is.1885.72.2008 maths

Upload: erin-hall

Post on 02-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 is.1885.72.2008 Maths

    1/73

    IS 1885 (Part 72) :2008

    IEC 60050-101:1998

    W1GMw%z

    ?Iwk1l

    Indian Standard

    ELECTROTECHNICAL VOCABULARY

    PART 72 MATHEMATICS

    ( First Revision)

    ICs 01.040.07

    @ 61S 2008

    BUREAU OF INDIAN STANDARDS

  • 8/10/2019 is.1885.72.2008 Maths

    2/73

    Basic Electrotechnical Standards Sectional Committee, ETD 01

    NATIONAL FOREWORD

    This Indian Standard (Part 72) (First Revision) which is identical with IEC 60050-101 : 1998

    International Electrotechnical Vocabulary Part 101: Mathematics issued by the International

    Electrotechnical Commission (lEC) was adopted by the Bureau of Indian Standards on the

    recommendation of the Basic Electrotechnical Standards Sectional Committee and approval of the

    Electrotechnical Division Council.

    This standard was first published in 1993. This revision has been undertaken to align it with

    IEC 60050-101:1998.

    The text of IEC Standard has been approved as suitable for publication as an Indian Standard without

    deviations. Certain conventions are, however, not identical to those used in Indian Standards.

    Attention is particularly drawn to the following:

    a) Wherever the words International Standard appear referring to this standard, they should

    be read as Indian Standard.

    b) Comma (,) has been used as a decimal marker, while in Indian Standards, the current

    practice is to use a point (.) as the decimal marker.

    In this adopted standard, reference appears to certain International Standards for which Indian

    Standards also exist. The corresponding Indian Standards, which are to be substituted in their

    places, are listed below along with their degree of equivalence for the editions indicated:

    International Standard

    IEC 60027-1 : 1992 Letter symbols to

    be used in electrical technology Part

    1: General

    IEC 60050 (161) : 1990 International

    Electrotechnical Vocabulary Chapter

    161: Electromagnetic compatibility

    IEC 60050 (701) : 1988 International

    Electrotechnicai Vocabulary Chapter

    701: Telecommunications, channels and

    networks

    ISO 31-11 : 1992 Quantities and units

    Part 11: Mathematical signs and

    symbols for use in the physical sciences

    and technology

    lSO/lEC 2382-1 : 1993 Information

    technology Vocabulary Part 1:

    Fundamental terms

    Corresponding Indian Standard

    IS 3722 (Part 1) : 1983 Letter symbols

    and signs used in electrical technology:

    Part 1 General guidance on symbols and

    subscripts (first revision)

    IS 1885 (Part 85) :2003 Electrotechnical

    vocabulary: Part 85 Electromagnetic

    compatibility

    IS 1885 (Part 58) : 1984 Electrotechnical

    vocabulary: Part 58 Telecommunications,

    channels and networks

    IS 1890 (Part 11) : 1995 Quantities and

    units: Part 11 Mathematical signs and

    symbols for use in the physical sciences

    and technology (second revision)

    1S

    14692

    (Part 1) : 1999 Information

    technology Vocabulary: Part 1

    Fundamental terms

    Degree of

    Equivalence

    Technically

    Equivalent

    Identical

    Technically

    Equivalent

    Identical

    do

    The technical committee responsible for the preparation of this standard has reviewed the provisions

    of the following International Standards and has decided that they are acceptable for use in

    conjunction with this standard:

    /nternafiona/ Standard Title

    IEC 60050 (702) :1992

    International Electrotechnical Vocabulary Chapter 702: Oscillations,

    signals and related devices

  • 8/10/2019 is.1885.72.2008 Maths

    3/73

    IS 1885 (Part 72) :2008

    IEC6OO5O-101 :1998

    CONTENTS

    Page

    Sections

    101-11 Scalar and vector quantities . .. . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    1

    101-12 Concepts related to information

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    20

    101-13 Distributions and integral transformations . .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . .. .. .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . 23

    101-14 Quantities dependent on a variable...

    .............................................................................

    29

    101-15 Waves ...................................................................... ...................................,,.,....,,, .......

    54

    List ofletter symbols . . . . . . . . . .. . . . . . .. . . . . . . . .. . . . . . . . .. . . . . . .. . . . . .. . . . . . . . .. . . . . . .. . . . . . .. . . . . . . . .. . . .. . . . . . .. . . ... . 63

    List of mathematical signs

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    64

    Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

    65

  • 8/10/2019 is.1885.72.2008 Maths

    4/73

    IS 1885 (Part 72): 2008

    IEC6OO5O-101 :1998

    /ndian Standard

    ELECTROTECHNICAL VOCABULARY

    PART 72 MATHEMATICS

    ~

    First Revision)

    101-11-01

    valeur absolue

    Pour un nombre r6cl a, lCrrombre non nfgatif, soit a soit a.

    Notes 1, La valcur abstrluc de a esL rcpr@mtLe par Ial ; abs a est aussi utilise.

    2.-

    La notion de valcur absolue pcut sappliqucr a une grandeur scalaire rkllc.

    absolute value

    For a real number a, the non-nega~ivc number, either a or

    a.

    Nom 1, Theabsolu[cvalueof a isdermd by /a/ ; absa isNsowed

    2.- The conccpl of absolute value may bc applied to a real scalar quamity.

    ar

    de

    es

    it

    ja

    pl

    p[

    Sv

    Betrdg (cincr rccllcn Zahl)

    valor absohsto

    valore assoluto

    $&W

    wartombrerdcl non ndga~if ct q un nombre reel.

    2.- En clcctro[cchnlquc, Ic ~ymholc j CSLprifEr6 au symbole i, USUC1n math6matiqucs.

    ~. tin cicctrolcchniquc. un nomhrc comp]exc peut &c rcprt%cntd par un symbolc Iittdral

    Sc)ulignd, par cxcmplc : C.

    complex number

    Ordered pair ol real numtwrs a and h, usually denoted by c =

    a + jb

    where the imaginary unit j satisfies

    j? =-]

    NoIe.\ 1.- A complex number may also bc cxprcsscd as c = lcl (COSp + j sin @ = Icl ~IP where Icl is a

    non-ncgati vc real number and p a real number.

    2.- [n clcctrolcchnoiogy, the symbol j is preferred to the symbol i, usual in mathematics.

    3.- In clcctro[cchno]ogy, a complex number may bc denoted by an underlined Iettcr symbol, for

    example: g,

    ar

    dc

    Cs

    it

    ja

    pl

    pt

    Sv

    +-sj

    ALc

    komplexe Zahl

    nsirnero complejo

    numero complesso

    #f%%

    Iiczba zespolona

    mimero complexo

    komplext tal

  • 8/10/2019 is.1885.72.2008 Maths

    5/73

    IS 1885 (Part 72): 2008

    IEC6OO5O-101 :1998

    101-11-03

    partie r6elle

    Composante a dun nombre complexe c = a + j b.

    Notes 1.- La partie r6elle dun nombre complexe c est repr6sent6e par Re c ou par c.

    2.- La notion de partie r6elle peut sappliquer Aune grandeur scalaire, vectorielle ou tensorielle

    complexe et h une matrice dA5ments complexes.

    real part

    The part a of a complex number c = a + j b.

    Nores 1.- The

    real part of a complex number c is denoted by Re c or by c.

    2.- The concept of real part may be applied to a complex scalar, vector or tensor quantity or to

    a matrix of complex elements.

    +.&

    :

    Reaiteil

    es partereal

    it parte reale

    ja

    5W18

    pl

    cz$% rzeeaywista

    pt

    parte real

    Sv realdel

    partie imaginaire

    Composante

    b

    dun nombre complexe c = a +

    jb.

    Notes 1.-

    La partie imaginairc dun nombre complexe c est repr6sent& par Im c ou par c.

    2.-

    La notion de partie imaginaire peut sappliquer A une grandeur scakdre, vectorielle ou

    tcnsorielle complexe

    et ?tune

    matrice dWments complexes.

    imaginary part

    The part b of a complex number c = a + jb.

    101-11-04

    101-11-05

    Notes

    ar

    de

    es

    it

    ja

    pl

    pt

    Sv

    1.- The irnaginmy part of a complex number c is denoted by Im c or by c.

    2.- The concept of imaginary part maybe applied to a complex scalar, vector or tensor quantity

    or to a matrix of complex elements.

    I&q@irteil

    parte imaginaria

    parte irnmaginaria

    &s

    cq%d urojona

    parte

    imagindria

    imaginiirdel

    Conjuguk

    Nombre complexe c* = a - jb associ6 au nombre complexe c = a + jb.

    Notes 1.- Le conjugu6 du nombre complexe c = IcId? est c* = IcIe-JP.

    2.- La notion de wconjugu6 >>peut sappliquer h une grandeur scalaire, vectorielle ou tensorielle

    complexe et ii une matrice d616ments complexes.

    conjugate

    complex number C*= a jb associated with the complex nUmber C= a + jb.

    Notes 1.- The conjugate of the complex number c = Icl eiP is c* = IcIe-@

    2.- The concept of conjugate maybe applied to a complex scalar, vector or tensor quantity or to

    a matrix of complex elements.

    ar

    JJl>

    de

    konjugiert-komplexe Zald

    es conjugado

    it coniugato (di un numero complesso)

    ja #&

    p]

    Iiczba Sprr$zona

    pt

    conjugado

    Sv konjugat

  • 8/10/2019 is.1885.72.2008 Maths

    6/73

    IS 1885 (Part 72): 2008

    IEC6OO5O-101 :1998

    101-11-06

    101-11-07

    101-11-08

    racine carriSe

    Nombre dopt le produit par lui-m~me est 6gal h un nombrc rt$elou complexe donrk

    Note. - Tout nombre rclel ou complexe non nul a deux racines carkes, qui sent des nombres oppost%.

    Pour un nombre r6el positif

    a,

    la racine cam% positive est repn%ent& par al/2 ou ~ et la racine carr6e

    rkgative par -al2 Ou +.

    square root

    Number for which the product by itself is equal to a given real or complex number.

    Note. -

    Every non-zero real or complex number has two square roots, each being the negative of the other.

    For a positive real number a, the positive square root is denoted by aln or& and the negative square root

    by -alQ or ~.

    Ye

    es

    it

    ja

    p]

    pt

    Sv

    module

    %?y

    JJ-

    Quadratwurzel

    raiz cuadrada

    radice quadrata

    =Wi : Tli%l

    pierwiastek kwadratowy

    raiz quadrada

    kvadratrot

    Nombre reel non-n~gatif Icl dent lc carui cst 6gal au produit dun nombre complexe c =

    a + jb

    par son

    conjuguk:

    Note. - La notion de module peut sappliquer Aune grandeur scalaire complexe.

    modulus

    Non-negative real number IcI, the square of which is equal to the product of a complex number c = a + jb

    and its conjugate:

    lcl=m=J7Y7

    Note. - The concept of modulus maybe applied to a complex scalar quantity.

    ~e

    es

    it

    ja

    p]

    pt

    Sv

    J &A

    Betrag (einer komplcxen Zahl)

    mddulo

    modulo

    l&Wili

    modsd (liczby zespolonej)

    m6dulo

    belopp (av komplcxt ml)

    argument (symbole : arg)

    Nombre r6el q tel que n < p S n, dent la tangente est le rapport de la partie imaginaire h la partie r6elle

    dun nombrc complexe donnd non nul it dent le signe est cehsi de la partie imaginaire.

