isogeometric analysis and shape optimization in fluid...

82
Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions Isogeometric Analysis and Shape Optimization in Fluid Mechanics Peter Nørtoft DTU Compute Joint work with Jens Gravesen, Allan R. Gersborg, Niels L. Pedersen, Morten Willatzen, Anton Evgrafov, Dang Manh Nguyen, and Tor Dokken Scientific Computing Section Seminar, September 17, 2013

Upload: others

Post on 19-Mar-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Isogeometric Analysis and ShapeOptimization in Fluid Mechanics

Peter Nørtoft

DTU Compute

Joint work with Jens Gravesen, Allan R. Gersborg, Niels L. Pedersen,

Morten Willatzen, Anton Evgrafov, Dang Manh Nguyen, and Tor Dokken

Scientific Computing Section Seminar, September 17, 2013

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Goals and Outline

The aim is to analyze and optimize flows using isogeometric analysis

Shape Optimization

drag

Navier-Stokes Flow Model

Isogeometric Analysis

Flow Acoustics Model

+

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Goals and Outline

The aim is to analyze and optimize flows using isogeometric analysis

Shape Optimization

drag

Navier-Stokes Flow Model

Isogeometric Analysis

Flow Acoustics Model

+

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Goals and Outline

The aim is to analyze and optimize flows using isogeometric analysis

Shape Optimization

drag

Navier-Stokes Flow Model

Isogeometric Analysis

Flow Acoustics Model

+

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Goals and Outline

The aim is to analyze and optimize flows using isogeometric analysis

Shape Optimization

drag

Navier-Stokes Flow Model

Isogeometric Analysis

Flow Acoustics Model

+

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Fluid Mechanics: Navier-Stokes Equations

Flow problems are governed by a boundary value problem

ΓN

ΓD

Ω

u velocityp pressureρ densityµ viscosityf force

[M. Van Dyke]

Re = ρULµ . 103

I viscous fluid

I slow flow

I small scale

2D steady-state incompressible Navier-Stokes flow

ρ(u · ∇)u+∇p− µ∇2u = ρf in Ω

∇ · u = 0 in Ω

u = u∗ on ΓD

(µ∇ui − p ei ) · n = 0 on ΓN

Challenge: solve this using isogeometric analysis[Bazilevs et al., 2006b; Bazilevs & Hughes, 2008; Akkerman et al., 2010; . . .]

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Fluid Mechanics: Navier-Stokes Equations

Flow problems are governed by a boundary value problem

ΓN

ΓD

Ω

u velocityp pressureρ densityµ viscosityf force

[M. Van Dyke]

Re = ρULµ . 103

I viscous fluid

I slow flow

I small scale

2D steady-state incompressible Navier-Stokes flow

ρ(u · ∇)u+∇p− µ∇2u = ρf in Ω

∇ · u = 0 in Ω

u = u∗ on ΓD

(µ∇ui − p ei ) · n = 0 on ΓN

Challenge: solve this using isogeometric analysis[Bazilevs et al., 2006b; Bazilevs & Hughes, 2008; Akkerman et al., 2010; . . .]

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Fluid Mechanics: Navier-Stokes Equations

Flow problems are governed by a boundary value problem

ΓN

ΓD

Ω

u velocityp pressureρ densityµ viscosityf force

[M. Van Dyke]

Re = ρULµ . 103

I viscous fluid

I slow flow

I small scale

2D steady-state incompressible Navier-Stokes flow

ρ(u · ∇)u+∇p− µ∇2u = ρf in Ω

∇ · u = 0 in Ω

u = u∗ on ΓD

(µ∇ui − p ei ) · n = 0 on ΓN

Challenge: solve this using isogeometric analysis[Bazilevs et al., 2006b; Bazilevs & Hughes, 2008; Akkerman et al., 2010; . . .]

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Fluid Mechanics: Navier-Stokes Equations

Flow problems are governed by a boundary value problem

ΓN

ΓD

Ω

u velocityp pressureρ densityµ viscosityf force

[M. Van Dyke]

Re = ρULµ . 103

I viscous fluid

I slow flow

I small scale

2D steady-state incompressible Navier-Stokes flow

ρ(u · ∇)u+∇p− µ∇2u = ρf in Ω

∇ · u = 0 in Ω

u = u∗ on ΓD

(µ∇ui − p ei ) · n = 0 on ΓN

Challenge: solve this using isogeometric analysis[Bazilevs et al., 2006b; Bazilevs & Hughes, 2008; Akkerman et al., 2010; . . .]

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Numerical Method

Both geometry, velocity and pressure are parametrized by B-splines

X(ξ, η) =Ng∑i=1

xiRgi (ξ, η)

u(ξ, η) =Nu∑i=1

uiPui (ξ, η)

p(ξ, η) =

Np∑i=1

piPpi (ξ, η)

Ω

X

[0, 1]2y

x

η

ξ

Rui ,R

pi ,

Rgi Bivariate NURBS

/B-splineui, pi,

xi control point

/variable

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Numerical Method

Both geometry, velocity and pressure are parametrized by B-splines

X(ξ, η) =

Ng∑i=1

xiRgi (ξ, η)

u(ξ, η) =Nu∑i=1

uiPui (ξ, η)

p(ξ, η) =

Np∑i=1

piPpi (ξ, η)

