intronmr2_530 presentation for worksheets

32
Interpreting and evaluating biological NMR in the literature Worksheet 1

Upload: nguyencong

Post on 03-Jan-2017

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: intronmr2_530 Presentation for Worksheets

InterpretingandevaluatingbiologicalNMRintheliterature

Worksheet1

Page 2: intronmr2_530 Presentation for Worksheets

ApplicationofRFpulsesofspecifiedlengthsandfrequenciescanmakecertainnucleidetectable

Wecanselectivelyexcitenucleiofinterest.

1DNMRspectra

Signalsfromall1Hofsomefoldedprotein

H-N H-C

Water

Page 3: intronmr2_530 Presentation for Worksheets

ApplicationofRFpulsesofspecifiedlengthsandfrequenciescanmakecertainnucleidetectable

Wecanselectivelyexcitenucleiofinterest.

1DNMRspectra

Signalsfromall1Hofanunfoldedprotein

Significantlylessdispersioninamideregionlossofuniquechemical/structuralenvironments

H-N H-C

Water

Page 4: intronmr2_530 Presentation for Worksheets

SSP- Secondary structure prediction• CSI (chemical shift index) - establishes the secondary

structure of proteins based on chemical shift differences with respect to some predefined “random coil” values. It can be applied from the measured HA, CA, CB and CO chemical shifts for each residue in a protein.

0=randomcoilchemicalshift

Page 5: intronmr2_530 Presentation for Worksheets

PREs

• longdistancerestraints– 15-24Å

Chem.Rev.2009,109,4108–4139

ParamagneticDNAorMembrane

Page 6: intronmr2_530 Presentation for Worksheets

ReferencesforfiguresinWorksheet1

Groups1and2:Saio T1,GuanX,RossiP,Economou A,Kalodimos CG.(2014)Structuralbasisforproteinantiaggregation activityofthetriggerfactorchaperone.Science.May9;344(6184):1250494.doi:10.1126/science.1250494.

Group3:StewartMD,ColeTR&IgumenovaTI(2014)InterfacialPartitioningofaLoopHingeResidueContributestoDiacylglycerolAffinityofConservedRegion1Domains.JBiol Chem 289:27653-27664

Group4:StewartMD.KlevitRE.Unpublishedresults.

Page 7: intronmr2_530 Presentation for Worksheets

UsingNMRtoanswerbiologicalquestions

Worksheet2

Page 8: intronmr2_530 Presentation for Worksheets

Group1

• Youhaveawellbehaved7kDa independentlyfoldedregulatorydomainofaproteinkinase.Thisdomainbindstoasmallmoleculeactivatingthekinase.Asingleaminoacidmutationinthisdomainleadstoover-activationofthekinaseandmis-regulationofsignaling.HowwouldyouuseNMRtoinvestigatehowthemutationaffectsbindingofthedomaintothesmallmolecule?

Page 9: intronmr2_530 Presentation for Worksheets

Frequency(Hz)

kex=k1+k-1

TimescalesofbindinginNMR

kex<<Dw Slowexchange

kex>>Dw Fastexchange

kex=Dwk-1

k1A B

Page 10: intronmr2_530 Presentation for Worksheets

Titration of a membrane bound second messenger, diacylglycerol, into a signaling protein

Wild-type signaling proteinFast exchange

Tighter binding mutant slow exchange

Page 11: intronmr2_530 Presentation for Worksheets

Titration of a membrane bound second messenger, diacylglycerol, into a signaling protein

Wild-type signaling proteinFast exchange

Tighter binding mutant slow exchange

Page 12: intronmr2_530 Presentation for Worksheets

Group2

• Youhaveawellbehaved6kDa proteinthatexchangesbetweentwoconformationsinsolution.Youdeterminefroma1H-15NHSQCthatthepopulationsofthetwoconformationsareequallypopulatedinsolutionbutyouonlyseeoneconformationoftheproteinincrystalstructures.Youbelievetheun-crystalizableconformationistheactiveconformation.Howcanyougainstructuralinformationabouttheactiveconformation?

