j. r. - nasa

133
4 m 4 z MODELING AND PARAMETER UNCERTAINTIES FOR AIRCRAFT FLIGHT CONTROL SYSTEM DESIGN J. I). McDonnell, R. A. Berg, R. M. Heimbangh, and C. A. Felton Prepared by DOUGLAS AIRCRAFT COMPANY Long Beach, Calif. 90846 for Langley Research Center NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. SEPTEMBER 1977

Upload: others

Post on 16-Oct-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: J. R. - NASA

4 m 4 z

MODELING AND PARAMETER UNCERTAINTIES FOR AIRCRAFT FLIGHT CONTROL SYSTEM DESIGN

J. I). McDonnell, R. A. Berg, R. M . Heimbangh, and C. A. Felton

Prepared by DOUGLAS AIRCRAFT COMPANY Long Beach, Calif. 90846

for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. SEPTEMBER 1977

Page 2: J. R. - NASA

-

n c n LIBRARY KAFB, NM . .~ - -

NASA CR-2887

Modeling and Parameter Uncertaint ies for 6. Parforming Orpnizrtion cod. A i r c r a f t F l i g h t C o n t r o l System Design

September 1977 4. Title md Subtitle 5. Report Date

7. A u h r ( s l " ~~

~~

J. 0. McDonnell , R. A. Berg, R. M. Heimbaugh, and C. A. Fe l ton

8. Performing Organization Rwport No.

MDC 54555

. 10. Work Unit No. 9. Perfaming Organization Name and Address

Douglas A i r c r a f t Co. 3855 Lakewood Blvd. Long Beach. C a l i f o r n i a 90846

11. Contract or Grant No.

NAS1-14151

~~ , 13. Type of R ~ R and Rriod Covrd 12. Sponsoring Agency Name and Address

- .. Final Report

National Aeronautics and Space Admin is t ra t ion Langley Research Center Hampton , Vi r g i n i a 23665 I 14. Sponsoring Agency Codm

15. Supplementary Notes

Langley technical monitor: Robert S. Dunning

Final report. -. . .~ ~

16. Abstract

As a i r c r a f t designs t rend toward fur ther appl icat ions of control-conf igured vehic le conceots, t h e a i r c r a f t c o n t r o l systems will i n c r e a s i n g l y r e l y on s t a b i l i t y and dynamic augmentation t o o b t a i n normal f l y i n g q u a l i t i e s and reasonable structural margins. Al though the control system designer would choose t o have a p e r f e c t dynamic d e s c r i p t i o n o f t h e v e h i c l e t h a t i s b e i n g developed, he knows t h a t a l e v e l o f u n c e r t a i n t y o f p l a n t dynamics will e x i s t .

Th is repor t g ives typ ica l va lues o f p l a n t dynamic u n c e r t a i n t i e s f o r some r e c e n t a i r c r a f t design and development programs. H i s t o r i e s o f p e r t i n e n t aerodynamic, i n e r t i a l . and s t r u c t u r a l parameter var iat ions are g iven for a p e r i o d o f time from program i n i t i a t i o n t o a i r c r a f t c e r t i f i c a t i o n . These data can be used as t y p i c a l o f f u t u r e v e h i c l e s so that cont ro l system design concepts can be evaluated wi th due c o n s i d e r a t i o n t o t h e i r s e n s i t i v i t y t o u n c e r t a i n t i e s i n p l a n t dynamics.

17. Key Words (Suggested by Authorkl 1 ~~

18. Distribution Statement Ai rc ra f t Des ign Cont ro l Systems Aerodynamic Coef f i c ien ts S t ruc tua l V ib ra t ion Estimates

Unclassified-Unlimited

Confidence Mathematical Models Subject Category 05

19. Snurity Clarsif. (of this report) 20. Security Clarsif. (of this page) 21. NO. of P- 22. Rice'

Unc lass i f ied Unc lass i f ied 131 $6.00

I

*For sale by the National Technical Information Service, Springfield, Virginia 22161

Page 3: J. R. - NASA
Page 4: J. R. - NASA

. . .

CONTENTS

PAGE

1 2

3 4

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . 1 DISCUSSION OF DATA ANG METHODOLOGY . . . . . . . . . . . . 5

AERODYNAMIC PARAMETERS . . . . . . . . . . . . . . . 5 Deta i led Example o f Stabi 1 i t y Der iva t ive . Cal c u l a t i on . . . . . . . . . . . . . . . . . . 5 Sources o f Uncertaint ies . . . . . . . . . . . . 11 Discussion o f Data . . . . . . . . . . . . . . . 12

WEIGHT AND INERTIAL PARAMETERS . . . . . . . . . . . 19 STRUCTURAL PARAMETERS . . . . . . . . . . . . . . . . 19

Modal Vibrat ion Analysis . . . . . . . . . . . . 19 St ruc tura l Dynamic Parameters Invest igated . . . 28 Struc tura l Dynamic Data . . . . . . . . . . . . 30 Synmetri c Analysis . . . . . . . . . . . . . . . 30 Antisymmetric Analysis . . . . . . . . . . . . . 30 Discussion o f Results . . . . . . . . . . . . . 31

General . . . . . . . . . . . . . . . . . . 31 Modal Frequencies . . . . . . . . . . . . . 32 Generalized Mass and Displacement . . . . . 32 Evaluation of Results . . . . . . . . . . . 32

DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 SOME POSSIBLE APPLICATIONS . . . . . . . . . . . . . . . . 105

CLASSICAL SERVO ANALYSIS APPLICATIONS . . . . . . . . 105 STATE-SPACE SYNTHESIS METHODS . . . . . . . . . . . . 107 PARAMETER IDENTIFICATION AND ADAPTIVE CONTROL APPROACH . . . . . . . . . . . . . . . . . . 108 POSSIBLE STATISTICAL USAGE OF STRUCTURAL DYNAMIC RESULTS . . . . . . . . . . . . . . . . . . . 108 CONCLUSIONS AND RECOMMENDATIONS . . . . . . . . . . . 111

APPENDIX A BODY AXES EQUATIONS OF MOTION . . . . . . . . . . . . . . 113

(DIMENSIONAL STABILITY DERIVATIVES) . . . . . . . . . . . 115 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

APPENDIX B DEFINITION OF COEFFICIENTS OF EQUATIONS OF MOTION

iii

. .

Page 5: J. R. - NASA

ILLUSTRATIONS

FIGURE PAGE

8 9

10 11-14 15-19

20 21

22 23-26 27-60 61 -90 91-196

197 198 i 99

Subsonic Wing Lift-Curve Slope . . . . . . . . . . . . . Typical Variation of L i ft-Curve Slope w i t h Mach Number . Typical Data Format: CLa/CLaFINAL . . . . . . . . . . . Typical Flight Test Data; Drag Coefficient . . . . . . . Typical Flight Test Data; Stabi l izer Effectiveness . . . Manufacturer's Empty Weight (MEW) Growth History . . . . Manufacturer's Empty Weight ( M E W ) Growth History . Cabin. Wing. Empennage. Forward Fuselage . . . . . . . . Desi gn Wei gh t H i s tory . . . . . . . . . . . . . . . . .

Initial-to-Final Stiffness Representation . . . . . . . Longitudinal Parameters . . . . . . . . . . . . . . . . . Lateral-Directi onal Parameters . . . . . . . . . . . . . Manufacturer's Empty Weight (MEW) Growth History . . . . Manufacturer's Empty Weight (MEW) Growth History . Cabin. Wing. Empennage. Forward Fuselage . . . . . . . .

Initial-to-Final Mass Representation . . . . . . . . . .

Desi gn Weight Histories . . . . . . . . . . . . . . . . Mode Shapes and Mode Lines . . . . . . . . . . . . . . . Evolution of Frequency Ratio . . . . . . . . . . . . . . Evolution of Generalized Mass Ratio . . . . . . . . . . Evol u t i on of Displacement Rati o . . . . . . . . . . . . Typi cal Longi tudi nal Root Location . . . . . . . . . . . Typi cal Longitudinal System Root Locus . . . . . . . . . Closed-Loop Root Variation . . . . . . . . . . . . . . .

9 13 15 17 18 20

21 23 26 27

45-48 49-53

54

55 58 60

61 -69 69-76 77-1 03 106 106 106

i v

Page 6: J. R. - NASA

. ~ . .

TABLES

TABLE

.

PAGE

1 2

3a. 3b

4 5 6 7 8 9

10 11 12

Longitudinal Aerodynamic Parameter Uncertainties . . . . . . . 6 Lateral-Direct ional Aerodynamic Parameter Uncertainties . . . . 7 Parameter Estimation Accuracy and Potent ia l Er ror i n Flying Qualit ies Analyses . . . . . . . . . . . . . . . . . . . 14 Major Weight Change Summary . . . . . . . . . . . . . . . . . . 22 Moment o f Ine r t i a H i s to ry . . . . . . . . . . . . . . . . . . . 24 Design Parameter Summary . . . . . . . . . . . . . . . . . . . 29 Response Analysis Summary . . . . . . . . . . . . . . . . . . . 35

Major Weight Change Summary . . . . . . . . . . . . . . . . . . 56 Moment o f Ine r t i a H i s to ry . . . . . . . . . . . . . . . . . . . 57 Symmetric Modal Analyses Summary . . . . . . . . . . . . . . . 59 Antisymmetric Modal Analyses Summary . . . . . . . . . . . . . 59

Comparison o f Fuel Effects to Uncer ta in t ies Ef fec ts . . . . . . 36

V

Page 7: J. R. - NASA
Page 8: J. R. - NASA

NOTATICN

UN ITS - "-

DEFINITION SYMBOL

Aspect r a t i o , b 2 S

A

Wing span meters ( fee t )

"- b

Drag coefficient, drag 3s

C Dq

1 /radian

#.

"Q- u ac z au

LD U

o! aCD/aa 1 /radian

l /radian

l / radian .. acD/a 6 e L O6 e

L i f t coeff ic ient , - L i f t

7s "-

l / radian cL 9

" u acL 2 au cL

U

CL a

"-

1 /radi an a CL

aa

vii

Page 9: J. R. - NASA

SY8BOL

cL h

cLs e

c, P

c, r

c, 6a

C '6 r

C m i "

NOTAT I ON

DEFINITION

a cL

a (iXF/2U)

acL/a6,

Rol l ing-moment coeff ic ient , r o l l i ng moment GSb

a (pb/ZU)

aCk as

a

a c P.

a s SP

Pitching-moment c o e f f i c i e n t , pitching momen!. qsc

UNITS

l / r a d i a n

l / r a d i a n

"-

1 / rad ian

l / r a d i a n

l / r a d i a n

l / r a d i a n

l / r a d i a n

l / r a d i a n

l / r a d i a n

viii

Page 10: J. R. - NASA

NOTAT I ON

DEFINITION SYMBOL - UNITS

l / r a d i a n

-”

“ u a%, 2 a u ‘m

U

l / r a d i a n

l / r a d i a n

l / r a d i a n

‘m a

‘m

m ac ‘rn ‘e

Yawing-Moment c o e f f i c i e n t , yawing moment qSb ‘n

‘n P

l / r a d i a n

n ac a (rb/ZU) ‘n r

l / r a d i a n

‘n

‘n

B

6a

l / r a d i a n

l / r a d i a n 36,

‘n 6 r

l / r a d i a n a ‘n

r 36

ix

Page 11: J. R. - NASA

NOTATION

SYMsOt

C nd

SP

cyP

C Yr

B

c '6 a

L

'6,

- C

f

f

DEFINITiON

Sideforce coefficient, sideforce 3s

ac a (rb/2U)

a - a6 a

ab r

acY

Wing mean aerodynamic chord

Fore and a f t structural deflection

Natural Frequency

UNITS

1 /radian

"-

l/radian

]/radian

]/radian

lhadian

l/radian

l/radian

meters (feet)

meters (feet)

hertz

X

Page 12: J. R. - NASA

NOTAT ION

f SYMBOL DEFINITION

FH Aft fuselage bending factor

9

h

h

I X Z

IX

IY

I Z

R

iH

M

m

Acceleration of gravi ty 9.807 (32.174) . .

