ishizuka chap one

Upload: sheri-dean

Post on 04-Jun-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Ishizuka Chap One

    1/44

    Scattering of Acoustic and Electromagnetic

    Waves by Small Impedance Bodies of

    Arbitrary Shapes

  • 8/13/2019 Ishizuka Chap One

    2/44

  • 8/13/2019 Ishizuka Chap One

    3/44

    Scattering of Acoustic and Electromagnetic

    Waves by Small Impedance Bodies of

    Arbitrary Shapes

    Applications to Creating New Engineered

    Materials

    Alexander G. Ramm

    Department of Mathematics

    Kansas State University, Manhattan, KS 66506-2602, USA

    [email protected]

    MOMENTUM PRESS, LLC, NEW YORK

  • 8/13/2019 Ishizuka Chap One

    4/44

    Scattering of Acoustic and Electromagnetic Waves by Small Impedance Bodies of Arbitrary Shapes

    Copyright Momentum Press, LLC, 2013.

    All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or

    transmitted in any form or by any meanselectronic, mechanical, photocopy, recording or any

    other except for brief quotations, not to exceed 400 words, without the prior permission of the

    publisher.

    First published by Momentum Press, LLC

    222 East 46th Street, New York, NY 10017

    www.momentumpress.net

    ISBN-13: 978-1-60650-621-9 (hard cover, case bound)

    ISBN-10: 1-60650-621-8 (hard cover, case bound)

    ISBN-13: 978-1-60650-622-6 (e-book)

    ISBN-10: 1-60650-622-6 (e-book)

    DOI: 10.5643/9781606506226

    Cover Design by Jonathan Pennell

    10 9 8 7 6 5 4 3 2 1

    Printed in the United States of America.

  • 8/13/2019 Ishizuka Chap One

    5/44

    Contents

    Contents v

    Preface ix

    Introduction xv

    1 Scalar wave scattering by one small body of an arbitrary shape 1

    1.1 Impedance bodies. . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.2 Acoustically soft bodies (the Dirichlet boundary condition). . . 11

    1.3 Acoustically hard bodies (the Neumann boundary condition). . 14

    1.4 The interface (transmission) boundary condition. . . . . . . . . 18

    1.5 Summary of the results . . . . . . . . . . . . . . . . . . . . . . . . 26

    2 Scalar wave scattering by many small bodies of an arbitrary shape 27

    2.1 Impedance bodies. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    2.2 The Dirichlet boundary condition. . . . . . . . . . . . . . . . . . 36

    2.3 The Neumann boundary condition. . . . . . . . . . . . . . . . . 39

    2.4 The transmission boundary condition. . . . . . . . . . . . . . . . 42

    2.5 Wave scattering in an inhomogeneous medium. . . . . . . . . . 44

    v

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    6/44

    vi A. G. Ramm

    2.6 Summary of the results. . . . . . . . . . . . . . . . . . . . . . . . . 49

    3 Creating materials with a desired refraction coefficient 51

    3.1 Scalar wave scattering. Formula for the refraction coefficient. . 51

    3.2 A recipe for creating materials with a desired refraction

    coefficient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    3.3 A discussion of the practical implementation of the recipe. . . . 55

    3.4 Summary of the results. . . . . . . . . . . . . . . . . . . . . . . . . 56

    4 Wave-focusing materials 59

    4.1 What is a wave-focusing material? . . . . . . . . . . . . . . . . . 59

    4.2 Creating wave-focusing materials. . . . . . . . . . . . . . . . . . 62

    4.3 Computational aspects of the problem. . . . . . . . . . . . . . . 73

    4.4 Open problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

    4.5 Summary of the results. . . . . . . . . . . . . . . . . . . . . . . . . 78

    5 Electromagnetic wave scattering by a single small body of an

    arbitrary shape 79

    5.1 The impedance boundary condition. . . . . . . . . . . . . . . . 79

    5.2 Perfectly conducting bodies. . . . . . . . . . . . . . . . . . . . . . 84

    5.3 Formulas for the scattered field in the case of EM wave

    scattering by one impedance small body of an arbitrary shape. 85

    5.4 Summary of the results. . . . . . . . . . . . . . . . . . . . . . . . . 94

    6 Many-body scattering problem in the case of small scatterers 95

    6.1 Reduction of the problem to linear algebraic system. . . . . . . 95

    6.2 Derivation of the integral equation for the effective field. . . . . 100

    6.3 Summary of the results. . . . . . . . . . . . . . . . . . . . . . . . . 102

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    7/44

    Scattering of Acoustic and Electromagnetic Waves and Applications vii

    7 Creating materials with a desired refraction coefficient 103

    7.1 A formula for the refraction coefficient. . . . . . . . . . . . . . . 103

    7.2 Formula for the magnetic permeability. . . . . . . . . . . . . . . 105

    7.3 Summary of the results. . . . . . . . . . . . . . . . . . . . . . . . . 106

    8 Electromagnetic wave scattering by many nanowires 107

    8.1 Statement of the problem. . . . . . . . . . . . . . . . . . . . . . . 107

    8.2 Asymptotic solution of the problem. . . . . . . . . . . . . . . . . 112

    8.3 Many-body scattering problem equation for the effective field. 116

    8.4 Physical properties of the limiting medium. . . . . . . . . . . . . 120

    8.5 Summary of the results. . . . . . . . . . . . . . . . . . . . . . . . . 122

    9 Heat transfer in a medium in which many small bodies are

    embedded 125

    9.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1259.2 Derivation of the equation for the limiting temperature. . . . . 127

    9.3 Various results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

    9.4 Summary of the results. . . . . . . . . . . . . . . . . . . . . . . . . 136

    10 Quantum-mechanical wave scattering by many potentials with

    small support 137

    10.1 Problem formulation. . . . . . . . . . . . . . . . . . . . . . . . . . 137

    10.2 Proofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

    10.3 Summary of the results. . . . . . . . . . . . . . . . . . . . . . . . . 146

    11 Some results from the potential theory 147

    11.1 Potentials of the simple and double layers. . . . . . . . . . . . . 147

    11.2 Replacement of the surface potentials. . . . . . . . . . . . . . . . 158

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    8/44

    viii A. G. Ramm

    11.3 Asymptotic behavior of the solution to the Helmholtz equation

    under the impedance boundary condition. . . . . . . . . . . . . 173

    11.4 Some properties of the electrical capacitance. . . . . . . . . . . 177

    11.5 Summary of the results. . . . . . . . . . . . . . . . . . . . . . . . . 183

    12 Collocation method 185

    12.1 Convergence of the collocation method. . . . . . . . . . . . . . . 185

    12.2 Collocation method and homogenization.. . . . . . . . . . . . . 192

    12.3 Summary of the results. . . . . . . . . . . . . . . . . . . . . . . . . 194

    13 Some inverse problems related to small scatterers 195

    13.1 Finding the position and size of a small body from the

    scattering data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

    13.2 Finding small subsurface inhomogeneities. . . . . . . . . . . . . 202

    13.3 Inverse radiomeasurements problem. . . . . . . . . . . . . . . . 20713.4 Summary of the results. . . . . . . . . . . . . . . . . . . . . . . . . 210

    Appendix 211

    A1. Banach and Hilbert spaces.. . . . . . . . . . . . . . . . . . . . . . . 211

    A2. A result from perturbation theory. . . . . . . . . . . . . . . . . . . . 213

    A3. The Fredholm alternative. . . . . . . . . . . . . . . . . . . . . . . . 214

    Bibliographical Notes 223

    Bibliography 229

    Index 239

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    9/44

    Preface

    The author wishes to let the reader know what this book is about and what

    practical conclusions engineers can find in this book.