ΩX

[0, 1]2y

x

η

ξ

Rui ,R

pi ,

Rgi Bivariate NURBS

/B-splineui, pi,

xi control point

/variable

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Numerical Method

Both geometry, velocity and pressure are parametrized by B-splines

X(ξ, η) =

Ng∑i=1

xiRgi (ξ, η)

u(ξ, η) =

Nu∑i=1

uiPui (ξ, η)

p(ξ, η) =

Np∑i=1

piPpi (ξ, η)

ΩX

[0, 1]2y

x

η

ξ

Rui ,R

pi ,R

gi Bivariate NURBS/B-spline

ui, pi, xi control point/variable

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Numerical Method

Both geometry, velocity and pressure are parametrized by B-splines

X(ξ, η) =

Ng∑i=1

xiRgi (ξ, η)

u(ξ, η) =

Nu∑i=1

uiPui (ξ, η)

p(ξ, η) =

Np∑i=1

piPpi (ξ, η)

ΩX

[0, 1]2y

x

η

ξ

Rui ,R

pi ,R

gi Bivariate NURBS/B-spline

ui, pi, xi control point/variable

Univariate B-spline:

Ni(ξ1), Mj(ξ2)

• knot vector• polynomial degree

Parameter domain [0, 1]2

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Numerical Method

Both geometry, velocity and pressure are parametrized by B-splines

X(ξ, η) =

Ng∑i=1

xiRgi (ξ, η)

u(ξ, η) =

Nu∑i=1

uiPui (ξ, η)

p(ξ, η) =

Np∑i=1

piPpi (ξ, η)

ΩX

[0, 1]2y

x

η

ξ

Rui ,R

pi ,R

gi Bivariate NURBS/B-spline

ui, pi, xi control point/variable

Univariate B-spline: Ni(ξ1)

, Mj(ξ2)

• knot vector• polynomial degree

Parameter domain [0, 1]2

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Numerical Method

Both geometry, velocity and pressure are parametrized by B-splines

X(ξ, η) =

Ng∑i=1

xiRgi (ξ, η)

u(ξ, η) =

Nu∑i=1

uiPui (ξ, η)

p(ξ, η) =

Np∑i=1

piPpi (ξ, η)

ΩX

[0, 1]2y

x

η

ξ

Rui ,R

pi ,R

gi Bivariate NURBS/B-spline

ui, pi, xi control point/variable

Univariate B-spline: Ni(ξ1)

, Mj(ξ2)

• knot vector• polynomial degree

Parameter domain [0, 1]2

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Numerical Method

Both geometry, velocity and pressure are parametrized by B-splines

X(ξ, η) =

Ng∑i=1

xiRgi (ξ, η)

u(ξ, η) =

Nu∑i=1

uiPui (ξ, η)

p(ξ, η) =

Np∑i=1

piPpi (ξ, η)

ΩX

[0, 1]2y

x

η

ξ

Rui ,R

pi ,R

gi Bivariate NURBS/B-spline

ui, pi, xi control point/variable

Univariate B-spline: Ni(ξ1)

, Mj(ξ2)

• knot vector• polynomial degree

Parameter domain [0, 1]2

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Numerical Method

Both geometry, velocity and pressure are parametrized by B-splines

X(ξ, η) =

Ng∑i=1

xiRgi (ξ, η)

u(ξ, η) =

Nu∑i=1

uiPui (ξ, η)

p(ξ, η) =

Np∑i=1

piPpi (ξ, η)

ΩX

[0, 1]2y

x

η

ξ

Rui ,R

pi ,R

gi Bivariate NURBS/B-spline

ui, pi, xi control point/variable

Univariate B-spline: Ni(ξ1), Mj(ξ2)• knot vector• polynomial degree

Parameter domain [0, 1]2

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Numerical Method

Both geometry, velocity and pressure are parametrized by B-splines

X(ξ, η) =

Ng∑i=1

xiRgi (ξ, η)

u(ξ, η) =

Nu∑i=1

uiPui (ξ, η)

p(ξ, η) =

Np∑i=1

piPpi (ξ, η)

ΩX

[0, 1]2y

x

η

ξ

Rui ,R

pi ,R

gi Bivariate NURBS/B-spline

ui, pi, xi control point/variable

Univariate B-spline: Ni(ξ1), Mj(ξ2)• knot vector• polynomial degree

Parameter domain [0, 1]2

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Numerical Method

Both geometry, velocity and pressure are parametrized by B-splines

X(ξ, η) =

Ng∑i=1

xiRgi (ξ, η)

u(ξ, η) =

Nu∑i=1

uiPui (ξ, η)

p(ξ, η) =

Np∑i=1

piPpi (ξ, η)

ΩX

[0, 1]2y

x

η

ξ

Rui ,R

pi ,R

gi Bivariate NURBS/B-spline

ui, pi, xi control point/variable

Univariate B-spline: Ni(ξ1), Mj(ξ2)• knot vector• polynomial degree

Parameter domain [0, 1]2

Bivariate Tensor Product B-spline:• 2 knot vectors• 2 polynomial degrees• Pi,j(ξ1, ξ2) = Ni(ξ1)Mj(ξ2)

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Numerical Method

Both geometry, velocity and pressure are parametrized by B-splines

X(ξ, η) =

Ng∑i=1

xiRgi (ξ, η)

u(ξ, η) =

Nu∑i=1

uiPui (ξ, η)

p(ξ, η) =

Np∑i=1

piPpi (ξ, η)