A1 ti tude

Vertical structural deflection

Product o f inertia

Roll i ng moment of iner t ia

Pitching movent of iner t ia

Yawing moment of iner t ia

Lateral deflection

Horizontal s tab i l izer incidence

Mach number

Mass

Normal load factor% weight

Roll ra te

l i f t

UNITS

"- meters ( f t / sec2) sec 2

meters ( f ee t )

meters (inch)

Kg-meter 2 (slug-ft2)

Kg -meter 2 (slug-ft2)

Kg-metes 2 (slug-ft )

Kg-metes 2 (s lug-f t )

meters (inch)

radians

9

rad/ sec

xi

Page 13: J. R. - NASA

SYMBOL

9

9

U

V

Q

a

NOTAT I ON

O E F I N I T I O N

P i t c h r a t e

Modal displacement

Dynamic pressure, 1/2 pU 2

Yaw r a t e

Wing area

Laplace operator

Ve loc i t y a long l ong i tud ina l ax i s ( % t rue a i r speed)

P e r t u r b a t i o n v e l o c i t y a l o n g l o n g i t u d i n a l a x i s

P e r t u r b a t i o n v e l o c i t y a l o n g l a t e r a l a x i s

Ve loc i t y a long normal a x i s

P e r t u r b a t i o n v e l o c i t y a l o n g normal a x i s

Angle-of-attack

P i t c h d e f l e c t i o n

UNITS

rad/sec

meters ( i nch)

newtons/meterz (1 b / f t 2 )

rad/sec

l / sec

meters/sec ( feet /sec)

meters/sec ( fee t /sec)

meters/sec ( feet /sec)

meters/sec ( feet /sec)

meters/sec ( feet /sec)

rad ians

rad ians

xii

Page 14: J. R. - NASA

SYMBOL

B

c

6a

6e

'r

K

A c/2

P

9

NOTAT I ON

DEFINITION

S ides l i p ang le

Increment

A i l e r o n d e f l e c t i o n

E l e v a t o r d e f l e c t i o n

Rudder def 1 e c t i on

Spoi 1 e r d e f 1 e c t i on

P i t c h a n g l e ; r o l l d e f l e c t i o n

Rat io of two-d imens iona l l i f t -curve s lope a t app rop r ia te Mach number t o 2 n / ~ ; o r , r a t i o of incompressible two-d imens iona l l i f t - cu rve s lope t o 2 7 ~

Sweepback angle o f 50-percent chord l ine

D e n s i t y o f a i r

Bank angle

Modal wordrate a t l o c a t i o n B o f t h e a i r f r a m e f o r t h e j t h mode (-)

Yaw angle

Yaw d e f l e c t i o n ( s t r u c t u r a l )

UNITS

rad ians

"-

radians

rad ians

rad ians

rad ians

rad ians

-"

radians

k i lograms/meters3 (SI ugs/feet3)

rad ians

rad ians

rad ians

xiii

Page 15: J. R. - NASA

NOTAT I.ON

ABBREVIATIONS

ATP

ccv

CERT

C.G.

D

FF

G. M. o r iii

GVT

MLW

MZFW

MEW

OPITEMS

MTOGW

S I C

T

Author i ty t o proceed

Control configured vehicle

\ FAA c e r t i f i c a t i o n d a t e

Center o f g r a v i t y

F i r s t dynamics analys is

F i r s t f l i g h t

Generalized mass (newtons-second/meter)

Ground v i b r a t i o n t e s t

Maximum landing weight

Maximum zero fuel weight

Manufacturer's empty weight

Operational items = crew + unusable fue l + o i 1 + food, water and emergency equipment + miscel laneous

Maximum takeoff gross weight = MEW i- OPITEMS + PAYLOAD + FUEL

St ruc tura l in f luence coef f i c ien t

Time d u r a t i o n t o c e r t i f i c a t i o n

x i v

Page 16: J. R. - NASA

NOTATION

SUBSCRIPTS

A

FINAL

H

0

TO

i or a

B

SUPERSCRIPTS

E

E/ R

R

Tota l a i rp l ane

Final value

tbri ronta l ta i 1

I n i t i a l (trim) conditions

T a i l o f f

Parameter number mode number

Location on airframe

E l as t i c

E last ic - to- r ig id ra t io

Rigid

- NOTE: Dot over symbol denotes derivative with respect to time

XV

Page 17: J. R. - NASA

MODELING P N D PARAMETER UNCERTAINTIES FOR AIRCRAFT FLIGHT CONTROL SYSTEM DES1 GN

bY J. D. IcDonnell, R. A. Berg, E. M. Heimbaugh,

and C . A. Felton

Dougl as A i r c r a f t Company McDonne 1 1 Dougl as Corporat i on

Long Beach, C a l i f o m i a

SECTION 1 INTRODUCTION

A i r c r a f t d e s i g n s a r e c o n t i n u i n g t h e i r e v o l u t i o n i n s t r u c t u r a l and aerodynamic i n n o v a t i o n s t h a t r e q u i r e a r t i f i c i a l means o f s t a b i l i t y and dynamic augmenta- t i o n t o o b t a i n normal f l y i n g c h a r a c t e r i s t i c s and accep tab le s t ruc tu ra l margins. The mot iva t ion , o f course , i s t o c o n t i n u e t h e r e d u c t i o n i n d i r e c t ope ra t i ng cos ts f o r comnerc ia l a i r c ra f t and to cont inue to improve the mis- s ion e f fect iveness/costs o f ownership o f mi l i tary vehic les. The r e c e n t r a p i d r i s e i n f u e l c o s t s has made commerc ia l app l i ca t ions o f some c o n t r o l - conf igured-vehic le (CCV) concepts desirable i n t h e near term, perhaps on a d e r i v a t i v e a i r c r a f t . Thus, i t i s n o t o n l y i m p e r a t i v e t h a t dynamics o f t h e a i r c r a f t i n f l i g h t t u r n o u t as p red ic ted , s ince s tab i l i t y marg ins will be lower (and i n some cases, zero o r n e g a t i v e ) , b u t t h a t t h e f l i g h t c o n t r o l systems f o r t h o s e a i r c r a f t p r o v i d e d e s i r e d c h a r a c t e r i s t i c s when t h e a i r c r a f t ' s ac tua l dynamic d e s c r i p t i o n has some expected v a r i a b i l i t y a b o u t i t s p r e d i c t e d behavior.

The data presented i n t h i s r e p o r t a r e i n t e n d e d t o p r o v i d e a s t a r t of a t y p i c a l d a t a base f o r use i n f l i g h t c o n t r o l s work t h a t i s d i r e c t e d t o w a r d t h e k i n d s o f systems noted above, i . e . , t h o s e t h a t a r e f l i g h t - c r i t i c a l o r t e n d i n g toward it.

The data show t y p i c a l h i s t o r i c a l v a r i a b i l i t y i n t h e s t e a d y aerodynamic and se lected dynamic s t r u c t u r a l p a r a m e t e r s o f j e t t r a n s p o r t s a t one f l i g h t cond i t i on . H is to r i ca l va lues o f many d i m e n s i o n l e s s s t a b i l i t y d e r i v a t i v e s

Page 18: J. R. - NASA

i nc lude,or ig ina l ana ly t i ca l es t imates , w ind tunne l updates , and f i n a l f l i g h t . determined values. Structural dynamic parameters as o r i g i n a l l y e s t i m a t e d a re shown, and the impact o f conf igurat ion changes as a f u n c t i o n o f t i m e a r e

given. Final corrected values based on modal g r o u n d v i b r a t i o n t e s t r e s u l t s

are. a lso given..

The data base c o n s t r u c t e d f o r t h i s r e p o r t has been der ived f rom many sources

and i s r e p r e s e n t a t i v e o f many a n a l y t i c a l and experimental techniques. The

parameters themselves range from signif icant dynamic con t r i bu to rs t o t hose

w i t h l i t t l e i n f l u e n c e on a i r c r a f t f l y i n g c h a r a c t e r i s t i c s . The data, there-

f o r e , i n d i c a t e t o t h e d e s i g n e r t h e h i s t o r i c a l u n c e r t a i n t i e s and v a r i a t i o n s 1 t h a t may be encountered i n an advanced c o n t r o l system design and deve

program on a l a r g e s u b s o n i c t r a n s p o r t a i r c r a f t . I n a s p e c i f i c f u t u r e

exercise, improvements i n ana ly t i ca l o r expe r imen ta l t echn iques wou ld

be accounted for , as wou ld g rea ter uncer ta in t ies in t roduced as a resu new technology (and possibly less understood) devices and c o n f i g u r a t i

1

0

opment des i gn have t o

t o f

ns .

Sect ion I1 of th is repor t d iscusses the sources o f aerodynamic , s t ruc tu ra l

and weight data and def ines the formats for data presentat ion. The methods

used to de r i ve t he da ta a re d i scussed as are the resu l ts themse lves . The

genera l data format ob ject ive has been t o show t h e h i s t o r i c a l v a r i a t i o n s o f the various parameters as a f u n c t i o n o f t i m e . The h i s t o r i c a l v a r i a t i o n s o f

the dimensionless aerodynamic derivatives are given so t h a t t h e e f f e c t s o f

independent er ror sources on r ig id body dynamics can be est imated regard less

o f t h e s p e c i f i c n o t a t i o n o f t h e u s e r (i .e., three degree-of-freedom l inear

smal l per turbat ion equat ions, s ix degree-of - f reedom non- l inear equat ions o f

mot ion , t rans fer func t ions , s ta te space n o t a t i o n , e t c . ) .

H i s t o r i c a l v a r i a t i o n s o f s t r u c t u r a l dynamic charac ter is t i cs a re p resented

f o r t h e d e s i g n e v o l u t i o n o f l a r g e t r a n s p o r t a i r p l a n e s i n t e r m s o f n a t u r a l frequencies, the corresponding modal displacements of se lec ted s ta t ions , and

the corresponding general ized masses. The modal c h a r a c t e r i s t i c s a r e d i s -

cussed w i th respec t t o t he con t ro l des igne r as t o v a l u e and as t o 1 i m i t a t i o n s .

2

Page 19: J. R. - NASA

The important f i e ld of unsteady aerodynamics as re la ted to s t ructural res- ponse and f lu t te r and control-configured vehicle design were not a part of this study b u t should not be neglected i n future studies.

Section I11 gives a l l o f the actual data, while Section IV notes some possible applications of the data. Aerodynamic equations of motion and the definit ions of the dimensional s tabi l i ty der ivat ives are given i n the Appendix.

I

3

Page 20: J. R. - NASA

' . .

Page 21: J. R. - NASA

SECTION 2 DISCUSSION OF DATA AND METHODOLOGY

The data inc luded i n t h i s r e p o r t a r e . from many sources and d i s c i p l i n e s and cover t ime spans ranging up to four years . Th is sec t ion will discuss sources o f d a t a and presentat ion formats, and i s d i v i d e d i n t o t h r e e p a r t s where deta i led d iscuss ions o f aerodynamic parameter var ia t ions, and s t r u c t u r a l modal analysis are presented. Examples of data are g iven i n t h i s s e c t i o n t o suppor t the d iscuss ion, but the complete data set i s g iven i n Sect ion 111.

. .

AERODYNAMIC PARAMETERS

The aerodynamic l o n g i t u d i n a l and la te ra l -d i rec t i ona l d imens ion less de r i va - t i v e s g i v e n i n T a b l e 1 and 2 have been reconst ructed as a func t i on o f t ime , where t ime i n general goes back t o i n i t i a l c o n f i g u r a t i o n development f o r t h e par t i cu la r a i r f rame be ing cons idered. The r e l a t i o n s h i p o f t h e s e d e r i v a t i v e s t o a i r c r a f t dynamics i s shown i n the Appendix, where t h e a i r c r a f t e q u a t i o n s o f m o t i o n and t h e i r c o e f f i c i e n t s a r e d e f i n e d i n terms o f the d imens ion less d e r i va ti yes.

Deta i led Example o f S t a b i l i t y D e r i v a t i v e C a l c u l a t i o n

An example of t h e t y p e o f d e t a i l e d c a l c u l a t i o n used f o r t h e d e t e r m i n a t i o n o f a s i n g l e s t a b i l i t y d e r i v a t i v e i s p r e s e n t e d h e r e . The selected parameter i s the fundamental derivative, (CL ) k the a i rp lane l i f t -curve s lope, wh ich can be ca lcu lated f rom the fo l lowing express ion:

a A

Equation ( 1 )

where

E cL (CL,)A = f o r t h e e n t i r e a i r p l a n e and i nc ludes s ta t i c ae roe las t i c

e f fec ts .

5

Page 22: J. R. - NASA

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

TABLE 1

LONGITUDINAL AERODYNAMIC PARAMETER UNCERTAINTIES

Drag coef f i c i e n t ( CD)

Rate o f change o f d rag coe f f i c i en t w i th f o rward speed (CD )

Rate o f change o f d r a g c o e f f i c i e n t w i t h a n g l e o f a t t a c k (CD 1

Rate o f change o f d r a g c o e f f i c i e n t w i t h e l e v a t o r d e f l e c t i o n (CD )

L i f t c o e f f i c i e n t (CL)

Rate o f change o f l i f t c o e f f i c i e n t w i t h .- forward speed (CL,,)

Rate o f change o f l i f t c o e f f i c i e n t w i t h a n g l e o f a t t a c k (CL )

Rate o f change o f l i f t c o e f f i c i e n t w i t h a n g l e o f a t t a c k r a t e (C,.)