    Notes 1.- Largument arg c = q du nombre complexe c = a + jb = lc\ e@est 6gal h:

    arctan (b/a)

    sia>O

    7r+ arctan (b/a)

    sia

  • 8/10/2019 is.1885.72.2008 Maths

    7/73

    IS 1885 (Part 72): 2008

    IEC6OO5O-101 :1998

    101-11-08

    argument (symbol: arg)

    Real number p such that -n< qs X, for which the tangent is the ratio of the imaginary part to the real

    part of a given non-zero complex number and for which the sign is that of the imaginary part.

    Notes I. - The argument arg c = q of the complex number c = a + jb = IclCMis equal to:

    arctan (b/a) ifa>O

    ~ + arctan (b/a) ifaest souvent restreint a unc grandeur ind6pcndante de la direction.

    scalar (quantity)

    Quantity the numerical value of which is a single real or complex number.

    Note. - In a three-dimensional space where the concept of direction is defined, the term scalar quantity

    is often restricted to a quantity independent of direction.

    de

    skalare Grotle; Skalar

    es

    magnitud ezealmy ezcalar

    it

    grandezza scalare, scalare

    ja

    xXl?

    (3)

    pl

    wielko$d skakuma; skalar

    pt

    grandeza escalar; escalar

    Sv skalar (storhet)

    grandeur vectorielle

    vecteur

    Grandeur representable par un t516mentdun ensemble, darts lequel le produit dun 616ment quelconque par

    un nombre soit r.4el soit complexe, ainsi que la somme de deux 616ments quelconques sent des 616ments

    de lensemble.

    Nofes 1.- Une grandeur vectorielle clans un espace h n dimensions est caractt%kle par un ensemble

    ordonn6 den nombrcs r6els ou complexes, qui d6pendent du choix des n vczteurs de base si n est

    Supkit-icuri 1.

    2.- Dans un espace rt$el Adeux ou trois dimensions, une grandeur vectorielle est rcpn%entable

    par un segment orient4 cwdct&is4 par sa direction et sa longueur.

    3.- Une grandeur vectorielle complexe

    Vest

    di%nie par une partie rfelle et urte partie

    imagirtaire:

    V= A + jll oil A

    et

    B

    sent des grandeurs vectorielles r6elles.

    4.- Une grandeur vectorielle est reprt5sent6e par un symbole litti%l en gras ou par un symbcde

    surrnont6 dune fkche:

    V

    ou V

  • 8/10/2019 is.1885.72.2008 Maths

    8/73

    IS 1885 (Part 72): 2008

    IEC6OO5O-101 :1998

    101-11-10

    101-11-11

    101-11-12

    vector (quantity)

    Quantity which can be represented as an element of a set, in which both the product of any element and

    either any real or any complex number and also the sum of any two elements are elements of the set.

    Notes 1.- A veetor quantity in an n-dimensional space is characterized by an ordered set of n real or

    complex numbers, which depend on the choice of the n base vectors if n is greater than 1.

    2.- For a real two- or three-dimensional space, a vector quantity can be represented as an

    oriented line segment characterized by its direction and length.

    3.- A complex vector quantity

    V is

    defined by a real part and an imaginary part:

    V= A + jll

    where

    A

    and

    B are

    real vector quantities.

    4.- A vector quantity is$dicated by a letter symbol in bold-face type or by an arrow above a

    letter symlxi: V or V .

    Ye

    es

    it

    ja

    pl

    pt

    Sv

    +a

    (a + s )

    vektorielle Gro13e;Vektorgro13e

    nmgnitud veetorkd; veetor

    grartdezza vettoriale, vettore

    X9 F)b (s)

    wielko& wektorowa; wektor

    grandeza vactorial; vector

    vektor(storhet)

    rnatriee

    Ensemble ordonn6 de m x n & ments, repn%.entd par un tableau de m Iignes et n colonrtes.

    Nole. - Les 616ments peuvent Stre des nombres, des grandeurs scalaires, vectorielles ou tensorielles, des

    ensembles, des fonctions, des op&ateurs ou m~me des matrices.

    matrix

    Ordered set of m

    x n

    elements represented by m rows and n columns.

    Note. - The elements may be numbers, scalar, vector or tensor quantities, sets, functions, operators or

    even matrices.

    a r

    &j.&w

    de

    Matrix

    es

    matriz

    it

    matrice

    ja

    f77U

    pl

    maeierz

    pt rnatriz

    Sv

    matris

    grandeur tensorielle (du second ordre)

    tenseur

    (du second ordre)

    Grandeur representable clans un espace h n dimensions par une matrice cade de n x n grandeurs n$elles

    ou complexes tm qui d6cnt une transformation lim%ire dun veeteur

    A

    en un vecteur

    B:

    Bi = Zj tqAj

    tensor (quantity)

    (of second order)

    Quantity characterized in an n-dimensional space by an n x n square matrix of real or complex quantities

    [@which describes a linear transformation of a vector A into a veetor B:

    Bi = Z.jtvA)

    a r

    de

    es

    it

    ja

    pl

    pt

    Sv

    tensorielle GroBe (zweiter Stufe); Tenaorgrolle (zweiter Stufe)

    rnagnitud tensorial (de segundo orden); tensor

    grandezza tensorkde (del secondo ordine); tenaore (del secondo ordine)

    % >

    )

    w

    (m (=zk@)

    wielkti tensorowa (drugiego rz@u);

    tensor (drugiego

    rz@u)

    grandeza tensorial (de segunda ordem); tensor (de segunda ordem)

    tensor(storhet)

  • 8/10/2019 is.1885.72.2008 Maths

    9/73

    IS 1885 (Part 72) :2008

    IEC6OO5O-101 :1998

    101-11-13

    vecteur de base

    Dans un espace ~ n dimensions, chacun des 61ements dun ensemble de n grandeurs vectorielles

    lim%irement indc$pendantes.

    Notes 1,- Pour unensemble donnkde vecteurs de base Al, A2, . .. An. toutegrmdeur vectorielle V

    peut i%e exprim~e de fagon univoque comme une combinaison lin&ire.

    V=a1A1+af12 +... +aJn

    oii al, a2, . . . an

    sent des grandeurs dent chacune a pour vateur num&-ique un nombre rt$el

    ou complexe unique.

    2.- On choisit gt%rehtement comme vectcurs de base, d&not6s el, e2, . en, des grandeurs

    vectonelles rfelles osthonorm~es saris dimension.

    3.- Dans un espace h trois dimensions, les vecteurs de base sent gh~ralement choisis par

    convention de f~on h former un trkdre threct. 11speuvent gtre d6not& e,, eY,ez, ou i,j, k.

    base vector

    In an n-dimensional space, one of a set of n linearly independent vector quantities.

    Notes 1.-

    For a given set of base vectors

    A,, A2, . An,

    any

    vector quantity

    V can

    be uniquely

    expressed as a linear combination

    V=alA1+ ayt2+... +afin

    where

    al, a2, an are

    quantities, the numerical value of each being a single real or

    complex number.

    2.- The base vectors are gcncratly chosen as real orthonorrnat vector quantities of dimension

    one, denoted el, ez, en.

    3.-

    In

    a three-dimcnsionat space, the base vectors are usually taken by convention to form a

    right-handed ~hcdron. They can bc denolcd ex. ey ez, or iJ, k

    ar

    de

    es

    it

    ja

    pl

    pt

    Sv

    Basisvektor

    vector de base

    vettore di base

    ~~< P F Ji/

    wektor podstawowy

    vector de base

    basvektor

    101-11-14 coordonn6e (dun vecteur)

    Chacune des n quantit6s al, az, .

    an

    caract&isant la grandeur vectorielle

    V=alA1+ a-g12+... +a&n

    oti Al, A2, . .. An.

    sent les vecteurs de base.

    Note. - En anglais, le terme

  • 8/10/2019 is.1885.72.2008 Maths

    10/73

    IS 1885 (Part 72): 2008

    IEC6OO5O-101 :1998

    101-11-15

    101.11.16

    101-11-17

    composante (dun vecteur)

    Chacun des Wrnents dun ensemble de grandeurs vectorielles lim%irement ind4pendantes dent la somrne

    est &gale Aune grandeur vectorielle donnee.

    Nore. - Exemple: chacundes produits dune coordonn6e dune ~mdeurvectonelle pwlevecteur debme

    correspondent.

    component vector (of a vector)

    One of a set of linearly independent vector quantities, the sum of which is equal to a given vector

    quantity.

    Note. - Example: anyofthe products ofacomponent ofavector quantity and the corresponding base

    vector.

    ar

    de

    es

    it

    ja

    pl

    pt

    Sv

    Komponente

    (einer vektorieilen GroBe)

    component vectorial (de un vector)

    component

    (di un vettore)

    *&K7 )-W (

  • 8/10/2019 is.1885.72.2008 Maths

    11/73

    IS 1885 (Part 72): 2008

    IEC6OO5O-101 :1998

    101-11-17

    scalar product

    dot product

    Scalar

    quantity A B defined for two given vector quantities A and i? in n-dimensional space with

    orthonormal base vectors by the sum of the products of each coordinate Ai of the vector quantity A and

    the corresponding coordinate Bi of the vector quantity B: A B = Zi Ai Bc

    Notes 1.- The scalar product is independent of the choice of the base vectors.

    2.- For a real two-or three-dimensional space, the scalar product of the vector quantities is the

    product of the magnitudes of the two veetors and the cosine of the angle between them:

    A B = IAI

    l~lCOS 8.

    3.- For two complex vector quantities

    A

    and

    B,

    either the scalar product

    A B

    or one of the

    scalar products

    A . B*

    and

    A* . B may

    be used depending on the application. The quantity

    A . A* is non-negative.

    4.- The scalar product is denoted by a half-line dot (.) between the two symbols representing

    the vectors.

    101-11-18

    101-11-19

    ar

    de

    es

    it

    Ja

    p]

    pt

    Sv

    skaklres

    Produkt

    producto escalar

    prodotto scalare

    xti5J-a

    iloczyn Skdarny

    produto escdar

    Skdiirprodukt

    norme

    (dun vecteur)

    module (terme dfumseil16 dam ce sens)

    Grandeur sealaire non n6gative VI dent le earn5 est 6gal au produit scahdre dune grandeur vectorielle V

    par sa conjttgw%

    Ivl.m=

    Notes 1.- En math%natiques, la norme d&inie iei est la rtorim euclidienne. Dautres norrnes peuvent

    i%redkfirnes.

    2.- Dsns un espaee tiel h deux ou trois dimensions, la norrne dune grandeur veetorielle est

    repr6sent& par la longueur du segment orientt? reprt%entant la grandeur vectorielle.

    magnitude

    (of a vector)

    mcdulus (deprecated in this sense)

    Non-negative scalar quantity PI, the square of which is equal to the scalar product of a vcetor quantity

    V

    and its conjugate:

    pq=m=

    Nores 1.- In mathematics, the concept defined here is also called Euclidean norm. Other norms can be

    defined.

