dx2 + dy2 + dz2 = −c2dt2 + dr2 + r2

(dθ2 + sin2 dφ2

)The presence of energy (eg. mass) curves the spacetime, ex.ds2 = −f (r) c2dt2 + g (r)−1 dr2 + r2

(dθ2 + sin2 dφ2

)The simplest non-flat solution to the vacuum Einstein equation: Schwarzschild

ds2 = −(

1−2GMc2r

)c2dt2 +

dr2(1− 2GM

c2r

) + r2(

dθ2 + sin2 dφ2)

Haryanto M. Siahaan Introduction to Hawking Radiation

Page 4: Introduction to Hawking Radiation in The Tunneling …glu.elte.hu/~statfiz/eloadasok/siahaan-ea.pdfIntroduction to Hawking Radiation in The Tunneling Pictures Haryanto M. Siahaan1

Black Holes WKB approximation in Q.M. Radial null geodesic method Complex path method

What if black holes thermodynamically dead ?

The second law of thermodynamics states that the total entropy can neverdecrease over time for an isolated system, i.e. δS ≥ 0.

Somehow, there should be an entropy associated to the black hole whose changefollows the conservation of energy.

Haryanto M. Siahaan Introduction to Hawking Radiation

Page 5: Introduction to Hawking Radiation in The Tunneling …glu.elte.hu/~statfiz/eloadasok/siahaan-ea.pdfIntroduction to Hawking Radiation in The Tunneling Pictures Haryanto M. Siahaan1

Black Holes WKB approximation in Q.M. Radial null geodesic method Complex path method

Black holes mechanics and thermodynamics

The conservation of energy for black holes: δM = (κ/8π)δAH +ΩHδJ; Bardeen,Carter, Hawking, 1973.

1st law of thermodynamics: δE = TδS−PδV .

Black hole mechanics and thermodynamics relations,

Bekenstein-Hawking entropy: SBH = ABH4 .

Black hole temperature: TH = κ2π .

Haryanto M. Siahaan Introduction to Hawking Radiation

Page 6: Introduction to Hawking Radiation in The Tunneling …glu.elte.hu/~statfiz/eloadasok/siahaan-ea.pdfIntroduction to Hawking Radiation in The Tunneling Pictures Haryanto M. Siahaan1

Black Holes WKB approximation in Q.M. Radial null geodesic method Complex path method

Hawking original derivation of BH radiation

Requires familiarity on QFT in curved background..

Φ =∑

j

fj aj + fj a

†j

→∑

j

pj bj + pj b

†j + qj cj + qj c

†j

∇2Φ = 0

Haryanto M. Siahaan Introduction to Hawking Radiation

Page 7: Introduction to Hawking Radiation in The Tunneling …glu.elte.hu/~statfiz/eloadasok/siahaan-ea.pdfIntroduction to Hawking Radiation in The Tunneling Pictures Haryanto M. Siahaan1

Black Holes WKB approximation in Q.M. Radial null geodesic method Complex path method

Schrodinger eqtn.~2

2m∇2Ψ + (E − U) Ψ = 0

One can employ the ansatz Ψ ∼ eiS(x)/~, where the function

S(x) = S0 +(

~i

)S1 +

(~i

)2S2 + . . .

If |dλ/dx | 1, or possibly in case of large momentum case, we can have thesolution from S0

2

Ψ =C+√

pexp

(i~

∫pdx

)+

C−√p

exp(−i~

∫pdx

)For a time dependent Ψ, we have S0 = −Et ±

∫pdx , i.e. the mechanical action of

the particle; − ∂S∂t = E , ∂S

∂x = p.

In case of E < U, Ψ =C+√|p|

exp(

1~∫|p| dx

)+

C−√p exp

(−1~∫|p| dx

), or by

taking Im∫

pdx .

2p =√

2m (E − U), Landau and Lifshitz , Quantum Mechanics , Non-Relativistic Theory.

Haryanto M. Siahaan Introduction to Hawking Radiation

Page 8: Introduction to Hawking Radiation in The Tunneling …glu.elte.hu/~statfiz/eloadasok/siahaan-ea.pdfIntroduction to Hawking Radiation in The Tunneling Pictures Haryanto M. Siahaan1

Black Holes WKB approximation in Q.M. Radial null geodesic method Complex path method

Tunneling process is the common way to explain radiation.

Radial: dθ = dφ = 0 and null: ds2 = 0.

Schwarzschild metric

ds2 = −(

1−2mr

)dt2 +

(1−

2mr

)−1dr2 + r2

(dθ2 + sin2 θdφ2

)We need a coordinate that is not singular at the horizon, for example Painleve

t = t + 2√

2mr + 2m ln

(√r −√

2m√

r +√

2m

)

ds2 = −(

1−2mr

)dt2 + 2

√2mr

dtdr + dr2 + r2(

dθ2 + sin2 θdφ2)

The coordinate singularity r = 2m is removed, the true singularity r = 0 is stillthere, and the spacetime is stationary.