Rate o f change o f l ift c o e f f i c i e n t w i t h p i t c h r a t e (CL )

Rate o f change o f p i t c h i n g moment c o e f f i c i e n t w i t h f o r w a r d speed (C,,,,,)

Rate o f change o f p i t c h i n g moment c o e f f i c i e n t w i t h a n g l e o f a t t a c k

. u

a

6e

a

a

9

Rate o f change o f p i t c h i n g moment c o e f f i c i e n t w i t h a n g l e o f a t t a c k

r a t e (Cm&)

13. Rate of change o f p i t c h i n g moment c o e f f i c i e n t w i t h p i t c h r a t e ( C

14. Rate o f change o f l ift c o e f f i c i e n t w i t h e l e v a t o r d e f l e c t i o n (CL6e)

15. Rate o f change o f p i t c h i n g moment c o e f f i c i e n t w i t h e l e v a t o r d e f l e c -

. mq)

t i o n (Cm ) e

16. Rate o f change o f d r a g c o e f f i c i e n t w i t h p i t c h r a t e ( C D )

17. Rate o f change o f d r a g c o e f f i c i e n t w i t h a n g l e o f a t t a c k r a t e (CD.) q

a

6

Page 23: J. R. - NASA

TABLE 2

LATERAL-DIRECTIONAL AERODYNAMIC PARAMETER UNCERTAINTIES

1. Rate o f change o f yawing moment c o e f f i c i e n t w i t h s i d e s l i p a n g l e (Cn )

2. Rate o f change o f yawing moment c o e f f i c i e n t w i t h r u d d e r d e f l e c t i o n B

(Cns,)

3. Rate o f change of yawing moment c o e f f i c i e n t w i t h a i l e r o n d e f l e c t i o n

"a 4. Rate o f change o f yawing moment c o e f f i c i e n t w i t h s p o i l e r d e f l e c t i o n

SP 5. Rate o f change o f yawing moment c o e f f i c i e n t w i t h yaw r a t e (C )

n r 6. Rate o f change o f yawing moment c o e f f i c i e n t w i t h r o l l r a t e (Cn )

7. Rate o f change o f s i d e f o r c e c o e f f i c i e n t w i t h s i d e s l i p a n g l e (Cy ) 8. Rate o f change o f s ide f o rce coe f f i c i en t w i th rudder de f l ec t i on ( c )

9. Rate o f change o f s i d e f o r c e c o e f f i c i e n t w i t h a i l e r o n d e f l e c t i o n ( C

P

y 6 r )

Y s

Y 6 10. Rate of change o f s i d e f o r c e c o e f f i c i e n t w i t h s p o i l e r d e f l e c t i o n ( c a )

11. Rate o f change o f s i d e f o r c e c o e f f i c i e n t w i t h yaw r a t e (Cy,) S P

12. Rate o f change o f s i d e f o r c e c o e f f i c i e n t w i t h r o l l r a t e (Cy )

13. Rate o f change o f r o l l i n g moment c o e f f i c i e n t w i t h s i d e s l i p a n g l e (C

14. Rate o f change o f r o l l i n g moment c o e f f i c i e n t w i t h r u d d e r d e f l e c t i o n

P

4 ( CQj r )

15. Rate of change o f r o l l i n g moment c o e f f i c i e n t w i t h a i l e r o n d e f l e c t i o n

(%sa)

(%ssp)

16. Rate o f change o f r o l l i n g moment c o e f f i c i e n t w i t h s p o i

17. Rate o f change o f r o l l i n g moment c o e f f i c i e n t w i t h yaw

18. Rate o f change o r r o l l i n g moment c o e f f i c i e n t w i t h r o l l

1 e r de f 1 e c t i on

Page 24: J. R. - NASA

E l a s t i c

= t h e r a t i o o f CL wi t h aero- a

Tai 1 - o f f

e l a s t i c e f f e c t s t o CL o f t h e r i g i d a i r p l a n e , i n t h e absence o f t h e t a i l .

a

"L f o r t h e r i g i d a i r p l a n e i n t h e absence o f t h e t a i l . (CL a I& = 7j7

FH = f a c t o r t h a t a c c o u n t s f o r e f f e c t o f a f t fuselage bending on horizon-

t a l t a i l l ift.

Tai 1 e l a s t i c e f f e c t s t o C, o f r i g i d s t r u c t u r e , o f t h e i s o l a t e d h o r i z o n -

t a l t a i l . L a

(cLaH) = - a 'L hor izon ta a aH

(E)R = downwash g r a d i e n t

1 t a i l 1

f o r t h e

i f t cu rve s lope o f t he r i g id a i rp lane

r i g i d a i r p l a n e

W E = i n c r e m e n t t o a c c o u n t f o r a e r o e l a s t i c e f f e c t s o n downwash

g r a d i e n t

The method o f d e t e r m i n a t i o n o f t h e v a r i o u s components i n t h e e q u a t i o n depends on t he po in t i n t he des ign cyc le a t wh ich the ca lcu la t ion i s made. F o r t h i s

discussion, four stages in the des ign p rocess w i 11 be considered:

8

Page 25: J. R. - NASA

1 . Early preliminary desigr. 2. Later preliminary design, b u t before wind tunnel data are available 3. After wind-tunnel d a t a are available 4. After flight-test data are available

I t s h o u l d be noted t h a t wind-tunnel tests are usually conducted prior to the off ic ia l program s t a r t b u t for the f l i gh t condition selected in the present study these tests must be of the high-speed variety i n order to correctly represent compressibility effects.

In Stage 1 of the design effort the components of the equation which apply to the r i g i d airplane a r d f o u n d by relatively simple methods. For example, the derivatives ( C L )TO and (CL. I R can be determined through the use of the USAF DATCOM (Reference l ) , from which Figure 1 i s reproduced. The aero- elastic correction terms, ( C L ~ ) ; ~ ~ , FH, (CL,):’~, and (dk/aa)E, may be estimated based on values from previous similar production designs.

R 1H

During Stage 2 i n the design more sophisticated methods are employed. Typical o f these is the Weissinger lifting surface theory, Reference 2 , which lends itself to the estimation of b o t h r i g i d and e las t ic character is t ics .

C La

A (PER RAD?

1.61

1.4 \ - = cLa 2n !-

1.2

1 I I 1 1 1 . 1 I

1 .ow

0.8

0.6

0.4 i I i i i i I i I THE DETAIL EXPLANATION OF THE METHOD AND NOTATIONS ARE GIVEN IN REFERENCE 1. 0.2

01 1 I I I I 1 I I I I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 5 1 6

I

A [(I - ~ 2 ) + TAN^ h,,211/2

FIGURE 1. SUBSONIC WING LIFT-CURVE SLOPE 9

Page 26: J. R. - NASA

Highspeed d i g i t a l computers a r e a v i r t u a l n e c e s s i t y f o r t h e a p p l i c a t i o n o f t h i s and s i m i l a r complex methods. Other a e r o e l a s t i c c a l c u l a t i o n s f o r w i n g and t a i 1 sur faces are made by means of the Hedman v o r t e x l a t t i c e 1 i fti ng

sur face theory fo r e las t i c w ings , p resented i n Reference 3.

The t h i r d s t a g e o f t h e d e s i g n p r o c e s s b e n e f i t s f r o m t h e a v a i l a b i l i t y o f wind-

tunnel data. As prev ious ly noted, the tests must be appropr ia te for the f l i g h t c o n d i t i o n o f i n t e r e s t ; i . e . high-speed wind tunne l da ta f o r c ru i se f l i g h t c o n d i t i o n s f o r w h i c h c o m p r e s s i b i l i t y e f f e c t s a r e i m p o r t a n t , and h igh

Reynolds number tes ts f o r h igh ang le -o f -a t tack f l i gh t cond i t i ons . As ide f rom the usua l tes t ing cor rec t ions tha t must be appl ied to wind tunnel data, other adjustments must be made t o account f o r t h e f a c t t h a t g e o m e t r i c d i s - s i m i l a r i t i e s o f t e n e x i s t between the wind tunnel model and the con f igu ra t i on being analyzed. For the example derivative, (CL,)~, w ind tunne l tes ts p ro-

v ide the in fo rmat ion fo r wh ich the components (CL,)$~, (CL )R and ( a ~ / a a ) ~

are derived. Ground t e s t s t o a s c e r t a i n t h e a i r p l a n e s t i f f n e s s c h a r a c t e r i s t i c s

a re conducted dur ing th is per iod to ver i f y the es t imated va lues . I f any s ign i f i can t d i sc repanc ies ex i s t , t he ae roe las t i c co r rec t i ons a re reeva lua ted

us ing the methods previously descr ibed.

The f i n a l s t a g e o f t h e p r o c e s s f o l l o w s t h e f i r s t f l i g h t and i n v o l v e s v e r i f i c a - t i o n o f t h e e s t i m a t e d v a l u e s o f t h e d e r i v a t i v e s . Measurements made i n f l i g h t

t e s t a r e o b v i o u s l y f o r t h e e l a s t i c a i r c r a f t , so the procedure i s now reversed.

I n t h e case of the present example, the comple te e las t i c der iva t ive i s measured, t h e e l a s t i c c o r r e c t i o n s a r e assumed accu ra te , and t he e las t i c t a i l

e f fec t i veness [FH(CL )E/R ( C L ~ , ) ~ ] can be measured, t h u s p e r m i t t i n g t h e r i g i d

a i r p l a n e c h a r a c t e r i s t i c s t o be ca lcu lated. Any necessary adjustments are

made t o t h e s e r i g i d a i r p l a n e d e r i v a t i v e s .

Q H

A t t h i s p o i n t some comments r e g a r d i n g s t a b i l i t y d e r i v a t i v e s and f l y i n g q u a l i t i e s may be a p p r o p r i a t e . P r i o r t o f i r s t f l i g h t i n t h e development o f

an a i r p l a n e , s t a b i l i t y d e r i v a t i v e s a r e c a r e f u l l y e s t i m a t e d as discussed i n

the preceding paragraphs. To t h e s t a b i l i t y and contro l engineer the s t a b i l i t y d e r i v a t i v e s s e r v e l a r g e l y as t he bu i l d ing b locks w i th wh ich f l y i ng

qua l i t i es a re ca l cu la ted . The f l y i n g q u a l i t i e s a r e t h e n checked f o r com-

10

Page 27: J. R. - NASA

p l i ance against numerous c r i t e r i a . 3 f course, the s tab i 1 i ty de r i va t i ves a re

a l s o i m p o r t a n t t o o t h e r e n g i n e e r i n g s p e c i a l i s t s , i n p a r t i c u l a r , c o n t r o l s y s - tem designers and ,others who u t i l i z e a i r c r a f t e q u a t i o n s o f m o t i o n i n t h e i r work .

Once t h e f l i g h t t e s t program i s underway, many o f t h e a i r p l a n e f l y i n g q u a l i t i e s can be de te rm ined d i rec t l y w i thou t t he necess i t y o f know ing t he v a l u e s o f s p e c i f i c d e r i v a t i v e s . The s i t u a t i o n i s somewhat d i f f e r e n t t h a n b e f o r e f l i g h t t e s t ; it i s g e n e r a l l y t h e f l y i n g q u a l i t i e s i n f o r m a t i o n t h a t i s a v a i l a b l e and the es t imated s t ‘ab i l i t y der iva t ives a re checked us ing the t e s t d a t a . F l i g h t t e s t r e s u l t s , however, a r e o b t a i n e d f o r d i s c r e t e f l i g h t cond i t ions and f l y i n g q u a l i t i e s a n a l y s e s o v e r t h e r e m a i n d e r o f t h e f l i g h t envelope require know1 edge o f t h e s t a b i 1 i ty d e r i v a t i v e s . Therefore , the s t a b i l i t y d e r i v a t i v e s a r e e s t a b l i s h e d a t tk,e f l i g h t t e s t p o i n t s and i n t e r - p o l a t i o n s o r f a i r i n g s a r e made t o develop continuous values. I n t h i s manner,

a complete bank o f aerodynamic data i s compiled, from which the airplane f l y i n g q u a l i t i e s a r e g e n e r a t e d f o r t h e e n t i r e f l i g h t e n v e l o p e .