    In this book the author presents systematically his theory of scalar wave

    scattering as well as electromagnetic (EM) wave scattering by one and many

    small bodies of arbitrary shapes. If the characteristic size of a body is a, then

    smallness of the body means that ka 1, where kis the wave number, k= 2,

    and is the wavelength. In a homogeneous medium =v T, v is the wave

    velocity and T is the period of the wave,= 2T is its frequency and k=2 =

    v.

    The boundary conditions on the boundarySof a bodyD, that we impose,

    include the impedance boundary condition, the Dirichlet, the Neumann, and

    the transmission (interface) boundary conditions for scalar wave scattering

    and the impedance boundary condition for EM wave scattering.

    In all cases, we give explicitly analytical formulas for the field scattered by

    one small body of anarbitrary shape. These results are new.

    The theory of wave scattering by small bodies was originated by Rayleigh

    (1871), who understood that the main term of the scattered field under his

    assumptions is given by the dipole radiation. Later it was found that the mag-

    netic dipole radiation for perfectly conducting body is of the same order of

    ix

  • 8/13/2019 Ishizuka Chap One

    10/44

    x A. G. Ramm

    magnitude as the electric dipole radiation. Rayleigh and his followers did not

    give analytic formulas for calculating the induced dipole moment on a small

    body of an arbitrary shape. This was done nearly 100 years later in Ramm

    (1969a,b,1970,1971a,b,c) and presented in the booksRamm(1980b,1982,

    2005b). The new results on wave scattering by small bodies of arbitrary shapes,

    presented in this book, are based on the papersRamm(2007a,b,c,d,e,f,g,i,j,

    2008a,b,d,2009a,b,e,2010a,b,c,2011a,b,2013a,b,c,d,f). These results include

    an analytical and numerical solution of wave scattering by many small bodies

    and a derivation of the integral equation for the effective field in the medium

    in which many small bodies (particles) are embedded. The important point

    of our theory is the reduction of the many-body scattering problem to finding

    some numbers rather than the boundary functions. This simplifies the prob-

    lem drastically and allows one to solve it. On the other hand, this reduction is

    asymptotically exact asa 0.

    Our physical assumptions include the case when the distance dbetween

    neighboring particles is much smaller than the wavelength,d , although

    a d. These assumptions imply that the "multiple scattering effects" are cru-

    cial. By these effects we understand that the influence of the field scattered by

    all particles, except one, on this particle. It is not possible to use the Borns

    approximation when these effects are crucial.

    Although the theory of wave scattering by one and many small bodies is of

    great interest by itself, we illustrate its possible applications by showing how

    one can create a material with a desired refraction coefficient by embedding in

    a given material many small impedance particles. A clear recipe is formulated

    for doing this. Practical implementation of this recipe is discussed.

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    11/44

    Scattering of Acoustic and Electromagnetic Waves and Applications xi

    Another problem of interest is creating materials which have a desired

    wave-focusing property. This means that their refraction coefficient is cho-

    sen so that the corresponding radiation pattern approximates well a desired

    pattern, that is, a desired function on a unit sphere.

    So far we have discussed mostly the scattering of scalar waves. Similar

    results are obtained for electromagnetic (EM) wave scattering. We derive an-

    alytical formulas for the EM field scattered by one impedance (or perfectly

    conducting) small body of an arbitrary shape, solve many-body EM wave

    scattering problems when the scatterers are small impedance bodies of an

    arbitrary shape, derive the equation for the effective field in the medium in

    which very many such bodies are embedded, and calculate the refraction

    coefficient in this medium.

    No such results were obtained earlier, to our knowledge. These formulas

    are used for developing a numerical method for solving many-body scatter-

    ing problems in the case of small impedance bodies of an arbitrary shape. An

    equation for the effective field is studied. This equation leads to new physical

    effects in the new medium, created by the embedding many small particles.

    These effects include change of the refraction coefficient and of magnetic

    permeability. One may use these results in practice in order to change the

    refraction coefficient in the desired direction.

    The author discussed also some physical problems of interest. For exam-

    ple, wave scattering by many nanowires (thin cylinders) is discussed. Heat

    propagation in the medium, in which many small bodies are embedded, is

    investigated. Theory of quantum-mechanical scattering by many potentials

    with small supports is developed.

  • 8/13/2019 Ishizuka Chap One

    12/44

    xii A. G. Ramm

    Collocation method is developed for solving the equation for the effective

    field. Its convergence is proved and the rate of convergence is given. This col-

    location method is used for a justification of a homogenization-type theory.

    There are many books and papers dealing with homogenization theory. Quite

    often it is assumed in these books that periodicity condition with a parameter

    is satisfied, that the spectrum of the related problem is discrete, and that the

    corresponding operator is selfadjoint. None of these assumptions are used in

    our theory. We develop a version of the theory that fits our assumptions.

    Several inverse problems are studied: finding the position and size of a

    small body from the scattering data for two scatterers, one of which is large

    and known; finding small subsurface inhomogeneities from the scattering

    data measured on the surface; inverse radiomeasurements problem: finding

    the EM field distribution in an aperture of a mirror antenna in radio-wave

    diapason from the measurements of the field scattered by a small probe.

    We also derive some results in potential theory that are used in this

    book. Among these results some are new. For example, necessary and suf-

    ficient conditions are given for a double-layer potential to be representable

    as a single-layer potential, and vice versa; asymptotic of the solution to the

    Helmholtz equation satisfying the impedance boundary condition is given as

    the impedance tends to infinity; a variational principle is derived for pos-

    itive quadratic forms, and some classical variational principles for electric

    capacitance are obtained from this abstract principle.

    This book is written for a wide audience which includes mathematicians,

    specialists in numerical analysis, engineers, and physicists. The author hopes

    that his theory will be implemented practically, in materials science and other

    areas. Some results on such a numerical implementation the reader can find

  • 8/13/2019 Ishizuka Chap One

    13/44

    Scattering of Acoustic and Electromagnetic Waves and Applications xiii

    inAndriychuk and Ramm(2010),Andriychuk and Ramm(2011), and Ramm

    and Andriychuk (2014b).