    2.- For a real two-or three-dimensional space, the magnitude of a vector quantity is represented

    by the length of the oriented line segment representing the vector quantity.

    ar

    de

    es

    it

    ja

    pl

    pt

    Sv

    (4 ) J \ &

    Betrag

    (einer vektoriellen Grof3e)

    norms (de un vector); mddulo (u%rrtinodesacmtsejado en este sentido)

    norms (di un vettore)

    WJff (~? b A4)

    dlugti wektow, modul (termin nie zalecany w tym sensie)

    norms (de urn vector); mddulo (de urn vector) (desaconselhado)

    belopp (av

    vektor)

    vecteur uniti

    Vecteur de norme uniti.

    Note. - Un vecteur uniti est souvent repn5sent6 par e.

    unit vector

    Vector of magnitude one.

    Note. - A unit vector is often denoted by e.

    ar

    de

    es

    it

    u Aj

    Elnheitsvektor; Emektor

    vector unitario

    vettore uniti; versore

  • 8/10/2019 is.1885.72.2008 Maths

    12/73

    IS 1885 (Part 72): 2008

    IEC6OO5O-101 :1998

    101-11-20

    101-11-21

    101-11-22

    orthogonal

    Qualifie deux vecteurs non nuls dent le produit scalaire est nul.

    Note. - Dans un espace I-&l 5 deux ou tmis dimensions, des vecteurs orthogonaux sent aussi dits

    peqnmdiculaires.

    orthogonal

    Applies to two non-zero vectors the scalar product of which is zero.

    Note. - In a real two-or three-dimensional space, orthogonal vectors are also called perpendicular.

    a

    de

    es

    it

    ja

    pl

    pt

    Sv

    Lab

    orthogonal

    Ortogonal

    ortogonale

    im

    ortogonalny

    ortogonal

    ortogonal

    orthonorsml

    Qualifie

    un ensemble de vecteurs unite%rt%ls deux ?ideux orthogonaux,

    orthonormal

    Applies to a set of real unit vectors which are orthogonal to one another.

    ar

    de

    es

    it

    ja

    pl

    pt

    Sv

    ortonorrnale

    iEBiiHE

    ortonormalny

    ortonormado

    ortonormerad

    angle (de deux vecteurs)

    Grandeur scalaire (3 telle que O < 8 S n, dent le cosinus est le rapport du produit scakdre de deux

    grandeurs vectorielles rielles

    A

    et

    B

    donrkes au produit de leurs normes :

    angle

    (between two vectors)

    Scalar quantity 19such that O s 0< n, the cosine of which is the ratio of the scalar product of two given

    real vector quantities A and B to the product of their magnitudes:

    ar

    de

    es

    it

    ja

    pl

    pt

    Sv

    (*)CXY?~jlj

    Winkel (zwischcn zwci Vektorgro13en)

    ingulo (entre dos vectores)

    angolo tra due vettori

    R (=90

  • 8/10/2019 is.1885.72.2008 Maths

    13/73

    IS 1885 (Part 72): 2008

    IEC 60050-101:1998

    101-11-23

    triidre direct

    Dans un espace h trois dimensions, ensemble de trois grandeurs vectonelles r6elles Iim%irement

    ind6pendantes A,B, C, tel que, pourun observateur retardant darts la direction de C, la rotation dangle

    minimafqui amkne A

    sur B

    se fait danslesens desaiguilles dune montre.

    Note. -

    hsgmdeurs vectonelles duntri5dre direct ontdesdirections quicomespondent respmtivement

    h celles du pouce (A), de lindex

    (B)

    et du majeur (C) de la main droite, lorsque le majeur pointe &

    angle droit des autres doigts.

    right-handed trihedron

    In a three-dimensional space, a set of three real linearly independent vector quantities

    A, B, C,

    such that

    for an observer looking in the direction of C, the rotation through the sndler angle from

    A

    to

    B is

    observed to be in the clockwise sense.

    Nore. - The vector quantities of a right-handed trihedron are oriented: the thumb

    (A),

    the forefinger

    (B)

    and the middle finger (~ of the right hand, when the latter (C) is pointing at right angles to the

    others

    (A)

    and

    (B).

    a-

    #l +1 y *M

    & x

    de

    Rechtssystem; rechtshandiges Dreibein

    es

    triedro directo

    it

    triedro diretto

    ja

    6%%

    pl

    triada prawodaylna

    pt

    triedro directo

    Sv

    hogertrieder

    101-11-24

    produit vectonel

    Dans un espace il trois dimensions muni de vecteurs de base OrtbOIIOI-IIM?Sl, e2, q formant un tri?xfre

    direct, grandeur vectorielle

    A x B

    d&mie pour

    deux grandeurs vectorielles dom6es

    A =Alel +A2e2 +A3e3

    et

    B = Blel + Bp2 + B3e3

    par :

    A x B = (A2B3 A3B2)e1 + (A3B1 A, B3)e2 + (A1B2 A2B1~3.

    Notes 1.- Le

    produit vectoriel ne dkpend pas du choix des vecteurs de base.

    2.-

    Le produit vectoriel est orthogonal aux deux grandeurs vectonelles donn~es.

    3.- Pour deux grandeurs vectorielles r6elles,

    les trois grandeurs vectorielles A, B et A x B ferment un tri&dre direct ;

    la norme du produit vectoriel est le produit des normes des deux grandeurs vectorielles

    donn6es et de la vafeur absolue du sinus de leur angle: IAx BI = IAlW Isin 61.

    4.- Pour deux grandeurs vectorielles complexes A et B, on peut selon ]application utiliser soit

    le produit vectoriel A x B, soit lun des produits vectoriels A* x B ou A x B*.

    5.- Le produit vectoriel est indiquf par une Croix ( x ) entre les deux symboies repri+sentant les

    vecteurs. Lemploi du symbole A est d6conseill&

    vector product

    cross product

    In a three-dimensional space with orthonormzd base vectors e,, e2, eg forming a right-handed trihedron,

    vector quantity A x B defined for two given vector quantities

    A =Ale, +A2e2+A3e3 and

    B = Blel + Byr2 + B3e3

    by:

    A x B = (A2B3A3B2)e1 + (A3B1 A1B3)e2 + (A1B2A2B1)e3.

    Notes 1.- The vector product is independent of the choice of the base vectors.

    2.- The vector product is orthogonal to the two given vector quantities.

    5. - For two real vector quantities,

    the three vector quantities A, B and A x B form a right-handed trihedron;

    the magnitude of the vector product is the product of the magnitudes of the two given

    vector quantities and the absolute value of the sine of the angle between them.

    IAxBI=L41 I.Bllsinf31.

    4.- For two complex vector quantities A and B, either the vector product A x B or one of the

    vector products A* x B or A x B* may be used depending on the application.

    5.- The vector product operation is denoted by a cross (x) between the two symbols

    representing the vectors. The use of the symbol A is deprecated.

    ~e

    es

    it

    ja

    p]

    pt

    Sv

    \++

    J .&

    Vektorproduk~ vektorielles Produkt

    producto vectorial

    prodotto vettoriale

  • 8/10/2019 is.1885.72.2008 Maths

    14/73

    S 1885 (Part 72): 2008

    IEC6OO5O-101 :1998

    101-11-25 616ment scalaire darc(symbole :ds)

    Grandeur

    scalaire associ~e ~ une courbe donn~e en uh point donn~, ~gafe 3 la longueur dun arc

    infinit6simaf de la courbe contcnant Ie point.

    scalar line element (symbol: &)

    Scalar quantity associated with a given curve al a given point, equal to the length of an infinitesimal

    portion of the curve containing the point.

    N

    de

    es

    it

    ja

    p]

    pt

    Sv

    skalares Linienelement

    elemento escalar de arco

    (simbolo:ds)

    elemento scalare darco

    Xti7- SX G i%: ds)

    element skalarny Mm

    elemento escalar de arco

    bhgelement

    101-11-26

    616ment (vectoriel) dart

    Grandeur vectorielle

    reelle

    tangente h

    une courbe orient& donrst% en un point donn~, dent la norme est la

    Iongueur dun arc infinit6simzd de la courbe contenant le point et dent la direction correspond A

    lorientation de la courbe.

    No[e. - Un 616ment vectonel dart est d.%ign~ par [email protected], par tds ou par &, oil et = t est un vecteur unit~

    tangent h la courbe, ds un 6Ement scafaire dart, dr la difft%entielle du rayon vecteur r d6cnvant

    la courbe par rapport ~ un point origine.

    (vector) line element

    Real vector quantity tangent to a given oriented curve at a given point, the magnitude of which is the

    length of an infinitesimal portion of the curve containing the point and the direction of which corresponds

    to the orientation of the curve.

    /Vole. - A vector line element is designated by etds, by tds or by dr, where et = t is a unit vector tangential

    to the curve, ds is a scalar line element, &is the differential of the position vector

    r

    describing the

    curve with respect to a zero point.

    ar

    dc

    es

    it

    ja

    pl

    pt

    Sv

    vektorielles L-inienelement

    elemento (vectoriaf) de arco

    elemento (vettoriale) darco

    (K 7 F )b) WE%

    element wektorowy luku

    elemento (vectorial) de arco

    b5gelementvektor

    101-11-27

    int6grale curviligne

    int6grale de Iigne

    1nt6grale 6tendue a un arc onent~ dune courbc, dent IEIEment diff&entiel est soit le produit dune

    grandeur scalaire par Idl&ment scalaire ou vcctoricl dare, soit le produit dune grandeur vectoriellc par

    Ic%rnent scalaire dart, soit lC produit scalaire dunc grandeur vectorielle par l616ment vectoriel dare.

    Note. - Cette int@rale peut ~tre une grandeur scafairc ou vcctonelle suivant la nature du produit consid6r6.

    line integral

    Integral in a specified direction along a portion of a curve, the differential element of which is either the

    product of a scalar quantity and the scalar or vector line element, or the product of a vector quantity and

    the scalar line element, or the scalar product of a vector quantity and the vector line element.

    Note. - This integral may bc a scalar or vector quantity according to the kind of product.

    ar

    de

    es

    it

    ja

    pl

    pt

    Sv

    Lhienintegral

    integral curvilinear; integral de lines

    integrale di lines

    % s%

    calka krzywoliniowa

    integral curvilineo; integral de linha

    kurvintegral; linjeintegral

  • 8/10/2019 is.1885.72.2008 Maths

    15/73

    IS 1885 (Part 72) :2008

    IEC6OO5O-101 :1998

    101-11-28

    circulation

    Grandeur scalaire .5gale h lint6grale de ligne dent l616ment difft%entiel est le produit scalaire dune

    grandeur vectorielle par l616ment vectoriel dare.

    Note. - En anglais, le termc

  • 8/10/2019 is.1885.72.2008 Maths

    16/73

    IS 1885 (Part 72): 2008

    IEC6OO5O-101 :1998

    101-11-31

    101-11-32

    101-11-33

    101-11-34

    int6grale de surface

    [nt@rale Etendue h une portion dune surface, dent l616ment diff6rentiel est le produit dune grandeur

    scalaire ou vectorielle par l616ment scahire ou vectonel de surface.

    Note. - Cette int@rale pcut i%re une grandeur scalaire ou vectonelle suivant la nature du produit

    consid&&

    surface integral

    Integral over a portion of a surface, the differential element of which is the product of a scalar or vector

    quaritity and the scalar or vector surface element.