Re fe r r i ng aga in t o Equa t ion (1 ) i t i s apparent tha t severa l o f the te rms a re no t un ique to the express ion fo r ( CL,)~; they are invo lved i n t h e d e t e r m i na- t i o n o f many o f t h e o t h e r aerodynamic der ivat ives. Therefore, er rors or uncertaint ies associated with these terms would cause a degree o f c o r r e l a t i o n t o e x i s t between many o f t h e d e r i v a t i v e s . F o r example, t h e h o r i z o n t a l t a i l l i f t - c u r v e s l o p e C L ~ H , t he ho r i zon ta l t a i l e l a s t i c - t o - r i g i d c o r r e c t i o n f a c t o r (CL,)~’~, and t h e a f t f u s e l a g e b e n d i n g c o r r e c t i o n f a c t o r F H , are elements i n the express ions fo r numerous l o n g i t u d i n a l s t a b i l i t y d e r i v a t i v e s . I n t h e d a t a p r e s e n t e d , t h e p r o l i f e r a t i o n o f an e r r o r i n t h e CL est imate i s ra the r d ra - mat ic . The error (caused by an underestimate of Mach number e f f e c t s on CL,,,) i s r e f l e c t e d i n t h e e s t i m a t e s o f seven separate s t a b i l i t y d e r i i a t i v e s : CL,,

CL;, CmG, CLq, Cmq, CLGe, and Cm6e. The p o t e n t i a l f o r t h i s t y p e o f e r r o r c o r r e l a t i o n e x i s t s w i t h many o f t h e o t h e r p a r a m e t e r s , i n c l u d i n g t h e l a t e r a l - d i r e c t i o n a l v a r i e t y .

aH

8

”- Sources o f U n c e r t a i n t i e s

There are a number o f sou rces f o r e r ro r o r unce r ta in t y assoc ia ted w i th t he estimated values of the various aerodynamic parameters. I n t h e v e r y e a r l y

1 1

Page 28: J. R. - NASA

stages o f d e s i g n t h e r e i s c o n s i d e r a b l e l i k e l i h o o d t h a t t h e a i r p l a n e c o n f i g u - r a t i o n will be a l t e r e d b e f o r e t h e f i r s t f l i g h t o c c u r s . I n some cases these

m o d i f i c a t i o n s t a k s p l a c e w e l l i n t o t h e p e r i o d between program commencement

and f i r s t f l i g h t . Depending on the type of change made to t he con f igu ra t i on ,

t h e r e can be a considerable impact on the estimated value of the aerodynamic parameters.

Ano the r unce r ta in t y a r i ses f rom i naccu rac ies t ha t a re i nhe ren t i n ana ly t i ca l

methods used to es t imate the aerodynamic charac ter is t i cs , inc lud ing aero-

e l a s t i c c o r r e c t i o n s . The degree o f t h e u n c e r t a i n t y , when r e l a t e d as a

percentage o f t h e a c t u a l o f f i n a l v a l u e , i s magn i f ied by the method o f c a l c u - l a t i n g most der ivat ives as the sum o f two o r more increments. When two

increments are o f o p p o s i t e s i g n and the magni tudes are s imi lar , smal l er rors

i n e i t h e r i n c r e m e n t r e s u l t s i n a l a r g e e r r o r i n t h e t o t a l v a l u e . F o r example,

t a i l increments are of ten added t o a i r p l a n e t a i l - o f f i n c r e m e n t s t o o b t a i n

t o t a l a i r p l a n e d e r i v a t i v e s , and depending on t h e p a r t i c u l a r d e r i v a t i v e , t h e

two increments may be o f oppos i te s ign .

If t h e f l i g h t c o n d i t i o n s o f i n t e r e s t s h o u l d change f o r any reason during the

design process (e.g., m o d i f i c a t i o n o f f l i g h t envelope), the coeff ic ients of t he equa t ions o f mo t ion (d imens iona l s tab i l i t y de r i va t i ves ) will change because, i n genera l , they a re func t ions o f such f l i gh t parameters as Mach

number, dynamic pressure, a i rspeed, a l t i tude, and angle o f a t tack.

Then, o f course, there are the ubiqui tous computat ional errors that occasion- a l l y go undetec ted fo r s ign i f i can t per iods o f t ime. Obv ious ly , i t i s n o t poss ib le to p red ic t the occur rence o f uncer ta in t ies s temning f rom such causes.

D iscuss ion o f Data

The f l i g h t c o n d i t i o n f o r w h i c h t h e s u b j e c t d a t a were compiled was d e l i b e r a t e l y

chosen t o be one which i s p a r t i c u l a r l y prone t o aerodynamic modeling errors. T h i s p r o c l i v i t y f o r e r r o r a r i s e s f r o m t h e t r a n s o n i c f l o w c o n d i t i o n s t h a t

e x i s t a t h igh-speed cruise and t o t h e r e l a t i v e l y h i g h dynamic pressure which

has a m a j o r e f f e c t on the ae roe las t i c co r rec t i ons . Any small misjudgements i n t h e e f f e c t s o f c o m p r e s s i b i l i t y can be exaggerated because o f t h e r a p i d v a r i a t i o n s w i t h Mach number t h a t o c c u r w i t h many aerodynamic c h a r a c t e r i s t i c s

12

Page 29: J. R. - NASA

I'

i n the transonic speed range. A typical variation w i t h Mach number of a primary s tabi l i ty der ivat ive, CL,, the airplane lift-curve slope, i s shown i n Figure 2. The symbol denotes the approximate cruise f l ight condition of this study . I t should be observed. that i t is d i f f i c u l t to generalize on the aerodynamic parameter uncerfainties. A derivative which is estimated w i t h great accuracy on one airplane may not fare as we1 1 on the next. For example, uncertainties that are at tr ibuted to configuration changes certainly cannot be generalized. However, some generalizatio'ns associated w i t h estimation accuracies can be offered. Table 3 a provides an indication of the re la t ive impact and the estimation accuracy normally expected fo r each of the aerodynamic parameters.

I t should be emphasized tha t the categorizing of the parameters is approximate and wi l l t e n d t o vary w i t h particular aircraft configurations and w i t h f l i g h t conditions. I t i s emphasized tha t the estimation accuracy shown includes only the estimating methods normally used and does not consider uncertainties due to other causes. In Table 3 b the probable risk i n f lying qual i t ies analyses and control system design i s shown fo r each of the nine categories of Table 3 a. For example, a derivative w i t h secondary impac.t tha t i s esti- mated w i t h only f a i r accuracy is no more or less 1 i kely to create problems than a primary der ivat ive that normally is estimated w i t h good accuracy.

MACH NUMBER

FIGURE 2. TYPICAL VARIATION OF LIFT-CURVE SLOPE WITH MACH NUMBER

1 3

Page 30: J. R. - NASA

TABLE 3

PARAMETER ESTIMATION ACCURACY AND POTENTIAL ERROR IN FLYING QUALITIES ANALYSES

I I. IMPACT ON FLYING QUALITIES 7 Secondary

cD"

(b) Potential Error in Flying Qualities Analyses:

Large

Moderate

Small

Minimal

Negligible

14

Page 31: J. R. - NASA

I

Historical values of each of the aerodynamic parameters are presented i n Section 3 . Most of the historical values are normalized by the final value of each parameter. However., i n some cases i n which the final level o f the .

parameter i s very small, the normalized value would be grossly distorted. In these cases the incremental difference between each value and the final .

value i s deemed more meaningful and is therefore presented. In the case of the derivative ha, the value depends on the selected moment reference cen- '

t e r , which i s another reason t o present an incremental uncertainty. On each of the historical plots the abscissa is marked w i t h the time of f i r s t f l i g h t ( F F ) and the FAA certif ication date ( C E R T ) , i n addition to the authority to proceed (ATP, or program in i t ia t ion) a t the o r i g i n . Also noted on the ,plots is the time of the f i r s t complete dynamics analysis (D) of the airplane.

This date i s s ign i f icant because i t represents the f i r s t firm requirement for some of the parameters. Included w i t h each graphical presentation are brief comments regarding the usual impact of the particular parameter on the augmented airplane dynamics. A1 so included are comnents re1 a t i ng t o the f i n a l value uncertainty. A typical presentation i s repeated here for conven- ience as Figure 3 .

In viewing the data, certain o f the parameters reveal a relatively large degree o f uncertainty early i n the design program. In most of the cases, th i s i s a t t r ibu tab le t o configuration changes being made as the design i s

FIGURE 3. TYPICAL DATA FORMAT; C,,/C,, k,rJAL 15

Page 32: J. R. - NASA

f i na l i zed . H igh l eve l s o f unce r ta in t y nea r t he ou tse t o f t he p rog ram i n some cases can be traced t o t h e l a c k o f e a r l y a e r o e l a s t i c c o r r e c t i o n s ; t h a t

i s , t h e a v a i l a b l e e s t i m a t e s o f t h e p a r a m e t e r a r e f o r t h e r i g i d a i r p l a n e . Had t h e r e been a firm requirement for these parameters a t t h i s t i m e some approx-

i m a t e e l a s t i c i t y c o r r e c t i o n s w o u l d have been app l i ed . S im i la r l y , compres- s i b i l i t y c o r r e c t i o n were n o t a p p l i e d d u r i n g t h e i n i t i a l d e s i g n s t a g e s t o some

o f t h e l e s s s i g n i f i c a n t parameters.

It will be noted tha t , i n genera l , the data po ints do n o t t e n d t o c o i n c i d e chrono log ica l l y fo r the var ious parameters . The p o i n t i n t i m e a t w h i c h a

d e r i v a t i v e i s e s t i m a t e d i s a f f e c t e d b y s e v e r a l f a c t o r s , among which are the

importance o f t h e d e r i v a t i v e and t h e d i f f i c u l t y o f e s t i m a t i o n . When a con- f i g u r a t i o n change occurs dur ing the design the more impor tan t de r i va t i ves a re

r e c a l c u l a t e d f i r s t . I n f a c t , c o n f i g u r a t i o n changes a r e n o t made u n t i l t h e impact on certain parameters and a i r c r a f t f l y i n g q u a l i t i e s i s a s c e r t a i n e d .

O f the aerodynamic parameters presented i n Sect ion 3 a l l except two are

p a r t i a l d e r i v a t i v e s . These two a re t he a i rp lane lift and d r a g c o e f f i c i e n t s

which are given because they appear i n t h e c o e f f i c i e n t s o f t h e e q u a t i o n s o f

motion, sometimes r e f e r r e d t o as the d imens iona l s tab i l i t y der iva t ives (see

Appendix). The a i r p l a n e l ift c o e f f i c i e n t i s an independent variable i n s p e c i f y i n g a p a r t i c u l a r f l i g h t c o n d i t i o n so no u n c e r t a i n t y can be assigned.

As d iscussed ea r l i e r , however, i f t h e f l i g h t c o n d i t i o n o f i n t e r e s t s h o u l d change f o r any reason, not on ly the l i f t c o e f f i c i e n t , b u t t h e e n t i r e s e t o f

equat ions o f mot ion will be a1 tered.

The a i r c r a f t d r a g c o e f f i c i e n t i s somewhat unique i n t h i s d i s c u s s i o n because

i t i s the bas ic aerodynamic des ign parameter for cru ise f l ight . The i n i t i a l value shown i n Sect ion 3 represents a guarantee and normal ly i s n o t r e v i s e d

u n t i l f l i g h t t e s t d a t a a r e a v a i l a b l e . E v e r y e f f o r t i s made t o a c h i e v e t h i s

des ign goa l , inc lud ing con f igura t ion changes which can range from minor

ref inements in the des ign to ma jor d rag reduc t ion p rograms.

The uncer ta in t ies assoc iated wi th the f ina l va lues o f the var ious aerodynamic parameters are d i f f i c u l t t o assess when t r a d i t i o n a l methods are used i n the

a n a l y s i s o f f l i g h t t e s t d a t a , as i n the subject case. The measurement

accuracy o f c e r t a i n o f t h e parameters receives great a t tent ion because o f t h e

re la t ionship to per formance guarantees. An example i s presented i n F igure 4

16

Page 33: J. R. - NASA

FIGURE 4. TYPICAL FLIGHT TEST DATA; DRAG COEFFICIENT

where d r a g c o e f f i c i e n t , CD, has been p lo t ted versus Mach number a t v a r i o u s l e v e l s o f l ift c o e f f i c i e n t , CL. The s c a t t e r i n t h e d a t a can be regarded as an i n d i c a t o r o f t h e u n c e r t a i n t y i n t h e f i n a l v a l u e ; f o r t h e s u b j e c t case, the s t a n d a r d d e v i a t i o n o f CD i s 2 percent. The t o t a l e r r o r a r i s e s f r o m s e v e r a l factors , the major one being the engine thrust measurement e r r o r .

