iot ecosystem study 2014

41
IEEE Standards Association (IEEE-SA) Internet of Things (IoT) Ecosystem Study

Upload: mohamed-ali

Post on 24-Jan-2016

218 views

Category:

Documents


1 download

DESCRIPTION

IoT Ecosystem Study 2014

TRANSCRIPT

Page 1: IoT Ecosystem Study 2014

IEEE Standards Association (IEEE-SA) Internet of Things (IoT) Ecosystem Study

Page 2: IoT Ecosystem Study 2014

 

 

i

Copyright © 2015 IEEE. All rights reserved.

 

IEEE-­‐SA  Internet  of  Things  (IoT)  Ecosystem  Study        

   

       

 

Page 3: IoT Ecosystem Study 2014

 

 

ii

Copyright © 2015 IEEE. All rights reserved.

Trademarks  and  Disclaimers  IEEE   believes   the   information   in   this   publication   is   accurate   as   of   its   publication   date;   such  information  is  subject  to  change  without  notice.  IEEE  is  not  responsible  for  any  inadvertent  errors.    

 The  Institute  of  Electrical  and  Electronics  Engineers,  Inc.  3  Park  Avenue,  New  York,  NY  10016-­‐5997,  USA    Copyright  ©  2015  by  The  Institute  of  Electrical  and  Electronics  Engineers,  Inc.  All  rights  reserved.  Published  January  2015.  Printed  in  the  United  States  of  America.    IEEE  is  a  registered  trademark  in  the  U.  S.  Patent  &  Trademark  Office,  owned  by  The  Institute  of  Electrical  and  Electronics  Engineers,  Incorporated.    PDF:      ISBN  978-­‐0-­‐7381-­‐9501-­‐8          STDVA20089  

   IEEE  prohibits  discrimination,  harassment,  and  bullying.  For  more  information,  visit  http://www.ieee.org/web/aboutus/whatis/policies/p9-­‐26.html.    No  part  of  this  publication  may  be  reproduced  in  any  form,  in  an  electronic  retrieval  system,  or  otherwise,  without  the  prior  written  permission  of  the  publisher.    To  order  IEEE  Press  Publications,  call  1-­‐800-­‐678-­‐IEEE.  Find  IEEE  standards  and  standards-­‐related  product  listings  at:  http://standards.ieee.org  

Page 4: IoT Ecosystem Study 2014

 

 

iii

Copyright © 2015 IEEE. All rights reserved.

Notice  and  Disclaimer  of  Liability  Concerning  the  Use  of  IEEE-­‐SA  Documents  

 This   IEEE   Standards   Association   (“IEEE-­‐SA”)   publication   (“Work”)   is   not   a   consensus   standard   document.  Specifically,  this  document  is  NOT  AN  IEEE  STANDARD.  Information  contained  in  this  Work  has  been  created  by,  or  obtained  from,  sources  believed  to  be  reliable,  and  reviewed  by  members  of  the  IEEE-­‐SA  Internet  of  Things  Steering  Committee.  IEEE  expressly  disclaims  all  warranties  (express,  implied,  and  statutory)  related  to  this  Work,  including,  but  not   limited   to,   the  warranties  of:  merchantability;   fitness   for  a  particular  purpose;  non-­‐infringement;  quality,  accuracy,   effectiveness,   currency,   or   completeness   of   the   Work   or   content   within   the   Work.   In   addition,   IEEE  disclaims  any  and  all  conditions  relating  to:  results;  and  workmanlike  effort.  This  document  is  supplied  “AS  IS”  and  “WITH  ALL  FAULTS.”    Although  IEEE  believes  that  the  information  and  guidance  given  in  this  Work  serve  as  an  enhancement  to  users,  all  persons  must   rely  upon  their  own  skill  and   judgment  when  making  use  of   it.   IN  NO  EVENT  SHALL   IEEE  BE  LIABLE  FOR  ANY  ERRORS  OR  OMISSIONS  OR  DIRECT,   INDIRECT,   INCIDENTAL,   SPECIAL,  EXEMPLARY,  OR  CONSEQUENTIAL  DAMAGES  (INCLUDING,  BUT  NOT  LIMITED  TO:  PROCUREMENT  OF  SUBSTITUTE  GOODS  OR  SERVICES;  LOSS  OF  USE,  DATA,   OR   PROFITS;   OR   BUSINESS   INTERRUPTION)   HOWEVER   CAUSED   AND   ON   ANY   THEORY   OF   LIABILITY,  WHETHER   IN  CONTRACT,   STRICT   LIABILITY,  OR   TORT   (INCLUDING  NEGLIGENCE  OR  OTHERWISE)  ARISING   IN  ANY  WAY  OUT  OF  THE  USE  OF  THIS  WORK,  EVEN  IF  ADVISED  OF  THE  POSSIBILITY  OF  SUCH  DAMAGE  AND  REGARDLESS  OF  WHETHER  SUCH  DAMAGE  WAS  FORESEEABLE.    Further,  information  contained  in  this  Work  may  be  protected  by  intellectual  property  rights  held  by  third  parties  or  organizations,  and   the  use  of   this   information  may   require   the  user   to  negotiate  with  any   such   rights  holders   in  order  to  legally  acquire  the  rights  to  do  so.  IEEE  makes  no  assurances  that  the  use  of  the  material  contained  in  this  work  is  free  from  patent  infringement.  Essential  Patent  Claims  may  exist  for  which  no  assurances  have  been  made  to  the   IEEE,  whether  by  participants   in   this  activity  or  entities  outside  the  activity.  The   IEEE   is  not  responsible   for  identifying   essential   patent   claims   for   which   a   license   may   be   required,   for   conducting   inquiries   into   the   legal  validity  or  scope  of  patents  claims,  or  determining  whether  any  licensing  terms  or  conditions,  if  any,  or  any  licensing  agreements  are  reasonable  or  non-­‐discriminatory.  Users  are  expressly  advised  that  determination  of  the  validity  of  any  patent  rights,  and  the  risk  of  infringement  of  such  rights,  is  entirely  their  own  responsibility.  No  commitment  to  grant   licenses  under  patent   rights  on  a  reasonable  or  non-­‐discriminatory  basis  has  been  sought  or   received   from  any  rights  holder.      This  Work  is  published  with  the  understanding  that  IEEE  is  supplying  information  through  this  Work,  not  attempting  to  render  engineering  or  other  professional  services.  If  such  services  are  required,  the  assistance  of  an  appropriate  professional  should  be  sought.  IEEE  is  not  responsible  for  the  statements  and  opinions  advanced  in  this  Work.    

Page 5: IoT Ecosystem Study 2014

iv

Copyright © 2015 IEEE. All rights reserved.

Contents    

Table  of  Contents  

INTRODUCTION  ....................................................................................................................................  1  

WHAT  IS  IOT?  .......................................................................................................................................  3  

THE  MARKET  FOR  IOT  ...........................................................................................................................  4  

PLAYERS  POSITIONED  TO  SHAPE  THE  IOT  MARKET  .............................................................................................  4  COMMERCIAL  PLAYERS  ......................................................................................................................................  4  RESEARCH  AND  ACADEMIA  .................................................................................................................................  4  GOVERNMENTS  AND  UTILITIES  ............................................................................................................................  5  OTHER  PLAYERS  ................................................................................................................................................  5  MARKET  SEGMENTS  AND  VERTICALS  POISED  TO  DRIVE  THE  GROWTH  OF  IOT  ...........................................................  5  CONSUMER  GOODS  ...........................................................................................................................................  5  EHEALTH  .........................................................................................................................................................  6  SMART  TRANSPORTATION  ..................................................................................................................................  6  ENERGY  DISTRIBUTION  (SMART  GRID)  ...................................................................................................................  6  SMART  CITY  .....................................................................................................................................................  6  FIGURE  1:  POSSIBLE  SMART  CITY/SMART  GRID  FRAMEWORK  ...................................................................................  7  DISTRIBUTION  AND  LOGISTICS  .............................................................................................................................  7  PUBLIC  SAFETY  .................................................................................................................................................  7  INDUSTRIAL  AND  MANUFACTURING  ......................................................................................................................  8  AGRICULTURE  AND  NATURAL-­‐RESOURCE  MANAGEMENT  ..........................................................................................  8  BIG-­‐DATA  ANALYTICS  .........................................................................................................................................  8  NEW  SEGMENTS  ...............................................................................................................................................  8  MISSING  FROM  THE  BUSINESS-­‐MODEL  POINT  OF  VIEW  .......................................................................................  9  QUADRUPLE  TRUST  ...........................................................................................................................................  9  USABILITY  ......................................................................................................................................................  10  SILOS  ............................................................................................................................................................  10  INTEROPERABILITY  AND  STANDARDIZATION  ..........................................................................................................  10  MONETIZATION  ..............................................................................................................................................  11  EDUCATION  ...................................................................................................................................................  11  SCALABILITY  ...................................................................................................................................................  11  

IOT  TECHNOLOGIES  ............................................................................................................................  12  

TECHNOLOGIES  ENABLING  THE  GROWTH  OF  IOT  TODAY  ...................................................................................  12  SENSORS,  ACTUATORS  AND  SMART  DEVICES  .........................................................................................................  12  NETWORKS  AND  COMMUNICATIONS  ..................................................................................................................  12  COMPUTING  AND  STORAGE  ..............................................................................................................................  13  BIG-­‐DATA  ANALYTICS  .......................................................................................................................................  13  MISSING  FROM  THE  TECHNOLOGY  POINT  OF  VIEW  ..........................................................................................  13  

Page 6: IoT Ecosystem Study 2014

v

Copyright © 2015 IEEE. All rights reserved.

QUADRUPLE  TRUST:  PROTECTION,  SECURITY,  PRIVACY,  SAFETY  ................................................................................  13  SENSOR,  ACTUATOR,  AND  DEVICE  IMPROVEMENTS  ...............................................................................................  14  NETWORKS  AND  COMMUNICATIONS  ..................................................................................................................  15  INTEROPERABILITY  ..........................................................................................................................................  15  SEMANTICS  AND  INTELLIGENCE  ..........................................................................................................................  16  BIG  DATA  ......................................................................................................................................................  16  SCALABILITY  ...................................................................................................................................................  16  FUNCTIONAL  SAFETY  ........................................................................................................................................  17  

IOT  STANDARDIZATION  ......................................................................................................................  18  

STANDARDS  BODIES  DOING  IMPORTANT  WORK  TO  ENABLE  IOT  .........................................................................  18  SPECIFIC  STANDARDS  ACTIVITIES  RELATED  TO  IOT?  .........................................................................................  18  MISSING  FROM  THE  STANDARDIZATION  POINT  OF  VIEW  ...................................................................................  19  COMMON  DEFINITION  OF  IOT  ...........................................................................................................................  19  GLOBAL  REACH  AND  COORDINATION  ..................................................................................................................  19  ARCHITECTURE  AND  REFERENCE  MODELS  ............................................................................................................  20  QUADRUPLE  TRUST:  PROTECTION,  SECURITY,  PRIVACY,  SAFETY  ................................................................................  20  SCALABILITY  ...................................................................................................................................................  20  APPLICATION  STANDARDS  ................................................................................................................................  21  INTEROPERABILITY  ..........................................................................................................................................  21  OTHER  COMMENTS  .........................................................................................................................................  21  GLOBAL  STANDARDIZATION  .......................................................................................................................  22  

ROLE  OF  ACADEMIA  AND  RESEARCH  (AR)  ...........................................................................................  23  

USER  ACCEPTANCE  IS  KEY  ...................................................................................................................  24  

CONCLUSIONS  ....................................................................................................................................  25  

ANNEX  A  ............................................................................................................................................  27  

IOT  ROUNDTABLES  SPONSORED  BY  IEEE-­‐SA  ........................................................................................  27  

IEEE-­‐SA  IOT  ROUNDTABLE  –  TAIPEI  ...........................................................................................................  27  IEEE-­‐SA  IOT  ROUNDTABLE  –  WASHINGTON  DC  ...........................................................................................  29  IEEE-­‐SA  IOT  ROUNDTABLE  –  SANTA  CLARA,  CA  ...........................................................................................  30  

ANNEX  B  OTHER  MEETINGS  THAT  PROVIDED  INPUT  TO  THIS  ECOSYSTEM  STUDY  ...............................  32  

IEEE  COMSOC  IOT  RAPID  REACTION  STANDARDIZATION  ACTIVITY  WORKING  MEETING  ........................................  32  

ANNEX  C  IOT  STANDARDS  AND  ACTIVITIES  .........................................................................................  34  

 

Page 7: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

1

Copyright © 2015 IEEE. All rights reserved.

