j p coad for tfft 5 november 2009 task-force fusion technology status and main achievements in 2009...

17
J P Coad for TFFT 5 Novem Task-Force Fusion Technology Status and Main Achievements in 2009 Task Force – Fusion Technolog

Upload: kimberly-purcell

Post on 27-Mar-2015

216 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: J P Coad for TFFT 5 November 2009 Task-Force Fusion Technology Status and Main Achievements in 2009 Task Force – Fusion Technology

J P Coad for TFFT 5 November 2009

Task-ForceFusion Technology

Status and Main Achievementsin 2009

Task Force – Fusion Technology

Page 2: J P Coad for TFFT 5 November 2009 Task-Force Fusion Technology Status and Main Achievements in 2009 Task Force – Fusion Technology

J P Coad for TFFT 5 November 2009

• Tritium in the Tokamak (determine T trapped by PFCs such as tiles and flakes)• Tritium Processes and Waste Management(detritiation of PFCs and Water / Detritiation of Waste Materials, Be, MS, Metals etc..)• Plasma Facing Components (Erosion, deposition, characterisation of co-deposits)• Engineering (Development of new Diagnostics)• Neutronics & Safety (Measurement of Dose rates and modeling & Set-up databases of availability and reliability of various components as well as failure rates. Characterisation of hazardous materials, such as dust) • Test Beds (AGHS, NB tests)

JET TF-FT Outline of the Objectives

NB. Main Objective of a FT task is, for instance, the assessment of a diagnostic for JET NOT its implementation in the machine (enhancement)

One of the key objectives assigned to EFDA in 1999 was, by taking advantage of the JET facilities, to increase the Research and Development of Fusion Technology with the aim of preparing the way to ITER. For this purpose a dedicated Task Force Fusion Technology (TF-FT) was set up at JET in year 2000.

Fusion Technology has been focused on six main areas of R&D

Page 3: J P Coad for TFFT 5 November 2009 Task-Force Fusion Technology Status and Main Achievements in 2009 Task Force – Fusion Technology

J P Coad for TFFT 5 November 2009

76 13

18

1813

23

1519

Tasks per year

132 tasks launched 2000-09, Total resources ~ 21 m€ (~2.7 m€ in 2009)

JET FT 2000-2009 Overview

SCK-CEN

CEAIPP FZJ FZK

MEdC UKAEA

Associations

VRENEA

TEKES

NB. In 2008 Tasks only under Notifications In 2009 Notifications (~2.6m€) and Orders (~110k€) For 2010 20 tasks have been approved (~300k€ Orders)

Page 4: J P Coad for TFFT 5 November 2009 Task-Force Fusion Technology Status and Main Achievements in 2009 Task Force – Fusion Technology

J P Coad for TFFT 5 November 2009

1. It was confirmed that room temperature is sufficient to regenerate completely the cryopump from hydrogen isotopes.

2. It was confirmed that lighter hydrocarbons are effectively desorbed at 473 K. However, due to the shift reaction taking place inside the impurity processing unit, only the total number of hydrocarbons could be derived.

3. It is expected that, after regeneration at 473 K and moderate vacuum only, there is still a considerable amount of tritiated propane inside the panels.

Cryopanel regeneration tests at 288 & 473 K (after Tritium Operation)

Tritium Processes and Waste Management(JW2-FT-2.4)

0

10

20

30

40

50

60

70

80

90

100

285 300 315 330 345 360 375 390 405 420 435 450

Panels and shields temperature (K)

methane

ethanepropane

Rel

ease

d ga

s lo

ad (

%)

due to isothermalevacuation

These results do not represent a problem for ITER, as ITER establishes the high temperature regeneration step at 475 K step at 10 Pa which is 2-3 orders of magnitude lower than the pressure used at JET during the regeneration of the PCP.

Page 5: J P Coad for TFFT 5 November 2009 Task-Force Fusion Technology Status and Main Achievements in 2009 Task Force – Fusion Technology

J P Coad for TFFT 5 November 2009

The task aimed at assessing the characteristics of the PCP ITER-relevant cryopanel after tritium contamination. Pumping tests performed at JET and the resulting curves were compared with the corresponding curves taken in 2004, before any tritium operation, when the PCP was “freshly” activated.