    The book is essentially self-contained: the results necessary for under-

    standing the details of the derivations are provided with proofs.

    Keywords

    Acoustic waves, electromagnetic eaves, eave scattering, small impedancebodies of an arbitrary shape, wave scattering by small impedance bodies

    of arbitrary shapes, creating materials with a desired refraction coefficient,

    meta-materials, nanowires, radio measurements, inverse problems

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    14/44

  • 8/13/2019 Ishizuka Chap One

    15/44

    Introduction

    What is this book about? Why was it written?

    This book is about wave scattering by one and many small scatters of an

    arbitrary shape. The interest to this question goes back to Rayleigh (1871), who

    understood that the main term in the scattered field will be the dipole radia-

    tion. Under his assumptions the smallness of the body means k a 1, where

    k= 2

    is the wave number, ais the characteristic size of the body, and the or-

    der of magnitude of the scattering amplitude is O(a3) at a large distance from

    the small body. Rayleigh did not give analytical formulas for calculating the

    field scattered by a small body of an arbitrary shape. Such formulas were ob-

    tained for balls (of an arbitrary shape) in 1908 by Mie. He did not assume that

    the scatterer, the ball, is small. However, his method is based on the separation

    of variables and cannot be used for bodies of an arbitrary shape.

    For small bodies of an arbitrary shape, analytical formulas allowing one

    to calculate scattered field with any desired accuracy were obtained by the

    authorRamm(1969b,1970) about 100 years after Rayleighs work of 1871.

    There is a very large literature on wave scattering by small bodies. The rea-

    son is simple: this problem is of interest in many applications. Let us mention

    light scattering by atmosphere dust, by cosmic dust, by colloidal particles in

    xv

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    16/44

    xvi A. G. Ramm

    water, finding the location and size of the small subsurface inhomogeneities

    from the observation of the field, scattered by these inhomogeneities and

    measured on the surface.

    In this book much attention is given to creating materials with a desired

    refraction coefficient by embedding many small particles into a given ma-

    terial so that these particles have prescribed boundary impedances and are

    distributed in the given material with a prescribed density.

    It turns out that a wide range of the desired refraction coefficients can be

    obtained in this way. A recipe for creating a desired refraction coefficient in a

    given material is formulated. Namely, if an arbitrary fixed bounded domain

    is given, the refraction coefficient of the material in this domain is known to

    be n0(x), outside of n0 =const, and if one wishes to create in a desired

    refraction coefficient n(x), then the author gives a recipe for doing this. He

    tells how many small particles of a characteristic size ashould be distributedin , and with what density (number of particles per unit volume) and with

    what boundary impedances these small particles should be distributed in or-

    der that the resulting medium will have the refraction coefficient that differs

    from the desiredn(x) as little as one wishes.

    In particular, one can create materials with negative refraction coefficient.

    This is of interest in connection with metamaterials.

    A refraction coefficient can be created so that the resulting material will

    have wave-focusing property.

    This means that the plane wave, scattered by the body, will have the radia-

    tion pattern which approximates well a desired function on the unit sphere.

    For example, the scattered field will mostly be scattered in a desired solid

    angle.

  • 8/13/2019 Ishizuka Chap One

    17/44

    Scattering of Acoustic and Electromagnetic Waves and Applications xvii

    This book was written so that the novel methods for solving one- and

    many-body wave scattering problems be available for a wide audiences in-

    cluding mathematicians, engineers, physicists, specialists in computational

    mathematics and materials science, and graduate students in these areas. The

    material presented is interdisciplinary, and the author tries to present this

    material in a self-contained way and so that it will be understandable to a

    reader from the above broad audience.

  • 8/13/2019 Ishizuka Chap One

    18/44

  • 8/13/2019 Ishizuka Chap One

    19/44

    CHAPTER1

    SCAL AR WAVE SCATTERING BY ONE

    SMALL BODY OF AN ARBITRARY

    SHAPE

    1.1 Impedance bodies.

    Consider the following wave scattering problem

    (2 + k2)u= 0 inD := R3 \ D, (1.1.1)

    u

    N= u onS, (1.1.2)

    u= u0 + v, (1.1.3)

    v

    |x| i kv= o

    1

    |x|

    , |x| . (1.1.4)

    Here k> 0 is a wave number, k= const, Dis a bounded domain with a smooth

    boundaryS, N is the unit normal to Spointing out ofD, uNis the limiting

    value of the normal derivative ofuon S from D, is a constant which we

    1

  • 8/13/2019 Ishizuka Chap One

    20/44

    2 A. G. Ramm

    call the boundary impedance,u0 = ei kx is the incident field, the plane wave,

    S2, is a unit vector, S2 is the unit sphere, vis the scattered field, condi-

    tion (1.1.4) is the radiation condition at infinity. It is assumed to be satisfied

    uniformly with respect to the unit vector x0 = x|x|

    , that is, with respect to the di-

    rection along whichxtends to infinity. Smoothness ofSthroughout this book

    means that the equation of the surface Sin local coordinates is aC1, func-

    tion. The local coordinates are defined as follows. Fix a point s Sand let it

    be the origin of the coordinate system, the z-axis of which is directed along

    the normal Ns to Sat the point s, and the plane x,y is tangent to Sat this

    point. We often write x1, x2, x3 in place ofx,y, z, and then x= (x1, x2, x3). Let

    x3 = f(x1, x2) be the equation ofSin this coordinate system. Then, by con-

    struction, f(0,0) = 0, f(0,0)

    xj= 0,j = 1,2. The assumption S C1,, 0 < 1,

    means that |f(x1, x2) f(x1, x

    2)| C[(x1 x

    1)

    2 + (x2 x2)

    2]1/2, where C is a

    constant that does not depend ons, xandx, and = e1

    x1+ e

    2

    x2, {e

    j}3

    j=1is

    the Cartesian basis ofR3.

    The scattering problem (1.1.1)(1.1.4) can be considered, for example, as

    the scattering of an acoustic wave. In this case uhas the physical mean-

    ing of the pressure or acoustic potential. The Dirichlet boundary condition

    u|S= 0 describes acoustically soft body (zero pressure on the boundary) and

    the Neumann boundary conditionuN|S= 0 describes acoustically hard body

    (the normal component of the velocity uvanishes on S). The impedance

    boundary condition describes a linear relation between the pressure and the

    normal component of the velocity onS.

    The first task is to prove that the scattering problem has a solution and

    this solution is unique. In this case we say that the scattering problem has a

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    21/44

    Scattering of Acoustic and Electromagnetic Waves and Applications 3

    unique solution. If we want to state that there is at most one solution, but the

    existence of the solution is not asserted, then we say there exists at most one

    solution.

    Theorem 1.1.1. Assume that Im 0. Then problem(1.1.1)(1.1.4) has at most

    one solution.