IEEE-­‐SA   Internet  of  Things   (IoT)  Ecosystem  Study  

Introduction  Broadly  speaking,   the   Internet  of  Things   (IoT)   is  a  system  consisting  of  networks  of  sensors,  actuators,  and   smart   objects   whose   purpose   is   to   interconnect   “all”   things,   including   everyday   and   industrial  objects,  in  such  a  way  as  to  make  them  intelligent,  programmable,  and  more  capable  of  interacting  with  humans  and  each  other.  See  “What  is  IoT”  to  learn  how  “IoT”  is  used  in  this  study.  The   IoT  ecosystem   is  hard   to  define.   It   is  complex,  and   it   is  difficult   to  capture  due   to   the  vastness  of  possibility  and  the  rapidity  with  which  it   is  expanding.  However,  there  is  no  doubt  that  IoT  is  changing  the   world.   It   is   shaping   the   evolution   of   the   Internet.   IoT   is   creating   numerous   challenges   and  opportunities  for  engineering  and  science.   In  response  to  these  challenges  and  opportunities,  the   IEEE  created   an   IoT   Initiative   to   coordinate   its   IoT   efforts   in   publications,   conferences,   education,   and  standardization.   The   success   of   IoT   depends   strongly   on   standardization,   which   provides  interoperability,  compatibility,  reliability,  and  effective  operations  on  a  global  scale.  

Recognizing   the   value   of   IoT   to   industry   and   the   benefits   this   technological   innovation   brings   to   the  public,  the  IEEE  Standards  Association  (IEEE-­‐SA)  has  a  number  of  standards,  projects,  and  events  (see  0)  that  are  directly  related  to  creating  the  environment  needed  for  a  vibrant  IoT.  

As   a   part   of   the   IEEE   IoT   Initiative,   the   IEEE-­‐SA  developed   this   IoT   ecosystem   study.   IEEE-­‐SA   engaged  stakeholders   in   key   regions  of   the  world   to  obtain   the   input   that   shaped   this   study.  This  engagement  was   in   the   form   of   a   series   of   roundtable   discussions   held   by   IEEE-­‐SA.   Invitations   to   the   roundtables  included   the  10  questions   listed  below.  The  questions  were   intended   to   seed   the  discussion;   they  did  not  constrain  the  roundtables,  which  were  spirited  discussions  of  IoT  and  associated  issues.  

1. Who  are  the  players  that  are  positioned  to  shape  the  IoT  market?  

2. What  market  segments  and  verticals  are  poised  to  drive  the  growth  of  the  IoT?  

3. What  are  the  technologies  enabling  the  growth  of  the  IoT  today?  

4. What  is  missing  from  the  business-­‐model  point  of  view?  

5. What  is  missing  from  the  technology  point  of  view?  

6. What  standardization  bodies  are  doing  important  work  to  enable  the  IoT?  

7. What  specific  standards  activities  do  you  think  of  when  you  think  of  the  IoT?  

8. What  is  missing  from  the  standardization  point  of  view?  

9. Do  you  see  IoT  activities  as  more  suitable  for  regional  or  global  standardization?  

10. What  can  research,  industry  and  academic  institutions  contribute?  

The  structure  of  this  study  is  based  on  these  questions  and  divides  the  discussion  into  the  three  principal  areas   of   Market,   Technology,   and   Standards.   After   the   discussion   of   these   three   areas,   the   role   of  academia  and  research  as  a  contributor  to  the  three  areas  is  discussed.  Finally,  the  importance  of  user  acceptance  is  addressed.  

Page 8: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

2

Copyright © 2015 IEEE. All rights reserved.

It  should  be  noted  that  this  structural  division  is  somewhat  arbitrary:  

¾ Discussions  in  the  roundtables  frequently  addressed  multiple  areas  simultaneously  because  the  areas  are  so  interdependent,  and  

¾ Information  on  topics  that  were  discussed  in  multiple  areas  has  been  partially  reorganized  for  consistency.  

 

However,  some  topics  are  not  discussed  entirely  in  one  place  when  a  division  made  sense.  For  example,  under  the  issue  of  “missing  scalability,”   IP  addressability   is  discussed  in  the  Marketing  section  because  this   is   primarily   an   economic   issue   (IPv6   exists   but   has   not   been   widely   deployed),   while   unique  hardware  identification  is  discussed  in  the  Standards  section  because  there  is  still  a  need  for  consensus  on  how  to  move  forward  from  MAC  addresses.  

Additional   input  to  this  study  was  provided  by  the   IEEE  Communications  Society  (IEEE  ComSoc),  which  held  an  IoT-­‐related  workshop.  

Members  of   the   IEEE-­‐SA  Corporate  Advisory  Group  (CAG)  and  members  of   the   IEEE   IoT   Initiative  have  reviewed   drafts   of   this   study   and   provided   additional   content   during   the   review   process.   Additional  supporting  material  was  garnered  from  IoT-­‐related  workshops  held  by  IEEE-­‐SA.  

The   information   provided   by   these   sources—the   IEEE-­‐SA   roundtables,   the   IEEE   ComSoc   and   IEEE-­‐SA  workshops,  and  the  reviewers—composes  the  body  of  this  whitepaper.  

The  annexes  contain  the  following  supporting  material:  

¾ Annex   A   contains   details   regarding   the   IEEE-­‐SA   roundtable   discussions,   including   lists   of   the  participants  for  each  discussion  

¾ Annex   B   contains   details   regarding   the   IEEE   ComSoc   workshop,   including   a   list   of   the  participants  

¾ Annex  C  contains  a   list  of   IoT-­‐related  standards  and  activities   (standards  under  development,  IoT  evangelism,  etc.)  

   

Page 9: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

3

Copyright © 2015 IEEE. All rights reserved.

What  is  IoT?  The  primary  differentiator  between  the   traditional   (legacy)   Internet  and   the   Internet  of  Things   (IoT)   is  the  proliferation  of  uniquely  identifiable  devices  with  embedded  sensors  and  actuators.  

There  is  no  “official”  definition  of  IoT.  Many  of  the  organizations  working  in  IoT  have  created  definitions;  these  definitions  differ  widely.  These  current  definitions  vary  so  much  that  they  are  reminiscent  of  the  tale  of   the  blind  men  and  the  elephant.  Without  a  common  definition  of   IoT,   it  will  be  difficult   to  put  together  solutions  or  even  define  problem  areas.  

Some   people   think   of   IoT   as   a   new   add-­‐on   to   the   “traditional”   Internet;   others   think   of   IoT   as   the  ongoing  evolution  of  the  Internet.  Under  both  definitions,  the  end  result  will  be  the  interconnection  of  “all”  things.  The  distinction  between  the  two  classes  of  definitions  is  that  the  “evolutionary”  definition  of  IoT  includes  traditional  computing  and  networking  devices,  as  well  as  smart  phones,  tablets,  point-­‐of-­‐sale  (POS)  terminals  and  the  myriad  new  sensors  and  smart  objects  that  are  beginning  to  appear.  While  there   is   merit   to   both   conceptualizations,   the   evolutionary   interpretation   is   adopted   for   this   study  because   it   is   inclusive   and   avoids   the   need   to   identify   individual   devices   and   services   as   being   either  “traditional”   or   IoT.   Thus,   for   the   purpose   of   this   study:   IoT   refers   to   any   systems   of   interconnected  people,   physical   objects,   and   IT   platforms,   as   well   as   any   technology   to   better   build,   operate,   and  manage  the  physical  world  via  pervasive  data  collection,  smart  networking,  predictive  analytics,  and  deep  optimization.  

Note  that  there  are  many  IoTs.  There  is  the  global  IoT  (evolving  from  the  global  Internet)  as  well  as  local  and  private  IoTs.  The  term  “IoT”  encompasses  all  of  these.  

Some  people  also  distinguish  between  Internet  of  Things,  Internet  of  Vehicles,  Smart  Grid,  eHealth,  etc.  While  this  distinction  may  make  sense   in  some  contexts,  this  study  takes  the  position  that  all  of  these  are  part  of  IoT.  They  will  likely  share  communications  technologies  and  all  need  the  quadruple  trust  and  interoperability  described  herein,  so  it  makes  sense  to  consider  all  of  them  during  the  development  of  IoT  and  to  distinguish  between  them  only  when  needed.  

IoT  products   include  devices,  apps,  and  services   (e.g.,   smart  phones,   tablets,   intelligent  networks,  big-­‐data  analytics,  and  cloud  storage).  A  key  aspect  of  IoT  is  the  intelligent  connectivity  of  these  products.  

For   the   most   part,   IoT   devices   will   be   self-­‐configuring   and   adaptive   to   reduce   the   need   for   human  interaction   (e.g.,   network   discovery,   self-­‐description   of   devices,   auto-­‐configuration   of   device   and  network  parameters).  However,  it  is  likely  that  there  will  be  situations  where  devices  will  be  more  rigidly  constrained  to  satisfy  safety,  legal,  and  regulatory  obligations.  

IoT  is  the  subject  of  a  great  deal  of  hype  and  many  bold  predictions  about  where  it  will  eventually  take  us.   However,   there   is   no   question   that   IoT   is   changing   the   world.   In   addition   to   connecting   people,  anytime   and   everywhere,   it   is   connecting   IoT   products   to   humans   and   other   IoT   products,   and   it   is  putting   these  products   at   the   service  of  humanity.   This   transformation  has  already  begun;   it  will   only  continue  to  accelerate.  

   

Page 10: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

4

Copyright © 2015 IEEE. All rights reserved.

The  Market  for  IoT  The  IoT  market   is  burgeoning  but  fragmented.  Early  players  are  active  and  currently  creating  products  for   which   they   see   a   market.   In   order   to   get   products   to   market,   these   players   are   implementing  proprietary   solutions,   some   of   which   may   evolve   into   de   facto   standards.   Currently,   IoT   is   trending  toward  vertical  applications.  

IoT  development  and  deployment  are  motivated  by   the  desire   to  provide  and  use  existing   goods  and  services  more  efficiently   (cheaper,   faster,  better)   and  by   the  desire   to   create  new  goods  and   services  that   will   drive   new   revenue   streams.   Connecting   things   and   allowing   data   to   move   will   open   new  markets,  just  as  the  Internet  did.  

New  products  and  business  models  will  disrupt  traditional  business  models;  some  of  these  new  products  and  models  will   be   created   by   unintended   consequences   of   technologies   being   deployed.  Who   could  have  foreseen  the  myriad  ways  that  smart  phones  have  been  extended  since  their  introduction?  

The  market  for  IoT  is  truly  global.  Much  of  the  growth  for  IoT  may  be  in  emerging  economies  because  they   do   not   have   to   deal   with   as   many   existing   infrastructure   issues;   instead,   they   can   build   new  structures  to  address  the  needs  of  IoT.  

Who  are  the  players  that  are  positioned  to  shape  the  IoT  market?  What  market  segments  and  verticals  are  poised  to  drive  the  growth  of  the  IoT?  What  is  missing  from  the  business-­‐model  point  of  view?  

Players  positioned  to  shape  the  IoT  market  There  are  several  different  classes  of  players  that  will  play  major  roles   in  the  growth  of   IoT.  Players   in  each  of  these  classes  are  currently  active  to  varying  degrees.  

¾ Commercial  players  in  the  “off-­‐line”  world  

¾ Commercial  players  in  the  “on-­‐line”  world  

¾ Research  and  academia  

¾ Governments  and  utilities  

¾ Other  players  

Commercial  players  Commercial  players   fall   into   two  categories,   “off-­‐line”  and  “on-­‐line.”  Many  players  participate   in  both  categories;  they  are  classified  herein  based  on  their  principal  participation.  

¾ Players   in   the   “off-­‐line”   world   are   the   thing   manufacturers.   They   are   producing   smart  appliances,   home   automation   devices,   personal   appliances   (smart   phones,   wearables,   etc.),  smart  automobiles,  etc.  

¾ Players   in   the   “on-­‐line”   world   generally   provide   IoT-­‐enabling   services   although   many   also  provide   things.   Players   include   Amazon,   Apple,   Google,   and   Microsoft.   On-­‐line   players   are  pioneering  in  many  services  and  applications,  e.g.,  Microsoft®  Azure™,  Amazon  Web  Services,  Google  Glass  (a  thing),  smart  phones,  etc.  

Research  and  academia  Research  and  academia  are  busy   creating   the   theories,  new  products,   and  materials   that  will   fuel   the  growth  of  IoT.  Academia  is  also  educating  the  new  generation  of  technologists  and  business  people  who  will  expand  IoT.  For  further  discussion,  see  “Role  of  Academia  and  Research.”  

Page 11: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

5

Copyright © 2015 IEEE. All rights reserved.

Governments  and  utilities  Governments  and  utilities  are  creating  smart  cities,  the  smart  grid,  etc.  Specific  examples  of  IoT  devices  being  deployed  include  traffic  cameras,  security  cameras,  smart  meters,  adaptive  traffic  controllers,  etc.  Governments   also   play   a   key   role   in   shaping   technology   through   funding   (defense,   energy,  transportation,   etc.)   and   setting   regulatory   frameworks   and   policies   (security,   interoperability,   etc.).  Governments  are  already  investing  in  IoT  domains.  

