investigation to define the propagation … to define the propagation ... investigation to define...

99
t ~NASA CONTRACTOR NASA CR-736 1 - 1 ._ REPORT IC I f. 40 m INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE AMPLITUDE ACOUSTIC PRESSURE WAVE b&A. C. Peter mzd J. W. Cottrell r"r epieu' &y NORTH AMERICAN AVIATION, INC. '2 Downey, Calif. 2 for George C. itinrshrzll Space Flight Center NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. APRIL 1967 https://ntrs.nasa.gov/search.jsp?R=19670012652 2018-06-24T04:55:45+00:00Z

Upload: danghanh

Post on 16-May-2018

218 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

t

~ N A S A C O N T R A C T O R N A S A C R - 7 3 6 1 - 1 ._

R E P O R T IC

I f.

40 m

INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE AMPLITUDE ACOUSTIC PRESSURE WAVE

b&A. C. Peter mzd J . W. Cottrell

r"r e p i e u ' &y

NORTH AMERICAN AVIATION, INC. '2

Downey, Calif. 2 for George C. itinrshrzll Space Flight Center

N A T I O N A L A E R O N A U T I C S A N D SPACE A D M I N I S T R A T I O N W A S H I N G T O N , D. C. A P R I L 1 9 6 7

https://ntrs.nasa.gov/search.jsp?R=19670012652 2018-06-24T04:55:45+00:00Z

Page 2: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

NASA CR-736

INVESTIGATION T O DEFINE THE PROPAGATION CHARACTERISTICS

O F A FINITE AMPLITUDE ACOUSTIC PRESSURE WAVE

By A. C . Peter and J. W. C o t t r e l l

Dis t r ibu t ion of t h i s report is provided i n t h e i n t e r e s t of i n f o r m a t i o n exchange . Responsibi l i ty for the con ten t s resides i n the au tho r or organizat ion tha t p r e p a r e d it.

,,6 P r e p a r e d u n d e r C o n t r a c t No. I NAS 8 - 1 1 4 4 f b y

NORTH AMERICAN AVIATION, INC. Downey , Calif .

for G e o r g e C . M a r s h a l l Space F l ight C e n t e r

N A T I O N A L AERONAUT ICs AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - CFSTI price $3.00

r ! I r; ,? i , : P i s . ( 7 3 ) ::<. ' a r 9 i L ' \ q; - - f 1 < / ' j

Page 3: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

J V C"REWQRD

This report presents work performed hy North

American Aviation, Inc. , Space a.nd Informatton

Systems Division in fulfillment of Contract

NAS8-11441, '!lnve/sLLgation t o Dedine t h e Ptropaga;tion

ChanactehinLLcn 05 a Finite AwpUude Paenauae Wave."

This study has been administered by the Unsteady

Aerodynamics Branch, National Aeronautics and Space

Administration, George C . Marshall Space F l i g h t

Center, Huntsville, Alabama.

Dr. F. C . Hung acted as Program Manager for

North American Aviation, Inc. Mr. A. C. Peter and

J . M. Cottrell were the investigators on the project.

iii

Page 4: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

ACKNONLEDGEMENTS

The P r i n c i p a l I n v e s t i g a t o r would l i k e t o

express h i s thanks t o D r . T. C. L i f o r h i s h e l p

on var ious p a r t s o f t he p r o j e c t and cons tan t

encouragement throughout.

express h i s thanks t o Prof . J . Laufer f o r h i s

c r i t i c a l comments concerning c e r t a i n p a r t s o f

t h i s research p r o j e c t , t o D r . R. Kaplan f o r h i s

i n t e r e s t and t ime taken up by discussion, t o

R . H a l l i b u r t o n and D r . E . T. Benedikt f o r t h e i r

k i n d encouragement and suggestions.

He would a l s o l i k e t o

iv

.

Page 5: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

SUMMARY

A t h e o r e t i c a l a n a l y s i s o f the propagat ion c h a r a c t e r i s t i c s o f a f i n i t e

amp1 i tude pressure wave i s presented i n t h e f o l 1 owing sect ions.

The a n a l y s i s at tempts t o study the c o n t r i b u t i o n o f entropy-producing

It r e s u l t s i n a reg ions t o t h e mechanism o f aerodynamic noise generat ion.

n o n - l i n e a r convec t ive wave equat ion i n terms o f ent ropy and a thermodynamic

J f u n c t i o n .

those used i n c l a s s i c a l l i t e r a t u r e i s obtained. An i d e a l i z a t i o n of the

processes considered permi ts t h e uncoupl ing o f t h e equat ions o f mot ion

w i t h a consequent c o n s t r u c t i o n o f an acoust ic analogy t r e a t i n g shock wave

emission o f f i n i t e ampl i tude acous t ic waves.

A d i r e c t analogy between t h e der ived governing equat ion and

An engineer ing approach of t h i s analogy i s r e f l e c t e d i n t h e concept

o f an extended p l u g nozz le whose f u n c t i o n i t i s t o f a c i l i t a t e aerodynamic

n o i s e a t t e n u a t i o n by modify ing t h e entropy-producing reg ions.

V

Page 6: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

TABLE OF CONTENTS

Section Page

I . B A S I C THEORY

1 . INTRODUCTION . . . . . . . . . . . . . . . . . . . . . 1

2 . THE NON-ISENTROPIC CONVECTED WAVE EQUATION . . . . . . 2

3 . THE THERMODYNAMIC VARIABLE J . . . . . . . . . . . . . 10

4 . LUMl'AK13UIY w i i n fhl3111lU I I I L ~ ~ \ ~ ~ ~ . . . . . . . . . . 18

5 . SOME A D D I T I O N A L ASPECTS OF THE GOVERNING EQUATION . . 24

6 . THE PROCESS J . CONSTANT . . . . . . . . . . . . . . . 27

7 . THE CASE OF MODERATE SHOCK WAVES . . . . . . . . . . . 34

............. I T T I I r v l r - r T m l r TUcnDTcC

I 1 . ENGINEERING A P P L I C A T I O N

8 . INTRODUCTION . . . . . . . . . . . . . . . . . . . . 41

9 . ENGINEERING REPRESENTAT ION . . . . . . . . . . . . . . 42

10 . AN ACOUSTIC ANP-LOGY . . . . . . . . . . . . . . . . . 48

11 . THE CONICAL SHOCK LAYER . . . . . . . . . . . . . . . 58

12 . THE TRIGGERING MECHANISM . . . . . . . . . . . . . . 71

13 . EXPERIMENTAL V E R I F I C A T I O N . . . . . . . . . . . . . . 7 6

CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . 87

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . 89

vii

Page 7: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

FIGURES

Page Number

Figure Number

1

2

3

4

5

6a

6b

7a

7b

Pressure vs. Densi ty f o r J=Constant Process Appl ied

t o Shock Layer T r a n s i t i o n Flow . . . . . . . . . . . . . The Non- Isentrop ic Propagat ion Speed a vs Entropy

Appl ied t o Shock Layer T r a n s i t i o n Flow . . . . . . . . . The Parameter B /ao vs Upstream Mach Number f o r J=Constant

Process Appl ied t o a Normal Shock T r a n s i t i o n Flow . . . 38

Pressure vs. Entropy f o r J=Constant Process Appl ied t o

28

32 2

Shock Layer T r a n s i t i o n Flow . . . . . . . . . . . . . 39

Densi ty vs Entropy f o r J=Constant Process Appl ied t o

Shock Layer T r a n s i t i o n Flow . . . . . . . . . . . . . 40

Po la r Graphs o f Lines o f Constant I n t e n s i t y i n the Noise

F i e l d o f a 25" Conical Shock Showing the Frequency

Dependent D i r e c t i o n a l i t y . . . . . . . . . . . . . . . 63

Distance From Shock Versus Spher ica l Angle f o r L ines o f

Constant I n t e n s i t y i n t h e F i e l d of a 25' Conical Shock . Polar Graphs of L ines of Constant I n t e n s i t y i n the Noise

F i e l d o f a 45" Conical Shock Showing the Frequency

Dependent D i r e c t i o n a l i t y . . . . . . . . . . . . . . . 65

Distance from Shock versus Spher ica l Angle f o r L ines of

Constant I n t e n s i t y i n t h e F i e l d o f a 45" Conical Shock .

64

66

viil

Page 8: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

F i gure Number

8a

8b

8c

0-l OU

9

10

1 l a

l l b

l l c

12

D i r e c t i o n a l i t y F i e l d o f a Parabalo ida l Shock a t

h = u/a0 = .lO(cgs u n i t s )

D i r e c t i o n a l i t y F i e l d o f a Parabalo ida l Shock a t

. . . . . . . . . . . . . . .

'b' /= w / a 0 = .50 (cgs u n i t s ) . . . . . . . . . . . . . . . D i r e c t i o n a l i t y F i e l d of a Parabaio ida i Shock a t

h = u/a0 = 1.00 (cgs u n i t s ) . . . . . . . . . . . . . . D i r e c t i z n a ! i t y F i e l d nf 5 Parahalo ida l Shock a t

h = d u o

A C h a r a c t e r i s t i c CRT P l o t of Spectrum f o r Two Typ ica l Time

I n p u t Funct ions (Simular ion o f Smith 's Experiment; Y = 50"

Comparison o f Frequency D i r e c t i v i t y I n d i c e s as Computed by

Model and as Determined Exper imenta l ly by Smith

Comparison of Spectra Computed by Model w i t h Those Obtained

= 2.00 (cgs u n i t s ) . . . . . . . . . . . . . .

. . . .

Exper imenta l l y by Smith (Program F i r i n g No. 1 )

Exper imenta l l y by Smith (Program F i r i n g No. 1 )

Exper imenta l l y by Smith (Program F i r i n g No. 1 )

(Program F i r i n g No. 1) . . . . . . . . . . . . . . . . .

. . . . Comparison of Spectra Computed by Model w i t h Those Obtained

. . . . Comparison of Spectra Computed by Model w i t h Those Obtained

. . . . O v e r a l l D i r e c t i v i t y S imu la t ion o f Smi th 's Experiments

Page Number

67

68

69

70

75

80

81

82

83

84

ix

Page 9: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

I. BASIC THEORY

1. INTRODUCTION

This t h e o r e t i c a l ana lys i s o f t h e propagation c h a r a c t e r i s t i c s o f a

f i n i t e ampl i tude pressure wave has been concerned w i t h the c o n t r i b u t i o n o f

entropy-producing reg ions t o the mechanism o f aerodynamic noise generat ion

approach

ons on

i n t h e exhaust o f a supersonic nozzle. It i s hoped t h a t t he presen

w i l l tend t o supplement some aspects o f t he contemporary i n v e s t i g a t

t he s u b j e c t o f aerodynamic noise generation.

A f i r s t at tempt t o i n v e s t i g a t e t h e f e a s i b i l i t y o f aerodynamic no ise

a t t e n u a t i o n by modify ing t h e geometry of entropy-produci ng regions ( i n t h i s

p a r t i c u l a r case, shock waves) r e s u l t e d i n the concept o f an extended p l u g

nozz le (Pe te r and Kamo, 1963).

e a r l y ideas on a more r i go rous bas is by consider ing non-- isentropic processes

coupled w i t h t h e equat ions o f motion o f f l u i d dynamics.

The present analys is at tempts t o p u t these

The a n a l y s i s r e s u l t s i n a non l i nea r convect ive wave equat ion i n terms o f

entropy and a thermodynamic J - func t i on .

speed C( i s de f i ned and expressed i n terms o f t he ent ropy funct ion. This

propagat ion speed reduces t o the i s e n t r o p i c speed o f sound as the ent ropy

p roduc t i on i n the process tends t o zero. A proper choice o f the thermo-

dynamic J - f u n c t i o n a l lows a d i r e c t analogy between the de r i ved governing

equat ion and those used i n c l a s s i c a l l i t e r a t u r e ( L i g h t h i l l , 1952, P h i l l i p s ,

1960, Ribner, 1954-62) when the entropy terms a re assumed small .

A non- isent rop ic propagat ion

The

i z i n g the process equat ions o f mot on a re s i m p l i f i e d and uncoupled by idea

-1-

Page 10: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

t o c o n s i s t o f s t r a i g h t l i n e s i n the I-S plane, each r e f e r r i n g t o a

d i f f e r e n t reg ion i n space. Th is i d e a l i z a t i o n i m p l i e s a f a r f i e l d no ise

analys is s ince near f i e l d e f f e c t s admit of mixed J-S processes t a k i n g

place.

It i s a l s o shown t h a t , w i t h i n t h e framework o f t h i s ana lys is , t h e

pressure, dens i ty and temperature f u n c t i o n s depend on the h i s t o r y o f t h e

process r a t h e r than t h e instantaneous s t a t e s o f the f l u i d p a r t i c l e s . I t

appears, a1 so, t h a t , whereas a1 1 f u n c t i o n a l values o f the thermodynamic

var iab les (e.g., p, p , T , e t c . ) a re cont inuous on the boundary o f a non-

i s e n t r o p i c reg ion ( a d j o i n i n g an i s e n t r o p i c r e g i o n ) t h e i r d e r i v a t i v e s are no t .

The non- isen t rop ic propagat ion speed a d i f f e r s f rom i t s i s e n t r o p i c counter-

p a r t , a t the end o f t h e non- isen t rop ic process, by a f a c t o r which i s c lose,

bu t n o t equal to , u n i t y .

entropy produced d u r i n g the process and tends t o u n i t y as the ent ropy pro-

duct ion tends t o zero. Moreover, i t a l s o appears t h a t , even though t h e

entropy v a r i a t i o n f o r weak shocks i s o f a t h i r d o rder o f magnitude, the

e f f e c t s o f entropy produc t ion cannot be d isregarded s ince, i n the governing

d i f f e r e n t i a l equation, ent ropy e f f e c t s are o f a f i r s t - o r d e r magnitude due

t o an a d d i t i o n a l f a c t o r appear ing i n t h e ana lys is .