Tritium Processes and Waste Management (JW2-FT-2.24)

Pumping speed tests (after regeneration)

1E-05

1E-04

1E-03

1E-02

1E-01

0 50 100 150 200 250 300 350 400

t (sec)

p (

mbar)

2004

2008

Helium

1E-05

1E-04

1E-03

1E-02

1E-01

0 50 100 150 200 250 300 350 400

t (sec)

p (

mb

ar)

2004

2008

Deuterium

Excellent agreement after 4 years of operation (most of the time exposed to tritiated gases) no indication for any degradation.

Page 6: J P Coad for TFFT 5 November 2009 Task-Force Fusion Technology Status and Main Achievements in 2009 Task Force – Fusion Technology

J P Coad for TFFT 5 November 2009

Molecular sieves are widely used in all Fusion Plants and JET • An experimental program was set up to determine the optimaldetritiation conditions for these molecular sieves.• The detritiation was done by counter current regeneration atvarious temperatures using various regeneration mediaHe, Ar, N2 gas, He saturated with water vapour and hytec (95% Ar / 5% H2)

• He and N2 are the best options.

• Adding water vapour to the regeneration gas increase the slightly the detritiation but at the expense of extra secondary waste (HTO).

Tritium Processes and Waste Management(JW5-FT-2.25)

J. Braet / K. Dylst (SCK/CEN)

Detritiation of Molecular Sieves (MS)

Effect of the Temperature

Page 7: J P Coad for TFFT 5 November 2009 Task-Force Fusion Technology Status and Main Achievements in 2009 Task Force – Fusion Technology

J P Coad for TFFT 5 November 2009

Plasma Facing Components (JW6-FT-3.27)

Cross-section of the JET Mk IISRP divertor showing the location of the analysed tiles.

Objective: Investigate the 13C transport in the SOL by analysing a complete poloidal set of divertor tiles (Mk IISRP, 2001-04) using IBA, SIMS and TOF-ERDA

J. Likonen (TEKES)J.P. Coad (UKAEA)

Deposits on tiles 1 and 3 contain high Be/C levels, indicating that vessel temperature did not explain the duplex layer on tiles removed in 2001, since the vessel wall temperature was 200°C throughout 2001-2004 operations.13C puffed from the outer divertor (between tiles 7 and 8) at the end of C14 campaign was detected mainly near the strike point towards the top of tile 7 and on the apron of tile 8, whereas, deposition at the inner divertor tiles is relatively uniform toroidally. In general the 13C amount is relatively small elsewhere and most of the puffed 13C is still unaccounted for.

Page 8: J P Coad for TFFT 5 November 2009 Task-Force Fusion Technology Status and Main Achievements in 2009 Task Force – Fusion Technology

J P Coad for TFFT 5 November 2009

•Up to 90μm of deposit was removed from the tile surface with flash-lamp •Total amount of tritium released was 3GBq, ~12% of the total T inventory for the tile, and ~40% from the treated areas.•Deuterium is depleted from the treated surface. Desorption to a depth of at least 7μm occurs beyond the depth of material removed from the surface.•A low concentration of nickel and other metallic impurities was present in the film, which may accumulate at the surface during photon cleaning and slowdown the tritium release rate.

Cross sections showing deposits on (a) untreated and (b) flash-lamp treated regions on Tile 4

Tungsten stripe

13C injection

20mm

Cores cut for SIMS analysis

13C map on the shadowed area on tile 7. Deposition shows non-uniform coverage of 13C. Total 13C amount in this area is 2.2x1020 atoms.

Plasma Facing Components (JW6-FT-3.27)

Material transport and erosion/deposition in the JET torusJ.P. Coad /J. Likonen (UKAEA/TEKES)

NRA

D(3He,p)4He

Page 9: J P Coad for TFFT 5 November 2009 Task-Force Fusion Technology Status and Main Achievements in 2009 Task Force – Fusion Technology

J P Coad for TFFT 5 November 2009

Plasma Facing Components (JW6-FT-3.32)

Objective: Investigate the 13C transport in the SOL by analysing a complete poloidal set of divertor tiles (Mk IIHD, 2005-07) using IBA, SIMS and TOF-ERDA

Tiles 1, 3 and 8 exposed during 2005-07 have been analysed by IBA and SIMS. Deposits on tiles 1 and 3 contain high Be/C levels indicating that carbon is removed by chemical erosion. Chemical sputtering does not occur up on the apron of tile 1. Tile 8 appeared clean all over, indicating it was in a net erosion zone.