    Note. - This

    integral may be a scalar or vector quantity according to the kind of product.

    Te

    es

    it

    ja

    pl

    pt

    Sv

    Flachenintegral

    integral de supertkie

    integrale dl superllcie

    ma53

    * pawierzdmiowa

    integral de supertlcie

    ytintegral

    flux (dune grandeur vectorielle)

    lnt&rle de surface dent ld~ment diff6rentiel est le produit scalaire dune grandeur vcctorielle par

    li516mentvectoriel de surface.

    flux

    (of a vector quantity)

    Surface integral, the differential element of which is the scalar product of a vector quantity rmd the vector

    surface element.

    ar

    de

    es

    it

    ja

    pl

    pt

    Sv

    FM

    (einer vekt&iellen Gro13e)

    flujo (de una magnitud vectorial)

    flusso (di una grandezza vettoriale)

    (N9 t)b) R

    strumieri

    (wielkoki wektomwej)

    fluxo (de uma grartdeza vectorial)

    vektorfiijde

    int&rale de volume

    Integrale 6tendue h un volume donn6, dent l61&nentdit%entiel est le produit dune grandeur scalaire ou

    vectorielle par IEIEment de volume.

    volume integral

    Integral over a volume the differential element of which is the product of a scalar or vector quantity and

    the volume element.

    ?C

    es

    it

    ja

    pl

    pt

    Sv

    V-olumeni~tegral

    integral de vohunen

    integrale di volume

    BWW

    calka obj@&lowa

    integral de volume

    volymintegral

    champ (1)

    Etat dun domaine d&ermin6 clans lequel une grandeur ou un ensemble de grandeurs li4es entre elles

    existe en chaque point et dfpend de la position du point.

    Note. -

    Un champ peut rcpn%enter un ph6nomkne physique, comme par exemple un champ de pression

    acoustique, un champ de pesarrteur, le champ magm$tique terrestre, un champ 61ectromagn&ique.

    field

    State of a region in which a quantity or an interrelated set of quantities exists at each point and depends

    on the position of the point.

    Note. - A field may represent a physical phenomenon such as an acoustic pressure field, a gravity field,

    the Earths magnetic field, an electromagnetic field.

    ar

    de

    J k

    Feld

  • 8/10/2019 is.1885.72.2008 Maths

    17/73

    IS 1885 (Part 72): 2008

    IEC6OO5O-101 :1998

    101-11-35

    champ (2)

    Grandeur scalaire, vectonelleou tensonelle, qui existe en chaque point dun domaine d6termin6et qui

    d6pend de la position de ce point.

    Notes 1.- Un champ peut i%.reune fonction du temps.

    2.- En anglais le terme a field quantity>, en frangais a grandeur de champ >>,est aussi utilis6

    pour dt%igner une grandeur telle que tension,

    courant, pression acoustique, champ

    61ectrique, dent le carr6 est proportionnel i une puissance clans les systkmes lim%ires.

    field quantity

    Scalar, vector or tensor quantity, existing at each point of a defined region and depending on the position

    101-11-36

    of the point.

    Notes 1.-

    2.-

    ar

    de

    es

    it

    ja

    pl

    pt

    Sv

    A field quantity maybe a function of time.

    In English the term field quantity, in French grandeur de champ, is also used to denote a

    quantity such as electric tension, current, sound pressure, electric field strength, the square

    of which in linear systems is proportional to power.

    a J k ~

    Fe1dgr6Be

    - (magsdbld)

    grandezza di camp, C2UIIP0

    famm

    wielkoii polowa

    grandeza de caunpo

    fiiiitatorhet

    (op6rateur) nabla (symbole: V)

    Vecteur syrnbolique utilis4 pour d~noter des opt$rateurs dif%$rentiels scalakes ou vectoriels, sappliquant ii

    dcs champs scalaires ou veetoriels, et qui, en coordonm%s cart6siennes orthonornu%, est repn%enti par

    V=exz+e ~+ez$

    a x J a y

    oh ex, ey,

    ez

    sent les vecteurs unitis des axes x, y, z.

    nabla (operator) (symbol V)

    Symbolic vector used to denote scalar or vector differential operators operating on scalar or vector field

    quantities, and which, in orthonormal Cartesian coordinates, is represented by

    V=ex&+e

    a a

    Ya y

    + e%

    where ex, ey, ez arc unit vectors along the x, y, z axes.

    es

    it

    ja

    pl

    pt

    Sv

    (v:

    >))

    (

    ;p )

    w

    Differentialoperator; Nabla(-Operator)

    (operador) nabla (sfmbolo:V)

    operatore nabla; rtabla

    *75 (&&l+) (52% : v)

    (operator) nabla

    (operador) nabla

    nablaoperatom

  • 8/10/2019 is.1885.72.2008 Maths

    18/73

    IS 1885 (Part 72) :2008

    IEC6OO5O-101 :1998

    101-11-37

    101-11-38

    gradient

    Grandeur vectonelle grad~ associee en chaque point h un champ scaiairc J, dent la direction CS[normalc

    i la surface sur Iaquelle Ic champ a unc valcurconstante, clans Ie scns des champs croissants, CLdon[ la

    normc CS[@galeh la valeur absolue dc la d&ivLc du champ par rapport a la distance clans ccttc direction

    normatc.

    Notes

    1.-

    Le gradient exprime la variation du champ cntrc lC point donn6 et un point situd A unc

    distance intiniksimale ds clans la direction dun vecteur unit6 donncl e par Ic produit scalairc

    dj= grad

    f

    eds.

    2.- En coordonrkes cam%iennes orthonorrmtes, lcs trois coordonn~cs du gradient sent :

    a f

    af af

    ax

    ~az

    3.- Le gradient du champ

    f

    cst reprtscnti+ par grad

    f

    ou par V

    gradient

    Vector quantity grad

    f

    associated at each point with a scalar field quantity

    f,

    having a direction normal to

    the surface on which the ticld quantity has a constant value, in the sense of increasing value off, and a

    magnitude equal to the absolute value of the derivative of f with respect to distance in this normal

    direction.

    Notes 1.-

    2.-

    3.-

    The gradient expresses the variation of the field quantity from the given point to a

    point at inlini[esimal distance ds in the direction of a given unit vector e by the scalar

    product dj= grad ~- eds.

    In orthonormal Cartesian coordinates, the three components of the gradient are:

    a f af af

    ax~az

    The gradient of the field quantity

    f

    is denoted by

    grad

    f

    or by

    VJ

    a r

    #-4

    de

    Gradient

    es

    gradiente

    it

    gradiente

    ja

    WE

    pl

    gradient

    pt

    gradiente

    Sv

    gradient

    potentiel (scalaire)

    Champ scalairc q,

    sil cxistc, dent loppos6 du gradient est un champ vectoriel donn6fi

    f=-gradq.

    Notes 1.- On dit quc lCchamp vectoricl donn6 d&ive du potentiel scalairc.

    2.- Lc polcnticl scalairc ncst pas unique puisquune grandeur scalaire constante quelconque

    pcut &rc ajout6c i un potentiel scalairc donn~ saris changer son gradient.

    (scalar) potential

    Scalar tield quantity qJ,when it exists, the negative of the gradient of which is the ticld quantity

    f

    of a

    given vector Iicki:

    f=-gradq.

    Notes 1.- The given vector field is said to be dcnved from the scalar potential.

    2.- The scalar potential is not unique since any constant scalar quantity can be added to a given

    scalar potential without changing its gradient.

    ar

    (&@) *

    dc

    (skalares) Potential

    Cs

    potential (eScalar)

    it potenziale (scalare)

    ja (xti5-) *7>>-YW

  • 8/10/2019 is.1885.72.2008 Maths

    19/73

    IS 1885 (Pari 72) :2008

    IEC60050-101 :1998

    101-11-39

    iquipotentiel

    Qualifie un ensemble de points qui sent tous au mSme potentiel scalaire,

    equipotential

    Pertaining to a set of points d] of which are at the same scalar potentiaf.

    a r

    de

    es

    it

    ja

    pl

    pt

    S v

    -@I

    @jLa

    Aquipotential

    equipotenckd

    equipotenziale

    %d?7>vt)b

    ekwipotencjalny

    equipotencial

    ekvipotentiell

    101-11-40

    divergence

    Grandeur scalaire div f associ6e en chaque point h un champ vectoriel~, 6gale Ala limite du quotient du

    flux de la grandeur vectorielle sortant dune surface fet-rm$epar le volume limiti par cette surface lorsque

    toutes ses dimensions g&om&.riques tendent vers Z(XO:

    divj = lima~jf.endA

    oil endti est Mk$ment vectoriel de surface et V le volume.

    Notes 1.-

    En coordonn6es cart6siennes orthonorde.s, la divergence est:

    2.- La divergence du champ jest repn%entke par divjou par

    V .f.

    divergence

    Scalar quantity div~ associated at each point with a vector field quantity~, equal to the limit of the flux of

    the vector quantity which emerges from a closed surface, divided by the volume contained within the

    surface when all its geodetical dimensions become intlrtitesimal:

    div f = lim

    +0 ~~f en dA

    where endA is the vector surface element and

    V

    the volume.

    Notes 1.- In orthonormal Cartesian coordinates, the divergence is:

    Ye

    es

    it

    ja

    p]

    pt

    Sv

    af. +afy ~ afz

    divf=

    a x a y a z

    2.- The divergence of the field

    f

    is denoted by div

    f

    or by

    V.$

    u~

    Divergenz

    divergencia

    divergenza

    W&

    dywergencja

    diverg&seia

    divergens

  • 8/10/2019 is.1885.72.2008 Maths

    20/73

    IS 1885 (Part 72): 2008

    IEC6OO5O-101 :1998

    101-11-41

    101-11-42

    rotationnel

    Grandeur vectorielle rot ~ associ6e en chaque point h un champ vectoriel ~, &gale h la limite du quotient

    de lint.5grale, sur une surface ferm6e, du produit vectoriel du champ et de l61&mentvectoriel de surface

    onent~ vers lint&ieur, par le volume linrit.5 par la surface Iorsque toutes ses dimensions g60m&iques

    tcndent vers zt%o :

    oh endA est l616ment vectoriel de surface et

    V

    le volume.

    Notes 1.-

    En coordonn6es cark%iennes orthononn6es, les trois coordons-kes du rotationnel sent :

    afz Jfy

    afx afz

    afy afx

    . ___

    ayaz azaxaxay

    2.- Le rotationnel du champ~est repr6sent6 par rotf, par curl~ou parV x f.

    rotation

    curl

    Vector quantity rot f associated at each point with a vector field quantity f, equal to the limit of the

    integral over a closed surface of the vector product of the vector field quantity and the vector surface

    element oriented inwards, divided by the volume contained within the surface when all its geometrical

    dimensions become infinitesimal:

    J

    rotf=/~O~

    fxend A

    where e#A is the vector surface element and V the volume.

    Notes 1.-

    In orthonormal Cartesian coordinates, the three components of the rotation are:

    afz afy

    af.

    afz

    dfy afx

    . ___

    ayaz azaxaxay

    2.- The rotation of the field f is denoted by

    rot

    f, by curl f, or by V x f.