Th is f a c t o r depends d i r e c t l y upon t h e amount o f

? . THE NON-ISENTROPIC CONVECTED WAVE EQUATION

I n t h e proceeding a n a l y s i s i t i s assumed t h a t a p e r f e c t gas s a t i s f y i n g

the equat ion o f s t a t e

p = pRT ( 2 . 1 I

forms a r e g i o n of ent ropy product ion.

t h e f o l l o w i n g equat ions of mot ion descr ibe t h e f l o w c h a r a c t e r i s t i c s

I n a f i x e d Car tes ian Reference Frame

-2-

Page 11: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

r 1

( 2 . 3 )

(2.41

The f o i i o w i n g n o t a t f i x is used:

P

P T

= dens i ty of t h e f l u i d

= pressure o f t he f l u i d

= temperature o f t he f l u i d

= v e l o c i t y v e c t o r i U

s = entropy

u = v i s c o s i t y c o e f f i c i e n t

h = heat t r a n s f e r c o e f f i c i e n t

= body forces vec to r Fi 2 = heat sources

R = gas constant

9 = d i s s i p a t i o n f u n c t i o n

= viscous p a r t o f t he s t r e s s tenso r i j T

I n terms of t h e above n o t a t i o n the fo l l ow ing s u b s i d i a r y r e l a t i o n s are needed:

-3-

Page 12: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

wi th

= Kronecker d e l t a " j

Since the a n a l y s i s o f entropy-producing regions imp1 i e s a s t rong

coupl ing between the mechanical cond i t i ons .(momentum equat ion) and thermo-

dynamic cond i t i ons (energy equat ion) , i t w i l l be use fu l t o p u t the momentum

equat ion i n terms of thermodynamic va r iab les .

divergence o f the momentum Equat ion (2.3) t o o b t a i n

To do so we f i r s t take the

L e t J be a thermodynamic v a r i a b l e ( t o be de f i ned a t a l a t e r stage)

and consider the pressure t o be a f u n c t i o n o f d e n s i t y and the v a r i a b l e J.

Under these cond i t i ons the pressure d i f f e r e n t i a l may be w r i t t e n i n the form

-4-

Page 13: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

We nex t d e f i n e a q u a n t i t y a having the dimensions o f v e l o c i t y and

g iven by

2 a = [?j3

Under these c o n d i t i o n s t h e pressure g rad ien t t e r m i n Equat ion ( 2 . 5 ) may be

w r i t t e n as

I n view o f r e l a t i o n s ( 2 . 2 ) and (2 .b ) , Equation ( 2 . 5 ) takes on the f o l l o w i n g

form

i axi ax 3 a l a j

axi p ax = - [ - - ( T ~ ~ ) i Fi - - - (2.91

Now l e t us cons ider the en t ropy func t ion . To s im-p l i f y the de r i va t i on ,

a c a l o r i c a l l y p e r f e c t gas w i l l be assumed t o y i e l d

(2.10)

where cy and c are the s p e c i f i c heats o f t he gas and y i s t h e i r r a t i o . P

A f u n c t i o n G w i l l now be de f ined i n such a manner t h a t

G =-cv Ln[b) (2.17)

Under these cond i t i ons , R e l a t i o n (2 .10 ) becomes s imp ly :

- 5-

Page 14: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

' (S + GI P

C ( 2 . 1 2 )

I n us ing Re la t i on ( 2 . 1 2 ) i n Equation ( 2 . 9 ) t he thermodynamic v a r i a b l e s

S and J w i l l be regarded as independent, va r iab les . As mentioned p rev ious l y ,

the thermodynamic v a r i a b l e J w i l l be de f i ned l a t e r . Before us ing R e l a t i o n

( 2 . 1 2 ) i n t he d i f f e r e n t i a l equat ion ( 2 . 9 ) , i t w i l l be convenient t o no te t h e

form o f t he d e r i v a t i v e s o f Equat ion ( 2 . 1 2 ) . I n accordance w i t h the above

hypothesis we have

Hence, t a k i n g the f i r s t and second d i f f e r e n t i a l s o f Equat ion ( 2 . 1 2 ) , the

f o l l o w i n g r e l a t i o n s are ob ta ined

( 2 . 1 3 )

I ( 2 . 1 4 )

Consider nex t t he d i f f e r e n t i a l Equat ion ( 2 . 9 ) and w r i t e i t i n the

f o l l o w i n g form:

-6-

Page 15: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

Fro% Equaticns ! 2 . 7 3 ) and ( 2 . 7 4 ) the l a s t equation may be written as

Collecting terms i n the above equation, the following relat ion i s

obtained:

-7-

Page 16: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

( 2 . 1 6 )

To s i m p l i f y t he n o t a t i o n we in t roduce two func t i ons H and K given

by ;

and w r i t e the l a s t express ion o f Equat ion ( 2 . 1 6 ) i n t h e fo rm

aJ ( 2 . 1 8 )

I n view o f Equations ( 2 . 1 7 ) and ( 2 . 1 8 1 , Equat ion ( 2 . 1 6 ) becomes

- 8-

Page 17: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

Simp l i f y i ng the above, the f o l l o w i n g d i f f e r e n t i a l equat ion i s obtained:

t

-9-

Page 18: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

Equation ( 2 . 1 9 1 represents a nonlinear convective wave equation i n

terms of the two thermodynamic variables S and J. I t implies t h a t , in a

non-isentropic region, entropy changes are propagated convectively within

the region. The source dis t r ibut ion i s represented by the right-hand s ide

of Equat ion (2 .191 and i s shown t o depend upon the nature of the thermodynamic

variable J and also upon the l a s t two terms of the equation representing

the e f fec ts of viscosi ty , body forces and velocity fluctuations.

of the character is t ics i s d i rec t ly a function of the propagation speed

The shape

(2 .201

Formal ly , t h i s propagation speed depends d i rec t ly upon the entropy

s ta te of the f lu id par t ic les and also upon the process J = constant.

these two thermodynamic variables i t i s a function of the space variables

x and the time t. I n addition, the form of the equation indicates

dissipative processes due t o the appearance of f i r s t derivatives b o t h i n

space and time and a lso due t o the highly nonlinear character of the pro-

cesses involved.

since a l l coefficients on the l e f t of the above equation are functions of

entropy, i . e . , of the dependent variable (except the coeff ic ient of the

second time derivative which has been incorporated in the forcing function

on the right-hand side by su i tab le divis ion) .

Through

i

This i s reflected by the non-linearity o f the equation

3 . THE THERMODYNAMIC VARIABLE J

Equation ( 2 . 1 9 ) governing’ the flow in non-isentropic regions admits

t w o independent thermodynamic variables, namely, the entropy S and the

variable J which, so f a r , i s of an a rb i t ra ry character. The remaining

-10-

Page 19: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

va r iab les , whose mathematical forms a re sought i n t h e present i n v e s t i g a t i o n ,

e.g., t he pressure p , the d e n s i t y P , etc . , a re f u n c t i o n s o f t he space

coordinates x i ( i = 7,2,3) and the t ime R , through these two independent

va r iab les . To o b t a i n an a n a l y t i c a l l y meaningful r e s u l t f rom the prev ious

d e r i v a t i o n , t h e thermodynamic v a r i a b l e J must be un ique ly determined. Now,

i t appears t h a t t he unique de terminat ion o f t h i s v a r i a b l e cannot be achieved

f rom p u r e l y mathematical o r thermodynamic considerat ions, s ince h i t h i n the

framework o f these two sciences t h e va r iab le J need n o t be s p e c i f i e d

t o o b t a i n the equat ion represented by Relat!ion

demonstrated by the process o f t h e previous ana y s i s r e s u l t i n g i n the ac tua l

d e r i v a t i o n o f t h e governing equat ion w i thout recourse t o any hypothesis con-

cern ing the cha rac te r of t he J func t i on .

2 . 7 9 ) . Th is i s amply

To s p e c i f y the fo rm o f the thermodynamic J - func t i on i t i s necessary

t o s c r u t i n i z e some phys i ca l aspects o f the present d e r i v a t i o n . Thus, i f

T-I = rl(S,J)

w r i t t e n i n t h e form:

i s a g iven thermodynamic var iab le , i t s d i f f e r e n t i a l may be

The c o e f f i c i e n t of dJ i n Equation (3. l l r ep resen ts an i s e n t r o p i c process

w i t h J vary ing , whereas t h a t o f dS r e f l e c t s entropy v a r i a t i o n s du r ing

a J = cons tan t process.

producing r e g i o n the c o n t r i b u t i o n o f t he J = cons tan t process must

predominate.

I t i s apparent t h a t i n the case o f an entropy-

The cho ice of t he dimensional u n i t s f o r the J f u n c t i o n i s comple te ly

a r b i t r a r y i n s o f a r as keeping the process J = cons tan t an i n v a r i a n t .

such a dimensional change may be e f f e c t i v e l y accomplished by a d j o i n i n g

For

-1 1-

Page 20: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

t o the d i f f e r e n t i a l dT a r b i t r a r y factors , w i t h o u t a f f e c t i n g t h e J = constant

process. I n t h e present case when non- i sen t rop i c pressure v a r i a t i o n s are

considered, t he s imp les t form w i l l be obta ined by a s c r i b i n g t o t h e v a r i a b l e

J t he dimensions o f pressure.

Dimensional cons iderat ions i n d i c a t e t h a t the f u n c t i o n :

where B i s a constant parameter having the dimensions o f v e l o c i t y f u l f i l l s

t h i s requirement.* For the present, t he form o f t he J f unc t i on as given

i n Equation ( 3 . 2 1 w i l l be regarded as a d e f i n i t i o n .

It i s now necessary t o o b t a i n some u s e f u l thermodynamic r e l a t i o n s

Since t h e d e f i n i t i o n of entropy s a t i s f i e d by t h e thermodynamic v a r i a b l e J.

o f a p e r f e c t gas y i e l d s t h e equat ion:

t h e combination o f Equat ion ( 3 . 2 ) w i t h the above r e l a t i o n y i e l d s :

Hence, we o b t a i n the t h r e e r e l a t i o n s :

[%Is = - I ; 2 [g] = - c P ; B 2 [s) = - Fl3

P P J P

* See Concluding Remarks

-.l 2-

( 3 . 4 )

Page 21: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

From t h e l a s t two equat ions i t fo l lows t h a t :

[%Ip = [s], Likewise, f rom Re la t i on ( 3 . 2 ) one gets

(3.5)

But, from the d e f i n i t i o n o f t he non- isen t rop ic propagat ion speed a

! 2 . 7 ! 1 g iven by

(Equat ion

i t f o l l o w s , us ing Equation (3.6) and r o u t i n e thermodynamic r e l a t i o n s , t h a t

7 a

( 3 . 7 )

f o r a J = cons tan t process.

Equat ion ( 3 . 7 ) i n d i c a t e s t h a t the parameter tends t o i n f i n i t y as

the process under cons ide ra t i on approaches an i s e n t r o p i c process i n the l i m i t .

Th is p r o p e r t y w i l l be confirmed i n subsequent d e r i v a t i o n s by a c t u a l l y de f i n ing

the parameter B i n terms o f boundary values.

Again us ing the d e f i n i t i o n o f t h e J f u n c t i o n i n Equation ( 3 . 2 ) t he

f o l l o w i n g r e l a t i o n ho lds

and, by us ing Equation (3.71, t h i s becomes

-1 3-

Page 22: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

Hence, using the f i r s t of Equation ( 3 . 4 ) i t follows t h a t

o r , using Relation (3.7)

[%Is = - $3

In a s imilar manner one deduces from Equation (3.8) t h a t

2

[2jP = -

(3.9)

( 3 . 1 0 )

Consider the function G and i t s d i f fe ren t ia l as defined i n Equation ( 2 . 1 7 ) :

Combining the two i t follows t h a t

From the resul ts obtained i n Equation (3.4) this may be written

T h i s l a s t relation implies t h a t

Consider next the second of Equations (3.3)given by

(3.11)

(3.121

Page 23: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

Using Equation ( 3 . 7 ) i t f o l l o w s t h a t

From t h i s r e s u l t we o b t a i n t h e r e l a t i o n s

( 3 . 1 4 )

( 3 . 1 5 )

It w i l l a l s o be use fu l t o cons ider the pressure as a f u n c t i o n o f

d e n s i t y and the J - v a r i a b l e and subsequently l e t t h e d e n s i t y be a f u n c t i o n o f

J and S [ t h i s procedure was used t o ob ta in the governing d i f f e r e n t i a l

Equat ion ( 2 . 1 9 ) 1. A r o u t i n e comparison o f c o e f f i c i e n t s by i nvok ing l i n e a r

i ndependence y i e l ds the re1 a t i ons :

o r

I n a s i m i l a r manner

( 3 . 1 6 b

-1 5-

Page 24: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

or

( 3 . 7 7 6 )

and these may be e a s i l y v e r i f i e d by t h e use o f Table I .

I f we now consider t h e J - f u n c t i o n d e f i n i t i o n and the combined f i r s t

and second l a w equat ion o f thermodynamics, t h e f o l l o w i n g r e l a t i o n i s

obtained :

L - Equation ( 3 . 1 8 ) r e s u l t s i n t h e f o l l o w ng r e a t i o n s :

( 3 . 1 8 )

Some o f t h e above r e l a t i o n s which may be u s e f u l f o r subsequent d e r i v a t i o n s

a r e c o l l e c t e d i n Table I .

-1 6-

Page 25: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

I

I- - Q

ll

I-

z 0 U a

“a I CJQ

L

u z 3 LL I

- pa P

-Iv) rmlm- J

w I I-

c, S l-a c, v) S 0 u

=a Pa I

II

Q

v, W Ln Ln w V 0 r x n

W I I-

a z

?

W

I- H 1

“&“ I

I1

’7

I- 1

ll

-l

c3v) x c -I w 1 m a I-

-

=I‘ a c, v) 5 0 u

c? I Q II

v)

h

I

ll

I

I1

v)

-1 7-

Page 26: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

4. COMPARISON WITH EXISTING THEORIES

The d e r i v a t i o n o f t h e governing equat ion i n terms of two thermodynamic

var iab les S and J and the subsequent d e f i n i t i o n of t he J - f u n c t i o n as

presented i n Sect ions 2 and 3 respec t i ve l y , makes i t poss ib le t o compare the

der ived equat ion w i t h those o f e x i s t i n g theo r ies and show t h e i r equivalence.

