itpa may 2007 © matej mayer carbon erosion and transport in asdex upgrade m. mayer 1, v. rohde 1,...

10
ITPA May 2007 © Matej Mayer Carbon Erosion and Transport in ASDEX Upgrade M. Mayer 1 , V. Rohde 1 , J.L. Chen 1 , X. Gong 1 , J. Likonen 3 , S. Lindig 1 , G. Ramos 2 , E. Vainonen-Ahlgren 3 and ASDEX Upgrade team 1 Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching, Germany 2 CICATA-Qro, Instituto Politécnico Nacional, Querétaro, México 3 Association EURATOM-TEKES, VTT Processes, Espoo, Finland Outer divertor – Tungsten erosion and local transport – Carbon erosion Inner divertor – Carbon and boron deposition Global carbon transport from 2002 – 2006 Extrapolation to ITER

Upload: thomasine-harrington

Post on 29-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ITPA May 2007 © Matej Mayer Carbon Erosion and Transport in ASDEX Upgrade M. Mayer 1, V. Rohde 1, J.L. Chen 1, X. Gong 1, J. Likonen 3, S. Lindig 1, G

ITPA May 2007 © Matej Mayer

Carbon Erosion and Transport in ASDEX Upgrade

M. Mayer1, V. Rohde1, J.L. Chen1, X. Gong1, J. Likonen3,

S. Lindig1, G. Ramos2, E. Vainonen-Ahlgren3

and ASDEX Upgrade team

1 Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching, Germany2 CICATA-Qro, Instituto Politécnico Nacional, Querétaro, México

3 Association EURATOM-TEKES, VTT Processes, Espoo, Finland

• Outer divertor – Tungsten erosion and local transport – Carbon erosion

• Inner divertor – Carbon and boron deposition

• Global carbon transport from 2002 – 2006

• Extrapolation to ITER

Page 2: ITPA May 2007 © Matej Mayer Carbon Erosion and Transport in ASDEX Upgrade M. Mayer 1, V. Rohde 1, J.L. Chen 1, X. Gong 1, J. Likonen 3, S. Lindig 1, G

ITPA May 2007 © Matej Mayer

Experimental: Marker stripes on divertor tiles

• Marker stripes – 4 – 8 µm C with Re interlayer – 200 – 500 nm W

• Thickness of layers before and after exposure determined with ion beam analysis methods

ReC

CC/Re W

C tile Net erosion = NBefore - NAfter

Gross erosion = NBefore + NDeposited – NAfter

NBefore, NAfter: Amounts before and after exposure

NDeposited: Amount deposited on C tileB, C

W1 2

1’

3

prompt redeposition

Net erosion 1’ - 3

Gross erosion 1’

Page 3: ITPA May 2007 © Matej Mayer Carbon Erosion and Transport in ASDEX Upgrade M. Mayer 1, V. Rohde 1, J.L. Chen 1, X. Gong 1, J. Likonen 3, S. Lindig 1, G

ITPA May 2007 © Matej Mayer

Erosion of C in 2004 – 2005

6A

6B

5

4

9A

9B

9C

1low

1up

2

3A

3B

WC

10

Delamination of marker

• Comparable erosion pattern to W (except tile 10 + sharp deposition close to strike point)

• C-erosion 6-10 times larger than W-erosion

Page 4: ITPA May 2007 © Matej Mayer Carbon Erosion and Transport in ASDEX Upgrade M. Mayer 1, V. Rohde 1, J.L. Chen 1, X. Gong 1, J. Likonen 3, S. Lindig 1, G

ITPA May 2007 © Matej Mayer

Total erosion of C in 2004 – 2005

Delamination of marker

Total C erosion on strike point obtained from

• C erosion pattern = W pattern

• C-erosion/W-erosion = 8

Tile

1 2.6 g

10 0.2 g

Total 2.8 g

Divertor erosion from spectroscopy: 1 gKallenbach PSI 2006

Uncertainties

• Factor 1.5 for surface analysis

• Factor 2 (– 3?) for spectroscopy

Agreement within error bars

Additional sinks

• Below roof baffle, pumped out, … C-source > C visible by spectroscopy

Page 5: ITPA May 2007 © Matej Mayer Carbon Erosion and Transport in ASDEX Upgrade M. Mayer 1, V. Rohde 1, J.L. Chen 1, X. Gong 1, J. Likonen 3, S. Lindig 1, G