    Proof. Since the problem is linear it is sufficient to prove that the correspond-

    ing homogeneous problem, that is, the problem with u0 = 0, has only the

    trivial solution u= 0. To prove this, multiply equation (1.1.1) byu, the complex

    conjugate ofu, subtract the complex conjugate equation(1.1.1) multiplied by

    uand integrate over the region D BR:= DR, whereR> 0 is a large number

    that we take to infinity andBR = {x: |x| R} is a ball of radius Rcentered at

    the origin. The origin we take insideDarbitrarily. The result is

    0 =

    D

    R

    [u(2 +k2)u u(2 + k2)u]d x=

    SR

    (uuN uuN)d s

    S

    (uuN uuN)d s

    (1.1.5)

    Here the Greens formula was used.

    From the radiation condition(1.1.4) one gets:

    SR

    (uuN uuN)d s= 2i k

    SR

    |u|2d s+ o(1), R . (1.1.6)

    From the impedance boundary condition (1.1.2) one gets:

    S

    (uuN uuN)d s=

    S

    (|u|2 +|u|2)d s= 2iIm

    S

    |u|2d s. (1.1.7)

    From equations (1.1.5)(1.1.7) it follows that

    limRkSR |u|

    2d s ImS|u|2d s = 0. (1.1.8)

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    22/44

    4 A. G. Ramm

    If Im 0, then relation (1.1.8) implies

    limR

    SR

    |u|2d s= 0. (1.1.9)

    This and the radiation condition (1.1.4)imply thatu= 0 outside any ballBR

    D. This claim is proved inRamm (1986), p.25. It is known as Rellichs lemma.

    Theorem1.1.1is now a consequence of the unique continuation principle for

    a solution to homogeneous Helmholtz equation: if such a solution vanishes on

    an open subset in the domain D where it solves the homogeneous Helmholtz

    equation, then this solution vanishes everywhere inD.

    Theorem1.1.1is proved.

    Remark 1.1.1. Physically the impedance can be any constant satisfying the

    condition Im 0 which guarantees the uniqueness of the solution to the

    scattering problem(1.1.1)(1.1.4).

    Let us now prove the existence of the solution to the scattering problem

    (1.1.1)(1.1.4).

    Theorem 1.1.2. Problem(1.1.1)(1.1.4)has a (unique) solution. This solution

    can be found of the form

    u(x) = u0(x) +

    Sg(x, t)(t)d t, (1.1.10)

    g(x,y) :=ei k|xy|

    4|xy|. (1.1.11)

    The function(t)in(1.1.10)is uniquely determined.

    Proof. For any function (1.1.10) solves equation (1.1.1) and satisfies condi-

    tions (1.1.3)(1.1.4). Therefore, it solves problem (1.1.1)(1.1.4) if and only if

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    23/44

    Scattering of Acoustic and Electromagnetic Waves and Applications 5

    can be found so that condition (1.1.2) is satisfied, that is,

    u0N u0 +A

    2T= 0, (1.1.12)

    where

    A := 2

    S

    g(s, t)

    NS(t)d t, T :=

    S

    g(s, t)(t)d t. (1.1.13)

    Formula

    NSSg(x, t)(t)d txD,xs =A

    2(1.1.14)

    is proved in Section 11.1, see also Gnter (1967). Equation (1.1.12) is of

    Fredholm type because operatorsAand Tare compact in C(S), see Appendix.

    Therefore, the existence of the solution to equation (1.1.12)follows from the

    Fredholm alternative (see Appendix) if one proves that the homogeneous

    equation (1.1.12) has only the trivial solution. The homogeneous equation

    (1.1.12) is of the form

    A2

    T= 0, (1.1.15)

    which is

    uN u= 0 onS. (1.1.16)

    By Theorem 1.1.1 the corresponding function u(x) = 0 in D because it

    solves equation (1.1.1)in D, satisfies the radiation condition (1.1.4) and the

    boundary condition (1.1.2).

    Ifu =0 in D, then u = 0 on S because potentials of a single layer are

    continuous in R3, see Section11.1.Thus,usolves equation (1.1.1) inDand

    satisfies condition (1.1.2). This implies thatu= 0 in D. Indeed, multiply equa-

    tion (1.1.1) in Dbyu, use Greens formula and the boundary condition (1.1.2),

    and get

    2iImS

    |u|2d s= 0. (1.1.17)

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    24/44

    6 A. G. Ramm

    If Im = 0, thenu = 0 onS, souN = 0 onSandu = 0 inDby the uniqueness

    of the solution to the Cauchy problem for the Helmholtz equation. Ifu = 0 in

    DD then= u+NuN= 0, and Theorem 1.1.2 is proved. If Im= 0, then one

    deals with the real number in (1.1.2).

    If, as we assume, the bodyDis sufficiently small, thenk2 is not an eigen-

    value of the Laplacian inDalso in the case Im = 0. So, in this case alsou= 0

    inD D and = 0.

    Theorem1.1.2is proved.

    The existence and uniqueness of the solution to the scattering problem

    does not depend on the size of the body D. This size we measure by the num-

    bera:= 12 diamD. We assume that the body is small in the sensek a 1. This

    assumption allows us to derive analytic, closed form formulas for the field,

    scattered byD, at the distancesd a, in the "far zone."

    Our next task is to derive an analytical formula for the scattered field at the

    distance |x| a. To do this, take into account the following formula

    ei k|xt|

    4|x t|=

    ei k|x|i kx0t

    4|x|

    1 + O

    |t|

    |x|

    , |t| a. (1.1.18)

    Herex0 = x|x|

    . Formula (1.1.18) can be established easily. One has:

    |x t| = |x|

    1

    2x0 t

    |x|+

    |t|2

    |x|2 = |x|

    1 + O

    |t|

    |x|

    (1.1.19)

    and

    ei k|xt| = ei k|x|i kx0t+O

    |t|2

    |x|

    = ei k|x|i kx

    0t

    1 + O

    |t|2

    |x|

    . (1.1.20)

    If|t| aanda is small, then O

    |t|2

    |x|

    O

    |t||x|

    , s o (1.1.18) holds. In what follows

    we denotex0 = and |x| = r. One hasS

    g(x, t)(t)d t=ei kr

    4r

    S

    ei kt(t)d t

    1 + Oa

    r

    . (1.1.21)

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    25/44

    Scattering of Acoustic and Electromagnetic Waves and Applications 7

    Letg(r) = ei kr

    4r and

    Q:=

    S(t)d t. (1.1.22)

    If

    |Q|

    St(t)d t

    , (1.1.23)then one can write

    S

    ei kt(t)d t S

    (t)d t= Q, (1.1.24)

    wherethe sign stands for the asymptotic equality as a 0.

    If (1.1.23) holds then

    u(x) u0(x) + g(r)Q, r= |x| a. (1.1.25)

    Therefore, the solution of the scattering problem is completed if the number

    Qis found.

