introduction to the immersed boundary/interface method

68
4 2 5 1 0011 0010 1010 1101 0001 0100 1011 IB-IIM, Beijing 1 Introduction to the Immersed Boundary/Interface Method: I Zhilin Li Center for Research and Scientific Computations & Department of Mathematics North Carolina State University Raleigh, NC 27695, USA

Upload: others

Post on 28-Jan-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to the Immersed Boundary/Interface Method

4251

30011001010101101000101001011

IB-IIM, Beijing 1

Introduction to the Immersed Boundary/Interface Method: I

Zhilin Li Center for Research and Scientific

Computations & Department of Mathematics North Carolina State University

Raleigh, NC 27695, USA

Page 2: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing2

Where is NCSU?

*

Page 3: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing3

Where is NCSU? II q Triangle: Duke (private), Durham; UNC (law/

medical), Chapel-Hill, NCSU (engineering), Raleigh q Research Triangle (centroid): Head-quarter of IBM &

Lenovo q Head-quarter of Red-Hat (Linux) q Home of SAS (largest statistics software, originated

from NCSU) q NSF Center: Samsi (Statistic and applied

mathematics Institute) q  NISS, ARO, pharmaceutical, communications, ……

Page 4: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 4

Outline q  Problems à PDES & Analysis/simulations

Ø  Can we model snowflakes? Ø  Drop spreading Ø  CFD and applications (flow past obstacles)

q  Numerical methods (IB, IIM, IFEM, Augmented IIM ( idea, procedure, why & how)

Ø  Why Cartesian/structured mesh? Ø  IB à IIM, regular problem à Source terms (Peskin’s IB model) à

IIM à AIIM q  How to evolve free boundary/moving interface?

Ø  Front tracking method Ø  Level set method

q  Conclusions

Page 5: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 5

Page 6: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

References q  R. LeVque & Z. Li: The immersed interface method for elliptic

equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal. 31:1019--1044, 1994, cited 1170.

q  The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains, SIAM Frontiers in Applied Mathematics 33, 2006, Zhilin Li and Kazufumi Ito.

q  New Cartesian grid methods for interface problems using the finite element formulationZ Li, T Lin, X Wu - Numerische Mathematik, 2003

q  A Fast Iterative Algorithm for Elliptic Interface Problems, SIAM J. Numer. Anal., 35(1), 230–254.

q  Accurate Solution and Gradient Computation for Elliptic Interface Problems with Variable Coefficients, SIAM J. Numer. Anal., 2017, 55(2), 570–597. (28 pages)

IB-IIM, Beijing 6

Page 7: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 7

Heat Propagation in Heterogeneous material

q Heat propagation through heterogeneous materials (an interface problem)

Page 8: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 8

Heat propagation through heterogeneous materials II

ut = ∇⋅β∇u, −1 < x, y < 1

β = 1 if x2 + y2 ≤ 14

100 otherwise

⎧⎨⎪

⎩⎪

BC: u(x,1,t) = sin((x + 1)π / 4), u(1, y,t) = sin(( y + 1)π / 4), u = 0 elsewhere.IC u = 0, [u] = 0, [βun] = 0, [un]≠ 0.

8

Page 9: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing9

Formulations of Snowflakes (Crystal Growth)

q Heat equation with non-linear BC

ρc ∂T∂t

= ∇ i (β∇T ), ρLV = − β ∂T∂n

⎡⎣⎢

⎤⎦⎥

T (x,t) = −εcκ − εVV , dXdt

i n =V

Page 10: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing10

Stefan Problem and Crystal Growth

q Stability analysis: dynamically unstable for some medium modes ( exp(-k I t))

Page 11: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 11

Simulation: Crystal Growth

Page 12: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 12

Underground Water Flow q  Ideal flow (steady state, potential flow)

( ) 0, 1/ is the permeability

1, 0 along other sidesx a

uu un n

β β

=

−∇ • ∇ =∂ ∂= =∂ ∂

Page 13: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing13

Drop Spreading q A simplified model (Hunter, Li, Zhao): The velocity of the

moving front V=θd - θs, (difference in dynamic and static contact angles). θd is computed from the Laplacian equation.