ITPA May 2007 © Matej Mayer

W coverage in AUG 2002 – 2006

Step by step replacement of C offers unique possibility to identify C sources

2002 – 2003 2004 – 2005 2005 – 2006

Page 6: ITPA May 2007 © Matej Mayer Carbon Erosion and Transport in ASDEX Upgrade M. Mayer 1, V. Rohde 1, J.L. Chen 1, X. Gong 1, J. Likonen 3, S. Lindig 1, G

ITPA May 2007 © Matej Mayer

Deposition in inner divertor

2002 – 20034800 s

2004 – 20053050 s

2005 – 20062900 s

0 200 400 6000

2

4

6

s-coordinate [mm]

B + C C

9C456B6A

Dep

osi

tio

n o

f B

+C

[10

19 a

t./c

m2]

0 200 400 6000

2

4

6

s-coordinate [mm]

B + C C

9C456B6A

Dep

osi

tio

n o

f B

+C

[10

19 a

t./c

m2]

0 200 400 6000

2

4

6

s-coordinate [mm]

B + C C

9C456B6A

Dep

osi

tio

n o

f B

+C

[10

19 a

t./c

m2]

6A

6B

5

4

9C

• Decrease of C-deposition on divertor tiles by factor 7

from 2004/2005 to 2005/2006

• Decrease of C-deposition below roof baffle by factor 10

from 2004/2005 to 2005/2006

Outboard limiters are main carbon source

Page 7: ITPA May 2007 © Matej Mayer Carbon Erosion and Transport in ASDEX Upgrade M. Mayer 1, V. Rohde 1, J.L. Chen 1, X. Gong 1, J. Likonen 3, S. Lindig 1, G

ITPA May 2007 © Matej Mayer

Total carbon balance

2002 – 2003 2004 – 2005 2005 – 2006

Outer divertor Erosion C [g] - 2.8 2.8

Inner divertor Deposition C [g] 14.8 14.3 2.2

Deposition B [g] 2.9 5.9 2.4

• Deposition on tiles 5, 6 measured in all 3 campaigns Extrapolate to total inner divertor using 2002/2003 data (factor 2.2)

• Erosion in outer divertor measured in 2004/2005 Assume identical in 2005/2006

• Normalized to 3000 s

Page 8: ITPA May 2007 © Matej Mayer Carbon Erosion and Transport in ASDEX Upgrade M. Mayer 1, V. Rohde 1, J.L. Chen 1, X. Gong 1, J. Likonen 3, S. Lindig 1, G

ITPA May 2007 © Matej Mayer

Contribution of carbon ICRH limiters

W

C

2005-2006 Full carbon limitersused before 2005

Small carbon influx from horizontal part of limiters

Only small contribution of remaining carbon on limiters in 2005/2006

T. Pütterich 2003V. Bobkov

Page 9: ITPA May 2007 © Matej Mayer Carbon Erosion and Transport in ASDEX Upgrade M. Mayer 1, V. Rohde 1, J.L. Chen 1, X. Gong 1, J. Likonen 3, S. Lindig 1, G

ITPA May 2007 © Matej Mayer

Carbon transport

2004 – 2005 2005 – 2006

3 g20%

11 g80%

14 g 3 g100%

2 g

Assumption: Small influx of residual carbon in main chamber

Page 10: ITPA May 2007 © Matej Mayer Carbon Erosion and Transport in ASDEX Upgrade M. Mayer 1, V. Rohde 1, J.L. Chen 1, X. Gong 1, J. Likonen 3, S. Lindig 1, G

ITPA May 2007 © Matej Mayer

Extrapolation to ITER

ASDEX Upgrade: 1×1026 ions to outer divertor in 2004/2005 Carbon erosion: 2.8 g

ITER: 6×1026 ions to outer divertor per discharge Carbon erosion: 18 g

Transport to outer divertor, resulting in 0.2% C in incident flux(D+T)/C = 0.1 0.2 g T per discharge, allows 5000 discharges

CFC at strike points is marginally acceptable from T codeposition

Notes:

1. AUG at RT to 300°C, ITER at > 1000°C Small contribution of chemical erosion in both cases

2. Larger ELM size in ITER not taken into account (ELM mitigation)

3. Beryllium from main chamber not taken into account!