There are other parameters which are also carefully checked against f l i g h t tes t da ta bu t a re no t normal ly ana lyzed w i th respec t to measurement e r r o r . An example i s presented i n F igure 5 where t h e h o r i z o n t a l s t a b i l i z e r e f f e c - t iveness, CmiH, i s shown as a f u n c t i o n o f Mach number. This parameter i s

s i m p l y r e l a t e d t o t h e e l e v a t o r c o n t r o l power term, C , so t h a t t h e measure- ment accuracy o f t h e two d e r i v a t i v e s i s comparable. I n F i g u r e 5, on ly data p o i n t s n e a r t h e s u b j e c t f l i g h t c o n d i t i o n a r e shown, and the ca lcu la ted s tan- dard dev ia t ion over th is Mach number range i s 4 percent. An i n s i g h t i n t o t h e p o t e n t i a l measurement e r ro r o f CmiH can be gained by considering the expres- s i o n used t o c a l c u l a t e t h e i n d i v i d u a l p o i n t s :

““6,

A i H

17

Page 34: J. R. - NASA

where the incremental values represent the dif ferences between two trimmed centers o f g rav i ty . Er ro rs can a r ise f rom severa l sources : the measurement

o f t h e s t a b i l i z e r a n g l e ; t h e measurement o f t h e c g l o c a t i o n ; t h e measure-

ment o f a i r p l a n e w e i g h t and dynamic pressure tha t de termine the lift c o e f f i c i e n t ; and t h e a b i l i t y o f t h e p i l o t t o p r e c i s e l y trim t h e a i r c r a f t .

The l e v e l o f measurement e r r o r f o r hiH i s considered typ ica l o f a number o f

s t a t i c d e r i v a t i v e s .

I n t h e case o f the dynamic d e r i v a t i v e s , t h e v e r i f i c a t i o n i s n o r m a l l y accom-

p l i shed by a comparison of response characterist ics; i .e. frequencies,

damping r a t i o s , t i m e t o h a l f o r d o u b l e a m p l i t u d e , e t c . I f the match between

the est imated and the measured character ist ics i s reasonable, the est imated

de r i va t i ves a re presumed t o be cor rec t ; if not, adjustments are made t o t h e

d e r i v a t i v e s i n o r d e r t o a c h i e v e a s a t i s f a c t o r y m a t c h o f t h e a i r c r a f t dynamics. For the most part, i t i s e x t r e m e l y d i f f i c u l t , i f n o t i m p o s s i b l e , t o i s o l a t e

the under ta in t i es o r e r ro rs assoc ia ted w i th t he measurement o f i n d i v i d u a l

dynami c d e r i va ti yes.

18

Page 35: J. R. - NASA

WEIGHT AN9 INERTIAL PARAMETERS

A i r c r a f t w e i g h t and i n e r t i a s a r e k e y q u a n t i t i e s i r , t h e a i r c r a f t e q u a t i o n s o f mot ion and have a h i s t o r y o f v a r i a b i l i t y d u r i n g t h e a i r c r a f t ' s c o n f i g u r a t i o n

development. Although the a i r c r a f t can be weighed q u i t e a c c u r a t e l y p r i o r

t o f i r s t f l i g h t ( t o w i t h i n 0.2 percent) , the manufacturer 's empty weight (MEW) and gross weight can change s i g n i f i c a n t l y a f t e r program i n i t i a t i o n . Manufacturer 's empty weight changes occur both because o f changes i n the spec i f i ca t i on ( i nc rease i n range , say ) and changes i n m a t e r i a l ( e n g i n e w e i g h t change). If the designer 's concern i s c o n t r o l system dynamics, he will be more in te res ted in g ross we igh ts than M E W ' S . Both are g iven, however, so tha t t he use r t o r s i n f 1 uenci

The growth o f where i t will

f i n a l v a l u e . 7.7 p e r c e n t d i

o f these da ta will have some a p p r e c i a t i o n f o r t h e k i n d s o f f a c - ng h is cont ro l system des ign.

MEW over the four-year per iod i s shown i n F igures 6 and 7,

be n o t e d t h a t t h e i n i t i a l v a l u e was 7.7 percent less than the The major jumps i n MEW are accounted for i n Table 4. O f the f fe rence, spec i f i ca t ion g rowth accounted fo r 4.7 percent and

non-speci f icat ion growth 2.0 percent . F igure 8 g ives the changes i n o t h e r des ign weights for the same per iod of t ime. Note f rom Figure 6 t h a t t h e o r i g i n a l maximum takeof f g ross we igh t (MTOGW) was 90 p e r c e n t o f t h e f i n a l Val ue.

Co inc ident w i th the we igh t inc reases a re changes i n moments o f i n e r t i a . These are summarized i n Table 5. It will be no ted t ha t t he i nc rease i n g ross weights can be u t i l i z e d s e v e r a l ways. The opera t ion can keep the f ue l l oad constant and increase payload, i n which case the p i tch ing moment o f i n e r t i a I y , shows a ra ther la rge inc rease (Tab le 5, I tem 2 ) . When the payload i s h e l d constant and f u e l l o a d i s i n c r e a s e d , t h e r o l l moment o f i n e r t i a , Ix, shows a large increase, as shown i n Table 5, I tem 3.

STRUCTURAL PARAMETERS

Modal V ib ra t i on Ana lys i s

The approach fo r de te rm in ing t he uncs r ta in t i es assoc ia ted w i th s t ruc tu ra l dynamic c o n s i d e r a t i o n s a r i s i n g f r o m s t r u c t u r a l f l e x i b i l i t y was t o t r a c k h i s - t o r i c a l l y t h e v a r i a t i o n s i n t h e normal modes o f v i b r a t i o n as described by

19

Page 36: J. R. - NASA

p3 0

X

c

W a

1968 I 1969 I 1970 I 1971

FIGURE 6. MANUFACTURER'S EMPTY WEIGH 1 GROWTH HISTORY

Page 37: J. R. - NASA

I

1 .o

0.9:

0.98

-I

I U

L

5 I

5 0.97 I

I c

.

el I I-

a

s 0.9f 5 t E

5 0.9:

>

I" a w

I- o U U =Y 2

ZE a

0.94

0.92

21

Page 38: J. R. - NASA

A.

6.

C.

D.

E.

F.

TABLE 4

MAJOR WEIGHT CHANGE SUMMARY

(see F igure 6)

Revised est imate for wing bending mater ia l , inc reased a l lowance fo r insu la t ion and in te r i o r pane ls p lus m isce l l aneous changes.

Increased engine weight, revised est imate f o r wing and land ing gea r t o p rov ide f o r an i nc rease i n t akeo f f g ross we igh t p lus m i sce l 1 aneous changes.

I n t e r i o r d e s i g n changes, 0.102m (4- inch) f u s e l a g e s t r e t c h , a d d i t i o n o f a f t e n g i n e maintenance p la t form p lus rev ised est imates for fuselage, wing and t a i l .

Customer requested i n t e r i o r changes p lus rev ised es t imates fo r m isce l laneous s t ruc- t u r a l and subsystem i terns.

Increased engine weight, revised est imate for wing and land ing gea r t o p rov ide f o r an increase in t akeo f f g ross we igh t p lus m is - cel laneous changes.

Incorporated more representat ive weights f o r g a l l e y s and passenger seats.

frequencies, modal displacements, and t h e r e s u l t i n g g e n e r a l i z e d masses. The

method for comput ing the modes was begun by the usual lumping o f t he f use lage , empennage, and wing i n t o a f i n i t e number o f mass and spr ing e l ements. As the

a s p e c t r a t i o o f t he se lec ted a i rp lane was large, it was j u s t i f i a b l e t o

represent the s t ruc tu re as interconnected s lender beams. The r o o t o r connect ing spr ings were computed from a f i n i t e element representat ion using

a redundant force procedure.

The t ime per iod considered i n t h i s s t u d y covered 35 months s t a r t i n g w i t h t h e

fo rmal au thor i ty to p roceed (ATP) and end ing w i th the g round v ib ra t ion tes t (GVT) 1 month p r i o r t o f i r s t f l i g h t . Preceding t h i s 35-month pe r iod t he re

was approximately 6 months o f p r e l i m i n a r y d e s i g n a c t i v i t y . T h i s p r e l i m i n a r y

design phase was not covered by th is study because s t r u c t u r a l u n c e r t a i n t i e s

22

Page 39: J. R. - NASA

( I ) MAXIMUM TAKEOFF GROSS WEIGHT

1.5

MTOGW 1 .o MTOGWFINAL

0.5

0

(b) MAXIMUM LANDING WEIGHT

1.5

MLW - M L W ~ ~ ~ ~ ~

1 .o

0.5

0

(c) MAXIMUM ZERO FUEL WEIGHT

. .

. . .

. . . ...

. . . .

0 -10 ATP 10 20 30 40 50

MONTHS

FIGURE 8. DESIGN WEIGHT HISTORY

23

Page 40: J. R. - NASA

TABLE 5

MOMENT OF INERTIA HISTORY

I n e r t i a Value a t Program S t a r t Assumed Growth F i n a l I n e r t i a Value

1. Manufacturers Empty Weight (MEW) Growth o f 8.8 percent

' X ' I X Final

I Y / ' Y F ina l

'Z'IZ F ina l

2. Maximum Takeoff Gross Weight (MTOGW) Growth o f 11 percent and Constant Fuel :

'X / 'X F ina l

'Y / 'Y F ina l

'Z/'Z F ina l

3. Maximum Takeoff Gross Weight (MTOGW) Growth o f 71 percent and Constant Payload :

' X / ' X Final

'Y'IY F ina l

'Z/'Z F ina l

0.95

0.92

0.93

0.96

0.88

0.92

0.85

0.93

0.89

F ina l va lues a re those ca lcu la ted a t f i r s t f l i gh t (31 months a f t e r program i n i t i a t i o n ) . The product o f i n e r t i a ( Ixz) does not change s i g n i f i c a n t l y .

24

Page 41: J. R. - NASA

would have been distorted by the large configuration changes resulting from changes i n design specifications t h a t were made dur ing this phase.

During the evolution of the design from ATP to GVT eleven changes were made which were judged of sufficient significance to warrant computation of new modes. During that time, the modes were used primarily fo r f l u t t e r analyses w i t h application t o control system effects being made less frequently. For th i s study the modes were recomputed and the results compared to the final or cer t i f icat ion resul ts . The final results were computed based upon corrections as made from GVT resul ts .

In particular, the dynamic representation of the airplane consisted of a masswise representation composed of 50 1 umped bays. Each bay was chpable o f six “ r i g i d body” degrees of freedom, three translations and three rotations. The ent i re mass of the airplane was lumped i n t o these bays by calculating the mass properties of each bay about a selected reference station in the bay. Mass and s t i f fness symnetry was assumed allowing an analysis of half the airplane. Figure 9 shows the mass bay distribution used i n the modal calculations.

Theoretical cantilevered v i b r a t i o n modes were calculated using the stiffness and mass da ta of the respective bays f o r the major components - wing, hori- zontal stabilizer, fuselage and ver t ical s tabi l izer . All modes were calculated using structural influence coefficients (SICS) which relate con- trol p o i n t s tatic deflections t o applied forces. Complex j o i n t structures such as wing-fuselage, fin-fuselage, and engine pylons, used structural influence coefficients obtained from f i n i t e element redundant force type analyses. Figure 10 i l l u s t r a t e s the stiffness representation used i n the vi bra ti on analyses.

Rigid body modes were used in conjunction with the above component modes to release the airplane and generate free-free orthogonal modes into symnetric and antisymmetric se t s . In all cases, sufficient component modes were used i n the free-free modal calculations to assure modal convergence of the air- plane modes of concern, from zero to 10 hertz. All modal calculations were performed using a digi ta l computer program.

25

Page 42: J. R. - NASA

FIGURE 9. INITIAL-TO-FINAL MASS REPRESENTATION

Page 43: J. R. - NASA
Page 44: J. R. - NASA

It shou ld be no ted t ha t f o r t h i s s tudy a l l t he v ib ra t i on ana lyses were per- fo rmed us ing the f ina l s t ruc tu ra l representa t ion . That i s , the ear ly modes were recons t ruc ted us ing the respec t ive s t i f fness and mass data, but with the f i n a l 50 bay s t r u c t u r a l r e p r e s e n t a t i o n . I n a c t u a l p r a c t i c e , t h e e a r l i e r . ' v ibrat ion analyses were performed using a much coarser s t ruc tu ra l . represen-

ta t ion . There fore , , the uncer ta in t ies shown f o r t h e . e a r l y v i b r a t i o n a n a l y s e s

for f requencies greater than 3 o r 4 h e r t z may be greater than these s tud ies

i n d i c a t e .