    J\J,> , J ~

    :C

    Rotor; Rotation

    es

    rotat ional

    it

    rotore

    ja EM

    p]

    rotacja

    pt rotational

    Sv rotation

    potentiel vecteur

    Champ vcctoricl

    A,

    sil cxistc, dent Ie rotationnel est un champ vectoricl donnd f:

    J=rot A

    Notes 1.- on di[ quc Ic champ vectoncl donne d&ivc du potentiel vecteur.

    2. L.c poumticl vcctcur ncst pas unique puisquun champ vectonel irrotationnel quelconque

    pcut ilrc aj(mtd a un potcmicl vccteur donn~ saris changer son rotationnel. Lc potentiel

    vcclcur CS[souvcnt choisi de tcllc sorte quc sa divergence soit nulle.

    vector potential

    Vector field quan~ity A, when it exists, the rotation of which is the field quantity f of a given vector tield:

    Noles

    3r

    dc

    es

    it

    ja

    pl

    pl

    Sv

    f=rot A

    1.- The given vcclur field is said to be derived from the vector potential.

    2.- ~c vector potential is not unique since any irrotational vector field quantity can be added

    10 a gi vcn vector potential without changing its rotation. The vector potential is often

    chosen so that its divcrgcncc is zero.

    &&l *

    Vektorpotential

    potential vectm-

    potenziale vettore

    ->+W

    potencjal wektorowy

    potential vector

    vektorpotential

  • 8/10/2019 is.1885.72.2008 Maths

    21/73

    IS 1885 (Part 72) :2008

    IEC6OO5O-101 :1998

    101-11-43

    laplacien (scalaire)

    101-11-44

    101-11-45

    Grandeur scaiaire A~associt c en chaque point a un champ scalaire $, d6finie par la divergence du gradient

    du champ scalaire :

    Af = div grad j.

    Note. - En coordonn~es cark%iennes orthonorm~es, le Iaplacien scalaire est:

    a 2f +

    a2f + azf

    Af=

    ax2

    ayz a#

    Laplacian (of a scalar field quantity)

    Scrdar quantity A~a ssociated at each point with a scalar field quantity J equal to the divergence of the

    gradient of the scalar field quantity:

    Af = div gradj

    Note. -

    In orthonorrnal Cartesian coordinates, the Laplacian of a scalar field quantity is:

    ar

    de

    es

    ii

    ja

    pl

    pt

    Sv

    a2f a2f + a2f

    Af. G+

    a y2 a z2

    ( Q+ w d ++ +>Y

    (skalarer) Laplace-Operator

    (angewandt auf eine skahtre

    FeldgrMe)

    laplaciana (eacalar)

    Iaplaciano (scalare)

    59597> (x*5 - o)

    laplasjan (skalarny)

    Iaplaciano (escalar)

    laplaceoperatorn (fdr skalttrfdt)

    Iaplacien vectoriel

    Grandeur vectorielle & associ~e en chaque point h un champ vectoriel ~, &gale A la dit%ence entre le

    gradient de la divergence du champ vectonel et le rotatiomel du rcrtationnel de ce champ :

    4= grad div~- rot rotf

    Note. -

    En coordonn~es cark%iennes orthonorrm$es, les trois coordomEes du laplacien veetoriel sent :

    a 2fx + a 2fx +

    a2fx

    a*fy * a*fy

    a2fy ~+~+ti

    . ._ -

    +

    a x2 a y2 a z2 a x2 a y2 a z2 a x2 a y2 a z2

    Laplacian (of a vector field quantity)

    Vector quantity

    4

    associated at each point with a vector field quantity j, equal to the gradient of the

    divergence of the vector field quantity minus the rotation of the rotation of this vector field quantity:

    ~= grad div~- rot rot~

    Note. - In orthonormal Cartesian coordinates, the three components of the Laplacian of a vector field

    quantity are:

    Ye

    es

    it

    ja

    pl

    pt

    Sv

    a2fx + a2fx + a2fx

    a*fy + a*fy + a*fy

    , a*fz ~ a*fz; a*fz

    .

    a x2 a y2 a z2 a x2 a y2 a z2 a x2 a y2 a z2

    e J@ J Z++ ~>Y

    (vektorieller) Laplace-Operator (angewandt auf eine vektonelle Feldgr613e)

    laplaciana vectorial

    laplaciano vettoriale

    575>7> (A? tMifW)

    laplasjan wektorowy

    laplaciano vectorial

    Iaplaceoperatorn (for vektort%lt)

    champ a flux conservatif

    champ so16noYdal

    Champ caract&is6 par une grandeur vectorielle de divergence nulle.

    zero divergence field

    solenoidal field

    Field characterized by a vector field quantity having zero divergence.

    dc quellenfreies Feld

    Cs

    campo de flujo conservative; campo adivergente

    it

    campo solenoidale

  • 8/10/2019 is.1885.72.2008 Maths

    22/73

    IS 1885 (Part 72): 2008

    IEC6OO5O-101 :1998

    101-11-46

    champ irrotationnel

    Champ

    caracteris& par unc grandeur vcclonelle de rotationnel nul.

    irrotational field

    Field characterized by a vector tield quantity having zero rotation.

    ar

    de

    es

    it

    ja

    pl

    pt

    Sv

    @J,>

    J&

    wirbelfreies Feld

    campo irrotaciomd

    campo irrotazionale

    ~?i I/g

    pole bezwirowe

    campo irrotacional

    virvelfritt f7alt

    101-11-47 Iigne de champ

    Dans un champ vectoriel, courbe dent la tangente en chaque point a time support que Ie champ en ce

    point.

    field line

    In a vector field, a path for which the tangent at each point is parallel to the field quantity at that point.

    ar

    de

    es

    it

    ja

    p]

    pt

    Sv

    J k

    Feldlinie

    lima de eampo

    lines di campo

    fHls

    Iinia pola

    linha de eampo

    faltlinje

  • 8/10/2019 is.1885.72.2008 Maths

    23/73

    IS 1885 (Part 72): 2008

    IEC6OO5O-101 :1998

    SECTION 101-12- NOTIONS RELATIVES A LINFORMATION

    SECTION 101-12- CONCEPTS RELATED TO INFORMATION

    101-12-01

    (ISO/lEC 2382-1

    -01.01.01)

    (701 -O -01 MOD)

    101-12-02

    (701-01-02 MOD)

    (702-04-01 MOD)

    101-12-03

    (lSO/IEC 2382-1

    -01.01.02)

    (701-01-II MOD)

    information

    Connaissance concemant un objet tel quun fait, un &Snement, une chose, un processus ou une id6e, y

    compris une notion, et qui, clans un contexte d&ermin& a une signification particuli&e.

    information

    Knowledge concerning

    objects, such as facts, events, things, processes, or ideas, including concepts, that

    within a certain context has a particular meaning.

    Ob+

    $e

    Information

    es informacibn

    it informazione

    ja M%

    pl

    informacja

    pt inforrn+o

    Sv

    information

    signal

    Ph6nom&ne physique dent la pn%ence, Iabsence ou les variations sent consich%$escornme reprt%entant

    des information.

    signal

    Physicaf phenomenon whose presence, absence or variation is considered as representing information.

    ar

    6J21

    de Signal

    es Seiial

    it

    segnafe

    ja %3%

    p]

    Sygnaf

    pt sinal

    Sv signal

    donnkes

    Repr6scntation r6interpr6table

    dune information sous une forrne conventiomelle

    communication, i2linterpretation ou au traitement.

    data

    Rcinterprctablc representation of information in a formalized manner suitable for

    interpretation, or processing.

    al&

    :C

    Daten

    es dates

    i[

    dati

    ja

    ~y

    pl dane

    pt dados

    Sv data

    convenant ~ la

    communication,

  • 8/10/2019 is.1885.72.2008 Maths

    24/73

    IS 1885 (Part 72): 2008

    IEC6OO5O-101 :1998

    101-12-04

    code

    (70 L03-t17M0D) Ensemble dc r~gles d6tinissant une corrcspondance biunivoque entrc des information et leur

    (702-05-11 MOD) rcpr6sentation padescmact&res, dcssymboles oudes61&ments designd.

    code

    Set of rules defining a one-to-one correspondence between information and its representation by

    characters, symbols or signal elements.

    ar

    ~+

    de

    Code

    es

    Ciidigo

    it

    codice

    ja

    kod

    3

    p]

    pt

    c6digo

    Sv

    kod

    101-12-05

    101-12-06

    101-12-07

    analogique

    Qualifie la representation dinformations au moyen dune grandeur physique susceptible ii tout instant

    dun intervalle de temps continu de prendre une quelconque des vafeurs dun intervafle continu de vafeurs.

    Note. La grandeur consid~rile peut, par exemple, suivre de faqon continue les vafeurs dune autre

    grandeur physique repn%entant des infortnations.

    a n a l o g u e

    analog (US)

    Pertaining to the representation of information by means of a physicrd quantity which may at any instant

    within a continuous time interval assume any vafue within a continuous intervaf of vafues.

    No[e. - The quantity considered may, for example, follow continuously the vafues of another physicaf

    quantity representing information.

    ar

    +b

    de

    analog

    es

    anakigico

    it

    analogico

    ja

    7*U7

    p]

    anafogowy

    pt anaf@ico

    Sv

    analog

    valeur discr~te

    Lune des vafeurs dun ensemble dt%ombrable de vafeurs quune grandeur peut prendre.

    discrete value

    One vafue in a countable set of values that a quantity may take.

    de d-iskreter Wert

    es valor dkcreto

    it valore discreto

    p] wart& dyskretna

    pt valor dlscreto

    Sv

    diskret varde

    numikique

    Qualifie la representation dinformations par des tlats distincts ou des valeurs discrktes.

    digital

    Pertaining to the representation of information by distinct states or discrete values.

    ar

    de

    +

    digital

  • 8/10/2019 is.1885.72.2008 Maths

    25/73

    IS 1885 (Part 72) :2008

    IEC6OO5O-101 :1998

    101-12-08

    hybride (pour la representation dinformations)

    Qui combine reprt%entation anatogique et reprt%entation num&ique des informations.

    hybrid (for representation of information)

    Pertaining to a combination of anafoguc and digital representation of information.

    ar

    de

    Cs

    it

    ja

    pi

    pt

    Sv

    LJE-

    hybnd (beziiglicb

    der Darstellung von Information)

    Idx-ido

    (para la rcpresentacion de informaci6n)

    ibrido

    ,.~yl) .7 ~ (Rl$l%%%itz)t:bo)

    hybrydowy

    h]%rido (para a reprcscntag~o de informagiio)

    hybrid

    101-12-09

    logique

    Quatitie une transformation dtterrnin~e dun nombrc fini de variables dentr6e h valeurs discrktes en un

    nombrc .fini de variables de sortie i vateurs discr&tes.

    logic

    Pertaining to a defined transformation of a finite number of inputs with discrete values to a tinite number

    of outputs with discrete values.

    afJ-

    de

    logisch

    es 16gica

    it Iogico

    ja

    333

    pl Iogiczny

    pt

    16gico

    Sv

    logik

  • 8/10/2019 is.1885.72.2008 Maths

    26/73

    IS 1885 (Part 72) :2008

    IEC6OO5O-101 :1998

    SECTION 101-13- DISTRIBUTIONS ET TRANSFORMATIONS INTEGRALS

    SECTION 101-13- DISTRIBUTIONS AND INTEGRAL TRANSFORMATIONS

    101-13-01

    distribution

    Fonctionncllc lin~airc continue qui associc un nombrc rtel ou complcxe a toutc fonction de variable

    rclcllc ou complcxc appartenarn 5 la classc des fonctions indtltiniment derivable nulles en dehors dun

    intcrvallc ou domainc bomc.