L e t us cons ider Equation (2 .19) which was shown t o be

( 4 . I I

The func t ions ff and K were d e f i n e d i n Equation (2 .17) and were g iven by:

fl = ( I + [%)J) K = - [s)s ( 4 . 2 )

-1 8-

Page 27: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

However, f rom the r e l a t i o n s i n v o l v i n g the J - func t i on i n Table 1 we i n f e r

t h a t

Moreover, f rom Equat ion (3.8) these may be w r i t t e n :

! i = 7 B 2 ;

a (4.4)

Using these values o f ff and K i n Equation (4.1), the f o l l o w i n g form i s

obtained:

n

V'S - a ~ S - ~ ( b n a ) m 2 2 U 2 vs = z

We can now d i v i d e t h i s Equation by a2 no t ing t h a t :

-1 9-

Page 28: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

I u2s I u I us a a a

Under these condi ti ons, Equat ion (4.5) becomes

& [7m] I us - = -

F i n a l l y , the c o e f f i c i e n t o f the g r a d i e n t of the & f u n c t i o n may be

w r i t t e n :

( 4 . 7 )

-20-

Page 29: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

Hence, Equat i on (4.7) becomes :

Equation (4.9) r e p r e x i i t s the f i n a l f e z nf Equation (2.19), us ing the

thermodynamic J f u n c t i o n as de f i ned i n Equation (3.2) . It may be looked

upon as a convected n o n l i n e a r wave equat ion i n a non - i sen t rop i c reg ion i n

which t h e f o r c i n g f u n c t i o n i s represented by t h e r i gh t -hand s ide o f t he

equa ti on.

A l t e r n a t e l y , i n a formal manner, one could l ook upon Equation (4.9) as

a convected wave equat ion i n a reg ion i n which the J f u n c t i o n i s propagated,

i t s f o r c i n g f u n c t i o n being given by en t ropy generat ion, viscous e f f e c t s ,

body fo rces and v e l o c i t y f l u c t u a t i o n .

Equation (4.9) i n the a l t e r n a t e form:

I n t h i s case i t i s convenient t o w r i t e

-21-

Page 30: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

The l a s t form o f the equat ion i s useful when a non- isen t rop ic r e g i o n i s

imbedded w i t h i n a l a r g e r r e g i o n of qu iescent f l u i d .

case when a l a r g e ampl i tude pressure wave i s propagated i n t o a qu iescent

space by h i g h l y d i s t u r b e d non- isen t rop ic f l o w i n c l u d i n g moderate shock waves.

I n t h i s case the r igh t -hand s i d e o f Equation (4.10) represents the non-

i sen t r o p i c f o r c i n g f u n c t i on.

This i s obv ious ly t h e

I n t h e case when the J-wave propagated by Equation (4.10) i s generated

by i s e n t r o p i c processes, t h e ent ropy d e r i v a t i v e s vanish f rom the equat ion.

Also, the J - func t ion v a r i e s as t h e negat ive pressure f u n c t i o n s ince i t was

shown tha t * :

[g)s = - I (4..111

2 I t w i l l a l s o be shown t h a t , f o r cons tan t ent ropy, t h e propagat ion speed a

becomes the speed of sound a2 i n the 1 i m i t.

Under these assumptions, Equat ion (4.10) takes the f o l l o w i n g form:

( 4 . 1 2 )

*Refer t o Table 1.

-22-

Page 31: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

forms used i n c l a s s i c a l i n v e s t i g a t i o n s o f the

It should be noted, however, t h a t t h i s equiva

i s e n t r o p i c pressure v a r i a t i o n s are pos tu la ted

c iass ica ; i n v e s t i g a t i s n s . The present analys

Equation (4.12) i s the d i f f e r e n t i a l equation de r i ved by P h i l l i p s

L i g h t h i l l ' s fo rm o f ( P h i l l i p s , 1960) w i t h t h e en t ropy terms deleted.

Equat ion may be ob ta ined by us ing i s e n t r o p i c r e l a t i o n s between t h e

pressure and d e n s i t y func t ions ( P h i l l i p s , 1960, a l s o Ribner, 1962).

This d e r i v a t i o n i n d i c a t e s the equivalence o f Equat ion (2.19) t o the

aerodynamic no ise problem.

ence hc lds t r u e o n l y when

as i t i s i n the case o f most

which i s aimed a t an

the i n c l u s i o n o f moderate

c sound generat ion, pu ts

I t assumes those the emphasis on the d i s s i p a t i v e terms o f the equat ion.

terms t o be t h e main c o n t r i b u t i o n t o the f o r c i n g f u n c t i o n o f the wave

equat ion causing the propagat ion o f a f i n i t e ampl i tude pressure wave.

S

i n v e s t i g a t i o n o f entropy-producing regions w i th

shock waves and t h e i r c o n t r i b u t i o n t o aerodynam

-23-

Page 32: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

5. SOME ADDITIONAL ASPECTS OF THE GOVERNING EQUATION

The form o f Equat ion (4.101 obta ined i n the preceding s e c t i o n makes i t

apparent t h a t one of t h e f o c a l p o i n t s o f t h i s a n a l y s i s i s t h e choice o f t h e

form o f t h e thermodynamic J - func t ion , which a l lows one t o draw an analogy

between the general form o f t h e der ived equat ion w i t h those used i n c l a s s i c a l

s tud ies o f the aerodynamic no ise problem.

analogy e x i s t s o n l y when i s e n t r o p i c v a r i a t i o n s o f t h e J - f u n c t i o n are al lowed.

Moreover, i t has been shown t h i s

A more general approach t o t h e problem, i n view o f the form o f the

der ived equat ion, seems t o i n d i c a t e t h a t , i n a r e g i o n a d m i t t i n g an a r b i t r a r y

thermodynamic process hav ing t h e form

t h e propagat ion o f J and S waves are m u t u a l l y dependent so t h a t ent ropy

generat ion causes a J-wave emiss

but ions t o those phenomena be ing

v e l o c i t y f l u c t u a t i o n s . I n a d d i t

coupled t o the remaining e q u a t i o

on (and

made by

on, t h e

s o f mo

v i ce-versa) w i t h a d d i t i o n a l c o n t r i -

t h e viscous e f f e c t s , body fo rces and

obta ined Equat ion ( 4 . 1 0 ) i s s t i l l

consider the poss i b i 1 i t i e s o f uncoupl i n g

ion . It would thus 'be useful t o

these equat ions by i d e a l i z i ng the

process t o s t r a i g h t l i n e s i n the J-S plane, a procedure which would be

p a r t i c u l a r l y s u i t a b l e f o r t h e a p p l i c a t i o n o f t h i s a n a l y s i s t o t h e propagat ion

c h a r a c t e r i s t i c s o f a f i n i t e ampl i tude pressure wave.

consider t h e two reg ions, a h i g h l y per tu rbed r e g i o n w i t h a p o s s i b l e

appearance o f moderate shock waves which i s imbedded i n a r e g i o n o f qu iescent

f l u i d , t h i s second quiescent r e g i o n a d m i t t i n g of f i n i t e ampl i tude acous t ic

waves caused by t h e per tu rbed reg ion.

For i t i s f e a s i b l e t o

-24-

Page 33: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

This idealization implies, basically, a f a r f i e ld noise analysis since

near f i e l d e f f ec t s must admit a mixed J-S process taking place as represented

by Equat ion (5.1).

I t i s apparent from the previous analysis and the obtained resu l t s t h a t

entropy changes would predominate in the perturbed region due t o the highly

diss ipat ive character of these processes (e.g., shock wave appearances). In

sixh a case the pressure and density functions would be primarily dependent

upon the entropy s t a t e s o f the f lu id particles and the thermodynamic process

may conceivably be approximated by J=constant and S varying. I n terms

of the previous analysis the d i f fe ren t ia l equation governing such a

diss ipat ive region would be given by

I n other words, in a region in which velocity fluctuations, viscous

e f fec ts and non-conservative body forces predominate, an S-wave i s generated

whose propagation character is t ics are largely determined by the non-isentropi c

speed a.

due t o instantaneous velocity o r viscous changes, entropy effects will a lso

be generated and must be considered as indicated by the form of Equat ion (5 .21 .

Moreover, in the presence of sudden discontinuities in the region

On the other hand, when the quiescent region i s considered, the

assumption of f a r f i e l d effects would also cal l fo r the additional s t ipulat ion

o f isentropy.

the govern ing Equation ( 4 . 1 0 ) reduces simply t o :

In t h i s case, excluding t h e perturbed region from consideration,

-25-

Page 34: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

(5 .31

Here, t h e functions? value o f tends t o the i s e n t r o p i c propagat ion speed n

a', as entropy changes approach zero.*

F i n a l l y , when bo th reg ions a r e considered simultaneously, w i t h the

d i s s i p a t i v e reg ion p l a y i n g the r o l e o f a f o r c i n g func t i on propagat ing acous t i c

waves i n t o t h e quiescent reg ion , t h e governing equat ion ( 4 . 1 0 ) takes on the

f o l l o w i n g form:

I - ( 5 . 4 1

I t should be noted, f i n a l l y , t h a t i n {he more general case where no

simple assumption o f two d i s t i n c t thermodynamic reg ions can be made and

where t h e respec t i ve paths o f t h e thermodynamic processes i n t h e J-S plane

do not f o l l o w s t r a i g h t l i n e s , as i s c nce ivab le i n these extreme phys i ca l

cond i t ions , t h e analogy between Equat on ( 4 . 1 0 ) and t h a t de r i ved above cannot

be drawn a phi&.

*See Sect ion V I .

-26-

Page 35: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

6. THE PROCESS J = CONSTANT

I n accordance w i t h the preceding der iva t ion , t h e r e g i o n i n which

d i s s i p a t i v e mot ion predominates w i l l be approximated by t h e thermodynamic

process J=constant. T h i s r e g i o n , i n which entropy v a r i a t i ons predominate,

permi ts thermodynamic v a r i a b l e s which are, by hypothesis, f u n c t i o n s o f t h e

space coord inates and t i m e through the medium o f entropy.

Using Equat ion (3.61 i t i s i n f e r r e d t h a t

[g] - $ = 7 I (6.7 1

I n t e g r a t i o n o f t h i s equat ion y i e l d s t h e pressure d e n s i t y r e l a t i o n f o r t h e

J=constant process:

I V I t

p = y = l - - p + A P

ng t h e i n t e g r a t i o n constant (Figure 1 ).

i n g Equat ion (6 .2 ) w i t h the entropy equat ion f o r a p e r f e c t gas

w i t h A be

coup

(6.21

I S-So P = p-B Y U P ( - T) (6 .31

where B i s a constant , y i e l d s t h e pressure as a f u n c t i o n o f entropy f o r

-27-

Page 36: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

PRESSURE RATIO

4.21 I I

PRESSURE RATIO

6

PRESSURE RATIO

Figure 1 . Pressure vs Pensity for JnConstant Process kpplied to Shock Laver Transitton Flow

-28-

Page 37: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

L e t pi and pi r e f e r t o the i s e n t r o p i c values of these func t i ons

when S = S . (i = 0 , I ) respec t i ve l y . Under these cond i t i ons the cons tan t

8 i s determined i n terms o f e i t h e r i n i t i a l or end c o n d i t i o n s (Equation ( 6 . 3 ) ) .

L

From t h e c o n d i t i o n t h a t

P = Po when s = so (6.5)

t h e cons tan t r a t i o $ i n Equation (6.4) i s a lso determined. The r e s u l t i n g

expression f o r t he pressure f u n c t i o n takes on t h e f o l l o w i n g form:

Y

(6.61

2 Here a. i s t he i s e n t r o p i c propagation speed when S=So. The constant

parameter 6' i s now evaluated from the cond i t i on t h a t p=pl when S = S l

a t the end o f t h e process

2 B =

-j - '1 (6.71

It may be shown i n a s p e c i f i c app l i ca t i on* t h a t , when no en t ropy pro-

*For moderate shock layers , t h e numerator and denom

a re expressed i n terms o f t he upstream Mach number

i t i s found t h a t , as E + 0, E +

0

n a t o r o f Equation (6 .7 )

M;. S e t t i n g M~ = I + €

.e., as S, -+ So,

2

B~ + - m (see Sect ion 7 ) .

-29-

Page 38: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

duct ion occurs, i .e . , when S I -+ So i n the l i m i t , t he va lue of t h e parameter

8' tends t o minus i n f i n i t y i n t h e l i m i t . Th is p roper t y makes Equat ion ( 6 . 1 )

i s e n t r o p i c when S I -+ So, as expected.

On t h e o the r hand, once a non- isen t rop ic , J=constant process takes

place, i .e. , S I > So, the parameter 8' becomes f i n i t e . Under these con-

d i t i ons i t s ex is tence and constancy serve t o under l i ne both en t ropy p roduc t i on

and i r r e v e r s i b i l i t y o f the process.

f i n i t e i t r e f l e c t s the process o f en t ropy p roduc t i on and i t s constancy

determi nes the i r r e v e r s i b l e cha rac te r o f t h e event.

For once the parameter 8' becomes

To eva lua te the d e n s i t y p as a f u n c t i o n o f en t ropy f o r t he process

J = constant, Equations (6 .3 ) and (6 .6 ) a re used t o y i e l d :

1

s-So P = P o (6.81

Equation ( 2 . 7 ) combined w i t h Equations (6 .6 )andh(6 .b ) y i e l d s the

temperature T as a f u n c t i o n o f en t ropy f o r t h e process J=constant.

It i s apparent from Equat ion 16.91 t h a t , as t h e en t ropy s tends t o

T tends t o T which i s t he i s e n t r o p i c value o f t h e temperature so , 0'

func t ion . * I n a s i m i l a r manner, when S tends t o S I , T tends t o T I .