As noted , the s t ruc tu ra l dynamic u n c e r t a i n t i e s were l i m i t e d t o t h o s e r e s u l t - ing f rom mass and s t i f f n e s s v a r i a t i o n s o n l y . I n t h e p r a c t i c a l c o n s i d e r a t i o n

o f s t r u c t u r a l dynamic e f f e c t s , w h e t h e r f o r t h e u s u a l a p p l i c a t i o n t o f l u t t e r

o r g u s t l o a d s o r f o r c o n t r o l - c o n t i n u e d v e h i c l e a p p l i c a t i o n , t h e p r e d i c t a b i l i t y

of the unsteady aerodynamic terms i s as i m p o r t a n t a s t h e p r e d i c t a b i l i t y o f the mass and s t i f f n e s s dependent modes o f v i b r a t i o n . E s p e c i a l l y i m p o r t a n t

are the unsteady aerodynamics o f con t ro l sur faces wh ich must be included i n t h e a n a l y s i s o f a l l a i r c r a f t w i t h h i g h l y r e s p o n s i v e a c t i v e c o n t r o l systems i n

o r d e r t o a s s u r e t h a t t h e r e q u i r e d f l u t t e r speed and gust load margins are met and t h a t f l u t t e r and excessive gust and osc i l la to ry loads a re avo ided

under any l i k e l y c o n t r o l system f a i l u r e o r m a l f u n c t . i o n .

S t r u c t u r a l Dynamic Parameters Investigated

During the design phase, the a i rp lane des ign data are cont inual ly changing

due t o c o n f i g u r a t i o n changes, r e v i s i o n s based upon tes t da ta , o r re f inements

t o e x i s t i n g d a t a based upon deta i led analyses. Many o f t h e s e changes are

minor and do n o t s i g n i f i c a n t l y a f f e c t t h e a i r p l a n e v i b r a t i o n c h a r a c t e r i s t i c s . Therefore, only those parameters which s igni f icant ly impacted the a i rp lane

v i b r a t i o n modes were i nves t iga ted . These parameters were as f o l 1 ows :