ΩX

[0, 1]2y

x

η

ξ

Rui ,R

pi ,R

gi Bivariate NURBS/B-spline

ui, pi, xi control point/variable

Univariate B-spline: Ni(ξ1), Mj(ξ2)• knot vector• polynomial degree

Parameter domain [0, 1]2

Bivariate Tensor Product B-spline:• 2 knot vectors• 2 polynomial degrees• Pi,j(ξ1, ξ2) = Ni(ξ1)Mj(ξ2)

Physical domain Ω

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Numerical Method

Both geometry, velocity and pressure are parametrized by B-splines

X(ξ, η) =

Ng∑i=1

xiRgi (ξ, η)

u(ξ, η) =

Nu∑i=1

uiPui (ξ, η)

p(ξ, η) =

Np∑i=1

piPpi (ξ, η)

ΩX

[0, 1]2y

x

η

ξ

Rui ,R

pi ,R

gi Bivariate NURBS/B-spline

ui, pi, xi control point/variable

Univariate B-spline: Ni(ξ1), Mj(ξ2)• knot vector• polynomial degree

Parameter domain [0, 1]2

Bivariate Tensor Product B-spline:• 2 knot vectors• 2 polynomial degrees• Pi,j(ξ1, ξ2) = Ni(ξ1)Mj(ξ2)

Physical domain ΩM(U)U = F

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Error Convergence

Test of error convergence: flow with analytical solution

−3 −2 −1 0 1 2 3−1.5

−1

−0.5

0

0.5

1

1.5

x

y

−3 −2 −1 0 1 2 3−1.5

−1

−0.5

0

0.5

1

1.5

x

y

f1 = f1(x,y)

f2 = f2(x,y)

u|Γ = 0

u?1 = −U sin(πr2)y

u?2 = U/4 sin(πr2)x

p? = 4/π2 + cos(πr)

r =√

(x/2)2+ y2

u?

p?Re = 200

ε2u =∫∫Ω

‖u(x,y)−u?(x,y)‖2 dxdy

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Error Convergence

Test of error convergence: flow with analytical solution

−3 −2 −1 0 1 2 3−1.5

−1

−0.5

0

0.5

1

1.5

x

y

−3 −2 −1 0 1 2 3−1.5

−1

−0.5

0

0.5

1

1.5

x

y

f1 = f1(x,y)

f2 = f2(x,y)

u|Γ = 0

u?1 = −U sin(πr2)y

u?2 = U/4 sin(πr2)x

p? = 4/π2 + cos(πr)

r =√

(x/2)2+ y2

u?

p?

Re = 200

ε2u =∫∫Ω

‖u(x,y)−u?(x,y)‖2 dxdy

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Error Convergence

Test of error convergence: flow with analytical solution

−3 −2 −1 0 1 2 3−1.5

−1

−0.5

0

0.5

1

1.5

x

y

−3 −2 −1 0 1 2 3−1.5

−1

−0.5

0

0.5

1

1.5

x

y

f1 = f1(x,y)

f2 = f2(x,y)

u|Γ = 0

u?1 = −U sin(πr2)y

u?2 = U/4 sin(πr2)x

p? = 4/π2 + cos(πr)

r =√

(x/2)2+ y2

u?

p?Re = 200

ε2u =∫∫Ω

‖u(x,y)−u?(x,y)‖2 dxdy

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Error Convergence

Test of error convergence: flow with analytical solution

−3 −2 −1 0 1 2 3−1.5

−1

−0.5

0

0.5

1

1.5

x

y

−3 −2 −1 0 1 2 3−1.5

−1

−0.5

0

0.5

1

1.5

x

y

f1 = f1(x,y)

f2 = f2(x,y)

u|Γ = 0

u?1 = −U sin(πr2)y

u?2 = U/4 sin(πr2)x

p? = 4/π2 + cos(πr)

r =√

(x/2)2+ y2

u?