Haryanto M. Siahaan Introduction to Hawking Radiation

Page 9: Introduction to Hawking Radiation in The Tunneling …glu.elte.hu/~statfiz/eloadasok/siahaan-ea.pdfIntroduction to Hawking Radiation in The Tunneling Pictures Haryanto M. Siahaan1

Black Holes WKB approximation in Q.M. Radial null geodesic method Complex path method

The in(out) [−(+)] null radial geodesic:

0 = −(

1−2mr

)dt2 + 2

√2mr

dtdr + dr2 →drdt

= ±1−√

2mr

Near the horizon, where the tunneling process takes place, we can have

r ≈(r − 2m)

4m

Imaginary part of the action for an outgoing particle from rin to rout

ImS = Im

rout∫rin

pdr = Im

rout∫rin

p∫0

dp′dr = Im

rout∫rin

E∫0

dHr

dr

where the Hamilton’s equation r = dHdp

∣∣∣r

has been employed3.

Using WKB approach: the particle has tunneling rate e−2~−1ImS whereImS = 4πEM.

Expression e−2~−1ImS takes the form of Boltzmann factor with energy E and(Hawking) temperature TH = 1/(8πM).

3Note that in doing integration over r , there is a pole at r = 2m.

Haryanto M. Siahaan Introduction to Hawking Radiation

Page 10: Introduction to Hawking Radiation in The Tunneling …glu.elte.hu/~statfiz/eloadasok/siahaan-ea.pdfIntroduction to Hawking Radiation in The Tunneling Pictures Haryanto M. Siahaan1

Black Holes WKB approximation in Q.M. Radial null geodesic method Complex path method

A little bit on WKB and particle in a black hole background

ds2 = −(

1−2mr

)dt2 +

(1−

2mr

)−1dr2 + r2

(dθ2 + sin2 θdφ2

)

A particle losses its energy as it moves toward infinity from near a black hole.

Haryanto M. Siahaan Introduction to Hawking Radiation

Page 11: Introduction to Hawking Radiation in The Tunneling …glu.elte.hu/~statfiz/eloadasok/siahaan-ea.pdfIntroduction to Hawking Radiation in The Tunneling Pictures Haryanto M. Siahaan1

Black Holes WKB approximation in Q.M. Radial null geodesic method Complex path method

Second method: complex path.

Allow the spacetime coordinate to be complex, i.e. x = Rex + iImx , where x isfour-coordinate, (t , r , θ, φ).

We can work in the original Schwarzschild metric without Painleve transformation.

Massless scalar particle in curved background

gµν∇µ∇νΦ (x) = 0

Use WKB ansatz Φ = eiS(x)/~, where S(x) = S0 +(

~i

)S1 +

(~i

)2S2 + . . .

Eqtn. for S):(∂S0

∂t

)2=

(1−

2mr

)2 (∂S0

∂r

)2→

∂S0

∂t= ±

(1−

2mr

)∂S0

∂r(4.1)

where +(−) associate to in(out)going particles.

Lets write the action: S0 = Et + S0(r), so eq (4.1) can be read as

∂S∂r

= ±Er

r − 2m→ S0 = ±

∫ rout

rin

Er drr − 2m

Haryanto M. Siahaan Introduction to Hawking Radiation

Page 12: Introduction to Hawking Radiation in The Tunneling …glu.elte.hu/~statfiz/eloadasok/siahaan-ea.pdfIntroduction to Hawking Radiation in The Tunneling Pictures Haryanto M. Siahaan1

Black Holes WKB approximation in Q.M. Radial null geodesic method Complex path method

Wave solutions:

Φin = exp

− i~

Et + E

rout∫rin

rdrr − 2m

, Φout = exp

− i~

Et − E

rout∫rin

rdrr − 2m

Condition from classical limit, i.e. ~→ 0, |Φin|2 = 1, yields Imt = −Imrout∫rin

rdrr−2m .

Consequently,

Pout = |Φout |2 = exp

−4E~

Im

rout∫rin

rdrr − 2m

= exp(−

8πME~

)

Using the principle4 of “detailed balance” [Hartle and Hawking, Phys.Rev. D13(1976)] Pout = e−E/TH Pin, we have TH = ~

8πM .

4Or simply consider the Boltzmann factor e−E/T related to Pout .

Haryanto M. Siahaan Introduction to Hawking Radiation

Page 13: Introduction to Hawking Radiation in The Tunneling …glu.elte.hu/~statfiz/eloadasok/siahaan-ea.pdfIntroduction to Hawking Radiation in The Tunneling Pictures Haryanto M. Siahaan1

Black Holes WKB approximation in Q.M. Radial null geodesic method Complex path method

Reference

Hawking, Commun.Math.Phys. 43 (1975) 199-220.

Hartle and Hawking, Phys.Rev. D13 (1976) 2188-2203.

Banerjee and Majhi, JHEP 0806 (2008) 095.

Parikh and Wilczek, Phys.Rev.Lett. 85 (2000) 5042-5045.

Shankaranarayanan, Padmanabhan, and Srinivasan, Class.Quant.Grav. 19(2002) 2671-2688.

Haryanto M. Siahaan Introduction to Hawking Radiation

Page 14: Introduction to Hawking Radiation in The Tunneling …glu.elte.hu/~statfiz/eloadasok/siahaan-ea.pdfIntroduction to Hawking Radiation in The Tunneling Pictures Haryanto M. Siahaan1

Black Holes WKB approximation in Q.M. Radial null geodesic method Complex path method

Acknowledgements

My host: Dr. Zoltan Bajnok.

The Tempus Public Foundation.

Haryanto M. Siahaan Introduction to Hawking Radiation