Other  players  In   addition   to   established   players,   entrepreneurs   will   also   play   a   role,   creating   new   markets   and  disrupting   existing  markets   with   novel   new   products.   In   areas   of   high   unemployment,   one   path   that  talented   and   ambitious   individuals   are   taking   as   an   alternative   to   being   unemployed   is   to   become  entrepreneurs.  

Arguably,  consumers  themselves  are  players  who  will  shape   IoT  by  their  purchases.  Examples  of  these  choices   include   wearables   (Google   Glass,   smart   watches,   etc.)   and   crowdfunding   support   for  entrepreneurs.  For  further  discussion,  see  “User  Acceptance  is  Key.”  

Finally,   regulatory   agencies   cannot   be   overlooked.   Nearly   every   nation   has   one   or   more   regulatory  organizations  that  will  govern  some  aspect  of   IoT  (e.g.,  privacy,  health,  wireless  technology),  and  their  impact  will  be  felt.  

Market  segments  and  verticals  poised  to  drive  the  growth  of  IoT  There  are  many  market  segments  and  vertical  poised  to  drive  IoT  growth:  

¾ Consumer  goods:  smart  phone,  smart  home,  smart  car,  appliances,  etc.  

¾ eHealth:  fitness,  bioelectronics,  and  healthcare  

¾ Smart  transportation  

¾ Energy  distribution  (smart  grid)  

¾ Smart  city  

¾ Distribution  and  logistics  

¾ Public  safety  

¾ Industrial  and  manufacturing  

¾ Agriculture  and  natural-­‐resource  management  

¾ Big-­‐data  analytics  

¾ New  segments    

Consumer  goods  and  eHealth  are  thought  to  be  the  two  primary  market  segments  (application  domains)  that  will  initially  account  for  explosive  growth  of  IoT  sensors  and  devices.  

Consumer  goods  In  the  consumer-­‐goods  segment,  there  are  already  more  than  a  billion  smart  phones  in  use  worldwide.  Newer  smart  phones  include  more  sensors,  and  new  apps  are  adding  to  the  power  of  smart  phones  to  participate   in  even  more  application  domains.  Arguably,  smart  phones  now  function  as  sensor  devices  

Page 12: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

6

Copyright © 2015 IEEE. All rights reserved.

and   application   platforms   in   many   different   market   segments   (consumer   goods,   eHealth,   smart   city,  etc.)  but  are  included  in  the  consumer-­‐goods  segment  since  that  is  where  they  got  their  start.  

Consumer   goods   also   include   appliances,   electronics,   clothing/accessories   (embedded   technology),  automobiles,  etc.,  all  with  sensors  and  embedded  devices  to  provide  new  functionality.  

Smart  homes  include  smart  appliances,  lighting  and  curtain  controls,  multimedia  entertainment,  security  systems,   etc.   Hubs   are   being   introduced   to   consolidate   control   of   many   different   devices   that   use  proprietary   protocols   and   to   extend   that   control   to   the   Internet.   Convenience   and   energy   saving   are  major  motivators.  

Smart  cars  will  park  themselves,  respond  to  voice  commands,  connect  to  your  smart  phone,  connect  to  wearable  sensors,  etc.  These  features  are  beginning  to  appear  in  high-­‐end  models.  

eHealth  eHealth   is   a   broad   segment   that   includes   such   things   as   telemedicine,   virtual   healthcare   teams  (providing  diagnoses  and  surgical  support),  mHealth,  etc.  Some  people  argue  that  it  also  includes  things  like  electronic  health  records  and  healthcare  information  systems.  

mHealth  addresses  the  mobile  aspects  of  eHealth.  mHealth  leverages  bioelectronics  sensors  to  provide  mobile  services  such  as  heart  monitoring  implants;  infant  and  geriatric  monitors,  real-­‐time  monitoring  of  patient  vitals,  and  fitness  monitoring.  

Smart  transportation  Smart   transportation   includes   both   public-­‐transport   and   private-­‐transport   (cars   and   trucks).   Public-­‐transport   activities   include   integrated   mobility   platforms,   train   control,   and   electronically   accessible  timetables  and   ticketing.  Among   the   focuses  of   smart   transportation  are   fuel  efficiency,   cleaner   fuels,  advanced  vehicle  technologies,  route  planning,  and  logistics  to  reduce  costs  and  improve  efficiency.  

In  the  private-­‐transport  domain,  a  major  focus  is  vehicle  automation.  This  includes  both  vehicle  control  (access  by  IoT  systems  will  be  limited  since  these  systems  are  essential  for  safe  operation  of  the  vehicle)  and  more  openly  accessible  IoT  systems  such  as  navigation,  climate  control,  etc.  IoT  applications  could  be   car-­‐to-­‐car,   car-­‐to-­‐curb,   or   completely   internal   to   the   car   (including   external   devices   such   as   smart  phones  or  laptops  that  are  brought  into  the  car).  

Another   aspect   of   smart   transportation   is   the   appearance   of   services   like   Uber   and   Lyft   that   are  transforming  the  taxi/limo  industry  and  services  like  ZipCar  and  Community  CarShare,  which  provide  car  sharing  services  for  people  who  only  need  a  car  occasionally.  

Energy  distribution  (smart  grid)  Management  of  the  energy  distribution  segment  is  growing,  with  solutions  already  in  place  on  both  the  supply   side  and   the  demand  side.  Several  years  of  effort  have  already  gone   into   the  smart  grid,  using  information  and  communications   technology   (ICT)   to  gather  and  act  on   information—e.g.,  behavior  of  suppliers  and  consumers—to  automate  the  electrical  grid  and  make  it  more  efficient  and  more  resilient.  

Smart  city  The   smart   city   is   a   conceptual   model   (see   Figure   1)   that   describes   the   use   of   information   and  communications   technology   (ICT)   to   create   networked   infrastructure(s)   to   improve   efficiency   and  development  of  all  areas  of  urban  life,  including  business  services,  social  services,  housing,  leisure,  and  cultural  services.  The  focus  is  on  the  connected  city  as  a  vehicle  for  growth.  

Page 13: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

7

Copyright © 2015 IEEE. All rights reserved.

 

Figure  1:  Possible  Smart  City/Smart  Grid  Framework    

An  interesting  example  is  Boston’s  new  pothole  tracking  system.  According  to  a  press  release  from  the  Mayor’s  Office   of   Boston   a   new   app—   STREET   BUMP®—uses   the   technology   already   built   into   smart  phones  (including  accelerometers  and  GPS  systems)  to  identify  bumps  and  automatically  report  them  to  the  city.  The  city   then  uses  big-­‐data  techniques  to  eliminate  reports  of   (intentional)  speed  bumps  and  builds   a   map   ranking   potholes   by   size   and   number   of   reports.   In   terms   of   the   smart   city,   this   IoT  application  will  be  used  in  concert  with  driver  hotlines  and  road  crew  inspection  to  help  Boston  fill  more  potholes  faster.  This  example  will  be  referenced  throughout  this  study  because  it  is  exemplary  of  many  of  the  items  discussed  herein.  

Another  example  is  the  City  of  Philadelphia’s  use  of  IoT  to  manage  its  public  garbage  cans;  compacting  the   garbage   and   tracking   the   cans   and   the   amount   of   garbage   they   contain.   This   information   has  enabled  the  city  to  reduce  collections  substantially,  saving  approximately  US$900,000  per  year.  

Distribution  and  logistics  Distribution  and  logistics  is  leveraging  IoT  devices  such  as  radio  frequency  identification  (RFID)  tags  and  barcode   readers   to   save   time   and   money   in   the   areas   of   inventory   management,   order   fulfillment,  shipping  management,  warehousing,  etc.  

Public  safety  Public  safety  covers  disaster  prevention  and  relief.   It  also  includes  systems  that  overlap  with  segments  such  as   smart   cities   and   smart   transportation.  Activities   range   from   food-­‐safety   to   road-­‐traffic   safety,  

Page 14: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

8

Copyright © 2015 IEEE. All rights reserved.

police   and   fire   services,   emergency  medical   services,   rescue   squads,   etc.   IoT   is   changing   all   of   these  areas  with  mobile  communication,  traffic  and  security  cameras,  and  novel  apps  such  as  Boston’s  pothole  tracking  system.  

Industrial  and  manufacturing  Activities   in   this   market   segment   include   such   diverse   activities   as   industrial   automation   (e.g.,  automated  assembly  lines)  and  material  flow  traceability  systems.  

Automation   of   production   already   plays   an   important   role   in   manufacturing.   IoT   is   increasing  automation   and   providing   more   flexibility   and   efficiency   to   the   production   process.   IoT   allows  localization  of   individual  products   in   the  production   lines  and   the  automatic   selection  of   the   required  production   steps.   Furthermore,   remote   and   predictive   maintenance   are   improving   the   efficient  operation  of  entire  factories.  

Agriculture  and  natural-­‐resource  management  Agriculture  and  natural-­‐resource  management  activities  include  GPS  mapping  technology  and  sensors  to  analyze  crop  yields  during  harvesting,  identify  water  and  nutrient  needs,  monitor  crop  growth,  and  use  this  information  to  apply  nutrients  and  water  to  specific  segments  of  the  fields.  (This  is  sometimes  called  underground  IoT.)  Other  activities  include  the  deployment  of  biochip  transponders  in  animals  (domestic,  farm  and  wild).  

IoT  systems  are  starting  to  monitor  the  food-­‐safety  supply  chain  from  the  field  to  point  of  sale.  

Big-­‐data  analytics  Big-­‐data  analytics  will  both  contribute  to  and  benefit  from  the  growth  of  IoT.  The  amounts  of  real-­‐time  data   that   are   being   generated  will   grow   rapidly   and   present   new  business   opportunities.  On   the   raw  data   level,  both  owners  and  producers  will  be  able   to   sell   the   information  captured  by   IoT  devices   to  companies   to   feed   their   business   intelligence   and   to   convert   into   knowledge   and   wisdom.   On   the  processed   data   (knowledge)   level,   companies   capable   of   big-­‐data   analytics   will   be   able   to   sell   the  knowledge   they   have   derived   to   other   entities   (service   providers   and   manufacturers)   to   augment  existing  or  create  new  services  and  products.  On  the  scenario  planning  (wisdom)   level,  companies  can  make  use  of  the  information  they  have  acquired  for  long-­‐range  planning.  

Boston’s  pothole  tracking  system  (described   in  “Smart  city”)   is  an  example  of  big-­‐data  analytics   taking  IoT-­‐generated  data  and  using  it  to  provide  a  solution  to  a  real  world  problem  (road  maintenance).  

New  segments  Looking   to   the   future,   as   sensor   and   device   technology   improves   and   IoT   grows,   there   are   countless  opportunities   for   novel   new   applications   and   devices   in   all   market   segments.   The   convergence   of  multiple  technologies  will  create  new  market  segments  as  yet  unthought-­‐of.  

The   following   list   presents   some   of   the   potential   new   business   models   mentioned   during   the  roundtables.  Arguably,  rudimentary  examples  of  some  of  these  are  already  in  use.  

¾ The  lending  of  devices  or  device  capacity  when  they  are  not  in  use.  IoT  technologies  allow  easy  traceability  of  the  devices  and  billing  for  their  use.  

¾ Reduction  of   data   acquisition   costs  will  make  possible   sustainable  business  models  based  on  the  collection  of  previously  unavailable  data.  

Page 15: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

9

Copyright © 2015 IEEE. All rights reserved.

– Mobile  crowd-­‐sensing:  individuals  with  sensing  and  computing  devices  can  collectively  share  data  and  extract  information  to  measure  and  map  phenomena  of  common  interest.  

– This  “cheap  data”  also  makes  possible  scientific  research  that  was  not  economically  feasible  in  the  past  (e.g.,  a  small  and  medium  lake  research  project  in  Taiwan  to  determine  whether  shallow  lakes  could  sustain  their  ecologies).  

– Real-­‐time  data  could  open  new  opportunities  in  decision  making  and  policy  making.  

¾ Cloud   storage   and   computing   could   augment   existing   business   models   (pay-­‐per-­‐use,   micro-­‐payments,  etc.).  

¾ The  IoT  could  foster  new  business  models  for  communications  (pay  per  use,  real-­‐time  analysis,  etc.).  

¾ Semantics  and   security  might  be   combined   to  provide  new  services   such  as  mobile   real-­‐time  warning,  security  for  one-­‐way  or  two-­‐way  devices,  system  alerts,  etc.  

Missing  from  the  business-­‐model  point  of  view  There  are  many  different  business  models  already  in  use.  There  are  sure  to  be  new  business  models  and  new  markets  as   IoT  develops.   IoT  will  be  used  to  make  existing  devices  and  services  more  economical  and/or  powerful;  it  will  enable  the  development  of  hitherto  undreamed  of  new  devices  and  services  that  will  generate  new  revenue  streams.  