These can be r e a d i l y v e r i f i e d by us ing Equations (6.3), (6.71 and (6.91

*Note tha t , as S-So -+ E ,

(See Section 7) .

=

-30-

Page 39: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

The preceding d e r i v a t i o n s a l l ow t h e determinat ion o f t h e non-

i s e n t r o p i c propagat ion speed a2 as a funct ion of entropy. Using

Equations ( 3 . b ) , (6 .6 ) and (6.8) i t i s apparent t h a t :

(6.70)

Tije n ~ n - i s e n t r o p i c propagat ion speed a2 i s p l o t t e d f o r d i f f e r e n t entropy

p roduc t i on values i n F igure 2.

In t h e l i m i t i n g case when S tends t o S o , a2 tends t o the

i s e n t r o p i c propagat ion speed a i , as ind i ca ted by the form o f Equation

[ 6 . 1 0 ) . * Here i t i s o f i n t e r e s t , however, t o consider the value o f t he

propagat ion speed a = a1 when S = S I , i.e., a t t h e t e r m i n a t i o n o f t he

non- i sen t rop i c JI=constant process. To t h i s end, Equat ion (6.10) i s w r i t t e n

r i n the form

n 0

1 . - 2

Equations (6 .3 ) and ( 6 . 7 ) are then used t o o b t a i n t h e f o l l o w i n g

s u b s t i t u t i o n s :

1 -SO

I - - 2 (2) = [.XP (- T)] ( 6 . 1 2 ~ )

2 *When n o J =constant process occured, i .e . , when I B I -+

-31 -

Page 40: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

1.6-

1.4

M, = 1.5

-

ENTROPY 2 C P

2.5

2.0

F igure 2. The non- isent ron ic Propaaat ion Speed a v s Entropy t o Shock Laver T r a n s i t i o n Flow

M, = 2.0

-

-32-

0.

Appl i ed

Page 41: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

and

Under these c o n d i t i o n s Equat ion

2 2 " 1

= 2 a,

( 6 . 1 2 b J

6 , 1 1 1 s i m p l i f i e s t o

( 6 . 131

I n t h i s case, however, t h e parameter 8' i s f i n i t e , s ince a n o w

i s e n t r o p i c process took place.

process does n o t reduce t o i t s corresponding i s e n t r o p i c speed, b u t i s

Thus t h e propagat ion speed a t t h e end o f t h e

m o d i f i e d by a f a c t o r 1

J7$ It w i l l subsequently be shown t h a t , f o r small ent ropy changes, t h i s f a c t o r

i s c l o s e t o u n i t y . *

It appears f rom the above considerat ions t h a t when a process

J=constant occurs i n which ent ropy changes predominate, the thermodynamic

v a r i a b l e s (p, p , T, C( , etc . ) are funct ions o f t h e h i s t o r y o f t h e process

r a t h e r than t h e instantaneous values o f the s t a t e o f the f l u i d p a r t i c l e s

2

(no te t h e reference t o S0 as t h e i n i t i a l s t a t e t o which a l l values o f the

*For l a r g e ent ropy v a r i a t i o n s ( M > 5.01 t h e above statement does n o t hold.

-33-

Page 42: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

variables are referred) . Moreover, whereas a l l functional values of the

pressure, density and temperature are continuous a t the boundary of the

region in which the process takes place, t h i s i s no t so fo r the derivatives

of these functions.

For i t i s noted t h a t a l l functions take on t h e i r isentropic values

on the boundary of the region, excepting the propagation speed a, which

differs from i t s isentropic counterpart a t the termination of the process

by a fac tor which i s d i rec t ly dependent upon the amount of entropy production

tends t o unity as the entropy production tends t o

l y appears t h a t a non-isentropic region may have a

due t o a difference in the propagation speeds when

c region. However, the functional values of the

thermodynamic variables are no t discontinuous.

during the process and

zero.

I t then forma

di sconti nuous boundary

i t adjoins an isentrop

7. THE CASE OF MODERATE SHOCK WAVES

The preceding analysis lends i t s e l f t o simplif5cation when the

entropy production region under consideration i s the region of a moderate

shock wave.

To evaluate the functional variations of the thermodynamic variables

in t h e shock layer as a function of entropy production, i t i s convenient t o

evaluate i ni t i a1 ly cer ta i n recurring expressions appearing i n the preceding

analysis and given by

-34-

Page 43: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

Here s t a t e zero.denotes the value o f t h e v a r i a b l e s i n f r o n t of the

shock l a y e r , and s t a t e one r e f e r s t o t h e i r va lue behind t h e shock l a y e r .

From the shock t r a n s i t i o n equations i t i s ev ident t h a t

(7.31

( 7 . 4 1

2 L e t us consider the value o f the parameter 6 . It i s apparent

f rom R e l a t i o n (6.7! t h a t

Y - 1

(7.51

I n the l i m i t , when S I tends t o So, t he normal component o f t he

Mach number upstream o f t he shock l a y e r tends t o u n i t y .

Equat ion (7.5) may be evaluated i n the l i m i t by s e t t i n g

Consequently,

Mobin 2 2 e = 1 + E (7.61

-35-

Page 44: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

Fol lowing t h i s procedure i t can r e a d i l y be shown t h a t :

and

(7.7cl

Hence, as SI +. S o , i .e. , as E approaches zero ( t o t h e f i r s t approximat ion)

T h i s i s t h e c o n d i t on which makes t h e J=constant process i s e n t r o p i c i n t h e

l i m i t , i n accordance w i t h prev ious d e r i v a t i o n s [see Re la t ions (3 .81 and

(6 .71 1. The parameter 6' i s p l o t t e d as a f u n c t i o n o f Mach number f o r a

g iven shock t r a n s i t i o n process i n F igure 3.

I n a s i m i l a r manner, u s i n g t h e shock t r a n s i t i o n r e l a t i o n s , t h e

values o f t h e f u n c t i o n s p and p versus ent ropy a r e p l o t t e d i n F igures 4

and 5.

It should a l s o be noted t h a t most o f t h e d e r i v e d r e l a t i o n s f o r

pressure, dens i ty , e tc . , c o n t a i n the f a c t o r

-36-

Page 45: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

E = B 2 { exp (- s>- 7 -% I ) ( 7 . 9 )

negat i ve i n f i n i t y as (- f ) [see Equat 3 i n Equat ion ( 7 . 9 ) tends t o zero as ( - E

t o t a l express ion ir! Equat ion ( 7 . 9 ) tends

S -+ S I ) as expected.

Now i n t h e l i m i t as SI tends t o So, the parameter 8' tends t o

on (7.811, whereas t h e second f a c t o r

[see Equat ion (7.711. Hence, t h e

t o zero when SI -f So (and

The f o l l o w i n g impor tan t consequence of the above d e r i v a t i o n should

be noted.

process , the non- isen t rop i c e f f e c t s cannot be a r b i t r a r i l y disregarded,

f o r i t c o u l d be reasoned t h a t , even f o r the case o f weak shocks, t h e ent ropy

v a r i a t i o n i s o f a t h i r d - o r d e r magnitude, and t h e r e f o r e i t s e f f e c t s c o u l d

conceivably be disregarded.

cons idera t ions p o i n t t o t h e f a c t t h a t t h i s reasoning may n o t be j u s t i f i e d .

This i s due t o t h e f a c t t h a t , even though the ent ropy v a r i a t i o n i s o f a

t h i rd -order magnitude, i t s product w i t h the process parameter

as a f i r s t - o r d e r magnitude [Equation (7.911.

o f pressure, densi ty , temperature, etc., i n t h e non- isen t rop ic r e g i o n a l s o

vary as a f i r s t - o r d e r magnitude. Moreover, t h e d i f f e r e n t i a l equat ion

governing t h e aerodynamic sound generation, as der ived i n Equat ion (5 .41 has

a l s o f i r s t - o r d e r v a r i a t i o n o f the non- isentropic terms.

c o n t r i b u t i o n o f the non- i sen t rop i c terms cannot be d isregarded w i t h i n the

framework o f t h i s a n a l y s i s and t h e entropy produc t ion terms must be taken i n t o

account even f o r smal l v a r i a t i o n s of the ent ropy f u n c t i o n s i n t h e process

considered (e.g., weak shocks).

Even when a smal l ent ropy change occurs dur ing any a r b i t r a r y

On the o t h e r hand, t h e present t h e o r e t i c a l

8' v a r i e s

Thus, a l l the func t iona l values

Consequently, t h e

-37-

Page 46: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

0

-50

-100

-150 1 2 3

MACH NUMBER

4

2 2 Figure 3. The Darameter 6 /a s Upstream Fach Number f o r J=Cons tan t Process Anolied t o gi Normal Shock T r a n s i t i o n Flow.

- 38-

Page 47: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

1 . 2 0 .

1.16 - 0 n.

k

w

n.

0 4 8 12 16 20 24 26

ENTROPY (s - sO)ic, ix &j

4 . 6 1 1

2.0

1 .8 -

0

Y

ENTROPY (s - so)/,-- (x 10-3) -r

ENTROPY (S - So)/cp (X ENTROPY (S - S )/ (X O CP

F i q u r e 4 . Shock L a y e r T r a n s i t i o n Flow.

Pressure vs . Entronv f o r J=Constant Process ADnlied t o

-39-

Page 48: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

0 8 16 24 ENTROPY (s - sO)/cp (x 10-5)

2.8

2.6 - 2.4 -

MACH NO. = 2.0

0 4 8 ENTROPY (5 - So)/cp (X 10-2)

n MACH NO. = 1.4

0 4 8 12 ENTROPY (s - sO)/cp (x 10-3)

4.6'

4 .2 -

MACH NO. = 3.0

0 8 16 24

ENTROPY (S - SO)/cp (X IO-')

Fiqure 5. Densitv v s . Entropv f o r J=Constant Process AnDlied t o Shock L a y e r Transition Flow.

-40-

Page 49: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

11. ENGINEERING APPLICATION

8. INTRODUCTION

A s i m p l i f i e d eng ineer ing model o f t h e p ropagat ion c h a r a c t e r i s t i c s of

a f i n i t e ampl i tude pressure wave i n high-speed f l o w w i t h moderate shock wave

fo rmat ion i s presented i n the subsequent sections. The ac tua l computations

o f the r e s u l t s were based i n i t i a l l y on a previous model (Peter and L i , 1965

i n which o n l y non- isen t rop ic changes o f the pressure f u n c t i o n were coii-

s idered, s ince a t t h a t t ime some o f t he r e s u l t s o f t h e present ana lys i s cou

n o t be i nco rpo ra ted i n t o the computer programs.* Nevertheless, the bas i c

c h a r a c t e r i s t i c s o f the d e r i v a t i o n s are s i m i l a r i n bo th cases and serve t o

i l l u s t r a t e some phys i ca l aspects o f non- isen t rop ic f o r c i n g func t i ons i n

aerodynamic no i se generat ion.

I n accordance w i t h the t h e o r e t i c a l aspects o f the preceding ana lys i s

an entropy-produci ng reg ion imbedded i n an i sen t rop i c medi um w i 11 produce

acous t i c e x c i t a t i o n s in the f a r f i e l d . I n the near f i e l d a mixed J-S process

takes place** w i t h a r e s u l t i n g en t ropy wave emission.

process w i l l n o t be considered here.

e f fec t o f f i n i t e ampl i tude wave propagation i n t o a quiescent i s e n t r o p i c

reg ion .

The near f i e l d mixed

Emphasis i s p laced main ly on the

* The o n l y d i f fe rence cons is t s i n t h e Mach number dependence of t he wave

ampl i tude. Th is adds a constant fac to r t o the dec ibe l count of t he

r e s u l t i n g i n t e n s i t y .

** See Sect ion 5.

d

-41 -

Page 50: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

The governing equations f o r t h e propagat ion phenomena have been

der ived i n Equations ( 5 . 2 ) and (5.41. Equation ( 5 . 2 ) i n d i c a t e s t h a t non-

conservat ive e f f e c t s o f f l u i d motion, i .e., r o t a t i o n a l v e l o c i t y f l u c t u a t i o n s ,

viscous e f f e c t s and d i s s i p a t i v e body fo rces cause an en t ropy wave propagat ion

i n the per tu rbed reg ion .

region i s imbedded i n an i s e n t r o p i c qu iescent medium, an acous t i c e x c i t a t i o n

Equation (5.4) i n d i c a t e s t h a t , when the per tu rbed

o f the qu iescent reg ion a l s o takes place.

I n t h e present eng ineer ing approach the th ickness o f t he t r a n s i t i o n

l a y e r i s d isregarded and a discont inuous jump i n the value o f t he f o r c i n g

f u n c t i o n i s assumed.

through a s e r i e s o f d isturbances caused by random d i s t r i b u t i o n o f impulses

imparted t o the shock l a y e r .

t h a t entropy c o n t r i b u t i o n s t o the f o r c i n g f u n c t i o n predominate w h i l e ve loc

f l u c t u a t i o n s a re o f second o rde r magnitude even f o r t he case o f weak shock

waves. T h e i r e f f e c t on the f o r c i n g f u n c t i o n seems t o be i n d i r e c t by impar

i n g i n i t i a l e x c i t a t i o n s t o the en t ropy f u n c t i o n and thus t r i g g e r i n g the

mechanism of emission.

9.

The t ime dependence o f t he f o r c i n g f u n c t i o n en te rs

An order o f magnitude ana lys i s i n d i c a t e s

EN G I NE E R I N G REP RES ENTAT I ON

I n accordance w i t h t h e preceding discussion, t he governing d i f f e r e n t i a l

equation w i l l now be a p p l i e d t o analyze the propagat ion c h a r a c t e r i s t i c s o f

moderate shock l a y e r s i n supersonic nozz le f low.