Page 13: intronmr2_530 Presentation for Worksheets

Structural restraints: bond orientations• Residual dipolar couplings (RDCs)

1. Intrinsic anisotropy

2. External liquid crystalline medium (sterics and/or charge)

• Bicelles

• Phage

• Polyacrylamide gels

• C12E5 PEG + hexanol

Page 14: intronmr2_530 Presentation for Worksheets

Structural restraints: RDCs• Measured for a pair of covalently-linked NMR-active

nuclei in partially aligned molecules

• Examples: 15N-1H, 13Ca-15N,13CO-15N RDCs

• RDCs depend on the orientation of the bond vector relative to the molecular alignment frame

Aligned sample splitting = JNH+DNH

N

H

r

B θ

4 p rNH3

ħ gN gHDNH = (1 – 3 cos2q)

Page 15: intronmr2_530 Presentation for Worksheets

Limited data refinement example from a zinc coordinating kinase regulatory domain

Conformation a RDC (Hz)C

onfo

rmat

ion

b R

DC

(Hz)

Aligned sample splitting = JNH+DNH

N

H

r

B θ

4 p rNH3

ħ gN gHDNH = (1 – 3 cos2q)

Page 16: intronmr2_530 Presentation for Worksheets

Limited data refinement example from a zinc coordinating kinase regulatory domain

Page 17: intronmr2_530 Presentation for Worksheets

Group3• Youhaveawellbehaved15kDa proteinthatexchangesbetweentwoconformationsinsolutiondependingonthepH. ThisswitchhelpstheproteinserveasapHsensorthatisactivatedincellularstress.BecausetheconformationalchangeoccursclosetophysiologicalpH,yoususpectthattheswitchthatcontrolstheconformationalchangeistheprotonationofahistidinesidechain.HowdoyouuseNMRtodeterminewhichresidueactsastheconformationalswitchandwhichpartsoftheproteinareaffectedbytheconformationalexchange?

Page 18: intronmr2_530 Presentation for Worksheets

pH dependent conformational exchange

Protonation = fast

Conformationalexchanage = slow

Page 19: intronmr2_530 Presentation for Worksheets

His107- pKa 6.7± 0.1His117- pKa 5.6± 0.1His127- pKa 6.1± 0.1

Page 20: intronmr2_530 Presentation for Worksheets

Protonation/ De-protonation drives the conformational exchange process

Page 21: intronmr2_530 Presentation for Worksheets

Group4

• Youhavean80kDa proteinthatiswellfoldedandsoluble.Thisproteinisactivatedbynucleotidebinding,butrecentlyasmallmoleculehasbeenfoundthatmimicsthisactivation.Youhaveacrystalstructureofahomologousproteinboundtonucleotide,butyoucannotgetyourproteintocrystallizewiththesmallmolecule.HowcanyouuseNMRtodetermineifthesmallmoleculebindstothesamesiteasthenucleotide?

Page 22: intronmr2_530 Presentation for Worksheets

cAMP fisetin Carlsonetal.(2013)

Studyingligandbinding inalargeunassignedprotein

cAMPMet572

• VoltagegatedK+ channel(HCN2)

• Heart- pacemaking• Brain- chronicpain• Twoactivatingligands

Page 23: intronmr2_530 Presentation for Worksheets

13C-HSQCresonances

Page 24: intronmr2_530 Presentation for Worksheets

13C-HSQCmethyls

Page 25: intronmr2_530 Presentation for Worksheets

13C-HSQCofHCN2M572

Carlsonetal.(2013)

Page 26: intronmr2_530 Presentation for Worksheets

Assignmentbymutagenesis

Carlsonetal.(2013)

M572T

Page 27: intronmr2_530 Presentation for Worksheets

Extra Example: Solid-state NMR

Page 28: intronmr2_530 Presentation for Worksheets

Solid-state NMR: advantages

• Isotropic-like NMR spectra with site resolution

• No solubility problem

• No “tumbling time”problem

Page 29: intronmr2_530 Presentation for Worksheets

Kaliotoxin-K+ channel interactions

• The chemical shifts of kaliotoxin are perturbed as a result of binding to K+ channel.

K+ channel

kaliotoxin

Langeetal,Nature(2006),440,959-962

Page 30: intronmr2_530 Presentation for Worksheets

Kaliotoxin-K+ channel interactions

Solid-state structure of kaliotoxin bound to K+ channel

Residues whose chemical shifts are perturbed as a result of binding are colored red.

Langeetal,Nature(2006),440,959-962

Page 31: intronmr2_530 Presentation for Worksheets

Kaliotoxin-K+ channel interactions: looking at K+ channel

• Perturbed and unperturbed residues of K+ channel are shown in red and blue, respectively.

K+ channel

kaliotoxin

Langeetal,Nature(2006),440,959-962

Page 32: intronmr2_530 Presentation for Worksheets

Structural model of kaliotoxin-K+ channel

• High-affinity binding of kaliotoxin is accompanied by an insertion of K27 side-chain into the selectivity filter of the channel;

• The binding is associated with conformational changes in both molecules.

kaliotoxin

K+ channel selectivity filter

Langeetal,Nature(2006),440,959-962