There  are  still  many  business  issues  that  need  to  be  addressed:  

¾ Quadruple  trust:  protection,  security,  privacy,  safety  

¾ Usability:  implementation  and  system  integration  

¾ Silos  

¾ Interoperability  and  standardization  

¾ Monetization  

¾ Education  

¾ Scalability    

Note   that   many   of   these   topics   also   appear   in   “Missing   from   the   technology   point   of   view”   and/or  “Missing   from   the   standardization  point   of   view,”   depending  upon   the  nature  of  what   is  missing.   For  example,   in   this  Market   section,   scalability   is   included   because   the   need   for   greater   addressability   is  primarily  an  IPv6  deployment  issue.  

Quadruple  trust  The  quadruple  trust—protection,  security,  privacy,  safety—will  be  discussed  in  greater  detail  in  the  IoT  technology  discussion,  but  these  items  are  important  in  the  IoT  market  discussion  since  these  attributes  can  play  a  deciding   role   in   the   success  of   IoT-­‐related  devices   and   services   and  dramatically   affect   the  reputation  and  success  of   the  companies  providing  the  products  and  services.  Open  questions   include  who   provides   the   various   elements   of   the   quadruple   trust   and   how   the   difficult   trade-­‐offs   between  quadruple  trust  and  usability  will  be  resolved.  

Page 16: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

10

Copyright © 2015 IEEE. All rights reserved.

Some  people  use   “system   integrity”   in   place  of   quadruple   trust.   In   this   study  use  of   the   term   system  integrity  is  avoided  in  this  context  because  it  can  also  apply  to  software  and  hardware  issues  not  related  to  the  quadruple  trust.  

Usability  IoT  systems  need  to  be  optimized  for  usability.  Ease  of  use  will  be  a  vital  factor  for  the  growth  of  all  IoT  devices  and  services;  it  is  particularly  important  for  the  consumer-­‐goods  segment.  

Many  of  today’s  IoT-­‐based  systems  are  complex.  It  is  imperative  to  reduce  this  complexity  and  to  make  IoT   easier   to   use.  One   should  not   need   to   be   an   “expert”   or   to   hire   an   “expert”   to  put   a   device   into  service,  configure  a  system,  or  use  a  system  once  it  is  operational.  IoT  should  be  usable  by  a  consumer  without  extensive  training.  

At  the  same  time  the  system  is  easy  to  use,   it  must  also  satisfy  the  quadruple  trust.  There  are  difficult  trade-­‐offs  between  ease  of  use  and  the  quadruple  trust.  This  will  be  a  fundamental  challenge  affecting  both  the  usability  and  quadruple  trust  efforts.  

Design,  implementation,  and  system  integration  are  vital  components  of  the  usability  process.  Subject-­‐matter   experts   in  many   fields   do   not   have   technological   expertise   or   knowledge   of   how   to   embrace  technology   (e.g.,   clothing  manufacturers  who  want   to   enter   the   field   of  wearable   computing).   Cross-­‐boundary   collaboration   of   usability   experts,   subject-­‐matter   experts   of   the   relevant   application   areas,  and  technology  experts  is  needed  to  optimize  the  usability.  

Silos  Many  products  start  as  application  silos,  but  IoT  market  growth  will  be  slowed  by  silos.  Note  that  there  is   a   subtle   distinction   between   verticals   (vertical   apps)   and   silos   (siloed   apps):   silos   are   verticals  with  strong  barriers  preventing  other  apps  from  using  the  information.  While  there  may  be  occasions  where  silos  are  necessary  (e.g.,  health-­‐related  data  that  must  be  protected  for  privacy  reasons),  silos  that  are  primarily  intended  to  thwart  competition  will  delay  or  prevent  market  growth.  

Interoperability  and  standardization  When  openness  of  a  system  becomes  a  deciding   factor   for  purchase,   it  drives  the  need  for  standards.  For   example,   near-­‐field   communications   (NFC)   in   a   smart   phone   communicating   with   a   point-­‐of-­‐sale  (POS)   device   requires   interoperability   among   a   number   of   device   from   different   manufacturers;  Bluetooth®   communication  between   smart  phones  and  automobiles   requires   interoperability  between  different   smart-­‐phone   providers   and   automobile   manufacturers.   Both   of   these   examples   require  interoperability  among  devices  from  different  manufacturers  and  thus  require  that  standards  exist  and  be  accepted.  

An  excellent  example  of  what  happens  when  standards  are  missing  or  not  widely  accepted1  is  the  home  automation  market.   This  market   segment   has   been   struggling   for   decades;   there   has   been   very   little  progress  and  the  market  is  fragmented.  Products  from  different  manufacturers  do  not  interoperate  and  thus  have  (relatively)  low  market  penetration  and  high  prices.  

                                                                                                                         

1   Home   automation   standards   do   exist.   For   example,   KNX   and   LonMark®are   international   standards   (ISO/IEC)   for   home  automation.  However,  they  have  a  limited  market  acceptance  and  a  lot  of  proprietary  systems  exist.  

Page 17: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

11

Copyright © 2015 IEEE. All rights reserved.

Monetization  What   is   the   motivation   of   the   organization   providing   IoT-­‐based   service?   Is   it   increased   sales,   better  profit  margins,  a  better  relationship  with  the  customer,  or  some  other  motivation?  

Different   companies  will   have   different   business  models   depending   upon  whether   they   are   providing  equipment  or  a  service.  

For  equipment,  is  the  equipment  sold  outright?  Sold  with  a  service  plan?  Leased  or  rented?  What  is  the  term  of  the  lease/rental?  Yearly?  Monthly?  Hourly  (e.g.,  extremely  short  term  car  rentals  like  ZipCar  or  Community  CarShare)?  

For  services,  how  is  the  service  monetized?  Is  it  the  end  user  who  pays?  Do  they  pay  by  subscription  or  by   event   usage?  How   is   the   revenue   collected?  How  will   services   be   billed?   Is   the   service   a   credit   or  debit  based  service?  

New  revenue  models  that  have  not  been  seen  before  are  likely  to  arise.  

Education  Education  will  be  an  ongoing  challenge  at  all  levels.  

Users  of  IoT  systems  will  need  to  be  trained  to  use  the  system.  Training  will  be  particularly  challenging  in  the   case   of   consumers,  most   of   whom   abhor   steep   learning   curves.   Training  will   also   be   needed   for  users  of   job-­‐related   IoT  systems;   this  will  be  somewhat  easier  because   learning   to  use   the   IoT  system  will   also  be  part  of   their   job.  However,   if   training   costs  are   too  high,  adoption  of   IoT   systems  may  be  delayed  (another  argument  for  complexity  reduction).  

The  technologists  who  are  developing  IoT  systems  will  also  need  education.  Many  technologists  who  are  highly   skilled   in   their   particular   area   will—perhaps   because   of   business   schedules   and   funding   or  because  of  hubris—venture  outside  their   field  of  expertise  and  attempt  to   implement  something  they  know  very   little   about.   Examples   abound  of   botched   security   implementations   containing  well-­‐known  flaws  that  a  security  expert  would  have  known  better  than  to  implement.  

Scalability  The  market  players  are  all  anticipating  huge  numbers  of  things  (e.g.,  numbers  like  50  billion  things  are  being  forecast  within  the  next  10  years).  The  sheer  numbers  of  things  that  will  need  to  be  attached  to  the   Internet   require  widespread   adoption   of   the   IPv6   protocol.   The   IPv4   address   space   is   exhausted;  while  some  IoT  products  can  be  implemented  behind  gateways  employing  workarounds  such  as  network  address   translation   (NAT)   technology,   these   are   basically   stopgap   solutions.   This   absence   of   IPv6  technology   with   its   enormous   address   space   and   other   benefits   is   primarily   a   market   issue.   The  technology  exists  but  has  not  achieved  widespread  deployment  because  there  has  not  been  sufficient  economic  demand.  The  IoT  will  provide  that  demand.  

   

Page 18: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

12

Copyright © 2015 IEEE. All rights reserved.

IoT  Technologies  Technological   advances   are   fueling   the   growth   of   IoT.   Improved   communications   and   network  technologies,   new   sensors   of   various   kinds,   and   improved—cheaper,   denser,   and   more   reliable   and  power  efficient—storage  both  in  the  cloud  and  locally  are  converging  to  enable  new  types  of  products  that  were  not  possible  a  few  years  ago.  

What  are  the  technologies  enabling  the  growth  of  the  IoT  today?  What   is  missing  from  the  technology  point  of  view?  

Technologies  enabling  the  growth  of  IoT  today  The  technologies  enabling  the  growth  of  IoT  can  be  categorized  as  

¾ Sensors,  actuators,  and  smart  devices    

¾ Networks  and  communications  

¾ Computing  and  storage  

¾ Big-­‐data  analytics  

Sensors,  actuators  and  smart  devices  As  sensors,  actuators  and  smart  devices  become  smaller,  more  versatile,   lower  cost,  and  more  power  efficient,   they  are  being  deployed   in  greater  numbers,  either  as  special-­‐purpose  devices  or  embedded  into  other  products.  

Large  numbers  (more  than  a  billion)  of  smart  phones  are  already  deployed;  they  provide  a  collection  of  things  (sensors,  actuators,  displays,  and  modems)  to  support  the  implementation  of  IoT  systems.  

The  unification  and  convergence  of  the  platform  (smart  phones),  the  vast  number  of  platforms  already  deployed,   the   accessibility   (APIs   and   interfaces)   of   the   platform   to   app   developers,   and   a   (hard-­‐to-­‐quantify)  social  component  have  combined  to  make  smart  phones  a  key  enabler  of  current  IoT  systems.  

These  APIs  and  interfaces  have  enabled  programmers  to  create  huge  new  opportunities  in  many  market  segments.  An  example  is  the  Boston  pothole  tracking  system  mentioned  earlier.  

In   addition   to   smart   phones,   many   other   types   of   devices   are   already   being   deployed,   both  independently  (e.g.,  smart  watches  and  other  wearables)  and  as  part  of  other  devices  (e.g.,  appliances  and  consumer  electronics).  The  evolution  of  this  technology  category  will  enable  many  new  applications  as  IoT  grows.  

Networks  and  communications  Cellular   and   Wi-­‐Fi®   are   ubiquitous;   they   are   evolving   to   support   higher   bandwidths   and   lower   cost.  Bluetooth   is   also   becoming   lower   cost.   New   communication   technologies   like   Bluetooth®   low   energy  (Bluetooth  LE)  and  NFC  are  opening  new  possibilities  for  IoT.  

Fog   networks   extend   cloud   computing   and   services   to   the   edge   of   the   network,   positioning   data  processing  power  and  storage  closer  to  the  things  that  are  generating  the  data.  Think  of  fog  networks  as  “IoT  LANs”  or  “local  clouds”  on  the  edge  of  the  larger  IoT.  These  configurations  are  necessary  when  the  things   generate   large   amounts   of   raw   data   that   would   be   overwhelming—in   terms   of   bandwidth,  latency,  etc.—to  communicate   in   the  cloud  or  when   fast   reaction-­‐time   requirements  do  not  allow   for  long   communication  delays.   The   fog  network   can   send   summarized  data   (knowledge)   to   the   cloud   as  needed.  

Page 19: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

13

Copyright © 2015 IEEE. All rights reserved.

This   configuration   can   also   mitigate   a   number   of   other   problems   like   unique   addresses   for   things,  quadruple   trust   issues,   etc.   It   is   likely   that   many   of   these   local   clouds   will   use   a   simplified  communication  technology  (rather  than  IP)  and  rely  on  a  gateway  to  provide  an  adaption  layer  to  access  the  larger  IP-­‐based  IoT.  

Mesh   networks   and   mobile   ad   hoc   networks   (MANETs)   are   other   technologies   proving   useful   in   IoT  applications.  In  these  peer-­‐to-­‐peer  networks,  each  node  can  be  a  router  (i.e.,  forward  traffic  unrelated  to   its  own  use).  This  networking  style   is  particularly  useful   for   low-­‐powered  devices  operating   in  close  proximity.  

Computing  and  storage  The   cost  of  both  processors   and   storage  has  dropped  dramatically  while   compute  power  and   storage  capacity  have  substantially  increased.  

This  has  made  cloud  computing  and  cloud  storage  rapidly  growing  sectors  of  the  traditional  Internet  as  well  as  playing  a  prominent  role  in  the  growth  of  IoT.  

The  availability  of  denser,  lower  cost  local  storage  and  local  processors  that  are  cheap,  powerful,  power  efficient,   and   small   enough   to   be   integrated   with   I/O   devices   and   sensors   are   arguably   even   more  important  to  the  growth  of  IoT.  

Big-­‐data  analytics  Big-­‐data   analytics   can   examine   large   volumes   of   data   of   a   variety   of   types   to   find   hidden   patterns,  unknown  correlations  and  other  useful  information.  Data  sources  include  transaction  data,  server  logs,  Internet   clickstream   data,   social   media   activity   reports,   mobile-­‐phone   call   detail   records,   and   sensor  data.  

Results  can  facilitate  better  business  decisions,  competitive  advantages,  more  effective  marketing,  and  can  provide  a  new  revenue  source.  