p?Re = 200

ε2u =∫∫Ω

‖u(x,y)−u?(x,y)‖2 dxdy

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Error Convergence

Discretizations with higher regularity perform better

10−5

100

εu

102

103

104

105

10−5

100

εp

Nvar

10−6

10−4

10−2

100

102

ε∇ u

102

103

104

10510

−6

10−4

10−2

100

102

ε∇ p

Nvar

u4114

11 v4

114

11 p4

014

01

u4024

02 v4

024

02 p4

014

01

u4114

11 v4

114

11 p3

013

01

u4024

02 v4

024

02 p3

013

01

u4114

11 v4

114

11 p2

012

01

u4024

02 v4

024

02 p2

012

01

u4014

01 v4

014

01 p2

012

01

u4114

12 v4

124

11 p3

013

01

u4113

11 v3

114

11 p3

013

01

DOF102 103 104 105

1

2

Smoothness Mesh Density

Strategy 1 High High

Strategy 2 Low Low

10−5

100

εu

102

103

104

105

10−5

100

εp

Nvar

10−6

10−4

10−2

100

102

ε∇ u

102

103

104

10510

−6

10−4

10−2

100

102

ε∇ p

Nvar

u4114

11 v4

114

11 p4

014

01

u4024

02 v4

024

02 p4

014

01

u4114

11 v4

114

11 p3

013

01

u4024

02 v4

024

02 p3

013

01

u4114

11 v4

114

11 p2

012

01

u4024

02 v4

024

02 p2

012

01

u4014

01 v4

014

01 p2

012

01

u4114

12 v4

124

11 p3

013

01

u4113

11 v3

114

11 p3

013

01

a

b

c

d

e

f

g

h

i

1

2

1

2

1

2

1

2

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Error Convergence

Discretizations with higher regularity perform better

10−5

100

εu

102

103

104

105

10−5

100

εp

Nvar

10−6

10−4

10−2

100

102

ε∇ u

102

103

104

10510

−6

10−4

10−2

100

102

ε∇ p

Nvar

u4114

11 v4

114

11 p4

014

01

u4024

02 v4

024

02 p4

014

01

u4114

11 v4

114

11 p3

013

01

u4024

02 v4

024

02 p3

013

01

u4114

11 v4

114

11 p2

012

01

u4024

02 v4

024

02 p2

012

01

u4014

01 v4

014

01 p2

012

01

u4114

12 v4

124

11 p3

013

01

u4113

11 v3

114

11 p3

013

01

DOF102 103 104 105

1

2

Smoothness Mesh Density

Strategy 1 High High

Strategy 2 Low Low

10−5

100

εu

102

103

104

105

10−5

100

εp

Nvar

10−6

10−4

10−2

100

102

ε∇ u

102

103

104

10510

−6

10−4

10−2

100

102

ε∇ p

Nvar

u4114

11 v4

114

11 p4

014

01

u4024

02 v4

024

02 p4

014

01

u4114

11 v4

114

11 p3

013

01

u4024

02 v4

024

02 p3

013

01

u4114

11 v4

114

11 p2

012

01

u4024

02 v4

024

02 p2

012

01

u4014

01 v4

014

01 p2

012

01

u4114

12 v4

124

11 p3

013

01

u4113

11 v3

114

11 p3

013

01

a

b

c

d

e

f

g

h

i

1

2

1

2

1

2

1

2

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Error Convergence

Discretizations with higher regularity perform better

10−5

100

εu

102

103

104

105

10−5

100

εp

Nvar

10−6

10−4

10−2

100

102

ε∇ u

102

103

104

10510

−6

10−4

10−2

100

102

ε∇ p

Nvar

u4114

11 v4

114

11 p4

014

01

u4024

02 v4

024

02 p4

014

01

u4114

11 v4

114

11 p3

013

01

u4024

02 v4

024

02 p3

013

01

u4114

11 v4

114

11 p2

012

01

u4024

02 v4

024

02 p2

012

01

u4014

01 v4

014

01 p2

012

01

u4114

12 v4

124

11 p3

013

01

u4113

11 v3

114

11 p3

013

01

DOF102 103 104 105

1

2

Smoothness Mesh Density

Strategy 1 High High

Strategy 2 Low Low

10−5

100

εu

102

103

104

105

10−5

100

εp

Nvar

10−6

10−4

10−2

100

102

ε∇ u

102

103

104

10510

−6

10−4

10−2

100

102

ε∇ p

Nvar

u4114

11 v4

114

11 p4

014

01

u4024

02 v4

024

02 p4

014

01

u4114

11 v4

114

11 p3

013

01

u4024

02 v4

024

02 p3

013

01

u4114

11 v4

114

11 p2

012

01

u4024

02 v4

024

02 p2

012

01

u4014

01 v4

014

01 p2

012

01

u4114

12 v4

124

11 p3

013

01

u4113

11 v3

114

11 p3

013

01

a

b

c

d

e

f

g

h

i

1

2

1

2

1

2

1

2

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Design of Minimal Drag Body

We design a body with minimal drag

Aim

Design boundary γ of body with

area A0 travelling at constant speed

U to minimize the drag D

Optimization Problem

minγ(xb)

c = D + εR

s. t. Area ≥ A0

L−(xb) ≤ L(xb) ≤ L+(xb)

MU = F

dragobjective

areaconstraint

lineardesignconstraints

governingequations

D =∫γ

(− pI + µ

(∇u + (∇u)T

))n ds · eu

[Pironneau, 1973; 1974; Mohammadi & Pironneau, 2010]

D

γ

A0U

γ

u = 0

-r

u = Ue1

v = ∂u/∂n = 0

ΓN

20r

20r 40r

6

?--

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Design of Minimal Drag Body

We design a body with minimal drag

Aim

Design boundary γ of body with

area A0 travelling at constant speed

U to minimize the drag D

Optimization Problem

minγ(xb)

c = D + εR

s. t. Area ≥ A0

L−(xb) ≤ L(xb) ≤ L+(xb)

MU = F

dragobjective

areaconstraint

lineardesignconstraints

governingequations

D =∫γ

(− pI + µ

(∇u + (∇u)T

))n ds · eu

[Pironneau, 1973; 1974; Mohammadi & Pironneau, 2010]

D

γ

A0U

γu = 0

-r

u = Ue1

v = ∂u/∂n = 0

ΓN

20r

20r 40r

6

?--

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Design of Minimal Drag Body

We design a body with minimal drag

Aim

Design boundary γ of body with

area A0 travelling at constant speed

U to minimize the drag D

Optimization Problem

minγ(xb)

c = D + εR

s. t. Area ≥ A0

L−(xb) ≤ L(xb) ≤ L+(xb)