    Notes 1.- La d~linition provicnt dc Iouvrage original dc Laurent Schwartz. Le terme

  • 8/10/2019 is.1885.72.2008 Maths

    27/73

    IS 1885 (Part 72) :2008

    IEC6OO5O-101 :1998

    101-13-02

    (fonction) 6chelon uniti (symbole : E(x) )

    fonction de Heaviside

    Fonction nulle pour toute valeur n6gative de la variable indc$pendante et 6gale h lunitf pour toute valeur

    positive.

    Notes 1.- E(xxO) represent un 6chelon unit~ h la valeur ~ de la variable indt5pendante x.

    2.- La notation H(x) est aussi utilis~e. La notation O(t) est utilis6e pour la fonction Echelon

    unit~ du temps. La notation Y(x) a aussi tl~ utilist%.

    unit step function (symbol: ~(x) )

    Heaviside function

    Function, zero for all negative vafues of the independent variable and equal to unity for all positive

    values.

    101-13-03

    101-13-04

    No[es 1.- E(x~) denotes a unit step at the value ~ of the independent variable x.

    2.- Notation H(x) is also used. Notation O(l) is used for the unit step function of time.

    Notation Y(x) has also been used.

    de

    Ekheits-Sprungfunktion; Heaviside-Funktion

    es (funcidn) esca16n unidad (simbolo:

    E(x));

    funcion de Heaviside

    it funzione gradino unitario; gradino unitario; funzione di Heaviside

    ja

    l#tix7.,71#1* (Z%; & (x) ) i Ak-v< Fp4 l

    p] skok jednostkowy Heavisidea; funkcja Heavisidea

    pt degrau unitirio; funqiio de Heaviside

    Sv Heavisides stegfunktion

    6chelon unit6 g6n6ra1is6

    Fonction 6gale h

    une constante pour toute valeur negative de la variable ind~pendante et &gale i cette

    constante augment6e dune unit~ pour toute valeur positive.

    Note. - c +

    E(x), ofi c est une constante et E(x) est la fonction fchelon unit6, repr6sente un Echelon unit6

    gf$n6ralist$.

    general unit step function

    Function having a constant value for afl negative values of the independent variable and a value increased

    by one unit for all positive values.

    Note. - c +

    E(X) denotes a general unit step function where c is a constant and E(x) is the unit step

    function.

    ar

    de

    es

    it

    ja

    pl

    pt

    Sv

    allgemeine Elnheits-Sprungfunktion

    escah5n unidad generakado

    gradino

    unitario

    generalizzato

    lJ+ltix? Y YM%fi

    skok jednostkowy

    degrau unitdrio generalizado

    generell enhetsstegsfunktion

    rampe unitk

    Fonction continue nulle pour toute valeur rkgative de la variable ind6pendante et croissant litu%irement

    avec une pente Egafe ~ un pour Ies vafeurs positives de la variable independante.

    Nofe. - La rampe unit6 peut .$trerepr6sent6e par x E(x), oti E(x) est la fonction 6chelon unit6.

    unit ramp

    Continuous function, zero

    for all negative values of the independent variable and increasing linearly with

    a slope equal to one for positive values of the independent variable.

    Note. - The

    unit ramp may be denoted x E(x), where &(x) is the unit step function.

    7e

    es

    it

    ja

    pl

    pt

    Sv

    linearer Anstiegsvorgang

    rarnpa unidad

    ranma unitaria

    nachylenie jednostkowe

    rarnpa unitiria

    enhetsramp

  • 8/10/2019 is.1885.72.2008 Maths

    28/73

    IS 1885 (Part 72): 2008

    IEC6OO5O-101 :1998

    101-13-05

    signum(syrnbole: sgn)

    fonction

    signe

    Fonction dune variable reelleayant lavaleur-1 pour toutevafeur n6gative delavariable, +l pour toute

    vafeur positive et Olorsque la variable est nulle.

    signurn (symbol: sgn)

    Function ofa real variable equal to -1 forafl negative values of the variable, +1 forall positive values

    and Ofor the zero vafue.

    ar

    de

    es

    it

    ja

    p]

    pt

    Sv

    Signum

    (funei6n) signo (simbolo: sgn)

    segno; funzione segno

    .>7+L

    funkcja signum

    signum; funqiio sinal

    signum

    101-13-06

    distribution de Dirac

    (symbole: 5)

    impulsion uniti

    percussion uniti

    Distribution S associant h toute fonctionflx), continue pour x = O,la valeurflO).

    Notes 1.- La distribution de Dirac peut ~tre consid~r6e comme la Iimite dune fonction nulle en dehors

    dun petit intervalle contenarrt forigine, positive clans cet interval}e, et dom lint@rale reste

    t$gafeh Iunitc$Iorsque cet intervdle tend vers zero.

    2.- La distribution de Dirac est la d6riv6e de la fonction fchelon unit~ consid6r6e comme une

    distribution.

    3.- La distribution de Dirac peut Stre d6finie pour toute valeur XOde la variable x. La notation

    usuelle est :

    f

    fkt ) = ~(~-

    xo)~(x)dx

    Dlrac function

    (symbol: 5)

    unit pulse

    unit impulse (US)

    Distribution b assigning to any function fix), continuous for x = O, the valucflO).

    Nores

    1.- The

    Dirac function can bc considered as the limit of a positive function, equal to zero

    outside a small interval containing the origin, and the integral of which remains equal to

    unity when this interval tends to zero.

    2.- The Dirac function is the derivative of the unit step function considered as a distribution.

    3.- The Dirac funclion can bc defined for any value ~ of the variable x. The usual notation is:

    ar

    de

    es

    it

    ja

    pi

    pt

    Sv

    (

    d :

    >)) A l> s als: w a -j

    &Distribution; Dirac-Distribution; idealer Einbeitsstoll

    funei6n de Dirac (sfmbolo: 5); impufso unidad

    distribuzione di Dirac; impulso unitario

    ?4 5 Y 91Ul : *f@{J~x

    funkcja Diraea; impuls Diraea; impuls elementary

    impulso unitirio; distnbuiqiio de Dkac; funqilo de Dirac

    Dlracs deltafunktion

    8

  • 8/10/2019 is.1885.72.2008 Maths

    29/73

    IS 1885 (Part 72) :2008

    IEC6OO5O-101 :1998

    101-13-07

    doublet unit6 (symbole : 5)

    Distribution qui est 1ad6riv6e de la distribution de Dirac.

    Note. - Le doublet unit6 permet dexprimer la valeur pour

    pourx=~:

    +~

    .

    ~ de la d6riv6e dune fonction j(x) d~rivable

    101-13-08

    101-13-09

    f(X~) =+ (.x -

    xO)~(x)dx

    unit doublet

    (symbol: 5)

    Distribution being the derivative of the Dirac function.

    Note. - The unit doublet can be used to express the vafue for ~ of the derivative of a function Xx)

    differentiable at ~:

    f(X~) =-]?J (X -

    xO)~(x)dx

    ar

    (# : >}1 ) b,>> ;&,

    de

    Ableitung der &Dktnbution; idealer Einheits-Wechselstoll

    es

    doblete unidad

    (sfmbolo: 3)

    it

    doppietto unitario

    ja

    BW$7PY 1

    p]

    diplds

    pt doblete unitirio

    Sv enhetsdublett

    serie de Fourier

    Rcpr6sentation dune fonc[ion pdriodiquc par 1a sommc dune constante, Sgale h la vafeur moyenne de la

    fonction, et dune sckie de terms sinusoidaux dent Ics fr~qucnces sent des multiples de la fr6quence de la

    fonction.

    Fourier series

    Representation of a periodic function

    by the sum of its mean value and a series of sinusoidal terms the

    frequencies of which are integral multiples of [he frequency of the function.

    ar

    >J ~

    de

    Fourier-Reihe

    es

    serie de Fourier

    it

    serie di Fourier

    ja

    7

    1)Z& (

    pl

    sz.ereg Fouriera

    pl s6rie de Fourier

    Sv Fourier-serie

    transform6e de Fourier

    Pour unc fonction rdcllc ou complcxc fl[) dc la variable reelle I, fonction complexc F(j@ de la variable

    reeilc O, donnde par la transformation intcgrale

    +-

    J

    F(jtn) =

    f(t)e-~~l dt

    -

    Nofe. - La variable arrcpri%ente la pulsation.

    Fourier transform

    For a real or complex function xl) of the real variable f, complex function F(jm) of the real variable @

    given by the integrat transformation

    Note.

    ar

    de

    Cs

    it

    ja

    p]

    pt

    t-

    The variable o represents angular frequency

    >J~ ~-

    Fourier-Transformierte

    transformada de Fourier

    trasformata di Fourier

    7

    1).x E*

    transformata Fouriera

    transformada de Fourier

  • 8/10/2019 is.1885.72.2008 Maths

    30/73

    IS 1885 (Part 72): 2008

    IEC6OO5O-101 :1998

    101-13-10

    transformie inverse de Fourier

    Repr6scntation dune fonction r&llc ou complexeflt) de la variable r~elle I par la transformation int6grale

    oh F(jojest latransform6c de Fourier delafonction.

    inverse Fourier transform

    Representation of a real or complex functionflt) of the real variable t by the integraf transformation

    where

    F(j co)is

    the Fourier transform of the function.

    ye

    es

    it

    ja

    pl

    pt

    Sv

    Qs-=~

    3,9

    J&

    FonrierintegraJ inverse Foorier-Tramvforniertq M@ahnkb on der Fourier-Transformierten

    transformada inversa de Fourier

    trasformata inversa dI Fourier

    7- IJ@l 2 Hl

    transforrnata Fouriera ndwrotna

    tronsforrnada inversa de Fourier

    invers Fourier-transform

    101-13-11

    transforrde de Laplace

    Pour une fonction r6elle ou complcxe flf) de la variable rc%lle

    t,

    onction F(s) de la variable complexes,

    donn~e par la transformation int@rale

    +=

    F(S) = ~ ~(t)e-~tdf

    o

    Note. - La variables repr6sente la pulsation complexe.