0 Wing s t i f f n e s s

0 Fuselage s t i f f n e s s

0 Wing eng ine py lon s t i f fness 0 A f t eng ine py lon s t i f fness

0 Wing engine weight 0 Wing engine cg locat ion 0 A f t engine weight

28

Page 45: J. R. - NASA

~~~ -

The chronology and re la t ive magnitude of i n Table 6. Symnetric and antisymmetric

these parameter changes are shown vibration modes were calculated f o r

both empty and full fuel cordi t ions . These two fuel conditions result i n the highest and lowest modal frequencies of the system and therefore are typical o f the modal uncertainties which can be expected over the entire fuel range. For both fuel conditions the payload was 'held constant. These payload and fuel conditions match configurations used during the airplane ground vibra- tion test. Thus, a d i rec t comparison of theoretical and experimental modal vibration data was easi ly made which facil i tated corrections t o the theoretical data.

, I .

TABLE 6

DESIGN PARAMETER SUMMARY

"

METER CHANGES DESIGN PAR WING

PYLON STIFFNESS ""

- TIME

MO N

0

- - -

2

4

5

6

7

10

12

14

16

20

24

35 -

WING STIFFNESS

FUSELAGE STIFFNESS

AFT PYLON

STIFFNESS

BASIC

v -3 5%

AFT ENGINE WEIGHT

~~ ~

BASIC

+30% BEND +13%TOR

I +5% BEND +lS%TORS

1 -2% BEND +6% TORS

+1% BEND +1% TORS

-24 BEND -2% TORS

BASIC ~~~ ~

T 6% WEIGHT INCREASE

IC

I R S

BI

-2%

1SI BI

+I

+:

+I

I T ( 0.81111 (32 IN.) AFT CG SHIFT

24% WEIGHT INCREASE

-2% BEND -2% TORS

0 RS

-

+5%

- I L L "_ L

NOTE: THE ABOVE CHANGES IN EACH PARAMETER ARE CUMULATIVE

Page 46: J. R. - NASA

S t r u c t u r a l Dynamic Data

The r e s u l t s o f t h e modal v ib ra t i on unce r ta in t y s tudy a re p resen ted as p l o t s

o f modal frequency, general ized mass and displacement versus t ime. The h i s t o r i c a l e v o l u t i o n o f t h e s e p a r a m e t e r s i s shown f o r a selected subset o f

t h e a i r p l a n e v i b r a t i o n modes which are important i n both cont ro l system

design, gust loads due to turbulence, and f l u t t e r c a l c u l a t i o n , a l l w i t h o r w i thout con t ro l -con f igured veh ic le techno logy . The chronology o f changes t o

the inpu t da ta i s shown on each p l o t f o r easy reference. The mode names, such as f i r s t wing bending, are chosen so as to descr ibe the predominant

m o t i o n o f each mode a l though, o f course, the mot ion invo lves the ent i re a i r - p lane s t ruc tu re . Each parameter i s given as a r a t i o o f t h e v a l u e a t a given

t i m e t o t h e f i n a l v a l u e . The f i n a l v a l u e of each parameter i s taken from a

t h e o r e t i c a l s e t o f modes which are i n agreement w i t h g r o u n d v i b r a t i o n t e s t

r e s u l t s .

The genera l ized mass and d e f l e c t i o n p l o t s f o r each mode were ca l cu la ted us ing

a c o n s i s t e n t n o r m a l i z a t i o n p o i n t f o r each p a r t i c u l a r mode. For instance, f i r s t wing bending was n o r m a l i z e d t o u n i t v e r t i c a l d e f l e c t i o n a t t h e w i n g t i p

s ta t ions wh ich repre-

be se lec ted t o

ions and d e f l e c t i o n s

bay. The modal displacements are presented

sent a va r ie t y o f poss ib le senso r l oca t i ons

implement various control systems. The f o l

were selected :

a t s e l ec t e d

whi ch m i gh t

l o w i n g l o c a t

Symmetric Analysis

1 . Fuselage nose p i t c h a n g l e (a)

2. Fuse lage cg ve r t i ca l de f l ec t i on (h )

3. Wing t i p v e r t i c a l d e f l e c t i o n ( h )

4. Wing t i p p i t c h a n g l e (a)

5. H o r i z o n t a l s . t a b i l i z e r t i p v e r t i c a l d e f l e c t i o n ( h ) 6. H o r i z o n t a l s t a b i l i z e r t i p p i t c h ang1.e (a)

Antisvmmetr ic Analvsis

1. Fuselage nose r o l l a n g l e (8)

2. Fuselage nose yaw angle ( J, ) 3. Wing t i p v e r t i c a l d e f l e c t i o n ( h )

30

Page 47: J. R. - NASA

4. Wing t i p p i t c h a n g l e (a)

5. H o r i z o n t a l s t a b i l i z e r t i p v e r t i c a l d e f l e c t i o n ( h ) 6. H o r i z o n t a l s t a b i l i z e r t i p p i t c h a n g l e (a)

7. V e r t i c a l s t a b i l i z e r t i p l a t e r a l d e f l e c t i o n ( a ) 8 . V e r t i c a l s t a b i l i z e r t i p yaw angle ( JI

The modal da ta a re p resented in .Sec t ion 3. The t y p e o f d a t a shown f o r each a i rp lane conf igura t ion i s sumnar ized i n Secti,on 3.

Discuss ion o f Resu l ts

General. An examinat ion o f the modal frequency, generalized mass and d isp lacement p lo ts show, i n genera l , t ha t t hese unce r ta in t i es can be d i v i d e d i n t o two d i s t i n c t phases. The f i r s t phase occurs dur ing the ear ly design stages, approximately 0 t o 1 0 months, where the modal parameters exhib i t l a r g e v a r i a t i o n s . These v a r i a t i o n s r e f l e c t m a j o r c o n f i g u r a t i o n changes such as engine weight, engine location, maximum gross weight and t h e i n t r o d u c t i o n of s t i f f n e s s c o n s t r a i n t s t o s a t i s f y dynamic cond i t ions such as landing, gust and f l u t te r requ i remen ts . I n add i t i on , da ta genera ted du r ing t h i s phase are based upon a c o a r s e i d e a l i z a t i o n o f t h e s t r u c t u r e .

The second phase occurs f rom approximately 10 to 24 months, dur ing which t ime the modal parameters, i n general , exh ib i t on l y sma l l changes. This ref lects t h e f a c t t h a t t h e a i r p l a n e c o n f i g u r a t i o n has been determined and a l l major des ign cons t ra in ts have been introduced. Changes to the des ign da ta a re m ino r mod i f i ca t i ons based upon add i t iona l de ta i led s t ruc tu ra l ana lyses , wh ich produce smal 1 changes i n the a i rp lane modal c h a r a c t e r i s t i c s .

But however d e t a i l e d t h e a n a l y s i s , u n c e r t a i n t i e s s t i l l e x i s t . T h i s can be seen by comparing the modal parameter values a t t h e 2 4 t h month w i t h t h e c e r t i f i c a t i o n v a l u e s . The 24th-month po ints represent the f ina l predic ted t h e o r e t i c a l modes b e f o r e v e r i f i c a t i o n b y g r o u n d v i b r a t i o n t e s t . The theore- t i c a l modes a r e a r e s u l t o f a h i g h l y d e t a i l e d s t r u c t u r a l a n a l y s i s o f a f i x e d con f igu ra t i on . The re fo re , t he d i f f e rence between the 24th month and c e r t i - f i c a t i o n v a l u e s r e p r e s e n t u n c e r t a i n t i e s i n a n a l y s i s t e c h n i q u e s i n i d e a l i z i n g t h e a i r p l a n e s t i f f n e s s and mass proper t ies . The ideal izat ions must reduce the con t inuous a i rp lane s t ruc tu re t o a f i n i t e number o f elements, making s i m p l i f i c a t i o n i n e v i t a b l e . A l s o . j the. number o f elements used to rep resen t t h e a i r p l a n e i s l i m i t e d by p rac t ica l computa t iona l and economic considerations.

31

Page 48: J. R. - NASA

An examination o f t h e modal frequency, general ized mass and displacement p l o t s does n o t show any discernable t rend due t o f u e l c o n d i t i o n o r s y m n e t r y . The c o r r e l a t i o n i s e q u a l l y good for zero and f u l l f u e l and for symnetr ic and

an t isymnet r ic cond i t ions .

i Modal Frequencies. The modal f requency plots, Sect v a r i a t i o n s o f -30 t o +84 percent may o c c u r f o r some phase. However, t h e m a j o r i t y o f t h e modal frequenc

- +20 percent range. During the second phase, the mo i d

on 3 , show that extreme modes d u r i n g t h e f i r s t

es appear t o be i n t h e a1 frequencies show

v a r i a t i o n s o f o n l y 3 t o 4 percent on the average. The f i n a l t h e o r e t i c a l

modes (24 month p o i n t ) d i f f e r f r o m t h e c e r t i f i c a t i o n modes by 4 t o 5 percent on the average, although maximum d i f fe rences reach +13 t o -20 p e r c e n t f o r a

smal l percentage of the modes. An average o f 5 p e r c e n t d i f f e r e n c e i n modal

frequency i s extremely good co r re la t i on cons ide r ing t he comp lex i t y o f t he

s t ructure be ing analyzed.

General ized Mass and Displacement. The modal genera l ized mass and d isp lace-

ment p lo ts , Sec t ion 3, show much the same t rend as do the f requency plots. However, the magnitudes o f t h e v a r i a t i o n s a r e much more extreme. It appears,

i n genera l , tha t changes i n des ign data produce larger var ia t ions i n

genera l ized mass and d e f l e c t i o n s t h a n i n modal frequency.

However, care must be exercised i n i n t e r p r e t i n g t h e g e n e r a l i z e d mass and de f lec t i on da ta . It i s t r u e t h a t t h e d a t a show the uncer ta in ty o f each para-

meter as a r a t i o o f i t s v a l u e a t a g iven t ime to i t s f ina l va lue . Bu t the

actual va lue o f the parameter may be smal 1. Therefore, seemingly large v a r i a t i o n s i n i t s v a l u e may s t i l l be i n s i g n i f i c a n t as t h e y a f f e c t t h e a i r -

p lane response character is t ics and hence the con t ro l sys tem des ign . In

a d d i t i o n , t h e r a t i o o f any par t icu lar parameter , such as fuselage nose p i t c h

ang le , var ies fo r each mode o f a g iven con f igura t ion . Note tha t the para-

meter r a t i o i s g r e a t e r t h a n u n i t y i n some modes and 1 ess than uni ty i n o thers i n which there i s u s u a l l y a b i a s i n one d i r e c t i o n o r t h e o t h e r .

Eva lua t i on o f Resu l t s . The importance o f t h e s t r u c t u r a l dynamic behav io r o f t h e a i r c r a f t t o t h e c o n t r o l system design depends upon the in tended func t ion

o f the control system and i t s gain/phase properties. For low frequency con-

t r o l systems such as conventional autopi lot and yaw damper systems, the

e f f e c t o f t h e a i r c r a f t s t i f f n e s s d i s t r i b u t i o n on the steady aerodynamic

32

Page 49: J. R. - NASA

derivatives i s of significance. For higher frequency control systems, particularly those required for gus t load and flutter suppression, the stiffness and mass distributions become more significant and hence the vibration modes of the a i r c ra f t become meaningful measures o f potential control system interaction. O f course, in any control loop w i t h s ignif icant gain and phase shift i n the e l a s t i c modal frequency range knowledge of the v i bration characterist ics of the vehicle is desirable. Use of mode shapes to determine nodal and anti-nodal poin ts for sensor locations is desirable for passive gain stabilization procedures, b u t fo r l a rge f lex ib le a i rc raf t significant shifts i n node l ines can occur w i t h fuel and payload distribution changes.

The use of natural frequencies t o assess the change i n the vibration modes d u r i n g the design cycle i s a useful ( b u t n o t u n i q u e ) measure of potential effects on the control system design. The natural frequencies may be iden- t i f i ed by the a i rc raf t components which a re the most direct ly involved i n the mode and some subjective evaluation will be made by the engineer as to the significance to any given control system. For example, a low frequency fuselage bending mode may have a very direct bearing on the control system design fo r a h i g h gain system and a low frequency is an indication that significant data error from forward mounted sensors may occur i n turbulence condi t i ons .

Knowledge of amplitudes a t various stations on the a i r c r a f t and the general- ized masses i s considerably less useful. The control system designer faced w i t h the task of designing a system for response o r s t ab i l i t y i n the e las t ic frequency range or a system w i t h significant gain and phase variation i n this frequency range must use these data i n his analyses along w i t h the appropriate aerodynami c functions .

A review of the modal parameters variations t h r o u g h the design cycle presented herein indicates a reasonable convergence w i t h time on the f inal design values for the modal frequencies. The generalized mass and modal deflections for various modes and locations on the a i r c ra f t , however, indicate large variations and an apparent lack of continuity. T h i s l a t t e r i s not surprising i n view of the fact that d u r i n g the design cycle data updates resulting from structural modifications and improved data (resulting from both quali ty

33

Page 50: J. R. - NASA

and i d e a l i z a t i o n m o d i f i c a t i o n s ) a r e g e n e r a l l y made f o r one o r two a i r c r a f t

components a t a time. For example, a s h i f t i n wing engine cg wi th respect

t o t h e w i n g may n o t s i g n i f i c a n t l y e f f e c t t h e b a s i c f u s e l a g e and empennage modes bu t can cause l a rge va r ia t i ons i n genera l i zed mass o f modes i n v o l v i n g

s ign i f icant engine mot i ,on. The f requency var ia t ion however will show s i g n i - f i c a n t l y l e s s v a r i a t i o n .

The importance t o t h e c o n t r o l system design from the above change will be ins ign i f i can t i n t he bas i c l ow f requency au top i l o t des ign bu t o f ma jo r s ign i -

f i c a n c e f o r a ' f l u t t e r s u p p r e s s i o n system.

1 ,

A more s i g n i f i c a n t measure of t h e s t r u c t u r a l dynamic parameter uncertaint ies

may be found by . obse rv ing t he va r ia t i on o f t he a i r c ra f t open l o o p t r a n s f e r f u n c t i o n f o r s p e c i f i c c o n t r o l s u r f a c e i n p u t s a t s p e c i f i c p o t e n t i a l s e n s o r

locat ions. For such response analyses to be v a l i d i n t h e e l a s t i c f r e q u e n c y

ranges, they must use the unsteady aerodynamic functions which more r e a l i s - t i c a l l y represent the complex aerodynamic forces which occur i n these

frequency ranges.

To i l l u s t r a t e t h e above, a frequency response analyses was performed t o determine i f the modal d a t a h e r e i n w o u l d c o r r e l a t e w i t h t h e a i r c r a f t t r a n s f e r

f u n c t i o n s f o r two p o i n t s i n the des ign cyc le . The t rans fer func t ions were

eva lua ted ' f o r 0 t o 10 H e r t z f o r a p l us-or-minus 1 -degree elevator osci 1 l a t i o n

using'unsteady aerodynamics for Mach 0.88 and f l i g h t a t 7,315 meters (24,000 feet ) . Table 7 shows a summary o f r e s u l t s f o r two dynamic a e r o e l a s t i c modes,

t h e a i r c r a f t s h o r t - p e r i o d mode and the Wing Engine Pitch/Fuselage Bending

mode. The i n p u t modal displacement and genera l ized mass r a t i o s and output

a c c e l e r a t i o n r a t i o s f o r t h e s e modes a r e shown f o r s e v e r a l a i r c r a f t l o c a t i o n s .

F r e e - f r e e a i r c r a f t modes were used i n the ana lys is .