Missing  from  the  technology  point  of  view  Today’s  technology  is  enabling  the  deployment  of  IoT  products.  However,  there  are  many  areas  where  technological   improvements   are   needed.   As   these   improvements   come   on   line   they   will   improve  existing   products   and   open   the   door   for   new  products   that   are   not   currently   feasible.   Improvements  that  are  needed  include  

¾ Quadruple  trust:  protection,  security,  privacy,  safety  

¾ Sensor,  actuator,  and  device  improvements  

¾ Networks  and  communications  

¾ Interoperability  

¾ Semantics  and  intelligence  

¾ Big  data  

¾ Scalability  

¾ Functional  safety  

Quadruple  trust:  protection,  security,  privacy,  safety  The  quadruple  trust  is  about  the  integrity  of  data.  Users  must  have  confidence  that  their  data:  

Page 20: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

14

Copyright © 2015 IEEE. All rights reserved.

¾ Is  protected  from  loss  or  corruption  

¾ Is  secure  from  malicious  attacks  

¾ Is  private  from  all  but  the  intended  users  

¾ Is  safe  from  unintentional  loss,  corruption,  or  disclosure    

Failures   of   these   trusts   could   be   life   threatening,   could   result   in   legal   violations,   and  would   certainly  result   in   loss   of   user   confidence   with   the   concomitant   consequences:   retarded   growth   of   the   IoT  ecosystem  and  potentially  costly  legal  actions.  

As  with  earlier  developments  of  computer  and  networking  technology,  the  quadruple  trust  has  been  an  afterthought   in   IoT   deployments.   There   is   much   work   needed   on   quadruple   trust   in   all   areas   of  traditional  computing  and  networking.  The  solutions  that  currently  exist  are  porous.  Since  IoT  systems  are—by   their   very   nature—decentralized,   they   present   even   greater   challenges   to   establish   and  maintain  the  quadruple  trust.  There  are  currently  no  effective  established  methodologies  in  any  of  the  quadruple-­‐trust  areas  for  IoT  or  for  the  sub-­‐field  of  sensor  networks.  

Implementation  of  quadruple  trust  should  not  be  approached  from  a  use-­‐case  perspective.  There  should  be  an  overarching  framework  of  strong  trust;  the  strength  of  pertinent  properties  can  then  be  relaxed  as  appropriate  for  a  given  use  case.  This  overarching  framework  is  essential  for  interoperability.  

Sensor,  actuator,  and  device  improvements  Great   strides   have   been   made   in   sensors,   actuators   and   devices;   in   order   to   enhance   the   growth  potential  of  IoT,  further  improvements  are  needed.  

Power  consumption  is  one  of  the  most  important  factors  that  will  influence  the  growth  of  IoT.  Sensors,  actuators  and  devices  must  continue  to  reduce  their  power  consumption.  Considering  the  number  of  IoT  products  expected   to  be  deployed,   their  power   requirements—albeit   small   for  each  device—could,   in  aggregate,  put  a   significant  burden  on   the  power  grids   (either  directly  while   in  use  or   indirectly  when  their  batteries  are  charging).  Improvements  in  battery  capacity  and  advances  in  energy  harvesting  that  make  small  sensors  independent  from  batteries  will  both  help  to  reduce  power  demand.  

Sensors,   actuators,   and  devices  must   also   become  dramatically   less   expensive   in   terms  of   both   initial  deployment   and   life-­‐cycle   costs.   Manufacturers   should   build   universal   chips/modules   that   integrate  many  different  sensors  on  a  single  chip.  Multiple  sensors  on  a  single  chip  would  not  only  reduce  costs  but   could   also   enable   features   that   would   not   be   practical   if   multiple   chips   were   required   (e.g.,   the  selected  chip  might  include  sensors  not  required  for  the  application  and  these  “optional”  sensors  might  inspire  designers  to  create  new  features).  Having  many  different  sensors  on  a  single  chip  will  also  enable  new  applications  on  devices  already  deployed,  as  has  been  the  case  with  smart  phones.  

Mobile  devices  may  need   to  provide   localization   information  quickly,  precisely,   and  at   low  cost.   Since  GPS  localization  is  not  always  available  (e.g.,  indoors)  new  localization  techniques  are  needed.  

There   are   also   concerns   regarding   how   IoT   sensor   and   actuator   modules   that   have   relatively   short  lifespans   can   be   integrated   with   long-­‐lived   products   like   automobiles   and   appliances.   Lifespan  assessments   are   appropriate   to   determine   how   long   sensor   and   actuator   modules   need   to   live   in  different   applications   and   whether   updates   or   upgrades   or   reconfiguration   of   the   modules   will   be  needed.  Lifespan-­‐cost  reductions  will  create  additional  value.  

Page 21: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

15

Copyright © 2015 IEEE. All rights reserved.

Networks  and  communications  IoT  products  will   present  different  possible  data   communication   scenarios.  Some  may   involve   sensors  that  send  small  data  packets  infrequently  (e.g.,  once  a  day)  and  do  not  prioritize  timely  delivery.  Others  may  have  storage   in  order  to  sustain  periods  when  the  communication   link   is  down.  Others  may  need  high  bandwidth  but  be  able  to  accept  high  latency.  Others  may  need  high  quality,  high  bandwidth,  and  low  latency.  

Depending   upon   the   scenario,   using   large   numbers   of   sensor   nodes   can   require   higher   quality   and  higher  reliability  in  the  sensor  network.  The  growing  number  of  connected  things  can  cause  the  amount  of   data   that  must   be  moved   to   explode.   This   could   be  mitigated   by   processing   the   raw   data   on   the  devices  themselves  or   in  a  module  close  to  the  device  (e.g.,  a  gateway)  to  condense  and/or  aggregate  data   for   more   efficient   transport   to   the   ultimate   destination.   With   many   conversations   among   IoT  devices  and  gateways,  the  communication  network  itself  needs  to  be  robust,  high  capacity,  and  always  available  with  minimal  congestion.  

Large  amounts  of  traffic  with  relatively  short  packet  sizes  will  require  sophisticated  traffic  management.  More   efficient   protocols   can   help   reduce   overhead   but   may   present   challenges   to   system   integrity,  usability,  scalability,  etc.  

Interface   standardization   is   desirable   so   that   IoT   devices   and   gateways   can   communicate   quickly   and  efficiently.  

Devices  will  need  a  way  to  quickly  and  easily  discover  each  other  and  learn  their  neighbor’s  capabilities.  

As   mentioned   earlier,   adoption   of   IPv6   has   lagged;   global   adoption   will   be   necessary   for   the   IoT   to  proliferate.  IPv6  provides  the  following  benefits  to  IoT  configurations:  

¾ IPv6  auto-­‐configuration  

¾ Scalable  address  space  (sufficiently  large  for  the  enormous  numbers  of  IoT  devices  envisioned)  

¾ Redefined  headers  that  enable  header  compression  formats  

¾ Easy  control  of  the  system  of  things  

¾ Open/Standard  communication  

¾ IPv6  to  IPv4  transition  methods  

¾ IPv6  over  constrained  node  networks  (6LO,  6LoWPAN)  

Interoperability  Interoperability  is  critical  to  foster  competition  and  drive  down  costs.  It  is  especially  important  for  large  IoT   applications   (e.g.,   smart   city   and   smart   grid).   Interoperability   is   of   paramount   importance   for  building  systems  of  IoT  systems.  

It   is   desirable   that   common   IoT   building   blocks   are   usable   in   different   verticals   (i.e.,   service  standardization).  IoT  building  blocks  should  be  able  to  interoperate  horizontally  (i.e.,  across  verticals)  so  that   individual   IoT   building   blocks   can   simultaneously   support   multiple   applications.   These   building  blocks   will   be   common   architectural   components   to   enable   capabilities   such   as   routing,   security,  prioritization,  cross-­‐domain  API’s,  etc.  

Interface  standardization  is  also  needed,  particularly  for  sensors,  actuators,  and  smart  devices.  

Page 22: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

16

Copyright © 2015 IEEE. All rights reserved.

The   goal   should   be   for   devices   to   be   interoperable   and   interchangeable.   There   needs   to   be   a   clear  means  for  devices  to  communicate  and  share  information  about  their  capabilities.  A  uniform  electronic  device  description  language  would  benefit  this  need.  

An   example   of   such   cross-­‐vertical   interoperability   is   a  medical   device   that   can   interface   with   service  providers   (to  provide  performance  data)   and  manufacturers   (to  provide  predictive  maintenance  data)  while  fulfilling  their  primary  function  of  providing  medical  data  to  a  doctor  or  clinic.  The  building  blocks  will   need   to   know  which  data   to  expose   through  which   socket   (to  which   vertical)   to  maintain  patient  privacy,  etc.  

Semantics  and  intelligence  Data   from   IoT  devices  will  need  to  be  provided   in  standard   formats  and  with  standard  semantics   that  can  be  understood  by  other  IoT  devices  and  gateways.  While  some  applications  (e.g.,  medical)  may  have  special  needs,  those  special  needs  should  be  provided  in  a  standardized  way  to  support  interoperability.  

There  will  need  to  be  rules  for  the  abstraction  of  data,  both  to  make  the  data  pathways  interoperable  and  to  be  certain  that  the  quadruple  trust  is  adequately  maintained.  

There  are  many   instances  where   IoT  devices  could  enhance  a  user’s  experience  by   inferring  the  user’s  intentions  and  providing  services  based  on  those  inferences  with  minimal  user  interaction.  For  example,  when  a  user  sits  on  the  sofa  what  are  his/her  intentions?  If  the  user  is  alone,  perhaps  he/she  wants  to  watch  TV  or  a  movie;  if  there  are  multiple  people  in  the  room  perhaps  they  want  to  chat  with  soft  music  in  the  background.  A  smart  entertainment  system  could  use  the  current  environment  state,  the  user’s  past   behavior   and   possibly   some   earlier   user   configuration   to   show   a   TV   program   (based   on   the   TV  schedule  and  learned  user  preferences)  or  play  music  (based  on  known  user  preferences  and  possibly  on  emotion  sensing).  

As  the  sensing  and  semantic  capabilities  of  IoT  grow,  more  of  these  types  of  scenarios  become  possible.  The  fundamental  rule  is  that  the  user  requires  simplicity;  the  scenarios  presented  to  the  user  will  need  to  be  easy  and  seamless.  

Big  data  As   the   individual  morsels  of   sensor/device  data  move  up   the  application   they   can  be  aggregated   into  larger   quantities   of   related   data.   What   can   be   done   with   this   big   data?   Where   is   it   stored?   How  easy/difficult   is   it   to   retrieve   a   piece   of   information   from   this   big-­‐data   store?   How   is   this   big   data  massaged  before  it  is  provided  to  the  customer?  

How   can/should   the   information   be   prioritized?   Is   there   a   way   to   detect   if   the   incoming   data   is  incorrect?   What   should   the   response   be?   Is   there   a   way   to   automate   some   activities   based   on   the  information  coming  up  from  the  lower  layers?  

These  are  only  some  of   the   technical  and  ethical  questions   that  arise   from  the  big-­‐data  aspect  of   IoT.  And,  of  course,  there  are  the  questions  of  how  this  big  data  can  be  monetized.  

Scalability  As  the  number  of  IoT  devices  grows,  different  methods  of  managing  them  must  be  devised;  the  current  methods  simply  do  not  scale.  In  addition  to  demonstrating  the  scalability  problem,  the  examples  listed  here  show  how  much  overlap  there  is  among  the  various  market  and  technology  needs.  

In  the  smart  home,  consumers  will  inevitably  need  to  replace  a  residential  gateway,  either  because  it  is  worn   out   or   in   order   to   upgrade   for   other   benefits.   Even   in   legacy   environments   where   just   a   few  

Page 23: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

17

Copyright © 2015 IEEE. All rights reserved.

computers  are  connected  to  the  gateway,  many  consumers  have  difficulty  when  switching  gateways.  It  is  unreasonable  to  expect  them  to  reconfigure  each  of  the  IoT  devices—appliances,  light  bulbs,  curtain  controllers,  etc.—when  they  replace  their  residential  gateway.  

Wireless   technology   is   often   cellular;   cellular   technologies   utilize   SIM   cards   to   authenticated   devices.  Switching  operators  for  cellular  providers  requires  swapping  out  the  SIM  cards,  presenting  the  problem  of  how  to  swap  out  SIM  cards2  in  multitudes  of  devices.  Managing  cellular  networks  will  be  problematic  when  there  are  hundreds  of  thousands  of  SIM  cards  needing  to  be  replaced.  More  generally,  managing  devices  will  be  a  challenge  when  there  are  billions  of  connected  devices.  

A   key   aspect   of   this   will   be   improvements   to   device   life-­‐cycle  management.   There  must   be   ways   to  manage   and   update   devices   as   they   age.   There  will   need   to   be   better  methods   for  managing   device  credentials.  