    To findQwe use the exact integral equation (1.1.12). However, we do not

    solve it for, but find the main term of the asymptotic ofQas a 0. To do

    this, integrate equation (1.1.12) overSand evaluate the significance of each

    term asa 0.

    The first term is

    I1:=

    S

    u0Nd s=

    D

    2u0d x= k

    2

    D

    u0d x= O(a3), (1.1.26)

    where we took into account that

    Du0d x

    Dd x= |D| = O(a3), (1.1.27)

    and |D| := Vis the volume ofD.

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    26/44

    8 A. G. Ramm

    The second term is

    I2:=

    Su0d s= O(a2), (1.1.28)

    where S

    d s= |S| = O(a2), (1.1.29)

    and |S| is the surface area ofS.

    The third term is

    I3:=

    S

    A

    2 d s=

    Q

    2 +

    1

    2

    SAd s. (1.1.30)

    We claim that S

    Ad s

    S

    A0d s=

    Sd s= Q, (1.1.31)

    where

    A0 := 2

    S

    g0(s, t)

    NS(t)d t, g0(x, t) :=

    1

    4|x t|. (1.1.32)

    Indeed, one has

    A= 2

    D

    NS

    ei k|st|

    4|s t|(t)d t

    = 2

    S

    NS

    1 + i k|s t| + O(k2|s t|2)

    4|s t|

    (t)d t

    =A0+

    S

    O(|s t|)(t)d t

    A0 asa 0. (1.1.33)

    Let us check that S

    A0d s=

    Sd t. (1.1.34)

    This is an exact relation. One has

    2

    S

    d s

    S

    NS

    1

    4|s t|(t)d t=

    S

    d t(t)2

    S

    NS

    1

    4|s t|d s

    =

    S(t)d t. (1.1.35)

  • 8/13/2019 Ishizuka Chap One

    27/44

    Scattering of Acoustic and Electromagnetic Waves and Applications 9

    Here we have used the known formula (see Section 11.1):

    2

    S

    NS

    1

    4|s t|d s= 1, t S. (1.1.36)

    Proof of this formula is given in Section11.1.

    Thus,

    I3 Q, asa 0. (1.1.37)

    Finally,

    I4:=

    S

    Td s=

    S

    d t(t)

    S

    g(s, t)d s. (1.1.38)

    One has S

    g(s, t)d s= O(a), a 0. (1.1.39)

    Let us assume that

    lima0

    a= 0. (1.1.40)

    Assuming(1.1.40) we allow to depend onain such a way that (1.1.40) holds.

    If is a constant independent ofathen (1.1.40) is obviously valid. If (1.1.40)

    holds then

    I4 = o(Q), a 0, (1.1.41)

    provided that Q= 0. We will prove that Q= 0 under our assumptions. Keeping

    the terms I3 and I2 and neglecting the terms I1 and I4 of higher order of

    smallness asa 0, one gets

    Q |S|u0(x1), x1 D. (1.1.42)

    Ifu0(x) = ei kx andx1 D, thenu0(x1) = 1 + O(ka), sincek a 1.

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    28/44

    10 A. G. Ramm

    Formula (1.1.42) is our basic result. From (1.1.42) and (1.1.25) one gets

    an analytical formula for the solution of the wave scattering problem (1.1.1)

    (1.1.4) in the case of a small body of an arbitrary shape:

    u(x) u0(x) g(r)|S|, |x| a, (1.1.43)

    whereg(r) = ei kr

    4r,r= |x|, andu0(x1) 1 ifk a 1.

    Itisassumedin(1.1.43) that the origin is inside D. If the origin is elsewhere,

    andx1 D, then formula (1.1.43) takes the form

    u(x) u0(x) g(|x x1|)|S|, |x x1| a. (1.1.44)

    Let us define the scattering amplitudeA(,, k) by the formula

    vei kr

    rA(,, k) + o

    1

    r

    , r= |x| ,

    x

    r:=. (1.1.45)

    Comparing (1.1.43) and (1.1.45) one obtains

    A(,, k) = |S|

    4 =

    Q

    4, (1.1.46)

    where it is assumed thatx1 = 0, so thatu0(x1) = 1.

    The physical conclusion is: the scattering is isotropic, that is, it does not

    depend on and, and in absolute value the scattering amplitude is O(|S|) =

    O(a2).

    Let us summarize the results in a Theorem.

    Theorem 1.1.3. Assume that ka 1, Im 0, and (1.1.40) holds. Then the

    scattering problem(1.1.1)(1.1.4)has a unique solution. This solution can be

    calculated by formula(1.1.43)if the origin is inside D, and by formula(1.1.44)

    if the origin is elsewhere and x1 D.

    The scattering is isotropic and the scattering amplitude is O(a2).

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    29/44

    Scattering of Acoustic and Electromagnetic Waves and Applications 11

    1.2 Acoustically soft bodies (the Dirichlet

    boundary condition).

    In this section problem (1.1.1), (1.1.3), (1.1.4) is studied but the impedance

    boundary condition (1.1.2) is replaced by the Dirichlet condition

    u= 0 onS. (1.2.1)

    Physically this condition in acoustic means that the body is acoustically soft,

    that is, the pressure onSis vanishing. Mathematically condition (1.2.1) is the

    limiting case of condition (1.1.2) when . This is proved in Section11.3.

    The case 0 yields the Neumann conditionuN = 0 onS, corresponding to

    acoustically hard body.

    The scattering problem with the Dirichlet condition has a unique solution,

    as we will prove, and the analog of Theorems1.1.11.1.3will be established.

    Theorem 1.2.1. Problem(1.1.1), (1.2.1), (1.1.3), and (1.1.4) has at most one

    solution.

    Proof. It is sufficient to prove that the corresponding homogeneous problem,

    that is, the problem with u0 =0, has only the trivial solution. The proof is

    essentially the same as the proof of Theorem1.1.1.

    One obtains an analog of relation (1.1.8)with the integral overSvanishing

    becauseu= 0 onS. Therefore, one concludes that relation (1.1.9) holds.

    The rest of the proof goes as in the proof of Theorem1.1.1.

    Theorem1.2.1is proved.

    Let us prove the existence of the solution to problem (1.1.1), (1.2.1), (1.1.3),

    and (1.1.4).

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    30/44

    12 A. G. Ramm

    Theorem 1.2.2. The above problem has a solution.

    Proof. Let us look for the solution of the form (1.1.10). As in the proof of

    Theorem1.1.2it is sufficient to prove that the equation that one obtains from

    the boundary condition (1.2.1) is solvable.

    This equation is

    S

    g(s, t)(t)d t= u0(s), s S. (1.2.2)

    It is proved in Section 11.2 that equation (1.2.2) is (uniquely) solvable provided

    thatk2 is not an eigenvalue of the Dirichlet Laplacian in D. This condition is

    satisfied ifDis sufficiently small.

    Theorem1.2.2is proved.

    Let us prove an analog of Theorem1.1.3.