I t was shown i n Sec t ion 5 t h a t t he equat ion rep resen t ing non-

i s e n t r o p i c wave propagat ion i n t o a qu iescent reg ion i s given by:

-42-

Page 51: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

The case o f 5 shock l a y e r i s now considered. To do t h i s i t i s

necessary t o s p e c i f y t h e r igh t -hand s i d e o f Equat ion (9.71, p a r t i c u l a r l y the

ent ropy f u n c t i o n and i t s gradients . A r igorous f u n c t i o n a l e v a l u a t i o n o f

the remaining equat ions o f motions

which Equat ion ( 9 . 1 ) i s s t i l l coup

w i l l be necessary t o represent the

these v a r i a b l e s cannot be accomplished, however, w i t h o u t s o l v i n g s imul taneously

[see Equations ( 2 . 7 ) t o (2 .411 w i t h

ed. To c i rcumvent t h i s d i f f i c u l t y i t

J-constant process as i f i t i s t a k i n g

p lace i n a r e g i o n o f zero th ickness, so tha t a sudden d iscont inuous jump i n

t h e dependent v a r i a b l e s across the shock l a y e r occurs. This representa t ion

ascr ibes t o t h e remaining equat ions o f motion a c o n t r i b u t i o n whose mean

square va lue i s g iven by t h e Rankine-Hugoniot r e l a t i o n s .

formal d e r i v a t i o n of t h e governing equations has i m p l i e d t h e ex is tence and

However, t h e

c o n t i n u i t y of t h e dependent v a r i a b l e s up t o and i n c l u d i n g second d e r i v a t i v e s ,

Th is r e s t r i c t i o n l i m i t s the a n a l y t i c a l representa t ion o f the d iscont inuous

charac ter of t h e dependent var iab les t o those f u n c t i o n s whose d e r i v a t i v e s

admit a n a l y t i c a l c h a r a c t e r i s t i c s . For t h i s reason genera l i zed f u n c t i o n s

-43-

Page 52: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

have been employed t o represent t h e f o r m a l i s t i c behavior o f t h e jump con-

d i t ions dur ing t r a n s i t i o n .

whose successive d e r i v a t i v e s admit a n a l y t i c a l i n t e r p r e t a t i o n s .

T h e i r g rad ien ts become D i rac D e l t a funct ion:

I t w i l l be shown subsequent ly t h a t t h i s d iscont inuous charac ter o f

t h e dependent v a r i a b l e s d u r i n g t h e process of t r a n s i t i o n r e s u l t s i n a r a d i a t i n g

acoust ic d i p o l e f i e l d . * The r a d i a t i n g d i p o l e s are d i s t r i b u t e d over t h e

shock l a y e r and t h e i r l o c a l s t r e n g t h i s p r o p o r t i o n a l i n t h e mean t o the

Rankine-Hugoniot t r a n s i t i o n values.

A no tab le s i m p l i f i c a t i o n o f t h e mathematical d e r i v a t i o n s may be

achieved by imposing upon t h e r a d i a t i n g f i e l d t h e cond i t ion** t h a t t h e t ime

dependence o f t h e f o r c i n g f u n c t i o n w i l l e n t e r through a s e r i e s o f d is turbances

caused by a random d i s t r i b u t i o n o f impulses imparted t o t h e shock layer .

The time d e r i v a t i v e s o f these impulse f u n c t i o n s a r e m u l t i p l i e d . b y mean

t r a n s i t i o n values which determine t h e ampl i tude o f the propagated wave and

which may be regarded as s l o w l y v a r y i n g cont inuous t ime func t ions w i t h

n e g l i g i b l e gradients .

funct ions may be neglected i n the f i r s t approximat ion i n view of t h e f a c t

t h a t no t ime i n t e g r a t i o n appears i n t h e s o l u t i o n t o t h e wave equat ion.

P h y s i c a l l y , t h e assumption i m p l i e s t h a t mean t r a n s i t i m values of the

f o r c i n g f u n c t i o n determine t h e ampl i tude o f t h e e m i t t e d waves, whereas t h e

random t ime impulses supply t h e mechanism t r i g g e r i n g t h e emission.

As a consequence, t h e t ime d e r i v a t i v e s o f t h e impulse

* Sect ion 10.

** This c o n d i t i o n i s s i m i l a r t o t h a t imposed on the f o r c i n g f u n c t i o n used

i n computations (Peter and L i , 1965, a l s o Sec t ion 8).

-44-

Page 53: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

Under these cond ens, Equation ( 9 . 1 1 becomes

( 9 . 2 1

An order-of-magni tude ana lys i s o f t he f o r c i n g f u n c t i o n of Equation

(9.21 w i l l now be conducted. I n the first place, s ince t h e reg ion o f t he

shock i n which the J=constant process takes place i s represented by a l a y e r

o f v a n i s h i n g l y smal l th ickness, t he viscous term i n t h e equat ion may be

accounted f o r by the jump across the layer t o which the a c t i o n o f the

viscous fo rces i s conf ined.

such a d iscont inuous rep resen ta t i on o f t h e f o r c i n g f u n c t i o n generate a

quadrupole r a d i a t i o n f i e l d which i s o f t h e nex t o rde r o f magnitude). I n

a d d i t i o n , t he body forces do n o t appear under normal f l o w cond i t i ons and

( I t can be shown t h a t t h e v iscous terms i n

may be disregarded.

For the sake o f conven

t h e f u n c t i o n by Ui(i = 1 , 2 , 3

ence we w i l l designate the remaining terms of

(9.31

-45-

Page 54: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

I t i s evident t h a t the two functions, w1 and U 2 represent the

W3 contribution of entropy production t o the forcing function, whereas

designates the interaction of velocity gradients ( f luctuat ions) and

represents t he i r contribution t o sound generation.

fluctuations will now be shown t o const i tute a second-order magnitude when

compared with the entropy terms o f the forcing functions, even fo r the case

of weak shock layers.

These mechanical velocity

To t ha t end, consider the case of one-dimensional flow and transform

the term W g by the use of Equations ( 2 . 2 ) , (2.73) and ( 4 . 4 ) t o o b t a i n

where Cui = U(x

Equation 9 .4 ) reduces t o

when mean intensi ty values are considered.

I n the entropy-producing region, i . e . , in

by the process J=constant, the propagation speed

isentropic sound speed ad fo r very weak shock

( 9 . 4 )

the shock layer represented

cx i s of the order of the

ayers . * Li kewi se , the

* Section 7.

-46-

Page 55: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

v e l o c i t y U a l s o approaches son

magnitude. i

8 1 . , _

’ R e f e r r i n g now t o p rev ious

c speed* and i s o f t he same o rde r of

der iva t ions , i t was shown** t h a t

n

2 w i t h E = (MO - 7 ) and such** t h a t E < < 1 . It then f o l l o w s t h a t

(9 .71

Using these est imates i n the term

Equation (9.31, i t i s i n f e r r e d t h a t Wi o f the f o r c i n g func t i on , as i n

( 9 4 2 2 W3” 4UOE 1

Thus, t he present theory i nd i ca tes t h a t v e l o c i t y f l u c t u a t i o n s

(mechanical e f f e c t s ) i n a non- isen t rop ic reg ion are o f a second-order

magnitude when compared t o the en t ropy terms even f o r t he case o f weak shocks

when en t ropy v a r i a t i o n s , p e t b e , are very smal l .

* From above

** Sec t ion 7.

-41-

Page 56: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

I t should be noted, however, t h a t such v e l o c i t y f l u c t u a t i o n s may

a f f e c t the non- isen t rop ic sound generat ion i n d i r e c t l y by i m p a r t i n g i n i t i a l

e x c i t a t i o n s t o the ent ropy f u n c t i o n , thus p r o v i d i n g t h e t r i g g e r i n g mechanism

necessary f o r emission.*

o f a f i x e d supersonic nozz le.

reg ion f rom which acous t ic exc

quiescent medium. The analogy

o f the emission mechanism. On

The shock l a y e r i s

10. AN ACOUSTIC ANALOGY

An acous t ic analogy i s now cons t ruc ted i n o rder t o eva lua te t h e pro-

pagat ion c h a r a c t e r i s t i c s o f a s t a t i o n a r y shock l a y e r fo rming i n t h e exhaust

regarded as a s t a t i o n a r y

t a t i o n s propagate n t o t h e surrounding

d isregards convect ve and d i s p e r s i v e e f f e c t s

t h e o t h e r hand, t h e l o c a l en t ropy grad ien ts

which predominate i n t h i s analogy were shown** t o be o f a comparable o rder

o f magnitude and represent a s u b s t a n t i a l p a r t o f t h e o v e r a l l problem.

The d i f f e r e n t i a l equat ion governing t h i s erni ss ion process may be

p u t , i n view o f Equat ion ( 9 . 2 ) and t h e subsequent d iscuss ions, i n t h e

f o l l o w i n g form:.

* See Equat ion ( 5 . 2 )

** See Equat ion (9 .8 )

-4a-

Page 57: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

Here t h e en t ropy func t ion S has been w r i t t e n i n the form discussed

p r e v i o u s l y

( 1 0 . 2 1

I t i s noted t h a t t h e s p a t i a l dependence o f t h e en t ropy f u n c t i o n i s

represented by a product o f an ampl i tude func t ion A ( x 1 and the Heavyside

s tep funct ion. The ampl i tude f w c t i o n is propor t iona l i n the mean t o t h e

t r a n s i t i o n values o f entropy. I t s dependence upon s p a t i a l coord inates i s

in t roduced here t o take i n t o account thermodynamic non-equi 1 i b r i um f lows i n

t h e r e g i o n (e.g., curved shock l a y e r s ) . * For constant curvature shocks t h e

amp1 i tude f u n c t i o n depends upon t h e constant normal component o f the upstream

Mach number. The present i n v e s t i g a t i o n w i l l concentrate l a r g e l y on t h e

1 a t t e r case.

The shock sur face i s represented by t h e equat ion

= h(x ,y l (10.31

The s p a t i a l dependence i n Equat ion (10.31 w i l l imp ly a x i a l symmetry.

I n a c t u a l i t y t h e shock l a y e r s t r u c t u r e i n underexpanded supersonic

nozzles admits, i n c e r t a i n cases, o f a s l i g h t curva ture before the onset o f

t h e Mach d i s c (Peter and Kamo, 1963). However, i n t h e present fo rmula t ion ,

the curved e f fec ts w i l l i n t roduce unwarranted compl icat ions due t o t h e non-

e q u i l i b r i u m charac ter o f the f l o w behind the shock l a y e r a t the end o f the

non- isen t rop ic process ( i .e . , s p a t i a l entropy grad ien ts ) . For i n t h i s case

t h e process parameter 8' w i l l n o t r e t a i n i t s constant character s t i p u l a t e d

* I t can be shown t h a t such non-equi l ibr ium f lows make t h e thermodynamic

parameter 8' space-dependent.

-49-

Page 58: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

here unless i t s average va lue i s used.

poss ib le Mach d i s c superpos i t ion should a f f o r d a good approximat ion, which

becomes exac t i n many cases.

Moreover, c o n i c a l s t r u c t u r e s w i t h a

Under these cond i t ions , the t o t a l ampl i tude o f t h e emission i s seen 2 t o depend upon t h e product ( 6 A ) independent of s p a t i a l v a r i a t i o n , w i t h

the upstream normal Mach number appear ing as a f l o w parameter.

The t ime v a r i a t i o n o f t h e ent ropy f u n c t i o n d ( , t ) , represent ing an

impulse-disturbance imparted t o the J=constant reg ion, w i l l be kepk i n a

general form

d(.t1 = - 2Ti ' 1 r ( w ) e-iddW -m

where r ( 0 ) i s t h e F o u r i e r t rans form of d ( X ) .

The s o l u t i o n o f Equat ion ( 1 0 . 7 ) may now be w r i t t e n

(10.41

W i-4 "0

e 02[i4 4

The i n t e g r a t i o n i s taken over t h e r e g i o n o f

2-h) ]dv ( 1 0 . 5 )

.* -

the d is turbance, *

* Here t h e rad ius 4

5 = observat ion p o i n t coordinates;

i s de f ined i n t h e usual manner h = I;.- ; I ; -+ -+ x = per tu rbed r e g i o n coord inates.

- 50-

Page 59: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

Let us consider f i r s t the simplest case o f a normal shock layer

located a t some p o i n t z = ho, where h0 = constant. Under these conditions

the term v2H becomes a derivative of the delta function 6 ( z - h O ] with

respect t o Z.

the properties of the delta function):

As a consequence, Equation (10 .51 may be written(using

(70.6)

The integral i s taken over the surface u over which the disturbance takes

p l ace.

I t i s evident that the obtained solution represents a radiating dipole

f ie ld located a t

shock layer emitting pressure waves whose amplitude i s proportional t o the

t ransi t ion values of the Product ( A B ' ) .

f i r s t approximation the dependence of the acoustic intensi ty of radiation

upon the upstream Mach number.

z = hO. The radiating dipoles are distributed over the

The product determines t o the

From previous considerations i t i s readily

deduced t h a t :

-51-

Page 60: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

2 aO

Y - 7

I

1 2 2 2YModin 8 - ( Y - 7 )

Y t l

7 7 -y

- 7

Here, MObine denotes the normal component o f t h e Mach number t o a shock

l a y e r i n c l i n e d a t an angle e=constant.

Equat ion (70.5) w i l l now be genera l i zed t o i nc lude shock l a y e r s o f

an a r b i t r a r y shape.

equation

Thus we l e t t he shock l a y e r surface be g iven by the

1 where $I denotes a fam i l y of g iven surfaces and $O=constant i s t h a t

p a r t i c u l a r sur face which defines t h e shock l a y e r .

Th is equation may a l s o be w r i t t e n z - b(x,y) = 0, on t h e shock; z - 6 =con-

s t a n t , otherwise.