MU = F

dragobjective

areaconstraint

lineardesignconstraints

governingequations

D =∫γ

(− pI + µ

(∇u + (∇u)T

))n ds · eu

[Pironneau, 1973; 1974; Mohammadi & Pironneau, 2010]

D

γ

A0U

γu = 0

-r

u = Ue1

v = ∂u/∂n = 0

ΓN

20r

20r 40r

6

?--

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Design of Minimal Drag Body

We design a body with minimal drag

Aim

Design boundary γ of body with

area A0 travelling at constant speed

U to minimize the drag D

Optimization Problem

minγ(xb)

c = D + εR

s. t. Area ≥ A0

L−(xb) ≤ L(xb) ≤ L+(xb)

MU = F

dragobjective

areaconstraint

lineardesignconstraints

governingequations

D =∫γ

(− pI + µ

(∇u + (∇u)T

))n ds · eu

[Pironneau, 1973; 1974; Mohammadi & Pironneau, 2010]

D

γ

A0U

γu = 0

-r

u = Ue1

v = ∂u/∂n = 0

ΓN

20r

20r 40r

6

?--

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Design of Minimal Drag Body

We design a body with minimal drag

Aim

Design boundary γ of body with

area A0 travelling at constant speed

U to minimize the drag D

Optimization Problem

minγ(xb)

c = D + εR

s. t. Area ≥ A0

L−(xb) ≤ L(xb) ≤ L+(xb)

MU = F

dragobjective

areaconstraint

lineardesignconstraints

governingequations

D =∫γ

(− pI + µ

(∇u + (∇u)T

))n ds · eu

[Pironneau, 1973; 1974; Mohammadi & Pironneau, 2010]

D

γ

A0U

γu = 0

-r

u = Ue1

v = ∂u/∂n = 0

ΓN

20r

20r 40r

6

?--

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Design of Minimal Drag Body

The optimal shape is longer and more slender for higher speeds

Optimal shapes for different speeds

Initial

U = 1

U = 10

U = 40

U = 100

Flow before optimization (U=1)

Flow after optimization (U=100)

Note: low Reynolds numbers

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Design of Minimal Drag Body

The optimal shape is longer and more slender for higher speeds

Optimal shapes for different speeds

Initial

U = 1

U = 10

U = 40

U = 100

Flow before optimization (U=1)

Flow after optimization (U=100)

Note: low Reynolds numbers

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Design of Minimal Drag Body

The optimal shape is longer and more slender for higher speeds

Optimal shapes for different speeds

Initial

U = 1

U = 10

U = 40

U = 100

Flow before optimization (U=1)

Flow after optimization (U=100)

Note: low Reynolds numbers

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Design of Minimal Drag Body

The optimal shape is longer and more slender for higher speeds

Optimal shapes for different speeds

Initial

U = 1

U = 10

U = 40

U = 100

Flow before optimization (U=1)

Flow after optimization (U=100)

Note: low Reynolds numbers

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Design of Minimal Drag Body

The optimal shape is longer and more slender for higher speeds

Optimal shapes for different speeds

Initial

U = 1

U = 10

U = 40

U = 100

Flow before optimization (U=1)

Flow after optimization (U=100)

Note: low Reynolds numbers

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Design of Minimal Drag Body

The optimal shape is longer and more slender for higher speeds

Optimal shapes for different speeds

Initial

U = 1

U = 10

U = 40

U = 100

Flow before optimization (U=1)

Flow after optimization (U=100)

Note: low Reynolds numbers

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Design of Minimal Drag Body

The optimal shape is longer and more slender for higher speeds

Optimal shapes for different speeds

Initial

U = 1

U = 10

U = 40

U = 100

Flow before optimization (U=1)

Flow after optimization (U=100)

Note: low Reynolds numbers

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Introduction and Governing Equations

We model geometric effects on sound propagation through flow in 2D ducts

Pipe Geometry

Flow Acoustics

p pressureu velocityρ density

ρ∂u

∂t+ ρ(u · ∇)u+∇p− µ∇2u = 0

∂ρ

∂t+∇ · (ρu) = 0

p = p0 + p′

u = u0 + u′

ρ = ρ0 + ρ′

Background Flow: p0, u0, ρ0

Acoustic Disturbance: p′, u′, ρ′

1

2

γ− γ+

Γw

Γs

Ω

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Introduction and Governing Equations

We model geometric effects on sound propagation through flow in 2D ducts

Pipe GeometryFlow

Acoustics

p pressureu velocityρ density

ρ∂u

∂t+ ρ(u · ∇)u+∇p− µ∇2u = 0

∂ρ

∂t+∇ · (ρu) = 0

p = p0 + p′

u = u0 + u′

ρ = ρ0 + ρ′

Background Flow: p0, u0, ρ0

Acoustic Disturbance: p′, u′, ρ′

1

2

γ− γ+

Γw

Γs

Ω

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Introduction and Governing Equations

We model geometric effects on sound propagation through flow in 2D ducts

Pipe GeometryFlow Acoustics

p pressureu velocityρ density

ρ∂u

∂t+ ρ(u · ∇)u+∇p− µ∇2u = 0

∂ρ

∂t+∇ · (ρu) = 0

p = p0 + p′

u = u0 + u′

ρ = ρ0 + ρ′

Background Flow: p0, u0, ρ0

Acoustic Disturbance: p′, u′, ρ′

1

2

γ− γ+

Γw

Γs

Ω

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Introduction and Governing Equations

