ir absolute radiance interferometer (ari) with 14 february...

8
IR Absolute Radiance Interferometer (ARI) with On-orbit Verification and Test System (OVTS) prototype demonstrates 0.1 K capability (UW-Harvard project, NASA Instrument Incubator Program) Hank Revercomb, Fred Best, Joe Taylor, Jon Gero, Doug Adler, Claire Pettersen, John Perepezko, Dave Hoese, Ray Garcia, Bob Knuteson, Dave Tobin University of Wisconsin-Madison Space Science and Engineering Center Slide 1 14 February 2009 29 September 2011 IIP Material presented to the CLARREO Science Team

Upload: others

Post on 15-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • IR Absolute Radiance Interferometer (ARI) with On-orbit Verification and Test System (OVTS)

    prototype demonstrates 0.1 K capability

    (UW-Harvard project, NASA Instrument Incubator Program) Hank Revercomb, Fred Best, Joe Taylor, Jon Gero, Doug Adler, Claire Pettersen,

    John Perepezko, Dave Hoese, Ray Garcia, Bob Knuteson, Dave Tobin

    University of Wisconsin-Madison Space Science and Engineering Center

    Slide 1

    14 February 2009

    29 September 2011

    IIP Material presented to the CLARREO Science Team

  • Absolute Radiance Interferometer (ARI): Definitions of key components

    •  Calibrated Fourier Transform Spectrometer (FTS): –  FTS with strong flight heritage –  3 Spectral bands covering 3-50 µm –  2 Cavity Blackbody References for Calibration

    •  On-orbit Verification and Test System (OVTS): –  On-orbit Absolute Radiance Standard (OARS) cavity blackbody

    using three miniature phase change cells to establish an accurate temperature scale from -40, to +30 C

    –  On-orbit Cavity Emissivity Module (OCEM) using a Heated Halo source that allows the FTS to measure the broadband spectral emissivity of the OARS to better than 0.001

    –  OCEM-QCL* using a quantum cascade laser source to monitor changes in the mono-chromatic cavity emissivity of the OARS

    –  On-orbit Spectral Response Module* (OSRM) using the same QCL to measure the FTS instrument line shape

    *Not fully implemented in prototype—demonstrated separately Slide 2

  • UW Absolute Radiance Interferometer (ARI) Prototype

    ABB Bomem Interferometer Modulator “Wishbone”

    Aft optics 1 (MCT/InSb) Sterling Cooler Compressor

    Aft Optics 2/ Pyro-detector

    Input Port 2 Source

    Slide 3

    OARS HBB

    ABB

    with Halo OCEM

    OSRM sphere

    Sky View

    components of Calibrated FTS On-orbit Verification & Test Sources &

    Calibrated FTS Blackbodies (HBB & ABB)

  • On-Orbit Calibration Verification

    IR Spectrometer

    Earth

    Space

    Ambient Blackbody

    OARS Provides End-to-End Calibration Verification On-Orbit Traceable to Recognized SI Standards

    On-Orbit Absolute Radiance Standard

    (OARS)

    Traditional Approach

    Slide 4

    Calibrated Fourier Transform Spectrometer

  • Inner Shield & Isolator

    On-orbit Absolute Radiance Standard OARS

    Cavity Heated Halo & Halo Insulator

    Phase Change Cell

    Slide 5

    Assembly Diagram

  • 29.66

    29.68

    29.70

    29.72

    29.74

    29.76

    29.78

    29.80

    29.82

    29.84

    29.86

    0 5,000 10,000 15,000 20,000 25,000-39.00

    -38.98

    -38.96

    -38.94

    -38.92

    -38.90

    -38.88

    -38.86

    -38.84

    -38.82

    -38.80

    25,000 30,000 35,000 40,000 45,000 50,000-0.10

    -0.08

    -0.06

    -0.04

    -0.02

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    20,000 25,000 30,000 35,000 40,000 45,000

    Melt Signatures Provide Temperature Calibration -40 °C -20 °C 0 °C 20 °C 40 °C

    -38.87 °C Mercury

    0.00 °C Water

    29.77 °C Gallium

    Time [s]

    Tem

    pera

    ture

    [°C

    ] Water Melt = 0 °C

    Approach Exponential Fit

    Thermistor Temperature

    Mercury Melt = -38.87 °C

    Thermistor Temperature

    Mercury Melt (test data) Water Melt (test data) Gallium Melt (test data)

    Gallium Melt = 29.765 °C

    Thermistor Temperature

    Ga-In

    Phase Change Cell (Ga, H2O, or Hg)

    Thermistor (plotted above)

    Plateaus (shown in plots) provide known temperatures to

    better than 10 mK Blackbody

    Cavity

    Slide 6

  • Slide 7 UW & Harvard NASA IIP Activities in Support of CLARREO Year 3.0 Final Review, 28 February 2012

    Sample Radiometric Calibration Verification DTGS (450 cm-1)

    Also Excellent Agreement between DTGS and

    MCT with NLC

    Meeting these uncertainty bounds in the laboratory

    environment demonstrates the capability to meet the

    0.1 K (3-σ) uncertainty requirement on-orbit

  • NASA  ESTO  currently  suppor3ng  addi3onal  ARI  tes3ng  in  vacuum  

    8  

    •  While  all  new  technology  components  achieved  TRL  6,  NASA  ESTO  considered  the  rolled  up  ARI  to  be  just  under  6    

    •  Therefore,  NASA  ESTO  made  funding  available  to  bring  the  ARI  to  TRL  6,  by  verifying  operaBon  and  performance  in  a  vacuum  environment.  

    •  Bringing  the  ARI  to  TRL  6  is  a  huge  step  because  it  provides  the  US  with  a  flight-‐like    IR  prototype  instrument  ready  to  support  CLARREO  or  other  Climate  Benchmark  Missions,  a  high  priority  of  the  NRC.    (final  tesBng  to  be  performed  in  March/April).