-52-

Page 61: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

For convenience we d e f i n e two mutual ly orthogonal f a m i l i e s o f

sur faces by

( 1 0 . 8 6 ) 2 2 3 3 F ( x , y , z ) = $ F ( x , y , z ) = J,

1 1 which are orthogonal t o F = J,

Equation ( 1 0 . 5 ) i s now transformed t o the c u r v i l i n e a r coord inates

J;" [i=1,2,31.

per tu rbed r e g i o n de f i ned by t h e vec to r x and n o t t o t h e p o i n t o f observat ion

which i s denoted by the vec to r 1. form:

It should he noted t h a t these coordinates r e f e r on l y t o the -+

Equation ( 1 0 . 5 ) i s now w r i t t e n i n t h e

m

where

i k h

G(z,;i = [ e ] i s a f u n c t i o n of and the $"s.

l10.10)

(10.11)

-53-

Page 62: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

,

represents the Jacobian o f t rans fo rma t ion .

t he me t r i c c o e f f i c i e n t s o f t he c u r v i l i n e a r system.

The hi's (i = 7,2,3) represent

I n terms o f the coord inates $' i t i s ev iden t t h a t

( 1 0 . 1 2 )

7 s ince H = H(,$ ) on ly . Thus, Equat ion (70.9) becomes

Page 63: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

[ 5'1 ' Z h 3 d+22dQ3 ( 1 0 . 1 5 )

h1

I f we denote the l i n e a r increments a long the c u r v i l i n e a r coord inate

l i n e s by ai(i = 1 , 2 , 3 ) so t h a t

Equat ion (70.15) can convenient ly be w r i t t e n i n the form

P"

( 1 0 . 1 7

- 55-

Page 64: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

This l a s t equat ion c l e a r l y de f i nes a d i p o l e r a d i a t i o n f i e l d generated

I J I ~ . by a shock l a y e r whose form i s represented by the sur face

t h a t the d i p o l e a x i s p o i n t i n g i n the d i r e c t i o n o f

shock sur face.

i n t e n s i t y o f r a d i a t i o n o f a supersonic nozz le i n the presence o f shock

waves w i l l tend, i n ' the l i g h t o f t he present theory, t o be normal t o t h e

shock surfaces. Thus a con ica l shock whose angle w i t h respect t o t h e j e t

a x i s i s 45" w i l l r a d i a t e sound whose i n t e n s i t y w i l l t end t o be maximum along

t h e 45" a x i s o f t he j e t .

nozzles l i e i n the range o f 30" t o 60" i n c l i n a t i o n , i t appears t h a t t h e

maximum i n t e n s i t y o f r a d i a t i o n w i l l t end t o f o l l o w t h i s pa t te rn . *

It i s noted

l l i s normal t o t h e

I t i s then of immediate consequence t h a t the maximum

Since most shock l a y e r s i n underexpanded supersonic

I t should be noted t h a t t he r e s u l t a n t f i e l d o f r a d i a t i o n i s symmetric

w i t h respect t o the p ane passing through the o r i g i n and which i s normal t o

t h e axis o f t h e j e t .

t he condi t ions p reva i i n g upstream of t he shock wave were disregarded i n t h i s

analogy.

upstream cond i t i ons t o an e x t e n t which cannot be envisaged from the present

development.

be obtained from the ef fects of t h e terms disregarded here bu t -appear ing i n

the governing d i f f e r e n t i a l Equat ion ( 9 . 1 1 .

This i s due t o t h e f a c t t h a t the supersonic s t a t e o f

As a ma t te r of f a c t , backward r a d i a t i o n w i l l be impeded by the

A more accurate p i c t u r e of these e f f e c t s could, i t i s hoped,

*See Section 11 f o r a more complete d i scuss ion of con ica l shock propagat ion

c h a r a c t e r i s t i c s .

-56-

Page 65: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

I t should a l s o be noted t h a t add i t i ona l sources o f r a d i a t i o n appear

i n ac tua l supersonic nozz le f l o w which could be, b u t a r e not, t r e a t e d by

t h e present approach.

boundary o f the nozz le f l o w a r i n g o f r a d i a t i n g d ipo les appears whose a x i s

i s d i r e c t e d a long t h e shock.

appear due t o the t a n g e n t i a l entropy d i f f e rence between the t e r m i n a t i n g shock

and the surrounding medium. These e f f e c t s , which must be t r e a t e d separate ly ,

w i l l n o t change the present d i r e c t i o n a l i t y and propagat ion c h a r a c t e r i s t i c s t o

a l a r g e e x t e n t due t o the orders o f magnitude o f t he respec t i ve sur face areas.

For instance, a t the t e r m i n a t i o n o f t he shock a t t he

Consequently, a d d i t i o n a l r a d i a t i n g sources

The appearance o f Mach d i scs i n the f l o w could be t r e a t e d by super-

p o s i t i o n b u t i t i s doub t fu l i f more use fu l i n f o r m a t i o n could be obta ined

w i t h o u t a r i go rous ana lys i s o f t he complete non- isent rop ic phenomena o f

h i g h speed f lows.

analogy.

p lace l o c a l l y .

due t o t h e i r geometr ical s i m i l a r i t y o f shape, which appears t o be o f a p re -

.dominant importance i n the l i g h t of t h i s analys is , t h e t o t a l e f f e c t would

n o t be m a t e r i a l l y d i f f e r e n t .

This i s due t o the h i g h l y i d e a l i z e d nature o f t h e present

For instance, i t i s i d e a l i z e d here t h a t the shock t r a n s i t i o n takes

I n a c t u a l i t y , a succession o f waves appears i n the f low, b u t

This hypothesis does n o t seem t o hold, however, when Mach d i scs

appear a t h ighe r Mach numbers.

does n o t possess the geometr ical s i m i l a r i t y c h a r a c t e r i s t i c s o f shock l a y e r

shapes.

by t h e i r h i g h l y unstable c h a r a c t e r i s t i c s , take the form o f a f l u c t u a t i n g

cone.

cou ld be extended t o the propagat ion c h a r a c t e r i s t i c s o f t r a n s i t i o n l aye rs , even

f o r h i g h e r Mach numbers, i n s p i t e of Mach d i s c appearance.

separate b a s i c i n v e s t i g a t i o n o f these phenomena seems desi r a b l e.

In t h i s case, t he successive shock format ion

On the contrary , the successive shock waves which are d i s t i n g u i s h e d

For t h i s reason i t i s feas ib le t h a t t h e i d e a l i z a t i o n o f c c n i c a l shapes

I n any case, a

- 57-

Page 66: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

11. THE CONICAL SHOCK LAYER

I t was shown in the previous section t h a t the radiation character is t ics

of an a rb i t r a r i l y shaped shock layer were described by the forcing function:

( 1 1 . 1 )

w where k = - i s the wave number and the integral i s evaluated a t the surface

I) = I ) ~ . The subscripts i, j and k can take on any one of the values

between 1 and 3 , b u t i t i s self-evident t h a t i # j #k. This notation i s

more f lexible since i t allows the choice of any coordinate of the curvil inear

t r i p l e t as the shock surface.

aO i i

In the par t icular case of conical shocks i t i s convenient t o choose the

spherical coordinate system:

( 1 7 . 2 ) 3 J, = o 2 J1 = e 7

J, =;

2 so t h a t the conical surface i s represented by the coordinate I ) ~ = eo, where eo

i s the value of the conical ang e formed by the shock. Thus, referring t o the

notation in Equation ( 7 1 . 7 ) , i t i s inferred t h a t i = 2, j = 1 , and k = 3 .

I n view of the above defin t ions the shock region i s represented by

the coordinates :

Using the above notation, Equation ( 7 7 . 7 ) takes on the following form

- 58-

Page 67: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

Let the observation point = [ ~ , n , c ] a l so be defined in terms of

spherical system of coordinates

5 = U i n y c o n v

n = U i n y n i n v

5 = Rcoay (77.5)

Under these conditions the quantity h = 1; - may be written

( 1 1 . 6 )

( 1 1 . 6 ~ )

I t i s now apparent t h a t i n the f a r f ie ld analysis the l inear dimensions

R from the origin t o of the shock layer are much smaller than the distance

the observation p o i n t . T h u s Equat ion ( 1 1 . 6 ) may be expanded in terms of the

r a t io ZIR

( 7 1 . 7 )

Consider next the integrand in Equation ( 7 1 . 4 ) . The quantity tr in the

denominator a f fec ts the magnitude of the radiated f i e ld b u t i t has no e f f ec t

on the phase of the emitted wave, which s modified by the wave number k .

Thus, in the denominator, l i t t l e e r ro r w 11 be affected by replacing 4 with R .

We wil l wri te Equat ion ( 1 1 . 4 ) in the following form:

and consider the expression in the bracket:

= -3- a e // e - d 2 F C O A o dF.4 ( 1 7 . 9 )

- 59-

Page 68: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

which should be evaluated a t e = e o a f t e r the different ia t ion.

Relation ( 1 1 . 6 ~ ) f o r cosu th i s may be written as

Using

dF e d4 ( 7 7 . 7 0 ) - . ihFhiVl6dinyCVb ( 4 - V )

0 i' 0

L = a / e - i k F c o h e c o 6 y

a e

Employing the integral form of the Bessel function representation, the above

expression takes on the following form:

7 = 2 ? l a , a :ik:cvh e c a b y Jo ( k F b i n e h i n y ) d r ( 1 7 . 7 1 ) 0

Performing the different ia t ion and set t ing e = eo one gets

- i k F c a d e O c m y 7 = 2TiikbineOcvby e Jg ( k T h i n e o d i n y )Tdr t I' 0

Using these resul ts in Equation ( 1 1 . g ) the following expression for the

forcing function of the conical shock resu l t s :

- 60-

( 1 1 . 1 3 )

Page 69: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

Equat ion ( 1 1 . 1 3 ) represents the forc ing f u n c t i o n o f a con ica l shock l a y e r

r a d i a t i n g acous t i c pressure waves i n t o the surrounding quiescent reg ion

sub jec t t o the s i m p l i f y i n g assumptions o f the present analogy.

t h e cone w i t h the z -ax is c f the coordinates i s represented by

l e n g t h o f the cone i s represented by the r a d i a l coord ina te such t h a t :

The angle o f

e = e,. The v

- ! J < p < L - -

where L i s t h e t o t a l l e n g t h o f t h e l aye r measured from the o r i g i n along the

con ica l surface. The diameter o f t he shock i s g iven by:

d = Gbxne0 thus P = 2Lbine0

P being the maximum shock diameter which i s assumed t o be o f t he o rde r o f

t h e nozz le diameter unless more exac t measurements a re ob ta inab le from

experiments.

Equation ( 1 1 . 1 3 ) i s p l o t t e d i n F ig . 6 and 7 showing constant i n t e n s i t y

l i n e s f o r a number o f f requencies.

I n add i t i on , s i m p l i f i e d computer runs f o r t he case o f parabo lo ida l

shock l a y e r s were performed us ing average cons tan t values f o r t he process

parameter B . These are shown i n Fig. 8. 2

The obta ined r e s u l t s i n d i c a t e t h a t , f o r low frequencies, t he d i r e c t i o n a l i t y

tends t o a l i g n i t s e l f w i t h the j e t axis, whereas the h ighe r frequency c o n t r i -

b u t i o n s swing away from t h e a x i s and tend t o be normal t o i t (e.g., shock

-61 -

Page 70: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

l a y e r w i t h e o = 25'. see F igure 6) . A s i m i l a r t r e n d i s noted i n the case o f

eo = 4 5 ' , even though, i n t h i s case, the maximum h igh frequency d i r e c t i o n a l i t y

tends t o bu t does n o t reach 90" (see F igure 7). The same t rends h o l d t r u e

f o r other shock shapes (F igu re 8).

As mentioned prev ious ly ,* t h e o v e r a l l i n t e n s i t y o f r a d i a t i o n tends

t o a maximum i n the d i r e c t i o n s normal t o the shock l a y e r .

t h e re levant range o f Mach numbers the shock angles vary between 30' t o 60'

approximately (exc lud ing Mach d i s c s ) , i t i s t o be expected, i n the l i g h t o f

t he present theory, t h a t the maximum i n t e n s i t y w i l l tend t o occur i n the

same range w i t h respect t o t h e j e t ax i s .

Not ing t h a t f o r

* Section 10

-62-

Page 71: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

y = 900

K=.2

y = I

y= m

Y = (

y = 9 o C

y = 90'

K = .5

y = i

y = 0'

Figure 6a.

f i e l d o f a 25" c o n i c a l shock showing t h e frequency dependent

P o l a r graphs o f l i n e s o f constarit i n t e n s i t y i n the t i o i s c

d i r e c t i o n a l i t y .

w h = - v a r i e s between .2 and 2 (cgs u n i t s ) aO

-63-

Page 72: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

G f c P D

Q Z

Z

-I

2 v,

3 D z 0

L" D -I 2 1.2-

2

K = .2 SHOCK RADIUS = 2 COT 0s = 2.14

-

-

O S 2 t OO * 30 60

SPHERICAL ANGLE (DEGREES)

2.0 t 2 ' * O t

OO L 30 60

SPHERICAL ANGLE (DEGREES)

L

OO ' 30 60

SPHERICAL ANGLE (DEGREES)

G 2

a P

3

z L" D

z

z v)

Y

D z 0 z

1 . o t

60 0 0 30

SPHERICAL ANGLE (DEGREES)

Figure 6b. Distance from shock versus spherical angle f o r l ines

of constant in tens i ty i n the f i e l d o f a 25' conical

shock.

varies between .2 and 2 (cgs units} I2 = - w

"0

-64-

Page 73: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

.

y =oo

y =I

1 Y =O'

Figure 70. Polar graphs of l ines of constant intensi ty in the noise

f i e l d o f a 45" conical shock showing the frequency

dependent d i rec t iona l i ty .

w k = - varies between .5 and 5 (cgs uni t s ) "0

-65-

Page 74: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

K = .5 SHOCK RADIUS = 2.0 COTANGENToS = 1

n

z 1.2-

z

P z 0

-

2 v, -

0.8- -

0.4 - -

- 30 60 m 0,

0 SPHERICAL ANGLE (DEGREES)

K = 2 SHOCK RADIUS = 2 COT.eS = 1

0 0 1 30 60 9o

SPHERICAL ANGLE (DEGREES)

K = 1 SHOCK RADIUS COT.8,s = 1

OO I 30 60

SPHERICAL ANGLE (DEGREES)

I

K = 5 SHOCK RADIUS = 2 C 0 1 . 8 * ~ = 1

6.0 -

z

L m O O 30 60

SPHERICAL ANGLE (DEGREES)

Figure 7b . Distance from shock versus spherical angle fo r l ines of

constant in tens i ty i n the f i e l d of a 45" conical shock.

k = W varies between .5 and 5 (cgs un i t s ) . aO

-66-

Page 75: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

N 0 1 s E

c 5 E c

0 0

S W E Q I C I I 4NGLE IDEGQEES)

M I C H NUNBERt 2 . 5 k 1 . t l

0 1 s I 4 N C E

c

0 Y

s b l 0 C I(

C N

DIST4NCE FqOM SL(0CK CM

4 C Q 0 5 s S v 0 C I(

-r E l

Q I O l I L OIST INCE I I O N C WtOC'C

Figure 8a.

i D i r e c t i o n a l i t y f i e l d of a P a r a b a l o i d a l Shock a t k = d a g = . lO(cgs u n i t s )

Upper l e f t g i v e s i n t e n s i t y v s . s p h e r i c a l angle . l i n e of c o n s t a n t i n t e n s i t y .