    As in Section1.1one gets formula (1.1.25) whereQis defined in (1.1.22).

    To find an analytical expression for Qwe rewrite equation (1.2.2) as

    S

    g0(s, t)(t)d t= 1 + O(ka), g0(s, t) =1

    4|s t|. (1.2.3)

    Neglecting the small termk a 1, one gets

    Sg0(s, t)(t)d t= 1, s S. (1.2.4)This is an equation for the surface charge distribution that generates the

    constant potential U on S, U = 1. With this interpretation the bodyD is

    a perfect conductor and the quantityQ =

    S(t)d tis its total charge. There

    is a well-known relationCU = Q, whereCis the capacitance of the perfect

    conductorD. Thus,

    Q= C, (1.2.5)

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    31/44

    Scattering of Acoustic and Electromagnetic Waves and Applications 13

    and formula (1.1.25) takes the form

    u(x) = u0(x) g(r)C, r= |x| a, (1.2.6)

    while formula (1.1.46) becomes

    A(,, k) = C

    4. (1.2.7)

    These formulas solve the scattering problem (1.1.1), (1.2.1), (1.1.3),and(1.1.4).

    Let us formulate the results.

    Theorem 1.2.3. If ka 1 then the solution to the above scattering prob-

    lem exists, is unique, can be calculated by formula(1.2.6) and the scattering

    amplitude is given by formula(1.2.7).

    Remark 1.2.1. This result is very useful practically because the author has

    derived explicit analytical formulas which allow one to calculate electrical ca-

    pacitance C for a conductor of an arbitrary shape, seeRamm (2005b) and

    Section11.4.

    For example, the zero-th approximation of C is given by the following

    formula

    C(0) =4|S|2

    S

    S

    d s d t |st|

    , C(0) C, (1.2.8)

    where|S| is the surface area of S and the electric permittivity in D is equal to 1.

    Let us draw some physically interesting conclusions from Theorem1.2.3.

    Note that the electrical capacitanceC = O(a). Formula (1.2.7) shows that

    the scattering is isotropic and the scattering amplitude is O(a), that is, it is

    much largerthan in the case of the impedance boundary condition. If, for ex-

    ample, = O( 1a ), 0 < 1, so that condition (1.1.40) is satisfied, then formula

    (1.1.46) yieldsA(,, k) = O(a2), and O(a2) O(a) if< 1 anda 0.

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    32/44

    14 A. G. Ramm

    1.3 Acoustically hard bodies (the Neumann

    boundary condition).

    Consider now the scattering problem (1.1.1), (1.1.3), (1.1.4) and replace con-

    dition (1.1.2) by the Neumann boundary condition

    uN= 0 onS. (1.3.1)

    Our plan of the study is unchanged: we want to prove existence of a uniquesolution and derive analytical formulas for the solution and for the scattering

    amplitude.

    Theorem 1.3.1. Problem (1.1.1), (1.3.1), (1.1.3), and (1.1.4) has at most one

    solution.

    Proof. One can use the proof of Theorem1.1.1taking= 0 in this proof.

    Theorem1.3.1is proved.

    Theorem 1.3.2. The scattering problem (1.1.1), (1.3.1), (1.1.3), (1.1.4) has a

    solution.

    Proof. Let us look for the solution of the form (1.1.10). As in the proof of

    Theorem1.1.2it is sufficient to prove that equation (1.1.12) with = 0 has a

    solution. Since equation (1.1.12) with = 0 is of Fredholm type, the existence

    of its solution will be proved if one proves that equation (1.1.15) with= 0 has

    only the trivial solution. Let us prove this. The equation

    A

    2= 0 (1.3.2)

    implies that uN = 0 on S. By Theorem 1.3.1 it follows that u = 0 in D.

    Therefore, u= 0 on Sand usolves the Dirichlet problem for equation (1.1.1) in

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    33/44

    Scattering of Acoustic and Electromagnetic Waves and Applications 15

    D. This implies thatu= 0 inDbecausek2 cannot be a Dirichlet eigenvalue of

    the Laplacean ifDis sufficiently small. Ifu= 0 in D D then = u+N uN= 0.

    By the Fredholm alternative the existence of the solution to equation (1.1.12)

    with = 0 is proved.

    Theorem1.3.2is proved.

    Let us now prove an analog of Theorem1.1.3.

    Formula (1.1.24) is now taking the form

    Q1:=

    S

    ei kt(t)d t

    S(t)d t i kp

    S

    tp(t)d t, (1.3.3)

    wherehere and below over repeated indices summation is understood.

    The novel point in a study of the scattering problem with the Neumann

    boundary condition is the necessity to use both terms (1.3.3) because they are

    of the same order as a 0, namely, they are both O(a3). This is in contrast with

    the problem with the Dirichlet boundary condition where Q= O(a), and with

    the impedance boundary condition where Q= O(a2) as a 0. Moreover, we

    prove that the scattering in the problem with Neumann boundary condition

    is anisotropic, in sharp contrast with the cases of the Dirichlet and impedance

    boundary conditions.

    Let us first estimate

    Q=

    S(t)d t.

    We look for the solution to problem (1.1.1), (1.3.1), (1.1.3), (1.1.4) of the

    form (1.1.10). The boundary condition (1.3.1) yields the integral equation

    for :

    = A+ 2u0N onS. (1.3.4)

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    34/44

    16 A. G. Ramm

    Integrate this equation overSand use formula (1.1.30) to get

    Q

    S

    u0Nd s=

    D

    2u0d x=

    2u0(x1)|D|, (1.3.5)

    where x1 D is an arbitrary point inside D and we took into account that

    because D is small 2u0(x1) does not depend on the choice of x1. Since

    D= O(a3), it follows from (1.3.5) that Q= O(a3) as was mentioned earlier.

    Let us estimate the last integral in (1.3.3). Introduce the matrix (tensor)pq

    by the formula

    p q:=1

    |D|

    S

    tpq(t)d t, (1.3.6)

    where qis the unique solution to the equation

    q= Aq 2Nq, q= 1, 2, 3, (1.3.7)

    andNq= N eq, where {eq} is an orthonormal Cartesian basis ofR3. Equation

    (1.3.7) is of Fredholm type and it has a solution because the corresponding ho-

    mogeneous equation =Ahas only the trivial solution = 0. Indeed, this

    equation is equivalent to the relation uN = 0, and u=

    Sg(x, t)(t)d t satis-

    fies equation (1.1.1) and the radiation condition (1.1.4). Thereforeu= 0 inD.