Page 14: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 14

Flow pass a cylinder

Page 15: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 15

Flow pass a cylinder: II

Page 16: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

Icon on Math Dept Web-page

16 IB-IIM, Beijing

Page 17: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 17

Flow pass a dumbbell, two cylinders

Page 18: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 18

Navier-Stokes Eqns with Interface q  The PDE model is the basis of Immersed Boundary (IB) method.

q Projection method:

u* − uk

Δt+ (u i∇u)k+1/2 + (∇p)k−1/2 = µ

2(Δuk + Δu*)+ F k+1/2 +Ck

Δφ = ∇ i u*

Δt+C2

k , ∂φ∂n

= 0

uk+1 = u* − Δt∇φ +C3k

∇pk+1/2 = ∇pk−1/2 +∇φ +C4k

∂u∂t

+ u i∇u + ∇p = µΔu + g

∇• u = 0u∂Ω = given velocity

Page 19: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 19

Permeability of concrete

q Estimate the permeability of concrete Ø Probability of random work Ø Laplacian equation exterior

with Neumann BC.

0, exterior

1, 0 along other sidesx a

uu un n=

Δ =∂ ∂= =∂ ∂

Page 20: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

Numerical Simulations q Analytic solutions are rarely available q Approximate solutions

Ø Analytic approach: series solution, asymptotic, perturbations, etc.

Ø Use computers q Numerical solutions using computers

Ø A mesh (or a grid) Body fitted mesh, Cartesian, structured or non-structured, mesh-free

Ø Discretization: Finite difference/element, volume, …

IB-IIM, Beijing 20

Page 21: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

Why Cartesian grid method? Cartesian or adaptive Cartesian grids. why? q Simple (no grid generation) q Need less adaptively due to high

resolution q Coupled with other Cartesian grid

methods (FFT, level set method, Clawpack, structured multi-grid method)

q Less cost for free boundary/moving interface problems, topological changes

IB-IIM, Beijing 21

Page 22: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LISimulation of free boundary moving interface Problems

q Solve the governing PDEs Ø Discontinuities in the coefficient, solution, flux,

irregular domain … q Evolve the free boundary or moving

interface Problems Ø Front tracking (Lagrangian) Ø Level set method (Eulerian) Ø Volume of fractions (VOF)

IB-IIM, Beijing 22

Page 23: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 23

A brief review of PDE solvers q Peskin’s Immersed Boundary (IB) method q Smoothing method

q Harmonic Averaging q Integral equation, FMM (Greengard, Mayo et al.) q FEM with body-fitted grid (Chen/Zou, Babuska…) q  IFEM (Z. Li, S. Hou & X-D Liu, J. Dolbow.. …) q GFM (Fedkew), Hybrid method, Virture nodal q  IIM (LeVeque, Li, Lee, Calhoun, Zhao,…) q Advantages and limitations …

Page 24: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 24

Immersed boundary (IB)

q C. Peskin’s IB method: Ø Modeling and simulation of heart beating/blood flow: treat the complicated boundary condition as a source distribution: Irregular domain (with BC)à rectangular box (no-BC)

Ø Numerics: Use a discrete delta function to distribute the source to nearby grid points

Ø Simple, robust, popular, application in bio-physics, biology, and many other areas

Ø  First order accurate, area conservation, non-sharp interface method

ρ ∂u

∂t+ u i∇u

⎛⎝⎜

⎞⎠⎟

+ ∇p = ∇• µ(∇u + ∇uT ) + f (s)δ (x − X (s))dsΓ∫ + g

24

Page 25: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing

Immersed Boundary Method q Immerse the heart into a rectangular box q The NSE are defined on the entire box! q The boundary condition is treated as a source

distribution (Dirac delta function)

Γ Γ

25

ρ ∂u∂t

+ u i∇u⎛⎝⎜

⎞⎠⎟

+ ∇p = ∇• µ(∇u + ∇uT ) + f (s)δ (x − X (s))dsΓ∫ + g

∇ i u = 0, dΓdt

= u( X (s),Y (s),t)

25

Page 26: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 26 26

A REU Project, 2010, NCSU q  IB (smoothing + discrete Delta function) may not converge for the

following

q QUESTION III: What is the solution or the jump

conditions for

q Derived the jump conditions; Defined (consistent) weak solution; Derived relation of the weak solution with the boundary conditions; Confirmed theoretical results with numerical implementation.