Lower l e f t shows a p o I a r p l o t of a

-67-

Page 76: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

DIST4NCE FRO* WOCK CW

HOCK W4N - L m T u I N CY

F igu re 8b.

Directionality F i e l d o f a Paraba lo ida l Shock at k = w/a, = .50 (cgs units)

-68-

Page 77: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

U C W NUUOERr 2.5 I= 1.m W O C R D l A K l E R = 4 A ¶ 1.m

0.00

1 1 0 4 .w

2.00 :: 1 0 0

'y Y O 0

8 C

L

C L

-2.00 8 0

0

7 0 -4 .m

60 4.m

-1CAL ANGLE (DECREES) Hoc6 %APE - LENGTH I N CW

-69-

Page 78: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

,

0 1 s 1 A N C C

c (I 0 w s n 0 C I

C w

f

DISTANCL FRCU W E 6 CM Figure 8d.

Directionality Field o f a Parabaloidal Shock at k = ~ / a , = 2.00 (cgs u n i t s )

-?O-

Page 79: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

12. THE TRIGGERING MECHANISM

The attempted t h e o r e t i c a l t rea tment o f non - i sen t rop i c f l o w

c h a r a c t e r i s t i c s makes i t feas ib le t o o f f e r some i n i t i a l specu la t ions con-

ce rn ing the causes and e f f e c t s o f the mechanism t r i g g e r i n g wave emission

f rom the entropy-producing regions.

d e r i v a t i o n , an entropy-producing reg ion i s governed by a non s e l f - a d j o i n t

(i .e. non-conservat ive) hyperbo l i c p a r t i a l d i f f e r e n t i a l equation. As a

consequence, an en t ropy wave i s propagated i n t o t h e d i s s i p a t i v e reg ion

whenever a p e r t u r b a t i o n appears on i t s boundary o r w i t h i n the reg ion i t s e l f

(non-homogeneous case).

assured by the second law o f thermodynamics which determines the d i r e c t i o n

o f the process.

d i s t o r t e d propagated wave p a t t e r n i s assumed, c a l l i n g f o r l i n e a r i z a t i o n

o f - and t h e van ish ing o f f i r s t - o r d e r d e r i v a t i v e s f rom - the equat ion

( s e l f - a d j o i n t form), i s e n t r o p i c f low cond i t ions are imp l i ed , f o r i n t h i s case

t h e propagat ion speed a = a ( S ) must be constant.

I n accordance w i t h the present

The s t i p u l a t e d growth o f the propagated wave i s

I n c i d e n t a l l y , i t may be r e a d i l y v e r i f i e d t h a t , when a non-

It i s now apparent t h a t , i n t h e l i g h t o f the present theory, the

behav io r o f such entropy-producing regions w i l l be determined by the

d i s s i p a t i v e e f f e c t s w i t h i n t h i s reg ion and the e x c i t a t i o n s imparted t o i t

a t t he boundary. I n the present approach of shock l a y e r a p p l i c a t i o n when

the th i ckness of t he reg ion tends t o zero the boundary e f f e c t s would tend

t o be predominant. As a consequence o f these e f f e c t s , t he re seems t o be a

-71-

Page 80: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

marked d i s t i n c t i o n between shock l a y e r s (regarded here as entropy-producing

regions) formed by a supersonic mot ion o f a s o l i d i n an unbounded medium

and those formed i n the exhaust o f a supersonic nozzle.

case when almost un i fo rm c o n d i t i o n s p r e v a i l upstream and downstream o f t he

layers, t h e i r i n f i n i t e e x t e n t i n the remaining d i r e c t i o n s tends t o suppress

any poss ib le e x c i t a t i o n s f rom these sources.

formed i n the exhaust o f supersonic nozzles have t o contend w i t h t h e con-

d i t i o n s o f t he f r e e boundary a t t he t e r m i n a t i o n o f t he la-yer i n a d d i t i o n

t o i t s upstream and downstream per tu rba t i ons .

condi t ions p o t e n t i a l i n s t a b i l i t i e s a re formed i n the presence o f any

d i s s i p a t i v e e f f e c t s (e.g., shear l aye rs , v e l o c i t y f l u c t u a t i o n s , v o r t i c i t y ,

e t c . ) , b u t t he shock l a y e r s represent a f i r s t - o r d e r magnitude i n comparison

w i t h o t h e r sources, which i n t u r n enhance t h e i r i n s t a b i l i t y by appearing a t

t h e f r e e boundary where these shock l a y e r s terminate.

noted t h a t the same unstable c h a r a c t e r i s t i c s occur i n a moving r i g i d body

when boundary-layer shock i n t e r a c t i o n s take p lace, s ince the e f f e c t of r i g i d

boundaries a t t he e x t r e m i t i e s o f t he shock a re e f f e c t i v e l y counteracted by

the f l u c t u a t i n g medium.

For i n the f i r s t

On the o the r hand, shock reg ions

Thus, f o r supersonic-exhaust

I t should a l s o be

-72-

Page 81: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

. I n the present engineer ing approach, the c h a r a c t e r i s t i c i n p u t o f t he

boundary e x c i t a t i o n s i s represented by a ser ies o f randomly d i s t r i b u t e d

impulses imparted t o the Shock l aye r .

impulses i s both space- and time-dependenty b u t t h e i r random c h a r a c t e r i s t i c

f os te rs the b e l i e f t h a t ergodic theory a p p l i c a t i o n would be a j u s t i f i c a t i o n

t o represent them i n terms o f any one o f these independent va r iab les . As

a consequence, a time-dependent behavior i s used in t he present approach.

The actual phys i ca l na€ure o f these

I n t u i t i v e l y one cou ld expect the Four ier t ransforms o f these impulse

J2 I U I I L L I ~ ~ ~ ~ t o reflect d i f f e r e n t p r o b a b i l i t y c h a r a c t e r i s t i c s f o r d i f f e r e n t

frequency bands i n t o which these impulses are decomposed.

feas ib le t h a t t he c h a r a c t e r i s t i c F o u r i e r t ransform should a l s o be a

s t a t i s t i c a l aggregate o f random impulse funct ions a c t i n g upon t h e shock

l a y e r .

be expressed as a frequency dependent p r o b a b i l i t y d i s t r i b u t i o n .

h e u r i s t i c cons iderat ions such a d i s t r i b u t i o n should tend t o zero f o r l a r g e

frequency values t o e f f e c t i v e l y ensure the existence. o f t he F o u r i e r I n t e g r a l

I t i s thus

Accord ing ly t h i s c h a r a c t e r i s t i c Four ier t ransform could h o p e f u l l y

From

I t i s f e l t t h a t a separate, more r igorous i n v e s t i g a t i o n o f these

i n i t i a l cond i t i ons i s needed i n f u t u r e developments of the sub jec t mat ter .

However, f o r the present a p p l i c a t i o n , a simple rep resen ta t i on o f the

c h a r a c t e r i s t i c impulse f u n c t i o n w i l l be employed.

d i s t r i b u t i o n has been assumed f o r

Thus, t he respec t i ve

O < w < w o

t o be equal t o unity.. This i m p l i e s t h a t the f u n c t i o n r ( w ) , i n terms o f

which t h e time-dependence of the fo rc ing f u n c t i o n has been w r i t t e n [Equation

( 7 0 . 4 ) ] i s equal t o u n i t y . Thereafter the t ransform i s chosen t o f a l l o f f

- 73-

Page 82: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

as - as grows large. This choice effect ively prevents the divergence

of the Fourier integral for large values of frequency, even t h o u g h i t i s by

no means unique.

w

Based upon the above model, i t was found from the computational e f fo r t s

t h a t the overall behavior of the resul tant theoretical curves could be

correlated with experimental d a t a in a straightforward manner with a s ingle

exception. Namely,

results had t o be sh

t o the employment of

effects and the Dopp

n a l l cases the frequency spectrum of the theoretical

f ted by a constant factor .

the present acoustical analogy in which convective

e r s h i f t were n o t included.*

This could be expected due

Employment of the above model for the disturbances tr iggering non-

isentropic wave emission completes the overall theoretical representation

of t h e forcing function governing the acoustic propagation of shock layers

as derived in Section 10.

the resulting noise f i e ld were accomplished by the application of random

noise theory.** The choice of the Poisson dis t r ibut ion as a representative

probability function for the successive occurrences of the emission phenomena

was decided upon.** A typical CRT plot of spectrum fo r the i n i t i a l conditions

st ipulated above i s presented i n Figure 9. From the resul ts of the computation

i t can readily be seen t h a t empirical resu l t s also indicate the necessity of

the distribution t o tend t o zero for large values of frequency [see Figure 9

a n d Figure 1 1 ) .

( E . B. S m i t h , 1966) fo r Y = 50"

The computation of power spectral densit ies of

The plot represents a simulated run based upon Smith's Report

* Ribner, 1962.

** Rice, 1941, pp. 294-325.

- 74-

Page 83: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

5 V

-7- I I I I I I I I I I I I

oI A

I I I I I I I 3 > 1 )

F igure 9. I n p u t Funct ions (S imula t ion of Smi th 's Experiment; Y = 50'.

A C h a r a c t e r i s t i c CRT Plot of Spectrum f o r Two Typ ica l Time

- 75-

0 3

Page 84: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

13; EXPERIMENTAL VERIFICATION

Correlation of the obtained theoret ical resu l t s w i t h experiments was

attempted by actual simulation of given nozzle and flow charac te r i s t ics .

In certain cases conjecture had t o be used concerning the shock s t ructures

o f the nozzle under consideration, b u t whenever possible these were obtained

f r o m personal contacts .* Thus, actual simulation runs were carried out

using appropriate values f o r shock layer angle, i t s diameter, upstream Mach

number, e t c . The various flow parameters used i n the simulation o f Smi th ' s

experiments a re presented in Table 11.

and experimental correlations are shown i n Figures 10 t o 12.

The resul ts o f these theoretical

Two shortcomings of the present acoustical analogy became apparent

as soon as comparison w i t h the available data for a given simulation run

were made.

the theoretical computations was noted, i t s value being an absolute constant

for each nozzle simulated.

convective and Doppler s h i f t e f fec ts (Section 10) i t appears t h a t such

behavior o f the computed resu l t s could be avoided by taking these i n t o

account.

I n the f i r s t place, a shif t i n the frequency spectra of

Since the present analogy did n o t account fo r

Secondly, i t was found that the acoustic contribution o f the

theoretical model tends t o be overly exaggerated i n the neighborhood o f

the j e t ax i s . The reason fo r t h i s behavior may again be found i n the

* e.g., Martin Co. report , Courtesy E . 6. S m i t h .

-76-

Page 85: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

s i m p l i f i e d cha rac te r o f t he present analogy, s ince the a t t e n u a t i v e

na tu re o f t h i s reg ion i s probably due t o the e f f e c t s o f r e f r a c t i o n

( R i bner , 1966) which were disregarded in the engi nee r i ng computations.

I

On the o t h e r hand, the o v e r a l l t h e o r e t i c a l r e s u ? t s and the c h a r a c t e r i s t i c

t rends of j e t no ise phenomena seem t o be c lose ly f o l l o w i n g t h e general

pattern cf experimental f ind ings . From the s i m u l a t i o n runs o f Smi th 's

r e p o r t t he f o l l o w i n g f a c t s may be noted.

a) I n bo th the theory and experiment the d i r e c t i v i t y o f h ighe r f r e -

quency c o n t r i b u t i o n s h i f t s toward 90° f rom the j e t a x i s (F igure 10).

The computed r e s u l t s show a d i r e c t i v i t y s h i f t back towards a 65"

ang e from the a x i s f o r frequency inc rease above 3200 cps

( F i u re 6b, K=2.0 p l o t ) .

i n d i c a t e an i d e n t i c a l t rend, a 2.5 db i n t e n s i t y drop occu r r i ng

between 70" and 90" from t h e ax i s f o r cen ter band frequency o f

10 cps. [Smith, page 8-3, Program F i r i n g #l].

The t o t a l r e l a t i v e t h e o r e t i c a l i n t e n s i t y change (as a f u n c t i o n o f

t h e spher i ca l angle Y) i s computed t o be o f t h e o rde r o f 12 db.

The above c h a r a c t e r i s t i c and the ac tua l dec ibe l count a re w e l l

subs tan t i a ted by t h e experimental f i n d i n g s (F igure 10).

b)

The experimental data o f t h e r e p o r t

4

c )

-77-

Page 86: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

d) The experimental measurements o f d e n s i t y spect ra e x h i b i t a

s u f f i c i e n t number o f data p o i n t s t o h i g h l i g h t c h a r a c t e r i s t i c

f l u c t u a t i o n s o f t he curve i n the h i g h e r frequency reg ions.

computed values seem t o a n a l y t i c a l l y con f i rm t h i s behavior

i n d i c a t i n g i t t o be a c h a r a c t e r i s t i c Bessel f u n c t i o n v a r i a t i o n

(F igu re 11).*

The computed s p e c t r a l c h a r a c t e r i s t i c s show a r e l a t i v e increase

db/decade i n the low frequency ranges.