A LB-SRP (5) tile coated with 0.7 and 1.5 µm W stripes was exposed 2005-07 and has been analysed as a test of W-coating durability for the JET-ILW. The 0.7 µm film had been eroded from much of the area, but the 1.5 µm film had been thinned to virtually nothing in places but was still generally protecting the surface (see fig. next slide).J.P. Coad /J. Likonen (UKAEA/TEKES)

Cross-section of the JET Mk IIHD divertor showing the

location of the analysed tiles.

1

3

4 6

7

8

5

apron

Page 10: J P Coad for TFFT 5 November 2009 Task-Force Fusion Technology Status and Main Achievements in 2009 Task Force – Fusion Technology

J P Coad for TFFT 5 November 2009

LB-SRP tile (5) before (top) and after (bottom) exposure in 2005-2007.

Material transport and Erosion JW6-FT-3.32

0.7µm W

1.5 µm W

Further analyses were made from MKIISRP outer divertor tiles and SRP tile that were exposed to 13C puffing at the end of C14 campaign in 2004. Tiles 6 and 7 show a relatively uniform deposition (toroidally). In the case of tile 8 there is a strong variation toroidally. SRP tile has highest 13C amount at the edges of the tile.

13C distribution on divertor tiles following the 2004 puffing. Experimental results are indicated by symbols and solid line is the result of EDGE2D simulations (J. Strachan, PPPL).

13CH4

OSP

ISP

poloidal distance around divertor (mm)

0 500 1000 1500 2000

13C

dep

osit

ed /

cm2 /

13C

inje

cted

10-8

10-7

10-6

10-5

10-4

SIMS

IBA

SIMS -2nd toroidal locationmodel

1 3 4 5 6 7 8

Arc Discharge coating by DIARC (Finland)

Page 11: J P Coad for TFFT 5 November 2009 Task-Force Fusion Technology Status and Main Achievements in 2009 Task Force – Fusion Technology

J P Coad for TFFT 5 November 2009

Plasma Facing Components (JW6-FT-3.33)

LIBS spectrum after the 10th laser shot on the W-stripe zone with the deposited layer.

H peak disappeared Carbon Be and W peak appear

(J.-M.Weulersse, A. Semerok CEA)

In situ Laser Induced Breakdown Spectroscopy

LIBS spectrum after the first laser shot on the W-stripe zone with the deposited layer. C, H and Be peaks visible

Page 12: J P Coad for TFFT 5 November 2009 Task-Force Fusion Technology Status and Main Achievements in 2009 Task Force – Fusion Technology

J P Coad for TFFT 5 November 2009

Study of failure modes of 200 µm tungsten coatings

The coating: 200 µm VPS W/ CFC with W/20.5μm Re multilayer interlayer (Plansee AG)

Re

Re

Re

W

W

VP

S-W

Re

/W M

ult

ila

ye

r

W

Sub-layer 1

Sub-layer 2

Re

Re

Re

W

W

VP

S-W

Re

/W M

ult

ila

ye

r

W

Sub-layer 1

Sub-layer 2

Thermal tests of VPS-W coating in the electron beam facility JUDITH1 under: (i) Multiple ELM like transient thermal loads (~1000 pulses, 1ms)(ii) Steady State thermal loads (1 pulse, 2s)

Bulk W tile

W coatingsInner divertor

Out

er d

iver

tor

JET ILW full W divertor: VPS-W/CFC and bulk W

Objectives: failure modes and damage thresholds of VPS-W coatings under transient thermal loads

Plasma Facing Components (JW6-FT-3.35)

T. Hirai (FZJ)

Page 13: J P Coad for TFFT 5 November 2009 Task-Force Fusion Technology Status and Main Achievements in 2009 Task Force – Fusion Technology

J P Coad for TFFT 5 November 2009

N.B. As a result of numbers of observations, ILW Project made a decision to dismiss the VPS-W coating from the Project baseline. Alternatively, thinner PVD-W coating was developed and has been qualified for the Project.

(i) ELM-like thermal loads: Surface damages, droplets and peeling of sub-layers of VPS-W layers. Damage threshold: < 0.33 GW/m2 1ms. Sample dimensions: 100x300 mm2

(ii) Steady state thermal loads: 113MJ/m2 2s Melting of the multilayer due to reduction of melting points by alloying. (max temp. 3200°C) Damage threshold < 2825°C (W-Re) and/or 2715°C (W-C).