We model geometric effects on sound propagation through flow in 2D ducts

Pipe GeometryFlow Acoustics

p pressureu velocityρ density

ρ∂u

∂t+ ρ(u · ∇)u+∇p− µ∇2u = 0

∂ρ

∂t+∇ · (ρu) = 0

p = p0 + p′

u = u0 + u′

ρ = ρ0 + ρ′

Background Flow: p0, u0, ρ0

Acoustic Disturbance: p′, u′, ρ′

1

2

γ− γ+

Γw

Γs

Ω

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Introduction and Governing Equations

We model geometric effects on sound propagation through flow in 2D ducts

Pipe GeometryFlow Acoustics

p pressureu velocityρ density

ρ∂u

∂t+ ρ(u · ∇)u+∇p− µ∇2u = 0

∂ρ

∂t+∇ · (ρu) = 0

p = p0 + p′

u = u0 + u′

ρ = ρ0 + ρ′

Background Flow: p0, u0, ρ0

Acoustic Disturbance: p′, u′, ρ′

1

2

γ− γ+

Γw

Γs

Ω

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Introduction and Governing Equations

We model geometric effects on sound propagation through flow in 2D ducts

Pipe GeometryFlow Acoustics

p pressureu velocityρ density

ρ∂u

∂t+ ρ(u · ∇)u+∇p− µ∇2u = 0

∂ρ

∂t+∇ · (ρu) = 0

p = p0 + p′

u = u0 + u′

ρ = ρ0 + ρ′

Background Flow: p0, u0, ρ0

Acoustic Disturbance: p′, u′, ρ′

1

2

γ− γ+

Γw

Γs

Ω

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Introduction and Governing Equations

We model geometric effects on sound propagation through flow in 2D ducts

Pipe GeometryFlow Acoustics

p pressureu velocityρ density

ρ∂u

∂t+ ρ(u · ∇)u+∇p− µ∇2u = 0

∂ρ

∂t+∇ · (ρu) = 0

p = p0 + p′

u = u0 + u′

ρ = ρ0 + ρ′

Background Flow: p0, u0, ρ0

Acoustic Disturbance: p′, u′, ρ′

1

2

γ− γ+

Γw

Γs

Ω

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Introduction and Governing Equations

We model geometric effects on sound propagation through flow in 2D ducts

Pipe GeometryFlow Acoustics

p pressureu velocityρ density

ρ∂u

∂t+ ρ(u · ∇)u+∇p− µ∇2u = 0

∂ρ

∂t+∇ · (ρu) = 0

p = p0 + p′

u = u0 + u′

ρ = ρ0 + ρ′

Background Flow: p0, u0, ρ0

Acoustic Disturbance: p′, u′, ρ′

1

2

γ− γ+

Γw

Γs

Ω

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Results: Flow-Acoustic Coupling

We examine how the flow affects the sound in different ducts

-----Pipe A

|u|Flow

|p|Sound

-----Pipe B

|u|Flow

|p|Sound

-----Pipe C

|u|Flow

|p|Sound

FluidRadiusSpeedFrequency

Air1 cm1 m/s∼25 kHz

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Results: Flow-Acoustic Coupling

We examine how the flow affects the sound in different ducts

-----Pipe A

|u|Flow

|p|Sound

-----Pipe B

|u|Flow

|p|Sound

-----Pipe C

|u|Flow

|p|Sound

FluidRadiusSpeedFrequency

Air1 cm1 m/s∼25 kHz

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Results: Flow-Acoustic Coupling

We examine how the flow affects the sound in different ducts

-----Pipe A

|u|Flow

|p|Sound

-----Pipe B

|u|Flow

|p|Sound

-----Pipe C

|u|Flow

|p|Sound

FluidRadiusSpeedFrequency

Air1 cm1 m/s∼25 kHz

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Results: Flow-Acoustic Coupling

The corrugated duct exhibits stronger flow-acoustic coupling

Acoustic Pressure p [Pa]

A

B

C

FlowUpstream Downstream⇒

Measure of Flow-Acoustic Coupling

〈δp〉 =

∫∫Ω |p(x)− p(−x)| dA∫∫

Ω |p(x)|dA

Sound Frequency Sensitivity

20 21 22 23 24 25 26 27 28 29 300

5

10

15

20 0

0.2

0.4

0.6

0.8

Pipe A

Pipe B

Pipe C

〈δp〉

f [kHz]

2520 30

Flow Speed Sensitivity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pipe A

Pipe B

Pipe C

〈δp〉

U0 [m s−1]

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Results: Flow-Acoustic Coupling

The corrugated duct exhibits stronger flow-acoustic coupling

Acoustic Pressure p [Pa]

A

B

C

FlowUpstream Downstream⇒

Measure of Flow-Acoustic Coupling

〈δp〉 =

∫∫Ω |p(x)− p(−x)| dA∫∫

Ω |p(x)|dA

Sound Frequency Sensitivity

20 21 22 23 24 25 26 27 28 29 300

5

10

15

20 0

0.2

0.4

0.6

0.8

Pipe A

Pipe B

Pipe C

〈δp〉

f [kHz]

2520 30

Flow Speed Sensitivity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pipe A

Pipe B

Pipe C

〈δp〉

U0 [m s−1]