The

e )

The measured

values c o n f i r m the v a l i d i t y o f t he above r e s u l t

o f about 20

ex pe r i menta

(F igu re 11)

f ) The o v e r a l l d i r e c t i o n a l i t y c h a r a c t e r i s t i c s o f t he t h e o r e t i c a l

model show a marked c o r r e l a t i o n w i t h the experimental measurements

(F igu re 12).

A p o i n t o f experimental cont roversy a r i s e s when the changes o f

i n t e n s i t y w i t h frequency are considered as a f u n c t i o n o f t he spher i ca l angle

Y. I n Smi th 's r e p o r t the d i r e c t i o n a l i t y curves have the same bel l -shaped

character, t h e maximum i n t e n s i t y va ry ing w i t h the frequency.

hand, both the General E l e c t r i c r e p o r t (Lee, Smith, e t a l . 1961) and the

F-1 engine data** i n d i c a t e an exchange o f energy takes place i n the range

On the o t h e r

* I n c o r r e l a t i n g the s p e c t r a l d e n s i t i e s , a conversion from the 1/3 octave

band ana lys i s used i n experiments has been e f f e c t e d .

** Courtesy G. Wi lhold, Unsteady Aerodynamics Group, NASA, MSFC.

-78-

Page 87: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

.

40" < - - Y x 90". Thus, as the frequency increases, ' t h e maximum i n t e n s i t y a t

about 40" decreases and t h a t about 90' increases, t he curve p i v o t i n g about

an almost s t a t i o n a r y maximum value.

model tend t o support t he l a t t e r b u t n o t the former t r e n d

The t h e o r e t i c a l r e s u l t s o f t he present

- 79-

Page 88: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

t 5 L s oc n

+ 8 1 1 f = 50 CPS

0 10 20 30 40 50 60 70 80 90

ANGLE FROM EXHAUST AXIS (DEG)

-8

-12

0 10 20 30 40 50 60 70 80 90

ANGLE FROM EXHAUST AXIS (DEG)

f = 200 CPS

0 -

MARTIN CO EXP

0 10 20 30 40 50 60 70 80 90

ANGLE FROM EXHAUST AXIS (DEG)

-8

-1 2

o 1 0 20 23 40 50 M) 70 80 9o

ANGLE FROM EXHAUST AXIS (DEG)

Figure 10. Model a n d as Determined Experimental l y by Smi t h .

Comparison of Frequency Directivity Indices as Computed by

-80-

Page 89: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

.

9 0

0 0 m I1 2.

-81 -

Page 90: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

c, 0 n

-82-

h- a-

Page 91: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

C C

h

d c n p

3 0

9 0

0 f\ 0 8 m

(ea) 13A31 lV1133dS

U W E .P ca n c, 0 W ul 0 2= I- t c, .I-

3 c aJ V

r"

L C C C L 0-

Q z , E o 0

v c , 7 s

-83-

Page 92: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

In

Y LL U w Z 0 u - I-

Q, U w @z

\ \ ‘ \ I I

I \’ I

-84-

Page 93: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

TABLE I 1

Smi til I s S i inul a t i on

Shnck Diairieter 0 P \ I

Shock angle 25"

4 cm

Distance froin Shock

R 3756 cm

E x i t Mach Number 3.5

Non-diitiensi orial cutoff .6

W V

zO frequeticy,

-85-

Page 94: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

CONCLUDING REMARKS

The preceding i n v e s t i g a t i o n o f non- isent rop ic propagat ion phenomena

was mot iva ted by the d e s i r a b i l i t y t o represent i n an a n a l y t i c a l manner the

c o n t r i b u t i o n o f d i s s i p a t i v e reg ions t o aerodynamic no ise generat ion.

eng ineer ing a p p l i c a t i o n o f t h i s ana lys is i s r e f l e c t e d i n the concept o f an

EPN (extended p l u g nozz le) device.

producing reg ions (shock waves) i n o rder t o a t te i i i i a te noise generat ion o f

o f high-speed nozz le exhausts. I n t h e present s tudy a mathematical model i s

formulated and analyzed f o r some s p e c i f i c cases t o determine t h e no ise

genera t ion c h a r a c t e r i s t i c s o f supersonic nozzles.

e x i s t i n g t e s t data appear t o c o r r e l a t e wel l w i t h t h e t h e o r e t i c a l r e s u l t s .

An

I t s f u n c t i o n i s t o modi fy ent ropy-

For these s p e c i f i c cases

As i t i s i n most cases, the present approach i s based upon a r a t h e r

s imple b a s i c idea which may have a tendency t o become l o s t i n t h e techn i -

c a l i t i e s o f t h e d e r i v a t i o n .

dynamic v a r i a b l e s which would d e p i c t non- isen t rop ic pressure f l u c t u a t i o n s .

I t s essence i s t h e ch0ic.e o f independent thermo-

It may be r e a d i l y seen t h a t i f , f o r instance, the pressure and ent ropy

be chosen as independent v a r i a b l e s , a1 1 pressure grad ien ts become i s e n t r o p i c

and, as a consequence, so do pressure f l u c t u a t i o n s .

unwarranted r e s t r i c t i o n upon the physical phenomena tak i r ;g p l a c e i n ent ropy-

producing r e g i ons.

Th is f a c t seemed an

I t should a l s o be remarked t h a t the choice of the thermodynamic J-

f u n c t i o n was based upon phys ica l asoects o f t h e preceding a n a l y s i s coupled

w i t h dimensional cons iderat ions. The actual d e r i v a t i o n o f t h e J process

was obta ined, however, f rom an ana lvs is o f convected ent ropy changes i n

-87-

Page 95: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

*

e q u i l i b r i u m flows.

here due t o t h e i n i t i a l stages of i t s development and a l s o t o a v o i d

excessive compl ica t ions o f t h e present ana lys is .

t h a t t h e scope o f such a d e r i v a t i o n warrants a d d i t i o n a l a n a l y t i c a l e f f o r t s

i n a s u b j e c t which may be i n c i d e n t a l t o the propagat ion c h a r a c t e r i s t i c s o f

a f i n i t e ampl i tude pressure wave.

T h i s l a t t e r a l t e r n a t e approach has n o t been presented

I t i s f e l t , moreover,

-88-

Page 96: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

REFERENCES

. Ffowcs W i l l i a m s , J. E. "Same Though2 on t h e E ~ ~ Q - L ~ A 06 hcna6 . t Motion and

Eddy Convection on t h e N o d e 06 A& JetJ," Univ. Southampton Aero,

- Astro. Rep. I55 (1960) .

Ffowcs W i l l i a m s , J. E. , "The N o d e 6hOm Tutbdence Convected at High Speed,"

P r m , Roy. SOC. - A.

Ffowcs W i 11 i ams , J . E. , "An A c c a u ~ t 0 5 Rueanch Wohk C u t h i e d OUX undci

C o n t h x c t NASI -3277 into t h e Mechaitinm o b N o d e G e n e d o n by Supzk-

bartic FLuwA," C o n t r a c t NAS1-3217, BBN Job No. 11131 (19 June 1964).

L a u f e r , John, J . E. Ffowcs W i l l i a m s , and S. C h i l d r e s s , "Mechaninm 06 Nose

Genehation i n t h e TutbuRenX Baundatry Layek," AGARDograph 90

(November 1964).

Lee, R., Kenda l l R, Smith, E. B., e t a l . , Raeahch 7nvukigaLion ob t h e

Genetlcl;tian and Suppken&ion 06 JeX Node, General E l e c t r i c Company,

Prepared under Navy , Bureau of Weapons C o n t r a c t NOas 59-61 60-c

( 1 6 January 1961).

L i g h t h i 11 , M. 3. , I1On Sound Genehated Aemdynmucdeey, I . , Geneml Theony, 'I

Proc. Roy. SOC. A., Vol. 21 (1952) pp. 564-587.

L i g h t h i 11 , M. J . , "On Sound Genehated Aekodynamic&y, 71 . , Tuhbutence UA

a Soume 06 Sound," Proc. Roy. SOC. A., Vo l . 222 (1954) pp. 1-32.

L i g h t h i l l , M. J . , "On t h e Enmgy Scdtteted 6nom t h e 'I~tZerraction 06 TukblLeence

with Sound a t Sltoch Wava," Proc. Cambr. P h i l . SOC., 49, P t . 3

( J u l y 1953) pp. 531'-551.

39-

Page 97: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

L i g h t h i l l , M. J., "Sound Genehated AuodynamicaUy," Proc. Roy. SOC. A,,

Vol. 267 (1962) pp. 147-182.

Peter, A. C. and Kamo, I 'fundamental SRudy 06 J e t Nohe GefletaLion and

Suppheaaion, P a t 7 2 .If Technical Documentary Report ASD-TDR-63-326,

Aeronaut ica l Systems D i v i s i o n , Wright-Patterson A i r Force Base, Ohio

(March 1963)

Peter, A, C. and T. C. L i , "7nvehLigaLLon t o Ve6ine Rhe P4opagat ion

ChmctehinxXcn 0 6 a Finite A m p U u d e AcounLic Phedawre Wave,"

NAA S&ID , S I D 65-933 (1965).

P h i l l i p s , 0. M., "On t h e G e n e w o n 0.6 Sound by Supehnonic TuhbLLeent Sheatr

Laym," F l u i d Mech., 9 (1960) pp. 1-28.

Powell, A., "On t h e Generration 06 Nohe by TwrbuRertt Ju2," ASME Paper

59-AV-53 ( 1 959).

Ribner, H. S., "Aehodynamic Sound d4am FlLLid VLtWcLtioa, A Theohy 06 t h e

Sound 6 m m J u 2 and Othm Flowa," UTIA Report No. 86,

I n s t i t u t e o f Aerophysics, U n i v e r s i t y o f Toronto ( J u l j 1962).

AFOSR TN 3430,

Ribner, H. S., "A Theohy 06 t h e Sound @om J e A and ORhU Flowa i n Tetunb 06

Simple S O U J L C ~ A , ' ~ UTIA Report No. 67, AFOSR TN 60-950, I n s t i t u t e o f

Aerophysics, U n i v e r s i t y o f Toronto ( J u l y 1960).

Ribner, H. S . , "1nveh . t iga t ioa 06 A e h o d y n d c d y Genehded Sound," .E Contract No. AF49(638)-249, F i n a l Technical Report No. 81,

AFOSR 2148, I n s t i t u t e o f Aerophysics, U n i v e r s i t y o f Toronto (Jan. 1962).

Ribner, H. S., t t N e w Theohy 06 Jet -Node Generration, Vihection&y, and

SpeCt/ra," Journal o f the Acous t i ca l Soc ie ty o f America-,

(Feb. 1959) pp. 245-246.

Vol. 31, NO. 2,

90-

Page 98: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

Ribner, H.S. , ' ' C ~ Y L Ahe S;oreng.th V,iAt~i.bu.tion 06 N o d e , Sowrcp M o n g a let,"

UTIA Report _-__- No. 51, Ins t i t u t e of Aerosphysics, University o f Toronto,

(April 1958).

Ribner, H.S. , " S t w i g t h PLb;th,LbuZion 06 Noiae Somcea A l o n g a Jet,"

Journal of the Acoustical Society of America, Vol. 30, No. 9, 876

(September 1958) .

I -

Ribner, H.S., "TIN N o b e 0 6 Adzcnu~t," General Lecture Fourth Congress o f the

International --I Counci 1 o f Aeronautical Sciences

Aerospace Studies, University o f Toronto ( A u g u s t 1964).

Paris, France,

Ribner, H.S. , ''The Sound Generated by I n t e t r a d u n 06 a Single Vohtex w a h a

Shock Wave," UTIA Report -- No. 61 ,

of Toronto (June 1959).

Ins t i tu te o f Aerophysics, University

Ribner, H.S., Lecture Given a t the University o f Southern California

(July 1966).

Rice, S.O. , "McLt lwrc&caY A r i d y . s i 4 0 6 Rundurn NuLde," The Bell System Tech.

Journ., Vol. 23, No. 3 (July 1944) pp. 282-332; Vol. 24 , No. 1

(January 1945) p p . 46-108.

Smith, E. B., " A c o ~ . t i c Scde-Mode l T u h 06 High-speed Flowb," Martin-

Marietta Corporation, Prepared under Contract NAS8-20223 (March 1966).

"AppLic&vvi 0 6 Euto , idcd Pfug N o z z l e N & b t SupyJtr&5biovi TCieotry t o a Smdee

T w r b o j e t FIt;loIc', ' ' Williams Research Corporation, WRC Project No. 132-6,

Contract No. FA WA-5062 ( 7 August 1965).

1 NASA-Langley, 1967 - 23 CR-736 -91 -

Page 99: INVESTIGATION TO DEFINE THE PROPAGATION … TO DEFINE THE PROPAGATION ... INVESTIGATION TO DEFINE THE PROPAGATION CHARACTERISTICS OF A FINITE ... at the end of the non-isentropic process…

TECHNICAL REPORTS: important, complete, and a lasting contribution t c i existing knowledge.

TXCHNICAL NOTES: of imporcaiice as 2 csptrihution to existing knowledge.

1 ECHNICAL JIE3IORANDUMS: 1nforma:ion receiving limited dht i i - bution because of preliminary dara, securitv classification, or otiiiri ii.asons.

CONTRACTOR REPORTS: Technical information generated in con- nection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived froni hTASA4 zrtivities and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities but not necessarily reporting the results of individual NASA-programmed scientific efforts. Publications include conference proceedings, monographs, data compilations, handbooks, souicebooks, and special bibliographies.

Scientific and technical information considered

Information less broad in s c u p bs: nevcrrheless

Details on the availability of these publications may be obtained horn:

SCIENTIFIC AND TECHNiCAi ii<FOP,,L,’,AT!ON DIVISION

N AT1 0 N A L A E R 0 i\i A iiii CS 4 t? D SPACE A D M I N I S T R AT IO N

Washington, D.C. 20540