( ') ' ( ) '( )(0) 0, (1) 0u C x C x

u uβ δ α δ α= − + −

= =

( ') ' ( ) '( )linear BC at x=0, (1) 0?u C x C x

uβ δ δ= +

=

Page 27: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 27

IIM in1D, simple case q Equations:

q Or

q A uniform grid:

'' ( ), (0, ) ( ,1)( ) ( ), '( ) '( )(0) (1)a b

u f x xu u u u Cu u u u

α αα α α α

= ∈+ = − + = − +

= =

U

'' ( ) ( )(0) (1)a b

u f x C xu u u u

δ α= + −= =

Page 28: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 28

IIM in1D, simple case q Finite difference scheme: One finite difference

equation at every interior grid point

Ø Regular grid: Standard central scheme

1 112

1 12

1 21 12

2 ( ),

1, 2,..., 1, 1,..., 1.2

( )

2( )

i i ii j j

j j jj j

j j jj j

U U U f x x xh

i j j nU U U

f x Ch

U U Uf x C

h

α− ++

− +

+ ++ +

− + = ≤ <

= − + −− +

= +

− += +

Page 29: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 29

IIM for 1D problem & Analysis q Equations:

q Or

q A uniform grid:

( ') ' ( ), (0, ) ( ,1)( ) ( ), '( ) '( )(0) (1)a b

u f x xu u u u Cu u u u

β α αα α β α β α+ −

= ∈+ = − + = − +

= =

U

( ') ' ( ) ( )(0) (1)a b

u f x C xu u u uβ δ α= + −

= =

Page 30: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 30

IIM for 1D problem, II

q Finite difference scheme: One finite difference equation at every interior grid point

Ø Regular grid: Standard central scheme

Ø Irregular grid points,

1/2 1 1/2 1/2 1/2 12

( ) ( )

1, 2,..., 1, 1,..., 1.

i i i i i i ii

U U U f xh

i j j n

β β β β− − − + + +− + + =

= − + −

1j jx and x +

Page 31: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 31

Derive FD at the two irregular grid points

q FD scheme:

q Determine the coefficients and the correction term

q Interface relations:

, ,x x xx xxu u u u C u uβ ββ β

− −+ − + − + −

+ += = + =

1 1 1 1j j j j j j j jU U U f Cγ γ γ− − + ++ + = +

1 1, , ,j j j jCγ γ γ− +

Page 32: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 32

Derive FD at the irregular grid point, II

q Undetermined coefficient method to minimize the local truncation error at α

1 1 1 1

21 3

1 1

23

21 3

1 1

1

( ) ( ) ( )

( )( ) ( ) ( )

2( )

( ) ( ) ( )2( )

( ) ( ) ( )2(

( )

j j j j j j j j j

jj x j xx

jj x j xx

jj x j xx

x j

T u x u x u x f C

xu x u u x u O h

xu x u u x u O h

xu x u u x u O h

u u x

γ γ γ

αα

αα

αα

β βαβ β

− − + +

−− − −− −

− − −

++ + ++ +

− −− −

++ +

= + + − −

−= + − + +

−= + − + +

−= + − + +

= + − +2

1 3)( )

2j

xx

xu O h

α+ −−+

Page 33: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 33

FD at the irregular grid point, III q Taylor Expansion + interface relations +

undetermined coefficient method 1 1 1 1

21 3

1 1

2

1 1

21

1 1

( ) ( ) ( )

( )( ( ) ( ))

2( )

( ( ) ) ( )2

( )( ( ) )

2

j j j j j j j j j

jj x j xx

jj x j xx j j

jj x j xx j

T u x u x u x f C

xu u x u O h

xu u x u C x

xu u x u f

γ γ γα

γ α

α βγ α γ αβ

αβ βγ αβ β

− − + +

−− − −− −

−− − −

+ ++

− −+− − −

+ ++ +

= + + − −

− = + − + +

− + + − + + −

− + + − + − −

1 1 1 1 1

2 21

1 1 1

21

1

( ) ( ( ) ( )

( ) ( )( )) (

2 2( )

)2

j

j j j x j j j j

j jj j xx j j

jj j j

C

u u x x

x xx u

xf C

γ γ γ γ α γ αα αβγ α γ γ

βαβγ

β

− −− − + − −

−−−

+ + −+

−+

+ +

= + + + − + −

− − + − + + +

− − −

Page 34: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 34

Set-up equation q The linear system for the coefficients:

q The correction term is

1 1 1

1 1 1 1

2 2 21 1

1 1

0

( ) ( ) ( ) 0

( ) ( ) ( )2 2 2

j j j

j j j j j j

j j jj j j

x x x

x x x

γ γ γ

βγ α γ α γ αβ

α α αβγ γ γ ββ

− − +

− − + ++

−− + −

− + +

+ + =

− + − + − =

− − −+ + =

1 1( )j j jC C xβγ αβ

+ ++= −

Page 35: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 35

FD Scheme at irregular grid points q It has been proved that if then the

solution exists and unique. 0β β− + >

2 21 1 2 1[ ]( )( ) / 2 , [ ]( )( ) / 2j j j j j jD h x x D h x xβ α α β β α α β− +− + + += + − − = − − −