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Results: Flow-Acoustic Coupling

The corrugated duct exhibits stronger flow-acoustic coupling

Acoustic Pressure p [Pa]

A

B

C

FlowUpstream Downstream⇒

Measure of Flow-Acoustic Coupling

〈δp〉 =

∫∫Ω |p(x)− p(−x)| dA∫∫

Ω |p(x)|dA

Sound Frequency Sensitivity

20 21 22 23 24 25 26 27 28 29 300

5

10

15

20 0

0.2

0.4

0.6

0.8

Pipe A

Pipe B

Pipe C

〈δp〉

f [kHz]

2520 30

Flow Speed Sensitivity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pipe A

Pipe B

Pipe C

〈δp〉

U0 [m s−1]

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Results: Flow-Acoustic Coupling

The corrugated duct exhibits stronger flow-acoustic coupling

Acoustic Pressure p [Pa]

A

B

C

FlowUpstream Downstream⇒

Measure of Flow-Acoustic Coupling

〈δp〉 =

∫∫Ω |p(x)− p(−x)| dA∫∫

Ω |p(x)|dA

Sound Frequency Sensitivity

20 21 22 23 24 25 26 27 28 29 300

5

10

15

20 0

0.2

0.4

0.6

0.8

Pipe A

Pipe B

Pipe C

〈δp〉

f [kHz]

2520 30

Flow Speed Sensitivity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pipe A

Pipe B

Pipe C

〈δp〉

U0 [m s−1]

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Outlook

Ongoing work

Flow Discretizations using Locally Refinable B-splines

1 2

Optimization of Parametrizations for Isogeometric Analysis

L(U) = 0

Ω

Γ

?

?

minimize c(Ω, U)

such that det(J) > 0

where ∂Ω = Γ

L(U) = 0

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Outlook

Ongoing work

Flow Discretizations using Locally Refinable B-splines

Region of Interest

Computational Domain

1 2

Optimization of Parametrizations for Isogeometric Analysis

L(U) = 0

Ω

Γ

?

?

minimize c(Ω, U)

such that det(J) > 0

where ∂Ω = Γ

L(U) = 0

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Outlook

Ongoing work

Flow Discretizations using Locally Refinable B-splines

Region of Interest

Global Refinement

1 2

Optimization of Parametrizations for Isogeometric Analysis

L(U) = 0

Ω

Γ

?

?

minimize c(Ω, U)

such that det(J) > 0

where ∂Ω = Γ

L(U) = 0

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Outlook

Ongoing work

Flow Discretizations using Locally Refinable B-splines

Region of Interest

Local Refinement

1 2

Optimization of Parametrizations for Isogeometric Analysis

L(U) = 0

Ω

Γ

?

?

minimize c(Ω, U)

such that det(J) > 0

where ∂Ω = Γ

L(U) = 0

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Outlook

Ongoing work

Flow Discretizations using Locally Refinable B-splines

Region of Interest

Local Refinement1

2

Optimization of Parametrizations for Isogeometric Analysis

L(U) = 0

Ω

Γ

?

?

minimize c(Ω, U)

such that det(J) > 0

where ∂Ω = Γ

L(U) = 0

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Outlook

Ongoing work

Flow Discretizations using Locally Refinable B-splines

Region of Interest

Local Refinement1

2

Optimization of Parametrizations for Isogeometric Analysis

L(U) = 0

Ω

Γ

?

?

minimize c(Ω, U)

such that det(J) > 0

where ∂Ω = Γ

L(U) = 0

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Outlook

Ongoing work

Flow Discretizations using Locally Refinable B-splines

Region of Interest

Local Refinement1

2

Optimization of Parametrizations for Isogeometric Analysis

L(U) = 0

Ω

Γ

?

?

minimize c(Ω, U)

such that det(J) > 0

where ∂Ω = Γ

L(U) = 0

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Outlook

Ongoing work

Flow Discretizations using Locally Refinable B-splines

Region of Interest

Local Refinement1

2

Optimization of Parametrizations for Isogeometric Analysis

L(U) = 0

Ω

Γ

?

?

minimize c(Ω, U)

such that det(J) > 0

where ∂Ω = Γ

L(U) = 0

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Outlook

Ongoing work

Flow Discretizations using Locally Refinable B-splines

Region of Interest

Local Refinement1

2

Optimization of Parametrizations for Isogeometric Analysis

L(U) = 0

Ω

Γ

?

?

minimize c(Ω, U)

such that det(J) > 0

where ∂Ω = Γ

L(U) = 0

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Outlook

Ongoing work

Flow Discretizations using Locally Refinable B-splines

Region of Interest

Local Refinement1

2

Optimization of Parametrizations for Isogeometric Analysis

L(U) = 0

Ω

Γ

?

?

minimize c(Ω, U)

such that det(J) > 0

where ∂Ω = Γ

L(U) = 0

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Outlook

Ongoing work

Flow Discretizations using Locally Refinable B-splines

Region of Interest

Local Refinement1 2

Optimization of Parametrizations for Isogeometric Analysis

L(U) = 0

Ω

Γ

?

?

minimize c(Ω, U)

such that det(J) > 0

where ∂Ω = Γ

L(U) = 0

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Outlook

Ongoing work

Flow Discretizations using Locally Refinable B-splines

Region of Interest

Local Refinement1 2

Optimization of Parametrizations for Isogeometric Analysis

L(U) = 0

Ω

Γ

?