Another  scalability  challenge  is  the  development  of  meta-­‐modeling  tools  for  systems  of  IoT  systems.  The  Smart-­‐Grid  Architecture  Model  is  an  example  for  such  a  tool.  

Functional  safety  Functional  safety  is  necessary  to  minimize  the  risk  of  physical  injury  or  damage  to  the  health  of  people  directly   or   indirectly.  With   IoT,   there   will   be  more   and  more   autonomous   systems   that   will   react   to  sensor  data  without  human   control  or   intervention   (e.g.,   autonomous  driving   cars,   robots).  Hardware  and   software   mechanisms   must   be   designed   to   ensure   the   safe   operation   of   things.   This   includes  inherently  safe  algorithms,  default  states  in  case  of  failures,  and  exhaustive  simulation  and  testing.  

   

                                                                                                                         2   This  may   be   a   short-­‐term   issue.   As   the   deployment   of   cellular   devices  with   embedded   SIMs   progresses,   this   problem  will  diminish.  

Page 24: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

18

Copyright © 2015 IEEE. All rights reserved.

IoT  Standardization  What   standardization   bodies   are   doing   important   work   to   enable   the   IoT?   What   specific   standards  activities  do  you  think  of  when  you  think  of  the  IoT?  What  is  missing  from  the  standardization  point  of  view?  Do  you  see  IoT  activities  as  more  suitable  for  regional  or  global  standardization?  

Standards  bodies  doing  important  work  to  enable  IoT  There   are   many   regional   and   international   standards   organizations   actively   pursuing   IoT-­‐related  activities.  IoT  is  growing  rapidly  and  since  standards  organizations  move  relatively  slowly,  many  alliances  have  arisen  to  fill  the  void,  working  to  develop  specifications,  promoting  industry  collaboration,  etc.  

It  will  be  important  for  these  bodies  to  coordinate  their  work;  it  is  not  desirable  to  duplicate  work  that  has  already  been  done  elsewhere.  

The  major  standards  bodies  active  in  IoT  include  the  following:  

¾ Institute  of  Electrical  and  Electronics  Engineers  (IEEE)  www.ieee.org  

¾ International  Electrotechnical  Commission  (IEC):  www.iec.ch  

¾ International  Organization  of  Standardization  (ISO):  www.ios.org  

¾ International  Society  of  Automation  (ISA):  www.isa.org  

¾ International  Telecommunication  Union  (ITU):  www.itu.int  

¾ Internet  Engineering  Task  Force  (IETF):  www.ietf.org  

¾ World  Wide  Web  Consortium  (W3C):  http://www.w3.org/  

It   must   be   understood   that   this   is   only   a   partial   list   of   the   standards   bodies   that   are   active   in   IoT  development   and   standardization.   Annex   C   contains   a   list   of   the   organizations   that   were  mentioned  during  the  roundtables  and  subsequent  review.  

Specific  standards  activities  related  to  IoT?  In   general,   current   IoT-­‐specific   standardization   activities   are   confined   to   very   specific   verticals—e.g.,  energy   management,   health,   wearables—and   represent   islands   of   disjointed   and   often   redundant  development.  There  are  also  a  number  of  standards  in  communications  and  networking  that  are  either  directly  applicable  to  IoT  or  are  currently  being  extended  to  support  IoT.  

Within  IEEE  there  is  a  new  project,  IEEE  P2413™  Draft  Standard  for  an  Architectural  Framework  for  the  Internet   of   Things   (IoT),   that   will   define   an   IoT   architectural   framework,   identify   commonalities   and  relationships   among   various   IoT   verticals,   define   abstractions,   provide   a   reference   model,   define  architectural   building   blocks   and   provide   mechanisms   to   develop   multi-­‐tiered   systems   from   these  building   blocks.   The   goal   is   to   provide   the   ability   for   verticals   to   interact   with   each   other   while   still  retaining   the   isolation   required   within   each   vertical   (e.g.,   a   medical   device   could   provide   medical  information   to   the   doctor,   performance   information   to   the   service   provider,   and   maintenance  information   to   the  manufacturer   while   still   providing   the   necessary   security   and   privacy   within   each  vertical).  

In   the   IEEE,   there  are  more   than  350   IEEE   standards   that  are  applicable   to   IoT,  40  of  which  are  being  revised  to  better  support  IoT.  Furthermore,  there  are  more  than  110  new  IoT-­‐related  IEEE  standards  in  various   stages   of   development.   The   IEEE   is   also   sponsoring   10   or   more   different   IoT   advocacy   and  support  groups.  Links  to  these  activities  are  provided  in  Annex  C.    

Page 25: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

19

Copyright © 2015 IEEE. All rights reserved.

IETF  has  also  been  looking  into  IoT  issues  for  several  years.  These  efforts  include  providing  IPv6  on  small  devices  and  addressing  several  other  issues  that  are  protocol  agnostic.  See  Annex  C  for  specifics.  

IoT-­‐related   standards   work   is   also   being   done   at   the   other   major   standards   bodies   identified   in   the  previous  section;  specific  activities  were  not  enumerated  in  the  roundtables.  

Missing  from  the  standardization  point  of  view  Among  the  items  missing  for  IoT  from  the  standardization  point  of  view  are  

¾ Common  definition  of  IoT  

¾ Global  reach  and  coordination  

¾ Architecture  and  reference  models  

¾ Quadruple  trust:  protection,  security,  privacy,  safety  

¾ Scalability  

¾ Application  standards  

¾ Interoperability  

– Device  interoperability  within  verticals  

– Cross-­‐vertical  interoperability  

¾ Other  comments  

Common  definition  of  IoT  While  not  a  solution  in  and  of  itself,  a  common  definition  of  IoT  for  the  entire  standards  community  will  certainly  simplify  the  coordination  effort  that  was  identified  as  a  basic  need.  

Global  reach  and  coordination  Fragmentation  of   any   sort   (industry,   vendor,   regional,   global)   is   highly  detrimental   to   the   IoT  market.  The   challenge   is   to   overcome   the   fragmentation   that   already   exists   and   prevent   additional  fragmentation.   Collaboration   and   coordination   are   key.   It   will   be   a   huge   challenge   to   resolve   the  fragmentation  issue;  everyone  will  need  to  keep  in  mind  that  “giving  a  little  gets  a  lot.”  

IoT   standards   need   to   have   a   global   reach;   some   standards   bodies   do   not   have   global   reach.   Thus,  standards   bodies  may   not   just  work   in   isolation   anymore;   they   need   to   have  more   collaboration   and  agreement.   They   must   coordinate,   align,   and   interwork   to   avoid   replication   of   functionality   and   to  ensure   that   whatever   functionality   is   defined   by   one   of   these   bodies   works   with   the   functionality  defined  by  the  other  relevant  bodies.  This  need  for  collaboration  and  coordination  exists  between  both  vertical  standardization  efforts  and  horizontal  standardization  efforts.  

Regional  programs   in   smart  manufacturing  are  giving  way   to  efforts  of  broader   scope   through  efforts  like  the  IEC  activity  on  Industry  4.0/Smart  Manufacturing  that  moves  the  European  Industry  4.0  and  US  Smart  Manufacturing  activities  to  a  common  global  level.  

Another  collaborative  effort  along  these  lines  is  oneM2M  (oneM2M.org),  which  was  founded  by  seven  major   standards  bodies   “to   ensure   that  Machine-­‐to-­‐Machine  Communications   can  effectively   operate  

Page 26: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

20

Copyright © 2015 IEEE. All rights reserved.

on  a  worldwide  scale.”3  oneM2M  is  working  to  consolidate  a  lot  of  regional  work  that  has  already  been  done.  

The  International  Society  of  Automation  (ISA)  is  very  closely  watching  what  IEEE  and  IETF  do  to  see  how  to  apply  IoT  to  industrial  automation.  

Many  IoT  systems  are  being  put  together  without  waiting  for  standards  bodies  (which  move  too  slowly  to   serve   the   rapid   growth   of   IoT).   Academia,   research   and   commercial   players   are   all   developing   IoT  systems,  sometimes  independently  and  sometimes  in  collaboration  with  other  players.  

Open-­‐source  bodies  are  important  in  IoT.  They  are  not  standards  bodies,  but  they  may  be  the  next  best  thing:  providing  non-­‐proprietary  platforms  that  can  be  used  to  build   the  applications  that  bring   IoT  to  life.   The   AllSeen   alliance   is   an   example   of   an   open-­‐source   alliance;   it   has   assumed   management   of  AllJoyn,   an   open-­‐source   project   that   lets   compatible   smart   things   recognize   each   other   and   share  resources  and  information  across  brands,  networks,  and  operating  systems.  

Another  example   is  the  OpenIoT  project   in  Europe.  OpenIoT  is  building  middleware  to  get   information  from  sensor  clouds  without  having  to  worry  about  what  sensors  are  being  used.  

Architecture  and  reference  models  As   already  mentioned,   most   current   standards   activity   is   insular.   There   is   a   need   for   a   “standard   of  standards,”  an  architectural   framework  and   reference  model   that  accommodates  all  of   the  standards.  This   reference  model   needs   to   focus   on   creating   the   glue   between   all   of   the   existing   standards   and  providing  the  flexibility  and  scalability  to  accommodate  future  standards  and  business  models.  

Quadruple  trust:  protection,  security,  privacy,  safety  The  quadruple  trust  is  described  in  “Missing  from  the  technology  point  of  view.”  technical  aspects  of  the  quadruple   trust  will  be  standardized  separately,  but   the  quadruple   trust—protection,   security,  privacy  and  safety—must  be  considered  and  accommodated  as  part  of  every  standard  activity.  

Scalability  Mechanisms   that   have   worked   in   the   past   simply   do   not   scale   to   the   magnitude   anticipated   by   the  explosive  growth  IoT  brings.  One  issue  is  the  need  to  have  unique  hardware  identification  for  billions  of  things.  

Unique   hardware   identification   in   the   past   has   been   provided   by  MAC   addresses.   The  MAC   address  space  (48-­‐bit  addresses)  is  supposed  to  last  for  100  years;  it  is  difficult  to  expand.  Unfortunately,  it  will  not  last  for  100  years  if  MAC  addresses  are  given  to  things  like  light  bulbs.  The  IoT  requires  that  things  be  uniquely  identified  in  a  bigger  address  space  (e.g.,  a  64  bit  EUI-­‐64  or  similar  address  space)  and  then  given   a   temporary   layer-­‐2   address   (e.g.,   a   MAC   address)   from   the   network.   One   consideration   that  needs   to   be   addressed   is   privacy:  MAC   addresses   can   be   used   to   track   people   as   they  move   around.  There  is  a  need  to  preserve  privacy  (and  the  other  pillars  of  the  quadruple  trust).  

Many   of   the   issues   discussed   elsewhere   in   this   study   (e.g.,   networking   and   communication   between  large  numbers  of  devices)  are  also,  at  their  heart,  scalability  issues.  

                                                                                                                         3  Quoted  material  is  from    http://portal.etsi.org/Services/CentreforTestingInteroperability/Activities/M2M/oneM2M.aspx.  

 

Page 27: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

21

Copyright © 2015 IEEE. All rights reserved.

Application  standards  Most   standards   to   date   address   pieces   of   the   IoT   framework   (e.g.,   communications   and   networking).  There   is   a   need   for   application   standards   that   will   enable   interoperability   between   products   in   the  application  space.  

Interoperability  Interoperability   is   needed   to   break   through   the   logjam   of   proprietary   solutions   to   reduce   industry  fragmentation  and  build  a  successful  IoT  ecosystem.  

Standards   are   needed   to   promote   the   interoperability   of   devices   both   within   verticals   and   within  networking  and  communications  environments.  

Standards   are   also   needed   for   cross-­‐vertical   interoperability   (e.g.,   the   exchange   of   information   and  services  between  vertical  applications).  

Other  comments  In   addition   to   the   more   general   needs   identified   above,   several   specific   needs   were   identified.   The  following  is  not  a  complete  list  of  specific  needs,  just  some  of  the  many  specific  needs  identified  in  the  roundtables  and  reviews:  

¾ There  are  no  standards  yet  at  L3/L2  gateway  between  6lo  and  IPv6  

¾ Need  standards  for  

– Mobility  across  sensor  networks  

– Device  discovery  

– Security  

– Naming  

– Connecting  non-­‐enabled  devices  to  devices  that  are  enabled  

– Predictability  and  guarantees  for  systems  of  IoT  systems  

– Linkage  of  value  creation  and  business  models  with  thing  attributes  and  the  information  life  cycle  

– Layer-­‐2  automation  buses  over  layer-­‐3  connections  (CANopen,  PROFIBUS,  etc.)  

The   following   lists   identifies   “dos   and   don’ts”   for   standards   bodies   that   were   identified   during   the  roundtables.  While  most  of   these  are  “obvious”   to  people  working   in   standards,   it   is  valuable   to  note  that   industry   recognizes   the  need   for   the  right  process.   It   is  also   important   to  note  that   IoT   is  moving  forward  and  the  standards  development  process  needs  to  evolve  to  remain  in  sync.  