    Consequentlyu= 0 on S. Thus, usolves equation (1.1.1) in Dand vanishes on

    S. This means that k2

    is the Dirichlet eigenvalue of the Laplacian in D, which is

    a contradiction because Dis assumed to be sufficiently small. Therefore u= 0

    inD D, and = u+N uN = 0. This proves the existence and uniqueness of

    the solutionq to equation(1.3.7). The functionin equation (1.3.3) solves

    equation(1.3.4), where

    u0N=u0

    xqNq. (1.3.8)

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    35/44

    Scattering of Acoustic and Electromagnetic Waves and Applications 17

    Recall that summation overqis understood. Thus

    2u0N= 2Nq

    u0(x1)

    xq

    . (1.3.9)

    From (1.3.4), (1.3.9), (1.3.7), and (1.3.6) one gets

    i kp

    S

    tp(t)d t= i kpqpu0(x1)

    xq|D|, (1.3.10)

    where |D| is the volume ofD, pqis the tensor defined in (1.3.6), and pis the

    p-th component of the unit vector := xx1|xx1|

    ,x1 D.

    Therefore,

    Q1 |D|

    2u0(x1) + i kp qpu0(x1)

    xq

    , x1 D, (1.3.11)

    where Q1is defined in (1.3.3).

    Consequently, an analog of formulas (1.1.44) a n d (1.1.45) in the case of the

    Neumann boundary condition takes the form

    u(x) = u0(x) + g(x, x1)

    2u0(x1) + i kpqpu0(x1)xq

    |D|, |x x1| a,

    (1.3.12)

    where

    =x x1

    |x x1|, x1 D, (1.3.13)

    and

    A(,, k) = 2u0(x1) + i kp qp

    u0(x1)

    xq |D|

    4. (1.3.14)

    Ifx1is the origin, x1 = 0, and u0 = ei kx, then formula (1.3.14) can be rewritten

    as

    A(,, k) = k2|D|

    4

    1 +p qpq

    . (1.3.15)

    One can see from this formula thatA= O(a3), the scattering is anisotropic and

    its anisotropic part is described by the tensor p qdefined by formula (1.3.6).

    Let us summarize the results.

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    36/44

    18 A. G. Ramm

    Theorem 1.3.3. The scattering problem (1.1.1), (1.3.1), (1.1.3)(1.1.4) is

    uniquely solvable. Its solution can be calculated by formulas(1.3.12)(1.3.13).

    The scattering amplitude A(,, k) is given by formula(1.3.14), A(,, k) =

    O(a3), and the scattering is anisotropic.

    1.4 The interface (transmission) boundary

    condition.

    Consider the following scattering problem

    (2 + k2)u= 0 inD, k2 > 0, (1.4.1)

    (2 + k21 )u= 0 inD, k21 > 0, (1.4.2)

    u+ = u, 1u+N= u

    N, 1 > 0, (1.4.3)

    u= u0 + v, (1.4.4)

    v

    r i kv= o

    1

    r

    , r= |x| , (1.4.5)

    whereu0is the incident field,

    (2 + k2)u0 = 0 in R3. (1.4.6)

    In particular, the plane wave incident field u0 =ei kx, S2, is often con-

    sidered. The number 1 in the transmission boundary condition (1.4.3) is

    assumed positive and 1 = 1. The numberk21 in (1.4.2) is not equal tok

    2.

    Physically problem (1.4.1)(1.4.6) corresponds to the incident wave prop-

    agating throughDand in this process the wave is scattered.

    As earlier, the first task is to prove the existence and uniqueness of the

    solution to the scattering problem (1.4.1)(1.4.6).

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    37/44

    Scattering of Acoustic and Electromagnetic Waves and Applications 19

    Theorem 1.4.1. The above problem with1 = const> 0has no more than one

    solution.

    Proof. It is sufficient to prove that the homogeneous problem, that is, the

    problem with u0 = 0, has only the trivial solution. To prove this, multiply equa-

    tion (1.4.1) and (1.4.2) byu, the bar stands for complex conjugate, integrate

    the second equation overD, the first equation over DR := BR D, BR := {x:

    |x| R}, then use Greens formula and condition (1.4.3) and (1.4.5)and getS

    (uu+N uu+N

    )d s

    S

    (uuN uuN

    )d s+

    S

    (uuN uuN)d s

    =

    S

    [uu+N(1 1) uu+N

    (1 1)]d s+ 2i k

    SR

    |u|2d s+ o(1)

    = 0, (1.4.7)

    where limR o(1) = 0.

    One has, using Greens formula,

    (1 1)

    S

    (uu+N uu+N

    )d s= 0, (1.4.8)

    becauseuandusolve the same equation (1.4.2).

    Thus, relation (1.4.7) implies

    limR

    SR

    |u|2d s= 0. (1.4.9)

    From this, equation (1.4.1) and the radiation condition (1.4.5) withu0 = 0, u=

    v, it follows thatu= 0 inD. Thus,u = uN= 0.

    Consequently,u+ = u+N= 0, andu= 0 inD.

    Theorem1.4.1is proved.

    Remark 1.4.1. The proof remains valid with only a slight change if one assumes

    that Imk2 0.

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    38/44

    20 A. G. Ramm

    Theorem 1.4.2. Problem(1.4.1)(1.4.6)has a solution.

    Proof. Let us look for a solution of the form

    u(x) = u0(x) +

    S

    g(x, t)(t)d t+

    D

    g(x,y)u(y)d y, (1.4.10)

    where

    := k21 k2, g(x,y) =

    ei k|xy|

    4|xy|, (1.4.11)

    and has to be found such that conditions (1.4.3) are satisfied.

    Note that equations (1.4.1), (1.4.2), (1.4.4), (1.4.5), and (1.4.6) are satisfied.

    This is obvious for equations (1.4.4)(1.4.6), and follows for equations

    (1.4.1)(1.4.2) from the equation

    (2 + k2)g(x,y) = (xy). (1.4.12)

    The first condition (1.4.3) is satisfied because both integrals in (1.4.10) are

    continuous functions in R3.

    The second condition (1.4.3) is satisfied if and usolve the system of

    integral equations (1.4.10) and (1.4.13), where

    1A+

    2

    A

    2+ (1 1)

    NSBu+ ( 1)u0N= 0. (1.4.13)

    Here

    A= 2

    Sg(s, t)NS

    (t)d t, Bu=

    Dg(x,y)u(y)d y. (1.4.14)

    Let us rewrite equation (1.4.13) as follows:

    =A+ 2B1u+ 2u0N, (1.4.15)

    where

    =1

    1 +, B1u:=

    (Bu)

    NS. (1.4.16)

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    39/44

    Scattering of Acoustic and Electromagnetic Waves and Applications 21

    If 0

  • 8/13/2019 Ishizuka Chap One

    40/44

    22 A. G. Ramm

    To make this formula practically applicable one needs to calculate the main

    terms of the asymptotic of the surface integral in (1.4.18)andoftheterm u(x1).