    Laplace transform

    For a real or complex function At) of the real variable t,unction F(s) of a complex variables given by the

    integral transformation

    +=-l

    J

    (s) = f(t)e-sfdt

    o

    Note. - The variables represents the complex angular frequency.

    ar

    de

    es

    it

    ja

    pl

    pt

    Sv

    L~place-Transformierte

    transformada de Lapface

    trasformata di Laplace

    5Y?XE*

    transformata Laplacea

    transformada de Laplace

    Laplace-transform

  • 8/10/2019 is.1885.72.2008 Maths

    31/73

    IS 1885 (Part 72) :2008

    IEC6OO5O-101 :1998

    101-13-12

    transform6e inverse de Laplace

    intigrale de Mellin-Fourier

    Represen~tion dune fonction rAlleou complexcflr) dclavtiable r6ellef pmlawmsfomation int~ JC

    o+i~

    f t =+ Jks)c%is

    Gj-

    ofi F(s) est la transform6e de Laplace de la fonction et oii CJ est sup%ieur ou 6grd ii Iabmsse de

    convergence de F(s).

    inverse Laplace transform

    Representation of a real or complex fimctionflt) of the real variable r by the integral transformation

    rs+j-

    where F(s) is the Laplace transform of the function and where Ois greater or equal to the abscissa of

    convergence of F(s).

    ar

    de

    es

    it

    ja

    p]

    pt

    Sv

    inverse Laplace-Transformierte; Originalfunktion der Laplace-Transformierten

    transformada inversa de Laplacq integral de Mellin-Fourier

    trasformata inversa di Laplace

    575 XE3H4?

    transformata Laplacea odwrotna; calka Mellina-Fouriera

    transformada inversa de Laplace

    invera Laplace-transform

    101-13-13 transform% en

    Z

    Pour une fonction rt$elleflrr) dune variable entitie n, fonction F(z) dune variable complexe Z,donrke par

    F(z) = ~f(n)z-n

    n=i)

    z-transform

    For a real functionflrr) of a variable integer n, function F(z)

    of a complex variable

    z given by

    F(z) =

    ~f(?l)z-n

    =0

    Z-J>

    Ye

    Z-Transformierte

    es transformada Z

    it trasformata Z

    ja

    z E &l

    p] transformata z

    pt

    transformada em z

    Sv Z-transform

  • 8/10/2019 is.1885.72.2008 Maths

    32/73

    IS 1885 (Part 72): 2008

    IEC 60050-101:1998

    101-14-01

    SECTION 101-14- GRANDEURS DEPENDANT DUNE VARIABLE

    SECTION 101-14- QUANTITIES DEPENDENT ON A VARIABLE

    r6gime t%abli

    r&inse permanent

    Ikt dun syst?me physique clans lequel les caractt%istiques pertinences restent constants clans le temps.

    steady

    State

    State of a physical system in which the relevant characteristics remain constant with time,

    ~e

    es

    it

    ja

    pl

    pt

    w

    statiordirer Zustand; Bebarrungszustand

    en pe~nte

    regime stazionario

    Z?%*%

    Stan Ustabmy

    regime pes%mente; estado estabelecido

    stationiirt tillsbind

    101-14-02

    transitoire (adjectif et nom)

    (702-07-78 MOD) Se dit dun ph6nom&ne ou dune grandeur qui passe dun rt$gime t5tabli ?sun autre r~gime 6tabli cons~cutif.

    (161-02-01 MOD)

    transient (adjective

    and noun)

    Pertaining to or designating a phenomenon or quantity which passes from one steady state to another

    consecutive steady state.

    ~e

    es

    it

    ja

    pl

    pt

    Sv

    tr~len~ Ubergangs

    transitorio (adjetivo y

    nombre)

    transitorio

    % s&t

    am

    a

    nieustalony; przejtiowy

    transitckio (adjectivo e substantive); transience

    transient

    101-14-03

    osciknt

    Altemativement

    croissant et dtiroissant.

    OsciBating

    Alternately increasing and decreasing.

    ar

    de

    es

    it

    ja

    pl

    pt

    Sv

    + b

    oszillierend; schwingend

    Oscilante

    oscillatorio

    %EJJINtl-

    oscyhsj~~ drgaj~cy

    Osciblnte

    sviingande; osciUerande

    101-14-04 oscillation

    (702-02-01 MOD) Ph6nomkne physique cas-actkris6par une ou plusicurs grandeurs akernativement croissants et dt%roissarn-es.

    Note. - Lc terme oscillation dtsigne aussi un cycle dun tel phhomtme.

    oscillation

    Physical phenomenon characterized by one or more alternately increasing and decreasing quantities.

    Nofe. - The term oscillation is also used to designate one cycle of the phenomenon.

  • 8/10/2019 is.1885.72.2008 Maths

    33/73

    IS 1885 (Part 72) :2008

    IEC6OO5O-101 :1998

    101-14-05

    ap&iodique

    Qualilie un passage non-oscillant dun rdgimc clabli a un autrc.

    aperiodic

    Pertaining [o a non-oscillating change Irom onc steady slalc to another.

    ar

    de

    es

    il

    ja

    pl

    pl

    Sv

    GJy v

    aperiodkch

    aperhidieo

    aperiodic

    3H9%lKffi

    aperiodyezny; nieokresowy

    aperkklico

    aperiodisk

    101-14-06

    101-14-07

    101-14-08

    p&idlque

    Qui sc rcprodui[ idcntiquement

    pour des valeurs en progression arithm6tique de la variable indt$pendante.

    periodic

    Identically recurring at equal intervafs of the independent variable.

    ar

    de

    es

    it

    ja

    pi

    pl

    Sv

    6J~>

    periodisch

    peri6dico

    periodico

    RllW?3ti

    periodyczny; Okresowy

    peri6dico

    periodisk

    p&-iode

    Difference minimale entre deux valcurs de la variable indi$pendante pour lesquelles se reproduisent

    identiquemcnt Ies vafcurs dunc grandeur p.4riodiquc.

    Nole. Le symbole T est utilise pour repr6sentcr la @node Iorsque la variable ind6pendante est le temps.

    period

    Smallest difference between two values of the independent variable at which the values of a periodic

    quantity arc idcnticafly repeated.

    No/e. The symbol T is used for the period when the independent variable is time.

    ar

    dc

    es

    it

    ja

    pl

    pt

    Sv

    ;J y

    Periode; Periodendauer; PeriodenEange

    periodo

    periodo

    Elm

    Okres

    periodo

    svangningstid; period

    fr6quence (symbolc :fl

    Inverse de la gx%iode.

    Note. - Le symhole~est utiliscl principalement lorsque la p&iode est un temps.

    frequency (symbol: N

    The reciprocal of the period.

    Note. - The symbol~is mainly

    used when the period is a time.

    ar

    de

    es

    it

    ja

    p]

    pt

    Sv

    (f:>}l)s>j

    Frequenz

    freeueneia (simfxdo:fl

    frequenza

    EJ?W%

    cz@Qtliwo&

    frequihia

    frekvens

  • 8/10/2019 is.1885.72.2008 Maths

    34/73

    IS 1885 (Part 72) :2008

    IEC6OO5O-101 :1998

    101-14-09

    (702-04 17

    MOD)

    101-14-10

    101-14-11

    101-14-12

    synchrone

    Qualitic chacun dc dcux ph6nom&ws variables clans Ie temps, de deux trames temporelles ou de deux

    signaux dent les instants significaLifs homologies sent tous simultan6s ou sepaks par des intervalles de

    temps de dut+e pratiqucment constante.

    synchronous

    Qualifying two time-varying phenomena, time scales or signals chaneterized by corresponding significant

    instants which arc simultaneous or separated by time intervals of a substantially constant duration.

    &lp

    Ye

    synchron

    es sincrono

    it sincrono

    ja

    m%l Lk

    pi

    synehroniczny

    pt

    sincrono

    Sv synkron

    valeur instantan6e

    Valeur, h

    un ins[ant donnd, dunc grandeur variabk clans k temps.

    instantaneous value

    The value, at a given instan[. of a time-dcpcndcnt quamity.

    ar

    +)4-LJ

    de

    AugenbIickswcrC Ylomentianwert

    Cs

    vator instantinen

    il valore istantaneo

    ja

    F$@Hili

    p] wartoic

    ustalorw

    pl

    valor instantineo

    Sv

    momentanvarde

    valeur de cr~te

    Valcur maximalc dunc grmdcur ckms un intcrvallc dc temps sptcifi6.

    Nole, Dans Ic cas dunc grandeur phiodiquc, linlervalle dc temps a une dur~e 6gale 5

    la p&-iode.

    peak value

    Maximum value of a quan[i[y during a spccificd time interval.

    Note. -

    For a periodic quantity, lhc time interval has a duration equal to the period.

    (4+ + ~

    7C

    Maximalwert; Spitzenwert

    Cs

    valor de crests; valor de pico

    it valore di crests;

    valore di picco

    ja F9R

    pl

    wartoid wczytowa

    pt valor de pico

    Sv

    toppvarde

    valeur de creux

    Valcur minimale dunc grandeur clans un intcrvalle de temps sp6cifi&

    Nole. - Dans ICcas dune gmndcur p&iodique, lintervalle de temps a une dur6c Egale h la pt%iode.

    valley value

    Minimum value of a quantity during

    a specified time interval.

    Note. For a pcnodic quantity, the time interval has a duration equal to the period.

    (~u) ~+ Q

    Ye

    Minimalwert; Talwert

    es

    valor de vane

    it valore di picco negativo

    ja

    W&JiEi

    pl

    warto.$csiodlowa

    pt

    valor de cava

  • 8/10/2019 is.1885.72.2008 Maths

    35/73

    IS 1885 (Part 72) :2008

    IEC6OO5O-101 :1998

    101-14-13

    101-14-14

    valeur de cri%ea creux

    valeurde crtteacr~te

    (tcrmcddsuet)

    Differcncc cntre Ics valeurs de criitc et de crcux clans lC m~me intcrvalle de temps sp6citiL

    Note. Danslecas d'uncgrandeur pLnodiquc, l'intcrvalle detcmps aunedur6e 6gde AlapLriode

    peak-to-valley value

    peak-to-peak value (obsolete)

    Difference between peak and valley values during the same specified time interval.

    Note. Forapcriodic quantity, tbctime intcrvalhas aduration cqualtothepcriod,

    ar

    de

    es

    it

    ja

    p]

    pt

    Sv

    p-%ub ~

    Schwingungsbreite; Schwankung; Spitze-Tal-Wert

    valor de crests a vane

    valore picco-picco

    E-5 e?

    warttic szczytowo-siodlowa; wartosc

    mi~dzyszczytowa (termin nie zafecany w tym sensie)

    valor de pico a cava;

    valor de pico a pico (obsoleto)

    topp-till-dalvarde

    (valeur) moyenne

    (valeur) moyenne arithm6tique

    1) Pour n grandeurs xl, X2, x., quotient de la somme des grandeurs parn :

    Y=~(x1+x2+... +xn)

    n

    2) Pour une grandeur d~pcndant dune variable. quotient de lint6grale de la grandeur entre deux vafeurs

    donn6es de cette variable par la diff&ence des deux vafeurs :

    t~

    1

    Y=

    J

    x(t)dt

    tz tl

    t,

    Notes 1.- Dans le cas dune grandeur p&iodique, lintervalle dint6gration comprend un nombre entier

    de pt%iodes.

    2.- La vafeur moyenne de la grandeur X est repr6sent6e par ~, par(X) ou parXV

    mean (value)

    (arithmetical) mean

    (arithmetical) average

    1) For n quantities xt, x2, . Xn,quotientof the sum of the quantities by n:

    1

    x=(x~+x~+... +xn)

    n

    2) For a quantity depending on a variable, integral of the quantity taken between two given vafues of the

    variable, divided by the difference of the two values:

    2

    1

    Y=

    J

    x(t)dt

    tz 21

    t,

    Notes I. - For a periodic quantity, tbe integration interval comprises an integral number of periods.