Failure modes and damage thresholds of the VPS coatings

Plasma Facing Components JW6-FT-3.35

Page 14: J P Coad for TFFT 5 November 2009 Task-Force Fusion Technology Status and Main Achievements in 2009 Task Force – Fusion Technology

J P Coad for TFFT 5 November 2009

The task was to make a comparison of the Experimental vs the Calculated dose during a non- operational period e.g. the shutdown of the JET machine (2005-2007). This allowed the bench-marking of the two available 3-D methods (D1S, ENEA and R2S, FZK) for the prediction of the shutdown dose rate.

TLDDedicated measurements have been performed with GM tube outside vessel and TLDs close to the vessel.

A satisfying agreement has been obtained between the calculations and measurements in the in-vessel position (within 20%), but both methods (D1S and R2S) underestimate the gamma dose rate measured for the external position (the agreement is within a factor 2 to 3).

Neutronics and Safety (JW5-FT-5.20)

Shutdown dose rate benchmark experiment at JETShutdown dose rate benchmark experiment at JET

R. Villari/U.Fischer (ENEA, FZK)

Page 15: J P Coad for TFFT 5 November 2009 Task-Force Fusion Technology Status and Main Achievements in 2009 Task Force – Fusion Technology

J P Coad for TFFT 5 November 2009

The discrepancies between calculation and experimental measurements for the external position indicate clearly that there are still deficiencies in the modeling mainly attributed to the uncertainties (related to the material impurities) of the metallic structures surrounding the detector.

Modeling inadequacy can generate uncertainties on:• the neutron spectra incident on the different components: overestimation of the shielding causes an underestimation of the induced activation;

• the gamma decay source: lacking structures, components not well described, etc… cause an underestimation of the activated nuclides thus of the decay gammas.

Neutron flux measurements during operation and dose measurements after shut-down at the same detector location will be planned in the frame of the follow-up task JW8-FT-5.28 to resolve the severe discrepancies. CATIA 5 drawings including the missing material information (impurities and their relative concentration), are necessary in order to take into account all material information which is currently missing.

Neutronic and Safety (JW5-FT-5.20)

Page 16: J P Coad for TFFT 5 November 2009 Task-Force Fusion Technology Status and Main Achievements in 2009 Task Force – Fusion Technology

J P Coad for TFFT 5 November 2009

Scope of the task was the collection of the work effort data (number of hours*number of persons) during some maintenance tasks foreseen in 2007 JET shutdown, in order to create a first data base useful to assess ORE for ITER maintenance tasks.

Neutronics and Safety (JW5-FT-5.23)

Monitored Activities

KT1-H Spectrometer mirror chamber re-fitting

Replacement of KK1 window for diagnostic

Radiation monitoring

Scaffolding mounting and dismounting

Pipe/tube cutting and welding

Pipe/tube insulation installation and removal

Flange bolted sealing and unsealing

Flange lip seal welding

Component transportation in and out the maintenance zone

Electric cables’ maintenance

A comparison between the WEs JET data and those used in the ITER ORE assessment has been carried out. small

fl angemedium

fl angelarge

fl ange

JET

ITER0

0.5

1

1.5

2

Unbolting flanges (p- h)

In average the JET and ITER WEs are of the same order and in most of the cases the values foreseen for ITER are even higher (for example window replacement: ITER 103 p-h, JET 76 p-h). This is because the ITER values are rather conservative, taking into account the uncertainties of the ITER systems’ layout.

(M.T. Porfiri, ENEA)

Page 17: J P Coad for TFFT 5 November 2009 Task-Force Fusion Technology Status and Main Achievements in 2009 Task Force – Fusion Technology

J P Coad for TFFT 5 November 2009

Conclusions• There are now a larger number of tasks on analysis of deposited

films from JET(IBA, SIMS, Microprobe, XPS, etc), with more labs prepared to undertake some work with Be.

• It appears that neutron dose modelling is critically dependent on precise construction details (requiring huge CATIA models), or inadequate.

• The detritiation/disposal of waste in all forms is going to be a big issue for ITER. Several tasks are making contributions.

• TFFT is providing the pre-characterisation of JET ITER-Like Wall tiles, and will be responsible for post-mortem analysis

• Use of the unique JET facilities (AGHS, BeHF, Test-bed) for testing/development has proved very difficult over the years due to conflicts in priorities