¾ Standards:  

– Need  a  purpose  

– Should  be  visionary  

– Need  interoperability  

– Need  safety  (something  can  be  safe  in  one  person’s  hands,  but  unsafe  in  another’s)  

¾ Start   with   a   kernel,   do   not   try   to   standardize   the   big   vision.   Document   it,   but   do   not  standardize  it.  Do  not  “bake-­‐in”  limitations  in  the  standard.  

Page 28: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

22

Copyright © 2015 IEEE. All rights reserved.

¾ Which  elements  of  the  IoT  should  be  standardized?  Need  to  identify  what  is  intrinsic  regardless  of  where  someone  or  something  is  (application  and/or  industry-­‐wise  and/or  geographically).  

¾ Look  at  successes  and  how  they  were  achieved.  Bring  in  past  (i.e.,  existing)  use  cases;  there  is  a  valuable  history  of  use  cases  to  consider.  Look  to  the  past  successes  instead  of  the  future.  For  example,  in  the  early  1900’s  light  vehicles  were  invented.  There  was  chaos  in  transportation  in  the  early  days  (not  even  agreement  on  whether  to  drive  on  the  right  or  left  side  of  road);  this  situation  is  analogous  to  the  current  state  of  the  IoT.  

– Reflection   is  good,  but  models  should  not  be  carried   forward  when  they  no   longer   fit   (e.g.,  people  used  the  early  auto  as  if  it  were  a  horse).  

– Collect  many  use  cases  from  many  verticals.  Find  core  features,  as  the  kernel,  to  standardize.  However,  use  cases  may  not  be  known  yet.  

– Need  to  address  enough  of  the  use  cases  to  satisfy  most  players.  

¾ It  may  be  more  difficult   to   create   a   standard  when   there   are   too  many  members.   However,  standards  are  about  satisfying  most  of  the  people  most  of  the  time.  

– There  needs  to  be  a  balance  between  too  many  and  too  few  voices  

– There  needs  to  be  a  level  playing  field  for  standards  participation  

¾ Need  to  have  interoperability  and  security  in  all  standards  activity.  

Global  standardization  There  is  almost  universal  consensus  that  global  standardization  is  necessary.  

Motivations  for  global  standards  include  the  following:  

¾ Most  of  the  existing  challenges  are  not  unique  to  any  particular  region.  

¾ Companies   at   all   levels  of   IoT  want   to  be  able   to  produce  products   and   services   that   can  be  marketed  globally.  

¾ Global  standards  are  particularly  important  because  they  will  lead  to  economies  of  scale,  which  will  in  turn  open  up  new  markets.  

 

Global   standards   will   provide   challenges   such   as   accommodating   the   regulatory   environments   of  different   governments.   However,   the   benefits   of   global   standardization   outweigh   the   challenges.  Regional   standards   are   only   welcome   if   regional   needs   cannot   be   adequately   treated   within   global  standards;   preferably   regional   needs   should   be   addressed   as   extensions   to   and/or   profiles   of   global  standards.  

There  are  significant  regional  issues  that  must  be  addressed,  such  as  the  following:  

¾ Wireless  regulations  differ  from  country  to  country  even  within  the  EU  

– Spectrum  issues  are  regional  

– Whitespace  is  a  problem  that  has  not  been  solved  

– Bringing  in  governmental  bodies  can  also  be  a  challenge  

¾ Security  and  privacy  regulations  vary  widely  by  region  

¾ Other  regulatory  issues  

Page 29: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

23

Copyright © 2015 IEEE. All rights reserved.

Role  of  Academia  and  Research  (AR)  What  can  research,  industry  and  academic  institutions  contribute?  

Academia   is   educating   new   generations   of   technologists   and   business   people   who   will   support   the  growth  of  IoT.  

While   businesses   are   generally   focused   on   specific   products,   many   support   “blue   sky”   research  organizations  within  their  corporate  structure.  These  research  organizations  frequently  collaborate  with  academia.  This  collaboration  is  beneficial,  particularly  in  new  areas  like  big-­‐data  analytics,  the  cloud,  and  systems  of   IoT  systems.  AR  is  creating  the  new  theories,  materials,  devices,  and  apps  that  will   fuel  the  growth  of  IoT.  

At   the   application   level,   AR   can   combine   and   cross-­‐pollinate   application   verticals   to   provide   new  applications.   It   is   already  providing   insight   into   how  APIs   on   smart   phones   can  be  used   in   new  ways,  leading   to   new   applications.   For   example,   Boston’s   pothole   tracking   system  mentioned   earlier   is   the  outgrowth   of   research   done   by   Fabio   Carrera,   a   professor   at   Worcester   Polytechnic   Institute.   This  pothole  tracking  system  combines  IoT  devices  (smart  phones),  communications  and  big  data  in  a  novel  new  way.  

AR  can  also  provide  advancements  in  energy  efficiency,  security,  cost  reduction,  etc.  

AR   can  make   available   large   test   beds   to   enable   organizations   to   deploy,   test,   and   validate   concepts.  This  would  be  especially  helpful  for  small  organizations  that  might  not  have  the  capacity  for  large-­‐scale  testing.  

AR  can  support  the  early  uptake  and  solidification  of  standards  by  implementing  prototypes,  discovering  bugs/weaknesses,   and  providing   feedback.   Every   standard  needs   to  have  a  maturation  phase;  AR   can  shorten  the  duration  of  this  phase.  

   

Page 30: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

24

Copyright © 2015 IEEE. All rights reserved.

User  Acceptance  is  Key  Users   of   IoT   were   never   mentioned   as   a   player   driving   its   growth   because   they   play   a   passive   role.  However,   consumer   acceptance   was   identified   as   a   key   driver   of   speed   of   growth   (i.e.,   it   would   not  necessarily   be   the   most   useful   products   but   the   ones   that   received   user   acceptance   that   would  succeed).  

Several  of  the  themes  that  kept  coming  up  are  clearly  aimed  towards  user  acceptance:  

¾ Certainty  of  value  

¾ Usability  

¾ Maintainability  

¾ Quadruple  trust  

¾ “It  just  works”    

The  degree  to  which  progress  is  made  in  these  areas  will  directly  affect  the  speed  at  which  IoT  grows.  

Certainty  of  value  is  a  key  requirement  for  user  acceptance.  If  users  do  not  see  value,  they  probably  will  not  accept  an  IoT  service/application.  An  example  is  the  smart  home.  While  a  smart  home  can  be  more  convenient,  more  energy  efficient,  and  more  fun,  today’s  consumers  see  it  primarily  as  an  expensive  toy  for  the  tech  set  and  a  solution  looking  for  a  problem.  IoT  developers  need  to  identify  and  address  user  needs   and   expectations   rather   than   expecting   users   to   adopt   whatever   is   presented   to   them.  Additionally,  governmental  and  civic  adoption  could  be  vital  in  building  the  consumer  comfort  level.  

Ease   of   use   is   a   major   concern   for   users/consumers.   If   the   item   is   too   complex   to   use   or   does   not  interoperate   well,   then   consumers   will   simply   give   up   on   it.   However,   it   is   clear   that   the   younger  generation’s  vision  will  become  the  reality;  users  will  expect  the  benefits  that  IoT  brings.  

Users  are  more  willing  to  release  (share)  their  data  if  they  feel  they  are  gaining  benefit.  Thus  one  of  the  challenges  for  IoT  is  to  position  things  so  they  are  perceived  as  being  positive  for  consumers  rather  than  being   specters   of   big   government/big   business   looming   over   people.   An   example   of   this   is   Boston’s  pothole  tracking  system,  which  enlists  user  participation  in  solving  a  problem  that  directly  affects  them  (they  are  willing  to  participate  in  fixing  the  streets  they  drive  on  rather  than  refusing  because  of  worries  about  being  tracked  by  the  city  of  Boston).  

User   benefits  may   explain  why   the   two  market   segments   identified   as   being   the   initial   drivers   of   IoT  growth  are  consumer  goods  and  eHealth.  

   

Page 31: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

25

Copyright © 2015 IEEE. All rights reserved.

Conclusions  This  study  reflects  the  opinions  of  those  participating  in  the  roundtables,  workshops,  and  reviews.  It   is  basically  a  snapshot  of  the  current  state  of  the  IoT  ecosystem  as  seen  by  a  collection  of  experts.  It  should  not  be  construed  as  showing  a  complete  picture  of   the   IoT  ecosystem;   it   is  more  of  a  step  on  the   IoT  evolutionary  ladder  and  a  basis  for  further  discussion.  

There   are   hotbeds   of   activity   in  many   different   IoT  market   segments.   Early   deployments   exist   or   are  imminent   in   many   of   these   segments.   However,   these   early   deployments   are   fragmented,   and   the  fragments   are   segmented   and   specialized.   Fragmentation   needs   to   be   reduced   for   optimal   growth   of  IoT.  

For   broad   adoption,   users   need   interoperable   and   portable   systems   that   allow   for   ease   of   use   and  interchange.  Companies,  researchers,  and  standards  bodies  must  work  for  this  goal  in  order  to  grow  the  IoT  market   as   envisioned   for   the   future.   The   issues   of   security,   privacy,   and   authentication  must   be  considered  as  part  of  this  evolving  technology.  

The   following   missing   elements   include   many   that   are   common   for   the   market,   the   technology   and  standards  development:  

¾ Quadruple  trust:  protection,  security,  privacy,  safety  

¾ Interoperability:  

– Device  interoperability  within  verticals  

– Cross-­‐vertical  interoperability  

¾ Scalability  

¾ Usability:  Implementation  and  system  integration    

Missing  market-­‐specific  elements  include  

¾ Silos  

¾ Monetization  

¾ Education    

Missing  technology-­‐specific  elements  include  

¾ Sensor  and  device  improvements  

¾ Networks  and  communications  

¾ Semantics  and  intelligence  

¾ Big  data    

Missing  standards-­‐specific  elements  include  

¾ Common  definition  of  IoT  

¾ Architecture  and  reference  models  

¾ Global  reach  and  coordination  

Page 32: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

26

Copyright © 2015 IEEE. All rights reserved.

¾ Application  standards    

Organizations   in   different   areas—research,   industry,   government,   and   academic   institutions—are  actively  involved  in  IoT  development.  What  is  needed  from  these  organizations  is  

¾ More  collaboration  and  cooperation  

¾ More  involvement  in  international  (global)  standards  

¾ More  attention  to  user  needs  and  wants    

Standards   organizations  must   collaborate   with   each   other   and   with   the   other   IoT   players.   Standards  must  be  global  for  optimal  IoT  growth.  

The   challenges   that   IoT   faces   to  become  a   fully   functional   ecosystem  are   those   that   are   faced  by   the  many  components  that  are  part  of  IoT.  The  issues  that  components  like  the  smart  grid  or  eHealth  face  combine   to   become   the   problems   that   could   halt   the   implementation   of   a   vibrant   IoT.   But   a   better  understanding   of   the   ecosystem   of   IoT  will   help   deduce   the   solutions   to  move   the   vision   of   IoT   into  reality.  

   

Page 33: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

27

Copyright © 2015 IEEE. All rights reserved.

Annex  A  IoT  roundtables  sponsored  by  IEEE-­‐SA  

IEEE-­‐SA  IoT  Roundtable  –  Taipei  Date:  5  June  2014  

Organizer:  IEEE  Standards  Association  

Co-­‐Organizers:    Institute  for  Information  Industry  Semi  Tatung  STMicroelectronics  

Participants:  

Name   Company/Institute/Industry   Title  

Logvinov,  Oleg  (Host,  Moderator)  

STMicroelectronics   Director,  Special  Assignments  

Wen-­‐Yen  K.  Lin  

(Co-­‐host)  

Tatung   President  

Ming-­‐Whei  Feng    (Co-­‐host)  

Institute  for  Information  Industry   Vice  President  &  General  Director  

Eduardo  Cerristos   National  Chiao  Tung  University   Student  

J.  Y.  Chen   SPIL  矽品   Manager  

Ping  Chen  陳秉毅   D-­‐Link   Chief  Technology  Officer  

F.C.  Cheng  鄭福炯   Tatung  University   Professor,  Dept.  of  Computer  Science  &  Engineering  

Rutgers  Chow   SPTS  Technologies,  Ltd.   Vice  President  of  Asia  Field  Operations  

Weileun  Fang    方維倫  

National  Tsing  Hua  University   Distinguished  Professor  

C.  Fu  傅強   GUC  創意電子/TSMC   Vice  President  

Mavis  Ho   SEMI   Vice  President  

Page 34: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

28

Copyright © 2015 IEEE. All rights reserved.