    2.- The mean vafue of the quantity X may be denoted by ~, by (X) or by Xa

    Ye

    es

    it

    ja

    p]

    pt

    Sv

    & pM+-h

    (arithmetischer) Mittelwert

    valor medio; media; valor medio arit.rm%cw,media aritmi%ica

    valor medlo; media (aritmetica)

    %% (@i)

    srednia arytmety~, (wartckc) srednia

    valor m6dlo; mi%iia(aritsm%ica)

    aritmetiskt medelvarde

  • 8/10/2019 is.1885.72.2008 Maths

    36/73

    IS 1885 (Part 72): 2008

    IEC6OO5O-101 :1998

    101-14-15

    101-14-16

    (valeur) moyenne quadratique

    (indite : q)

    1) Pour n grandeurs xl, X2, Xn, racine carke positive de la vafeur moyenne de Ieurs carn$s :

    r, ltl?

    1

    q= -%;+X;+... +X;)

    I

    2) Pour

    une grandeur x fonction de la variable t, racine ca.rm%positive de la valeur moyenne du carr~ de

    la grandeur prise sur un intervalle donn~ de la variable :

    Xq:[_,[x(t)ldt]

    t/2

    to+T

    1

    2

    T

    L 10

    J

    Note. - Darrs Ie cas dune grandeur p6riodique, lintervafle dint6gration comprend un nombre entier de

    penodes.

    root-mean-square value (1) (subscript: q)

    rms value (1)

    quadratic value

    1)

    For n quantities xl, X2, . xn, positive square root of the mean vafue of their squares:

    [

    I/2

    Xq=

    ~(x~+x;+...+x:)

    n

    2) For a quantity x depending on a variable

    t,

    positive square root of the mean vafue of the square of the

    quantity taken over a given interval of the variable:

    [1

    V2

    to

    +T

    1

    Xq= ~

    j[

    (t) 2

    dt

    b

    Note. - For a periodic quantity, the integration interval comprises an integral number of periods.

    M

    de

    es

    it

    ja

    pl

    pt

    Sv

    quadratischer Mittelwert

    vafor medio cuadratico

    (subindicc: q)

    valore medio quadratic; media quadratic

    =%%Mli&

    Srednia kwadratowa

    valor quadratic medio; midia quadratic

    kvadrtiskt medelvarde

    valeur efficace

    Pour une grandeur ddpendant du tcmps, racinc carr(te positive de la valeur moyenne du carr~ de la

    grarrdcur sur un intcrvallc dc tcmps donn~.

    Noles 1.- Dans lc cas dunc grandeur pdriodiquc, Iintervallc dc temps comprcnd un nombre enticr dc

    pcnodcs.

    2.- Pour unc grandeur sinusoidal a(f)= Am cos (O f + ~), la valcur eflicacc cst A = A W

    root-mean-square value (2)

    rms value

    (2)

    effective value

    For a time-dcpcndcnt quantity, positive square root of the mean value of the square of the quantity taken

    over a given time inLcrval.

    No[es 1.- For a periodic quantity, the time interval comprises an in~egral number of pcnods,

    2.- For a sinusoidal quantity a(t)=

    Am cos (W I + ~),

    therms value is

    A = A fi

    ar

    dc

    es

    it

    ja

    p]

    pt

    Sv

    (Y) k%>

    +-s-

    L .AJ .A +jJl y i Al : ilk

    Q

    Effektivwert

    vafor eficaz

    valore efficace

    $%fffi

    wartoic skuteczna

    valor eficaz

    effektivvarde

  • 8/10/2019 is.1885.72.2008 Maths

    37/73

    IS 1885 (Part 72) :2008

    IEC6OO5O-101 :1998

    101-14-17

    (valeur) moyenne giomitrique

    (indite :,g)

    1) Pourngrmdeurs positives x1,x2, . . .xn. racinen-i&me positive deleurproduit:

    Xg = (XlXl... ..xn)lJn

    2) Pour unc grandeur x fonction de la variable r, grandeur Xg d6termin6e 2 partir des vateurs de 1a

    grandeur x(t) par Iexpression

    T

    J

    x(t) ~t

    g 1 log_

    log

    Xmf T x~f

    o

    Oh~ef est

    une vafeur de r&f6rence.

    Note. - Dans le cas dune grandeur p6riodique, lintervafle dint@ration comprend un nombre entier de

    pt%iodes.

    geometric average (subscript: g)

    logarithmic average

    $:eometri~ mean v~ue

    1) For n positive quantities xl, X2, Xn, positive nth root of heir product:

    Xg= (XI-X2...xn)i)n

    2) For a quantity x depending on a variable t, quantity Xg calculated from the values of the given

    quantity by the expression

    T

    J

    x(t) ~~

    g 1 log_

    log

    Xmf T

    x ref

    o

    where ~f is a reference vatue.

    No/e. - For a periodic quantity, the integration intervat comprises an integraf number of periods.

    N

    (g:Y}~)&Q~Y&-J~J~PG~~* Q

    de

    geometrischer Mittelwert

    es media geomt%rica;vator medio geom&trico (subindice: g)

    it media geometric; valore medio geometric

    ja

    #l%F@

    p]

    irednia geometryczna

    pl valor m~dio geom6trico; mcldla geom6trica

    Sv geometrikt medelvarde

    101-14-18 (valeur) moyenne harmonique

    (indite : h)

    1)

    2)

    Pour n grandeurs xl, x2, Xn, inverse de la vafeur moyenne dc leurs inverses :

    ~=~(~+~+...+~)

    x~

    n

    x] X2

    n

    Pour une grandeur x fonction de la variable t, grandeur Xh ddinie comme linverse de la valcur

    moyenne de Iinverse dc la grandeur donn~e :

    11

    ldt

    J

    .

    x~ T o X(t)

    Note. - Dans Iecas dune grarrdeur p6riodique, lintervatle din@ration comprend un nombre entier de P6riodes.

    harmonic average

    (subscript: h)

    inverse average

    harmonic mean value

    1) For n quantities xl, X2, . . Xn,reciprocal of the mean vatue of their reciprocals:

    *= I(L+L+...++)

    n xl X2

    2) For a quantity x depending on a variable t, quantity Xhdefined by the reciprocal of the mean vatue of

    the reciprocal of the given quantity:

    llTldt

    J

    =

    x~

    T o x t

    No/e. - For a periodic quantity, the integration interval comprises an integral number of periods.

    ar

    (hI#)#+~~;~~~:@+ by~

    de

    harmonischer Mittelwert

    es

    valor medio armiinico (subfndice: h); media armdniea

    it rneda armonicw, valore medlo armonico

    ja

    a%t~e

  • 8/10/2019 is.1885.72.2008 Maths

    38/73

    IS 1885 (Part 72): 2008

    IEC6OO5O-101 :1998

    101-14-19 oscillation amortie

    Oscillation clans laquelle lcs vrdeurs de cr~te h creux successive d6croissent.

    damped oscillation

    Oscillation

    whose successive peak-to-valley values decrease.

    ar

    de

    es

    it

    ja

    pl

    pt

    Sv

    il.i&4 &i+i

    gediirnpfte Schwingung

    oscilaci6n amortiguada

    oscillazione smorzata

    *S%%

    drganie thunione

    oscilaqiio amortecida

    dampad svangning

    101-14-20

    coefficient damortissement

    (symbole: 3)

    Grandeur 5 clans lexpression A. e-~ f fir) dune oscillation amortie exponentiellement, oii At) est une

    fonction p6riodique.

    damping coeftlcient (symbol: 5)

    Quantity ~in the expression

    A. e-~fll

    of an exponentially damped oscillation, whemflf) is a periodic function.

    Ye

    es

    it

    jii

    pi

    pl

    Sv

    Abklingkoefflz(ent -

    cocficiente de amortiguarniento (simholo: 6)

    coeftlciente di smorzamento

    is@* (%3% : ~)

    wsp6iczynnik tiumienia

    coeficiente de amortecimento

    dampningskoeftlcient

    101-14-21

    oscillation forc6e

    Oscillation impos~e clans un systemc physique par une action exttkieure.

    forced oscillation

    Oscillation produced in a physical system by an external excitation.

    ar

    dc

    es

    it

    ja

    p]

    pt

    Sv

    erzwur~gene Schwingung

    oscilacion forzada

    oscillazione forzata

    WmfIWJ

    drganie wymuszone

    oscilaqiio forqada

    p~tvingad svangning

    101-14-22

    oscillation Iibre

    Oscillation clans un syst~me physique lorsque Iapport d6nergie extt%ieure a cess6.

    free oscillation

    Oscillation in a physical

    system when the supply of external energy has been removed,

    ar

    de

    es

    it

    ja

    pl

    pt

    Sv

    J J

    . .

    freie Schwingung

    oseilaci6n libre

    oscillazione libera

    EIQI%NJ

    drganie swobodne; drganie wkwne

    oscila@io Iivre

    fri svangning

  • 8/10/2019 is.1885.72.2008 Maths

    39/73

    IS 1885 (Part 72): 2008

    IEC 60050-101:1998

    101-14-23

    r(isonance

    Ph&nom&sesepmduisrmtdans un syst~me physique Iorsque lap6riode dune oscillation forc6eest telle

    que la grandeur carack%istique de loscillation ou sa d6riv6e par rapport au temps passe par un extr6mum.

    No/e. - A la n%onance, la pt%iode de loscillation fon%e est souvent voisine de celle dune oscillation

    libre.

    resonance

    Phenomenon Occurnng in an physical system when the period of a forced oscillation is such that the

    characteristic quantity of the oscillation or its time derivative reaches an extremum.

    Note. - At resonance, the period of the forced oscillation is often close to that of a free oscillation.

    101-14-24

    101-14-25

    ar

    &J

    de Resonanz

    es resommcia

    it

    risonan? a

    ja *%

    pl rezonans

    pt

    ressotinaa

    Sv

    resonans

    cycle

    Ensemble des 6tats ou des valeurs par Iesquels un phsnom~ne ou une grandeur passe darts un ordre

    d6termin6, qui peut i%rer6p6t6.

    cycle

    Se[

    of

    states or of values through which a phenomenon or a quantity passes in a given repeatable order.

    ;JJ>

    2

    Zyklus

    es ciclo

    it ciclo

    ja

    ?d?lb

    p]

    Cyld

    pt ciclo

    Sv

    cykel

    oscillation de relaxation

    Oscillation

    dent chaque cycle ri%ltc dune accumulation Iente dt%rergie clans un ~lement dun syst?me

    physique, suivic du transfcrt brusque dc cettc Energic clans un autre 616mcnt ou de sa dissipation.

    relaxation oscillation

    Oscillation in which every cycle is the result of energy being accumulated slowly in onc element of a

    physical systcm, then transferred rapidl y to another one or dissipated.

    ar

    de

    Cs

    it

    ja

    p]

    pt

    Sv

    Rdaxationsschwingung

    oscilaci6n de relajaci6n

    oscillazione di rilassamento

    H%ill&fi

    drganie rek+ks.acyjne

    oscilagiio de relaxaqiio

    vippsvangning

    101-14-26 impulsion

    (16 1-02-02 MOD) Variation dune grandeur physique constitute par un passage dune vdeur a une autre suivi imrrkdiatcmcnt

    (702-03-01

    MOD)

    ou apr% un certain intervalle de temps dun retour a