    Note that

    g(s, t) = g0(s, t)[1 + O(ka)], g0(s, t) =1

    4|s t|, s, t S, (1.4.19)

    g(s, t)

    NS=g0

    NS[1 + O(k2a2)], a 0, (1.4.20)

    A= 2Sg(s, t)

    NS

    (t)d t 2Sg0(s, t)

    NS

    (t)d t= A0, (1.4.21)

    Bu

    B

    g0(x,y)u(y)d y=B0u, (1.4.22)

    B1u B01u, B01u=

    B

    NSg(s,y)u(y)d y. (1.4.23)

    One has S

    ei kt(t)d t

    S(t)d t i kp

    S

    tp(t)d t. (1.4.24)

    Let

    Q:=

    S(t)d t, Q1:= Q i kp

    S

    tp(t)d t. (1.4.25)

    Then, by formula (1.4.18), one gets

    u(x) u0(x) + g(x, x1)[Q1 +u(x1)|D|], |x x1| a. (1.4.26)

    Let us derive analytical formula forQ1 andu(x1). Integrate equation (1.4.15)

    overSand get

    Q:=

    S

    Ad s+ 2

    S

    B1ud s+ 2

    S

    u0Nd s. (1.4.27)

    One has, by the divergence theorem,

    2

    S

    u0Nd s 22u0(x1)|D|. (1.4.28)

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    41/44

    Scattering of Acoustic and Electromagnetic Waves and Applications 23

    Furthermore, using formula (1.1.34), one gets:

    S

    Ad s

    S

    A0d s=

    Sd s= Q, (1.4.29)

    and

    2

    S

    B1ud s= 2

    D

    d x2x

    D

    g(x,y)u(y)d y.

    Equation (1.4.12) implies

    D

    d x2x

    Dg(x,y)u(y)d y= k2

    D

    d x

    Dg(x,y)u(y)d y

    D

    d xu(x)

    u(x1)|D|. (1.4.30)

    Thus,

    2

    S

    B1ud s 2u(x1)|D|, a 0. (1.4.31)

    Therefore, equations (1.4.27)(1.4.31) imply

    Q 2

    1 +u(x1)|D| +

    2

    1 +

    2u0(x1)|D|. (1.4.32)

    In order to estimate u(x1) as a 0 let us integrate equation (1.4.10) overD

    and obtain

    u(x1)|D| u0(x1)|D| +

    D

    d x

    S

    g(x, t)(t)d t+

    D

    d x

    D

    g(x,y)u(y)d y.

    (1.4.33)

    One has

    D

    d x

    S

    g(x, t)(t)d t=

    S

    d t(t)

    D

    d xg(x, t) QO(a2), (1.4.34)

    and D

    d x

    D

    g(x,y)u(y)d y= u(x1)|D|O(a2), (1.4.35)

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    42/44

    24 A. G. Ramm

    where we have used the relation

    D

    g(x,y)d y= O(a2), a 0, (1.4.36)

    which holds if 0.5diamD a.

    It follows from formulas (1.4.33)(1.4.36) that

    u(x1)|D| u0(x1)|D| +QO(a2), a 0, (1.4.37)

    where we have neglected the terms of higher order of smallness asa 0.

    From equations (1.4.32) and (1.4.37) it follows that

    Q2

    1 +|D|

    u0(x1) +

    2u0(x1)

    , a 0, (1.4.38)

    and

    u(x1) u0(x1), a 0. (1.4.39)

    Let us derive an analytical formula for the second integral in (1.4.25).

    Multiply equation (1.4.15) by tpand integrate over S. Take into account

    relation (1.4.29)and formulas(1.4.31) and(1.4.32) to get

    2

    S

    d sspB1u O(a4), a 0. (1.4.40)

    Let us define now an analog of the matrix (1.3.6):

    p q() := 1|D|

    S

    tpq(t)d t, (1.4.41)

    where the function q(t) :=q(t,) solves the equation

    q(t) =Aq(t) 2Nq. (1.4.42)

    Since || =

    11+

    < 1 when > 0, and the operatorAhas no eigenvalues in the

    interval (1,1), equation (1.4.42) has a unique solution.

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    43/44

    Scattering of Acoustic and Electromagnetic Waves and Applications 25

    One hasu0N(t) u0N(x1), x1 D, and

    2u0N= 2Nq

    u0(x1)

    xq

    , q

    u0(x1)

    xq. (1.4.43)

    Therefore, neglecting the term (1.4.40), which is of higher order of smallness

    asa 0, one gets S

    tp(t)d t= |D|p q()u0(x1)

    xq. (1.4.44)

    Consequently,

    i kp

    S

    tp(t)d t= i kpq()pu0(x1)

    xq|D|, (1.4.45)

    and formulas (1.4.25), (1.4.38), and (1.4.45) yield the formula for Q1:

    Q1 =2

    1 +|D|

    2u0(x1) u0(x1)

    + i kpq()pu0(x1)

    xq|D| (1.4.46)

    where

    2

    1 + = 1 , p:=

    (x x1)p

    |x x1| , xp:= x ep. (1.4.47)

    From formulas (1.4.18), (1.4.26), (1.4.39), and (1.4.46) it follows that

    u(x) u0(x) + g(x, x1)

    (1 )

    2u0(x1) u0(x1)

    + i kp q()(x x1)p

    |x x1|

    u0(x1)

    xq

    +u0(x1)

    |D|, |x x1| a. (1.4.48)

    Furthermore,

    A(,, k) =|D|

    4

    (1 )

    2u0(x1) u0(x1)

    + i kp q()pu0(x1)

    xq+u0(x1)

    .

    (1.4.49)

    Formulas(1.4.48)and(1.4.49)give our final result.

    Note that |A(,, k)| = O(a3) and the scattering is anisotropic.

    Let us summarize the results.

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/13/2019 Ishizuka Chap One

    44/44

    26 A. G. Ramm

    Theorem 1.4.4. If ka 1 and > 0, then the scattering problem(1.4.1)(1.4.6)

    has a unique solution. This solution can be calculated by formula(1.4.48). The

    scattering amplitude is calculated by formula(1.4.49).

    1.5 Summary of the results

    The results of this chapter can be summarized as follows.

    Scattering problem (1.1.1)(1.1.4) has a unique solution for any, Im 0,including the limiting cases = 0 and = .

    The solution can be calculated by formula (1.1.44) if ka 1 and the

    scattering amplitude by formula (1.1.46).

    One has |A(,, k)| = O(a2) and the scattering is isotropic. If = ,

    thenucan be calculated by formula (1.2.6) and the scattering amplitude-by

    formula (1.2.7) fork a 1. The scattering is isotropic and |A(,, k)| = O(a).

    If = 0, thenucan be calculated by formula (1.3.12), the scattering am-

    plitude-by formula (1.3.14) ifk a 1, |A(,, k)| = O(a3), and the scattering is

    anisotropic.

    The scattering problem (1.4.1)(1.4.6) with the interface (transmission)

    boundary condition has a unique solution if 0, k2 > 0,k21 > 0. Ifka 1

    then this solution can be calculated by formula(1.4.48), the scattering ampli-

    tude-by formula (1.4.49), |A(,, k)| = O(a3), and the scattering is anisotropic.

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-