Name   Company/Institute/Industry   Title  

Ken-­‐Ching  Huang   UMC  聯華電子   Director,  Corporate  Marketing  

C.  P.  Hung   ASE  Group  日月光半導體   Vice  President  

Giuseppe  Izzo   STMicroelectronics   Vice  President  of  GC&SA  

Emery  Jou   Institute  for  Information  Industry   Advisory  Engineer,  Smart  Network  System  Institute  

Charles  Kao   Episil  Technology  漢磊科技   Director,  Equipment  R&D  

Chung-­‐Ta  King    金仲達  

National  Tsing  Hua  University   Professor  

Albert  Lan   SPIL  矽品   Senior  Director  

Joey  Lee   WNC   啟 碁 科 技   R&D  Manager  

Chih-­‐Kung  Lee    李世光  

National  Taiwan  University   Distinguished  Professor  

Yi-­‐Bing  Lin    林一平次長  

Ministry  of  Science  and  Technology  科技部  

Political  Deputy  Minister  

C.  P.  Lin  林常平   Tatung  Co.   Senior  General  Manager,  Smart  Grid  BU  

Rung-­‐Bin  Lin  林榮彬   Yuan  Ze  University  元智大學   Professor,  Dept.  of  Computer  Science  &  Engineering  

Phone  Lin  林風   National  Taiwan  University   Professor,  Dept.  of  Computer  Science  &  Infor.  Eng.  

Rita  Liu   WNC   啟 碁 科 技   R&D  Manager  

Ray  Tain   Unimicron  Tech.  Corp.  欣興電子   Deputy  Director  

Stephen  Tsai   SPIL  矽品   Manager  

Luca  Tseng   Cyntec  乾坤科技/Delta   Senior  Director  

Page 35: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

29

Copyright © 2015 IEEE. All rights reserved.

Name   Company/Institute/Industry   Title  

Webber  Wang   C  Sun  志聖工業   President  

Dustin  Wu   ASML   Product  Manager  

Sog  Yang   Cyntec  乾坤科技/Delta   Senior  Manager  

Susan  Yao   SEMI   Senior  Manager  

Aaron  Yu   CyberTAN  建漢科技/Foxconn   BU  Head  

IEEE-­‐SA  IoT  Roundtable  –  Washington  DC  Date:  9  June  2014  

Organizer:  IEEE  Standards  Association  

Participants:  

Name   Company/Institute/Industry   Title  

Mary  Lynne  Nielsen  (Host,  Moderator)  

IEEE  Standards  Association   Technology  Initiatives  Director  

Isaac  Chan   US  Department  of  Energy   Supervisory  General  Engineer  

Walton  Fehr   US  Department  of  Transportation   Manager,  ITS  Systems  Engineering  

Julian  Goldman   Medical  Device  Plug  and  Play/Mass  General  Hospital  

Medical  Director,  Biomedical  Engineering,  Partners  HealthCare    Staff  Anesthesiologist,  Massachusetts  General  Hospital  (MGH)  Director,  Medical  Device  Interoperability  Program,  MGH    Chair,  ISO  TC  121  Chair,  ASTM  F29  Committee  

Christian  Lederer   CISC  Semiconductor  GMBH   Senior  Software  Engineer  

Rainer  Matischek   Infineon  Technologies  Austria  AG   Senior  Research  Engineer  

William  Miller   Maximum  Control  Technologies  (MACT-­‐USA)  

President  

Page 36: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

30

Copyright © 2015 IEEE. All rights reserved.

Name   Company/Institute/Industry   Title  

Bakul  Patel   US  Food  and  Drug  Administration   Senior  Policy  Advisor  Center  for  Devices  and  Radiological  Health  

Michael  Taborn   Intel   Platform  Architect,  IOT  Solutions  Group  

IEEE-­‐SA  IoT  Roundtable  –  Santa  Clara,  CA  Date:  17  September  2014  

Organizer:  IEEE  Standards  Association  

Participants:  

Name   Company/Institute/Industry   Title  

Mary  Lynne  Nielsen  (Host,  Moderator)  

IEEE  Standards  Association   Technology  Initiatives  Director  

Yoshiaki  Adachi   Hitachi    

Martin  Bauer   NEC  Laboratories  Europe   Senior  Researcher  

Josef  Blanz   Qualcomm   Principal  Engineer  

Samita  Chakrabarti   Ericsson   Principal  Software  Engineer/Architect  

Penny  Chen   Yokogawa   Principal  Systems  Architect  

Jean-­‐Pierre  Desbenoit   Schneider  Electric   ICT  Standardization  and  Industry  Relations  Director  

Rob  Gillan   dZhon  Pty  Ltd   Chief  Technology  Officer  

Juergen  Heiles   Siemens  AG   Standardization  Manager  

Taizo  Kinoshita   Hitachi     Vice  President  

Victor  Kueh   Huawei    

Oleg  Logvinov   STMicroelectronics   Director  of  Special  Assignments  

Page 37: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

31

Copyright © 2015 IEEE. All rights reserved.

Name   Company/Institute/Industry   Title  

Stefan  Lueder   Siemens  Corporate  Research   Senior  Scientist  

Yuichi  Nakamura   Hitachi  Solutions   Senior  Researcher  

Philippe  Nappey   Schneider  Electric   Solution  Architect  

Nobuyuki  Ogura   Hitachi   Executive  General  Manager,  Platform  Development  

Tobin  Richardson   Zigbee  Alliance   President  and  CEO  

Eric  Rotvold   Emerson   Distinguished  Technologist  

Francesco  Russo   IBD    

Daniel  Smolinski   Renesas  Electronics   Marketing  Manager  

Padmakumar  Subramani   Alcatel-­‐Lucent   Product  Manager  

Pat  Thaler   Broadcom   Senior  Technical  Director  

Ludwig  Winkel   Siemens  AG   Fieldbus  Standards  Manager  

     

Page 38: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

32

Copyright © 2015 IEEE. All rights reserved.

Annex  B  Other  meetings  that  provided  input  to  this  ecosystem  study  

IEEE  ComSoc  IoT  Rapid  Reaction  Standardization  Activity  Working  Meeting  Date:  30  September  2014  

Location:  IEE  Headquarters,  Piscataway,  NJ  USA  

Organizer:  Standards  Activities  Council  of  IEEE  Communications  Society  (ComSoc)  

Participants:  

Name   Company/Institute/Industry  

Wilbert  Adams   Huawei,  USA  

Lillie  Coney   US  House  of  Representatives,  USA  

Mahmoud  Daneshmand   Stevens  Institute,  USA  

Adam  Drobot   OpenTechWorks,  USA  

Omar  Elloumi   Alcatel-­‐Lucent,  France  

M.  Hussain  Fazil   Consultant,  USA  

Rob  Fish   IEEE  Communications  Society  

Alex  Gelman   IEEE  Communications  Society  

Yacine  Ghamri-­‐Doudane   University  of  La  Rochelle,  France  

Stefano  Giordano   University  of  Pisa,  Italy  

T.  Russell  Hsing   Consultant,  USA  

Myung  Jong  Lee   City  College  of  CUNY,  USA  

Kevin  Lu   Consultant,  USA  

R.R.Venkatesha  Prasad   Delft  University  of  Technology,  NL  

Ming-­‐Jye  Sheng   Nextcomm,  USA    

Page 39: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

33

Copyright © 2015 IEEE. All rights reserved.

Name   Company/Institute/Industry  

JaeSeung  Song   Sejong  University,  South  Korea  

Mehmet  Ulema   Manhattan  College,  USA    

M.  Can  Vuran   University  of  Nebraska-­‐Lincoln,  USA  

Chonggang  Wang   InterDigital,  USA  

 

   

Page 40: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

34

Copyright © 2015 IEEE. All rights reserved.

Annex  C  IoT  standards  and  activities  This  annex  contains   lists  of  organizations  and  activities  related  to  IoT.  This   list  comprises  organizations  that  were  identified  during  the  roundtables  or  review.  It  does  not  attempt  to  be  a  complete  list.  It  is  not  even  clear  that  a  complete  list  is  possible  because  IoT  is  growing  so  rapidly.  

The  list  of  IEEE-­‐based  standards  and  activities  is  too  large  to  be  included  in  this  study.  It  may  be  found  at  http://standards.ieee.org/innovate/iot/stds.html.   A   list   of   IEEE   projects   under   development   that   are  related  to  IoT  can  be  found  at  http://standards.ieee.org/innovate/iot/projects.html.  

An  IETF  presentation  at  the  Santa  Clara  roundtable  presented  the  following  list  of  IETF  activities,  which  include  providing  IPv6  on  small  devices  and  several  other  issues  that  are  protocol  agnostic.  Building  on  the  success  of  6LoWPAN  (which  supports  IPv6  on  IEEE  802.15.4™),  IETF  has  the  following  active  working  groups  (see  www.ietf.org  for  additional  details):  

¾ 6Lo—IPv6  over  Networks  of  Resource-­‐constrained  Nodes  (extending  6LoWPAN  to  additional  layer  2  technologies)  

¾ 6man—IPv6  Maintenance  

¾ 6TiSCH—IPv6  over  TSCH  mode  of  IEEE  802.15.4e™  

¾ ACE—  Authentication  and  Authorization  for  Constrained  Environments  

¾ ROLL—  Routing  Over  Low  power  and  Lossy  networks  

¾ DICE—  DTLS  In  Constrained  Environments  

¾ LWIP—  Light-­‐Weight  (IP)  Implementation  Guidance    

Other  organizations  and  activities  include  

¾ 3rd  Generation  Partnership  Project  (3GPP):  http://www.3gpp.org/

¾ Alliance  for  Telecommunications  Industry  Solutions  (ATIS):  http://atis.org/

¾ Allseen  Alliance:  https://allseenalliance.org/

¾ Bluetooth®  SIG:  https://www.bluetooth.org/en-­‐us

¾ Broadband  Forum  (BBF):  http://www.broadband-­‐forum.org/

– TR-­‐069:  www.broadband-­‐forum.org/technical/download/TR-­‐069.pdf

¾ Consumer  Electronics  Association  (CEA):  http://www.ce.org/

¾ Digital  Living  Network  Alliance  (DLNA):  http://www.dlna.org/  

¾ Eclipse  M2M  Industry  Working  Group:  http://eclipse.org/org/workinggroups/m2miwg_charter.php  

¾ European  Telecommunications  Standards  Institute  (ETSI):  http://www.etsi.org/

¾ GSM  Association  (GSMA):  http://www.gsma.com/

¾ Health  Level  Seven  International  (HL7):  www.hl7.org/  

¾ Home  Gateway  Initiative  (HGI):  http://www.homegatewayinitiative.org/

Page 41: IoT Ecosystem Study 2014

IEEE-­‐SA  IoT  Ecosystem  Study  

35

Copyright © 2015 IEEE. All rights reserved.

¾ Industrial  Internet  Consortium  (IIC):  www.iiconsortium.org

¾ Institute  of  Electrical  and  Electronics  Engineers  (IEEE)  www.ieee.org

– IEEE  802.15.4:  http://ieee802.org/15/pub/TG4.html

– IEEE  P2413:  http://standards.ieee.org/develop/project/2413.html  

¾ International  Electrotechnical  Commission  (IEC):  www.iec.ch  

¾ International  Organization  of  Standardization  (ISO):  www.iso.org  

¾ International  Society  of  Automation  (ISA):  www.isa.org  

¾ International  Telecommunication  Union  (ITU):  www.itu.int  

¾ International  Telecommunication  Union  -­‐  Telecommunications  (ITU-­‐T):  http://www.itu.int/en/ITU-­‐T/Pages/default.aspx  

– ITU-­‐T  Focus  Group  M2M:  http://www.itu.int/en/ITU-­‐T/focusgroups/m2m/Pages/default.aspx  

¾ Internet  Engineering  Task  Force  (IETF):  www.ietf.org  

¾ Internet  Protocol  Smart  Objects  (IPSO)  Alliance:  www.ipso-­‐alliance.org  

¾ IoT  European  Research  Cluster  (IERC):  http://www.internet-­‐of-­‐things-­‐research.eu/  

¾ oneM2M:  oneM2M.org

¾ Open  Interconnect  Consortium  (OIC):  http://openinterconnect.org/

¾ Open  Mobile  Alliance  (OMA):  http://openmobilealliance.org/

¾ OpenIoT:  http://openiot.eu/  

¾ Organization  for  the  Advancement  of  Structured  Information  Standards  (OASIS):  https://www.oasis-­‐open.org/  

– OASIS  Message  Queuing  Telemetry  Transport  (MQTT):  http://mqtt.org/  

¾ Personal  Connected  Health  Alliance  (PCHA):  http://www.continuaalliance.org/pchalliance

¾ SAE  International  (SAE):  http://www.sae.org/  

¾ Smart  Grid  Interoperability  Panel  (SGIP):  http://www.sgip.org/

¾ Smart  Manufacturing  Leadership  Coalition  (SMLC):  www.smartmanufacturingcoalition.org  

¾ Thread  Group:  http://www.threadgroup.org/

¾ Weightless  SIG:  http://www.weightless.org/

¾ World  Wide  Web  Consortium  (W3C):  http://www.w3.org/

¾ Zigbee  Alliance:  http://zigbee.org/