?

minimize c(Ω, U)

such that det(J) > 0

where ∂Ω = Γ

L(U) = 0

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Outlook

Ongoing work

Flow Discretizations using Locally Refinable B-splines

Region of Interest

Local Refinement1 2

Optimization of Parametrizations for Isogeometric Analysis

L(U) = 0

Ω

Γ

?

?

minimize c(Ω, U)

such that det(J) > 0

where ∂Ω = Γ

L(U) = 0

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Outlook

Ongoing work

Flow Discretizations using Locally Refinable B-splines

Region of Interest

Local Refinement1 2

Optimization of Parametrizations for Isogeometric Analysis

L(U) = 0

Ω

Γ

?

?

minimize c(Ω, U)

such that det(J) > 0

where ∂Ω = Γ

L(U) = 0

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Outlook

Ongoing work

Flow Discretizations using Locally Refinable B-splines

Region of Interest

Local Refinement1 2

Optimization of Parametrizations for Isogeometric Analysis

L(U) = 0

Ω

Γ

?

?

minimize c(Ω, U)

such that det(J) > 0

where ∂Ω = Γ

L(U) = 0

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Outlook

Ongoing work

Flow Discretizations using Locally Refinable B-splines

Region of Interest

Local Refinement1 2

Optimization of Parametrizations for Isogeometric Analysis

L(U) = 0

Ω

Γ

?

?

minimize c(Ω, U)

such that det(J) > 0

where ∂Ω = Γ

L(U) = 0

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Outlook

Ongoing work

Flow Discretizations using Locally Refinable B-splines

Region of Interest

Local Refinement1 2

Optimization of Parametrizations for Isogeometric Analysis

L(U) = 0

Ω

Γ

?

?

minimize c(Ω, U)

such that det(J) > 0

where ∂Ω = Γ

L(U) = 0

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Outlook

Ongoing work

Flow Discretizations using Locally Refinable B-splines

Region of Interest

Local Refinement1 2

Optimization of Parametrizations for Isogeometric Analysis

L(U) = 0

Ω

Γ

?

?

minimize c(Ω, U)

such that det(J) > 0

where ∂Ω = Γ

L(U) = 0

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Outlook

Ongoing work

Flow Discretizations using Locally Refinable B-splines

Region of Interest

Local Refinement1 2

Optimization of Parametrizations for Isogeometric Analysis

L(U) = 0

Ω

Γ

?

?

minimize c(Ω, U)

such that det(J) > 0

where ∂Ω = Γ

L(U) = 0

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Outlook

Ongoing work

Flow Discretizations using Locally Refinable B-splines

Region of Interest

Local Refinement1 2

Optimization of Parametrizations for Isogeometric Analysis

L(U) = 0

Ω

Γ

?

?

minimize c(Ω, U)

such that det(J) > 0

where ∂Ω = Γ

L(U) = 0

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Outlook

Ongoing work

Flow Discretizations using Locally Refinable B-splines

Region of Interest

Local Refinement1 2

Optimization of Parametrizations for Isogeometric Analysis

L(U) = 0

Ω

Γ

?

?

minimize c(Ω, U)

such that det(J) > 0

where ∂Ω = Γ

L(U) = 0

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Summary

Summary

Isogeometric Method

IGA = FEM (high regularity) + CAD (exact geometry)

Isogeometric Analysis of Flows

Facilitates High-regularity discretizations of flow variables

Isogeometric Shape Optimization of Flows

Unites design and analysis models through B-splines

Isogeometric Analysis of Flow Acoustics

Identifies geometric enhancement of flow-acoustic coupling

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Summary

Summary

Isogeometric Method

IGA = FEM (high regularity) + CAD (exact geometry)

Isogeometric Analysis of Flows

Facilitates High-regularity discretizations of flow variables

Isogeometric Shape Optimization of Flows

Unites design and analysis models through B-splines

Isogeometric Analysis of Flow Acoustics

Identifies geometric enhancement of flow-acoustic coupling

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Summary

Summary

Isogeometric Method

IGA = FEM (high regularity) + CAD (exact geometry)

Isogeometric Analysis of Flows

Facilitates High-regularity discretizations of flow variables

Isogeometric Shape Optimization of Flows

Unites design and analysis models through B-splines

Isogeometric Analysis of Flow Acoustics

Identifies geometric enhancement of flow-acoustic coupling

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Summary

Summary

Isogeometric Method

IGA = FEM (high regularity) + CAD (exact geometry)

Isogeometric Analysis of Flows

Facilitates High-regularity discretizations of flow variables

Isogeometric Shape Optimization of Flows

Unites design and analysis models through B-splines

Isogeometric Analysis of Flow Acoustics

Identifies geometric enhancement of flow-acoustic coupling

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

Summary

Summary

Isogeometric Method

IGA = FEM (high regularity) + CAD (exact geometry)

Isogeometric Analysis of Flows

Facilitates High-regularity discretizations of flow variables

Isogeometric Shape Optimization of Flows

Unites design and analysis models through B-splines

Isogeometric Analysis of Flow Acoustics

Identifies geometric enhancement of flow-acoustic coupling

Introduction Navier-Stokes Flow Shape Optimization Flow Acoustics Conclusions

The 3 minute version: http://www.dr.dk/da

Thank You For Your Attention!