Page 36: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 36

Theoretical Results q The scheme is consistent and stable. q The scheme is 2-nd accurate in the

infinity norm (point-wise) q No interface: back to the normal center FD

scheme q No delta function (C=0), then correction term

is zero. q If then we have standard FD

coefficients, only correction term! β β+ −=

Page 37: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 37

An example and Comparison q Eqn:

q Exact soln:

q IIM exact q Smoothing +

discrete Delta

( ') ' ( ), (0) 0, (1) 0u x u uβ δ α= − = =

(1 ) 1( )(1 ) (1 )

Bxu x B

B xα

α β α β α+ −

−⎧= =⎨ − + −⎩

Page 38: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

Error Estimates q The determinant of the FD coefficient

matrix satisfies

IB-IIM, Beijing 38

3

2 21 1

2 2max min

2 2min max

2

If is piecewise cosntantdet( )

( ( )) otherwise

[ ]( )( ) / (2 )

2 2 C= ,

( ),

j

j

j j j

k

i

CDA

C D O h

D h x x h

C C Ch hT O h

β

β α α β

β βγβ β

−− −

⎧= ⎨ +⎩

= + − − ≥

≤ ≤ =

= 21 ( ), ( ), ( ).j jT O h T O h E O h+ ∞

= = =

Page 39: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 39

1D example II

q Many examples:

http://www4.ncsu.edu/~zhilin/IIM/index.html

q Natural jump condition:

2 4

4

44

1 1 1( ') ' 12 , (0) 0, (1)

0( )

1 1 1

u x u u

x xu x

x x

β αβ β β

αβ

α αβ β β

+ − +

+ − +

⎛ ⎞= = = + −⎜ ⎟⎝ ⎠

⎧< <⎪

⎪= ⎨⎛ ⎞⎪ + − < <⎜ ⎟⎪ ⎝ ⎠⎩

Page 40: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 40

1D example II q Discontinuous coefficients only:

Page 41: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 41

Regular FD à IB à IIM q Regular domain (rectangular, circles,..), no interface/

singularity

q The FD scheme at (xi,yj)

q AU=F; A: Discrete Laplacian. Can be solved by a fast Poisson solver (e.g. FFT, O(N2)log(N)), e.g., Fish-pack, or structured multigrid

( )BC (e.g. Dirichlet, Neuman, Mixed)u f xΔ =

1, 1, , 1 , 1 ,,2

4i j i j i j i j i jh i j ij

u u u u uL u f

h− + − ++ + + −

= =

Page 42: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 42

Poisson Eqn. with singular sources q  Interface problems, simplified Peskin’s IB model

q  Equivalent Problem

q  FD scheme (xi,yj), regular/irregular

( ) ( ( ))

BC (e.g., Dirichlet, Neuman, Mix

( )

ed)

u f x x X s ds gc s δΓ

Δ = + − +∫

1, 1, , 1 , 1 ,,2

4i j i j i j i j i jh i j i jj i

u u u uC

uL u f

h− + − ++ + + −

= = +

Δu = f (x) , x ∈Ω \ Γ, u⎡⎣ ⎤⎦Γ = 0, ∇u i n⎡⎣ ⎤⎦Γ = ∂u∂n

⎣⎢⎤

⎦⎥Γ= C(s)

BC (e.g., Dirichlet, Neuman, Mixed)

1, 1, , 1 , 1 ,,2

4i j i j i j i j i jh i j ij

u u u u uL u f

h− + − ++ + + −

= =

Page 43: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

Analysis of IB Method q It is inconsistent! The local truncation error is O(1/h)!

q But it is first order convergent in the infinity norm! q Rigorous proof by Z. Li, MathCom, 2014, in press

Ø Obtain estimates of discrete Green with zero BC (function and their derivatives)!

Ø Using the imaging technique to construct the Green function with the Green function in the entire space

Ø Construct interpolation functions C1Q5 and C2Q5

Ø Modified first and second discrete Green’s theorem

IB-IIM, Beijing 43

Δu = f (x) + c(s)δ(x − X (s))dsΓ∫ + g

BC (e.g., Dirichlet, Neuman, Mixed)ui−1, j +ui+1, j +ui , j−1 +ui , j+1 − 4ui , j

h2= Lhui , j = fij +Cij

Cij = Ckδh (xi − Xk )k∑ δh (y j −Yk )Δsk

Page 44: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 44

IIM for a 2D Model Problem q Two equivalent forms

Ø Equation on each domain coupled with the jump conditions

q Solution is not smooth or even discontinuous!

−∇ i (β∇u) = f (x)+ c(s)δ (x − X (s))dsΓ∫

βΩ∫∫ ∇u i∇vdxdy = fv dx dy

Ω∫∫ + c(s)v( X (s))dsΓ∫

[ ] 0, or [ ] ( )u u w s= = [ ] ( )u n v sβ∇ • =

Page 45: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 45

IIM for Singular Source

q [β]=0, i.e. continuous coefficient

q Finite difference scheme (correction term only), one FFT.

( ) ( ) ( ) ( ( ))

[ ] ( ), [ ] ( )

u f x v s x X s ds

u w s u n v s

β δΓ

−∇ • ∇ = + −

= ∇ • =∫

,h i j ij ijL u f C= +

Page 46: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 46

Outline of IIM (Finite Difference)

q Simple Cartesian/adaptive Cartesian grids q FD (algebraic) eqn at every grid point

Ø Standard FD scheme away from the interface

Ø Modified FD scheme at grid points near or on the interface

Page 47: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 47

Key steps of IIM q Un-determined coefficient method at

grid point near/on the interface

q Expand at on the interface from each side!

q Use jump conditions to eliminate the quantities of one side in terms of the other

q  Easier to do in the local coordinates

Page 48: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 48

Set-up a system for FD coefficients

Page 49: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 49

Interface Relations

q For homogeneous jump conditions, we get:

q It depends on the curvature!

Page 50: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 50

Set-up a system for FD coefficients

q How many points in the stencil? Ø ns=6, original IIM Ø ns=5, 1-st order maximum principle preserving Ø ns=9, 2-nd order maximum principle preserving

Page 51: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing51

Stability: Maximum principle preserving IIM

q Add maximum principle constraint

q Set-up an optimization problem:

Page 52: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 52

Maximum principal preserving IIM

q ns=9, nine-point stencil q Correction term: q Strictly theoretical proof of 2-nd order accuracy

in infinity norm q Zero jumps, zero correction (C = 0). q No discontinuity in the coefficient ([β]=0).,

standard FD scheme of 5-point stencil (-->FFT)

Page 53: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

Convergence Analysis

IB-IIM, Beijing 53

Page 54: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

Convergence Analysis

IB-IIM, Beijing 54

Page 55: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI Convergence Analysis

IB-IIM, Beijing 55

Page 56: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

A benchmark example q Variable & discontinuous coefficients, singular

source

( )2 2

2 2 2 2

2 2 2 2

42

( ) ( ) ( ( ))

( , ) 8 4

1, if 1/ 4( , )

, if 1/ 4( , ) 1 11 /4 + /b+ log(2 ) /

8 2

u f x C x X s ds

f x y x y

x y x yx y

b

x y x yu x y r r C r b

b b

β δ

β

Γ∇ • ∇ = + −

= + +

⎧ + + + ≤= ⎨⎩

+ + ≤= ⎛ ⎞⎛ ⎞− − +⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

⎧⎪⎨⎪⎩

IB-IIM, Beijing 56

Page 57: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing57

An Example

Page 58: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing58

An Example: grid refinement analysis

Page 59: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing59

An Example: grid refinement analysis

Page 60: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing60

Discontinuous Solution

2 2 2 2

( ) ( ) ( ( ))

, if 4 1( , )

sin( )cos( )

u f x C x X s ds

x y x yu x y

x y

β δΓ

∇ • ∇ = + −

⎧ − + ≤= ⎨⎩

Page 61: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing61

A grid refinement analysis

Page 62: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

Algorithm, efficiency analysis

IB-IIM, Beijing 62

Page 63: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

Algorithm, efficiency analysis

IB-IIM, Beijing 63

Page 64: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 64

IIM in 3D q  IIM in 3D (Li, Deng,Ito) using a level set

representation

q A regular grid point: standard central 7-point stencil

Δu = f (x)+ v(s1,s2 )δ (x − X (s1,s2 ))dsΓ(s1,s2 )∫

[u]= w(s1,s2 ), [∇u i n]= v(s1,s2 )

Page 65: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 65

IIM in 3D, at an irregular grid q A local coordinates

q cosines computed from level set function

Page 66: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 66

IIM in 3D, at an irregular grid q Interface

relations: Ø 2 given Ø 8 derived

q The rest process is the same Ø Need surface

derivatives of jumps

Page 67: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 67

IIM in 3D, an example q Exact soln:

2 2 2 2 2 2

2 2 2

1, 1 , 1 x y z x y z

b x y zβ

⎧ + + + + + ≤= ⎨

+ + >⎩

Page 68: Introduction to the Immersed Boundary/Interface Method

NC STATE UNIVERSITY

Zhilin LI

IB-IIM, Beijing 68

IIM in 3D, example of multi-connected domain