It i s apparent from these summary da ta tha t wh i le the genera l i zed mass and normalized modal displacements show l a r g e v a r i a t i o n s , t h e a c c e l e r a t i o n

responses f o r t h e s e l e c t e d l o c a t i o n s a r e s i m i l a r and i n d i c a t e r e l a t i v e l y

smal l var ia t ions . These response data are o f s i g n i f i c a n t use t o t h e c o n t r o l

sys tem des igner us ing the e leva tor fo r fo rce genera t ion and any of the

selected locat ion response parameters for sensor locat ions.

34

Page 51: J. R. - NASA

TABLE 7

RESPONSE ANALYSIS SUMMARY

SYMMETRIC MACH 0.88

3.23 Hz MODE INPUT MODEL

RESPONSE DISPLACEMENT PARAMETER RAT1 0

FUSELAGE NOSE OL 0.80

FUSELAGE CG h 3.21

WING TIP h 0.94

WING TIP OL 0.44

HORIZONTAL STAB1 LlZER h 1.00

"~ ~ ""

I

ZERO FUEL 7315M (24,000 FT)

RESPONSE ACCEL. RATIO (124'4)

0.45 Hz SHORT PERIOD MODE

1.02

1.02

1.02

1.03

1.02 L

3.23 Hz FUSELAGE BENDING MODE

1.18

1.12

1.04

0.85

1.27

ABOVE RATIOS ARE FOR 24TH MONTH OATA VERSUS CERTIFICATION OATA (GM24/GM,) = 0.51 F O R THE 3.23 HERTZ FUSELAGE BENOING MOOE

For any given a i r c r a f t s t r u c t u r e t h e s t r u c t u r a l dynamic c h a r a c t e r i s t i c s v a r y s i g n i f i c a n t l y o v e r t h e normal f u e l and payload range. As a m a t t e r o f i n t e r e s t

the symmetrical modal f requency va r ia t i on f rom fu l l f ue l t o ze ro f ue l was compared t o t h e maximum f requency var ia t ion fo r zero fue l over the des ign per iod f rom ATP t o GVT. A simi lar comparison was made f o r t h e f u l l f u e l f requencies over the design per iod. These comparisons are shown i n Table 8 and i n d i c a t e t h a t t h e modal f requenc ies va ry w i th f ue l l oad ing by the same l e v e l o f magnitude as t h e u n c e r t a i n t y v a r i a t i o n s and i n some cases more. Payload var iat ions, which have n o t been considered, would show even a l a r g e r range i n the f requenc ies o f the f ina l des ign .

35

Page 52: J. R. - NASA

TABLE 8

COMPARISON OF FUEL EFFECTS TO UNCERTAINTIES EFFECT . . . . .

SYMMETRIC MODAL FREQUENCIES

MODE DESCRIPTION

FIRST WING BENDING

WING ENGINE YAW

FUSELAGE BENDING

HORIZONTAL STABILIZER BENDING/AFT ENG PITCH

WING INNER PANEL TORSION

WING ENGINE ROLL

SECOND WING BENDING

WING FORE AND AFT BENDING

WING TDRSION/ENGINE PITCH

fFULL FUEL

ZERO FUEL

0.63

0.98

0.90

1.01

0.90

1.01

0.7 1

0.56

0.94

r UNCERTAINTIES RATIO .

'MA:

ZERO FUEL .

1.26

1.20

1.13

1.72

1.39

1.16

1.30. ,

1.27

1.13

~MIN .

FULL FUEL

1.16

1.16

1 .os 1.08

1.35. ,

1.15

1 .os 1.20 . .

1.17

. . .

Page 53: J. R. - NASA

Aerodynamic, i n e r t i a l , and s t ruc tu ra l da t a are presented i n this sec t ion . The d a t a a r e d i s c u s s e d i n d e t a i l i n Section 2 so t h a t this sect ion provides as concise a compendium as poss ib le . ' The parameters are defined i n the l i s t of symbols a t the beginning of this report . The equations of motion and dimensional s t a b i l l t y d e r i v a t i v e d e f i n i t i o n s a r e g i v e n i n the Appendix. The data are organized as follows:

Longi tudi nal Aerodynamic Parameters : - _"-.""."I___

Figure 11 Histor ical Uncertaint ies of CL , Cma, CDa, CLi

Figure 12 His tor ica l Uncer ta in t ies o f Cm,, CDi, C L u , CmU

a

Figure 13 His tor ica l Uncer ta in t ies o f C , CL , Cm , CL Du q 9 6e

Figure 14 His tor ica l Uncer ta in t ies of C , CD , CL, CD "'6, 6,

" Latera l -Direc t iona l - "_ "" Aerodynamic Parameters:

Figure 15 Histor ical Uncertaint ies of C , C n g , C k B , C YB yP

Figure 16 Histor l cal Uncertaint ies of Cn , p ' ~ p yr nr

, c , c

Figure 17 His tor ica l Uncer ta in t ies o f C, , C , Cn r Y, r 'r

Figure 18 Histor ical Uncertaint ies of C , C , c 53 '6 a n6

."6sp

SP

Figure 19 H i s to r i ca l Unce r t a in t i e s o f C

I n e r t i a1 Parameters :

Figure 20 Manufacturer's Empty Weight Growth History F i g u r e 21 MEW Growth Hi s t o r y - Cabin, Wing , Empennage, Forward Fusel age Table 9 Major Weight Change Summary Table . l o Moment of Ine r t i a H i s to ry Figure 22 Design Weights H i s to r i e s

37

Page 54: J. R. - NASA

S t r u c t u r a l Dynamic Parameters :

Table 1.1 Symnetric Modal Analysis Sumnary

Table 12 Ant isymnetr ic Modal Analysis Sumnary

Figures 23 through 26 Mode Shapes and Mode Lines

Figures 27 through 60 Evo lu t i on of Frequency Ratio (see Tables 11 and 12 f o r i n d e x )

Figures 61 through 90 Evo lu t ion o f Genera l i zed Mass Rat io (,see Tables 11 and

12 for index)

. .

Figures 91 through 196 Evo lu t i on of Displacement Ratio (see Tables 11 and 12

f o r Sndex)

38

Page 55: J. R. - NASA

.

LIST OF FIGURES

FIGURE NO . EVOLUTION OF . FREQUENCY- RATIO

SYMMETRIC ZERO FUEL

27 28 29 30 31 32 33 34 35

36 37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 53 54

55 56 57 58 59 60

. . ,

PAGE . '

1st Wing Bending. 1 . 8 9 . H ~ . . . . . . . . . . . . . . . 61 Wing Engine Yaw. 2.03 Hz . . . . . . . . . . . . . . . 61 . . Wing 'Engine Pitch/Fuselage Bending, . 3.23 Hz . . . . . . 61' ' . .

Wing Engine Roll. 5.05 Hz . . . . . . . . . . . . . . ., . . 62 . . , .

Wing Torsion/Engine Pitch. 9.94 Hz . . . . . . . . . . 63

Horiz.'Stab. Bending/Aft Engine Pitch. 3.55 Hz . . . . 61 . . . .

Wing Inner Panel Torsion. 3.71 Hz . . . . . . . . . . . 62

2nd Wing Bending, 5.69 Hz . . . . . . . . . . . . . . 62

. . .

Wing Fore and A f t Bending. 6.79 Hz . . . . . . . . . . 62 ...

SYMMETRIC' FULL FUEL

1 s t Wing Bending. 1.19 Hz . . . . . . . . . . . . . . . 63 Wing Engine Yaw. 1.98 Hz . . . . . . . . . . . . . . . 63 Fuselage Bending. 2.90 Hz . . . . . . . . . . . . . . . 63

Wing Inner Panel Torsion. 3.34 Hz . . . . . . . . . . . 64 Wing Fore and Aft Bending. 3.81 Hz . . . . . . . . . . 64 2nd Wing Bending. 4.05 Hz . . . . . . . . . . . . . . . 64 Wing Engine Roll. 5.08 Hz . . . . . . . . . . . . . . . 65

Wing Torsion/Engine Pitch. 9.30 Hz . . . . . . . . . . 65

Horiz . Stab . Bending/Aft Engine Pitch. 3.57 Hz . . . . 64

3rd Wing Bending/Aft Engine Pitch. 7.51 Hz . . . . . . 65

ANTISYMMETRIC ZERO FUEL

Wing Engine Yaw. 2.08 Hz . . . . . . . . . . . . . . . 65 1 s t Wing Bending. 2.28 Hz . . . . . . . . . . . . . . . 66 Aft Engine Yaw. 2.56 Hz . . . . . . . . . . . . . . . . 66 Horiz . Stab . Bending. 3.16 Hz . . . . . . . . . . . . . 66 Vert . Stab . Bending. 3.48 Hz . . . . . . . . . . . . . 66 Aft Fuselage Torsion/Wing Engine Pitch. 4.25 Hz . . . . 67 Aft Fuselage Lateral Bending. 7.49 Hz . . . . . . . . . 67 2nd Wing Bending. 7.82 Hz . . . . . . . . . . . . . . . 67 2nd Vert . Stab . Bending. 10.82 Hz . . . . . . . . . . . 67

ANTISYMMETRIC FULL FUEL

Wing Engine Y.aw. 2.05 Hz . . . . . . . . . . . . . . . 68 1 s t Wing Bending. 1.62 Hz . . . . . . . . . . . . . . . 68 Horiz . Stab . Bending. 3.00 Hz . . . . . . . . . . . . . 68 Aft Fuselage Torsion/Wing Engine Pitch. 3.35 Hz . . . . 68 Vert . Stab . Bending. 3.49 Hz . . . . . . . . . . . . . 69 2nd Wing Bending. 5.16 Hz . . . . . . . . . . . . . . . 69

39

Page 56: J. R. - NASA

LIST OF FIGURES (Contd)

FIGURE NO . EVOLUTION OF GENERALIZED MASS RATIO

SYMMETRIC ZERO FUEL

61 62 63 64 65 66 67 68

69 70 71 72 73 74 75 76

77 78 79 80 81 82 83 84 85

86 87 88 89 90

1 s t Wing Bending. 1.89 Hz . . . . . . . . . . . . . . Wing Engine Yaw. 2.03 Hz . . . . . . . . . . . . . . . Horiz . Stab . Bendlng/Aft Engine Pitch. 3.55 Hz . . . . 2nd Wing Bending. 5.69 Hz . . . . . . . . . . . . . .

Wing Engine Pitch/Fuselage Bending. 3.23 Hz . . . . . Wing Inner Panel Torsion . 3.71 Hz . . . . . . . . . . Wing Fore and A f t Bending. 6.79 Hz . . . . . . . . . . Wing Torsion/Engine Pitch. 9.94 Hz . . . . . . . . . .

SYMMETRIC FULL FUEL

1 s t Wing Bending. 1.19 Hz . . . . . . . . . . . . . . Wing Engine Yaw. 1.98 Hz . . . . . . . . . . . . . . . Fuselage Bending. 2.90 Hz . . . . . . . . . . . . . . Horiz . Stab . Bending/Aft Engine Pitch. 3.57 Hz . . . . Wing Inner Panel Torsion. 3.34 Hz . . . . . . . . . . Wing Fore and A f t Bending . 3.81 Hz . . . . . . . . . 2nd Wing Bending. 4.05 Hz . . . . . . . . . . . . . . 3rd Wing Bending/Aft Engine Pitch. 7.51 Hz . . . . . .

ANTISYMMETRIC ZERO FUEL

Wing Engine Yaw. 2.08 Hz . . . . . . . . . . . . . . 1 s t Wing Bending. 2.28 Hz . . . . . . . . . . . . . . A f t Engine Yaw. 2.56 Hz . . . . . . . . . . . . . . . Horiz . Stab . Bending. 3.16 Hz . . . . . . . . . . . . Ver t . Stab . Bending. 3.48 Hz . . . . . . . . . . . . . A f t Fuselage Torsion/Wing Engine Pitch. 4.25 Hz . . . A f t Fuselage Lateral Bending . 7.49 Hz . . . . . . . . 2nd Wing Bending. 7.82 Hz . . . . . . . . . . . . . . 2nd Vert . Stab . Bending. 10.82 Hz . . . . . . . . . .

ANTISYMMETRIC FULL FUEL

1 s t Wing Bending. 1.62 Hz . . . . . . . . . . . . . . Wing Engine Yaw. 2.05 Hz . . . . . . . . . . . . . . . Horiz . Stab . Bending, 3.00 Hz . . . . . . . . . . . . Vert . Stab . Bending, 3.49 Hz . . . . . . . . . . . . . 2nd Wing Bending, 5.16 Hz . . . . . . . . . . . . . .

PAGE

69 69 70 70 70 70 71 71

71 71 72 72 72 72 73 73

73 73 74 74 74 74 75 75 75

75 76 76 76 76

40

Page 57: J. R. - NASA

LIST OF FIGURES (Contd)

FIGURE NO,

91 92 93 94 95 96

97 98 99 100 101 102

103 104 105 106 107 108

109 110 111 112 113 114

EVOLUTION OF DISPLACEMENT RATIO

SYMMETRIC ZERO FUEL

1 s t Wing Wing Bending, 1.89 Hz

PAGE

Fuselage Nose Pitch Angle ( a ) . . . . . . . . . . . 77 Fuselage C.G. Vertical Deflection ( h ) . . . . . . . 77 Wing T i p Vertical Deflection (h) - - . . . . . . . 77 Wing T i p Pitch Angle (a) . . . . . - . . . . - . . 77 Horiz. Stab. T i p Vertical Deflection ( h ) . . . . . 78 Horiz. Stab. T i p Pitch Angle ( a ) . . . . . . . . . 78

Wing Engine Pitch/Fuselage Bending, 3.23 Hz

Fuselage Nose Pitch Angle (a) . - . - . . . . . . . 78 Fuselage C.G. Vertical Deflection (h) . . . . . . . 78 Wing T i p Vertical Deflection (h) - - - - - - . 79 Wing T i p Pitch Angle ( a ) - - - - - - - - - - - - 79 Horiz. Stab. T i p Vertical Deflection ( h ) . . . . . 79 Horiz. S tab . T i p Pitch Angle (cl) . . . . . . . . . 79

Wing Inner Panel Torsion, 3.71 Hz

Fuselage Nose Pitch Angle (3) - . . - . - - - - 80 Fusel age C.G. Vertical Deflection ( h ) . . . . . . - 80 Wing T i p Vertical Deflection (h). . . - . . . . . . 80 Wing T i p Pitch Angle (a) . . . . . . . . . . . . . 80 Horiz. S tab . T i p Vertical Deflection ( h ) . . . . . 81 Horiz. Stab. T i p Pitch Angle ( a ) . . - - - . . - . 81

2nd Wing Bending, 5.69 Hz

Fuselage Nose Pitch Angle (a) a - - . . . . . . 81 Fuselage C.G. Vertical Deflection ( h ) - - . . - 81 Wing T i p Vertical Deflection ( h ) . - - - - - - - - 82 Wing T i p Pitch Angle ( a ) . . . . . . . . . . . . . 82 Horiz. Stab. T i p Vertical Deflection ( h ) - - 82 Horiz. Stab. T i p Pitch Angle (a). . . . . . . . . . 82

41

Page 58: J. R. - NASA

. .

LIST OF FIGURES (Contd) .

FIGURE NO . PAGE

. EVOLUTION OF DISPLACEMENT RATIO . .

SYMMETRIC FULL FUEL

115 116 117 118 119 120

121 122 123 124 125 126

127 128 129 130 131

132 133 134 135

1 s t Wing Bending. 1.19 Hz

Fuselage Nose Pitch Angle ( a ) . . . . . . . . . . . 83

Wing T i p Vertical Deflection ( h ) . . . . . . . . . 83 Wing T i p Pitch Angle ( a ) . . . . . . . . . . . . . . . 83

Fuselage CG Vertical Deflection ( h ) . . . . . . . . 83

Horiz . Stab. Tip Vertical Deflection ( h ) . . . . . 84 Horiz . S t a b . T i p Pitch Angle ( a ) . . . . . . . . . 84

Fuselage Bending. 2.90 Hz

Fuselage Nose Pitch Angle (a) . . . . . . . . . . . 84 Fuselage CG Vertical Deflection ( h ) . . . . . . . . 84 Wing T i p Vertical Deflection ( h ) . . . . . . . . . 85 Wing T i p Pitch Angle ( a ) . . . . . . . . . . . . 85 Horiz . S t a b . T i p Vertical Deflection ( h j . . . . . 85 Horiz . S t a b . T i p Pitch Angle ( a ) . . . . . . . . . 85

Wing Inner Panel Torsion. 3.34 Hz

Fusel age Nose Pitch Angle ( a ) . . . . . . . . . . . 86

Wing T i p Vertical Deflection (h) . . . . . . . . . 86 Fuselage C.G. Vertical Deflection ( h ) . . . . . . . 86

Horiz . S t a b . T i p Vertical Deflection ( h ) . . . . . 86 Horiz . S t a b . T i p Pitch Angle ( a ) . . . . . . . . . 87

2nd Wing Bending. 4.05 Hz

Fuselage Nose Pitch Angle ( a ) . . . . . . . . . . . 87 Fuselage C.G. Vertical Deflection ( h ) . . . . . . . 87 Horiz . Stab . Tip Vertical Deflection ( h ) . . . . . 87 Horiz . S t a b . T i p Pitch Angle ( a ) . . : . . . . . . 88

42

.- . . . . . . . . .

Page 59: J. R. - NASA

LIST OF FIGURES (Contd)

FIGURE NO . EVOLUTION OF DISPLACEMENT RATIO

ANTISYMMETRIC ZERO FUEL

136

138 139 140 141 142 143

137

144 145 146 147 148 149

150 151 152 153 154 155 156 157

158 159 160 161 162 163 164 165

.

PAGE

1 s t Wing Bending. 2.28 Hz

Fusel age Nose Rol l Angle ( e ) . . . . . . . . . . . 88 Fuselage . Nose Yaw Angle (4) . . . . . . . . . . . . 88 Wing T i p V e r t i c a l D e f l e c t i o n (h) . . . . . . . . . 88 Wing T ip P i t ch Ang le ( a ) . . . . . . . . . . . . . 89

Hor iz . Stab . Tip P i tch Ang le (a) . . . . . . . . 89 Ver t . Stab . T i p L a t e r a l D e f l e c t i o n ( t i . . . . . . 89 Ver t . Stab . T i p Yaw Angle (4) . . . . . . . . . . . go

Hor iz . Stab . T i p . Ver t i ca l Def lec t ion (h ) . . . . . 89

Hor iz . Stab . Bending. 3.16 !!z

Fuselage Nose Yaw Angle ( 4 ) . . . . . . . . . . . . go Wing T i p V e r t i c a l D e f l e c t i o n (h) . . . . . . . . . go

Wing T ip P i t ch Ang le ( a ) . . . . . . . . . . . . . 91 Ver t . Stab . Tip La te ra l De f lec t i on ( a ) . . . . . . g1 V e r t . Stab . T i p Yaw Angle (4) . . . . . . . . . . . 91

Hor iz . Stab. T ip Ve r t i ca l De f lec t i on ( h ) . . . . . go

V e r t . Stab . Bending. 3-48 Hz

Fuselage Nose Rol l Angle ( e ) . . . . . . . . . . . 91 Fuselage Nose Yaw Angle ($) . . . . . . . . . . . . 92 Wing T i p V e r t i c a l D e f l e c t i o n (h) . . . . . . . . . 92

Hor iz . Stab . T i p V e r t i c a l D e f l e c t i o n . (h) . . . . . 92 Wing T ip P i tch Ang le ( a ) . . . . . . . . . . . . . 92

Hor iz . Stab . Tip P i tch Ang le (3) . . . . . . . . . 93 Vert . Stab . T ip La te ra l De f lec t i on (E) . . . . . . 93 Ver t . Stab . T i p Yaw Angle ( $ ) - . . . . . . . . . . 93

A f t Fuselage Torsion/Wing Engine Pitch. 4.25 Hz

Fuselage Nose Rol l Angle ( e ) . . . . . . . . . . . 93 Fuselage Nose Yaw Angle ($) . . . . . . . . . . . . 94 Wing T i p V e r t i c a l D e f l e c t i o n ( h ) . . . . . . . . . 94 Wing T ip P i t ch Ang le ( a ) . . . . . . . . . . . . . 94 Hor iz . Stab . T i p V e r t i c a l D e f l e c t i o n ( h ) . . . . . 94 Hor iz . Stab . Tip P i tch Ang le (9.1 . . . . . . . . . 95 V e r t . Stab . Tip La te ra l De f lec t i on ( a ) . . . . . . 95 Ver t . Stab. T i p Yaw Angle ($) . . . . . . . . . . . 95

43

Page 60: J. R. - NASA

LIST OF FIGURES (Contd) . . .

FIGURE NO . PAGE

EVOLUTION OF DISPLACEMENT RATIO

166 167 168 169 170 171 172 173

174 175 176 1 77 178 179 180

181 182 183 184 185 186 187 188

189 190 191 1 92 193 1 94 1 95 1 96

44

ANTISYMMETRIC FULL FUEL

1 s t Wing Bending. 1.62 Hz

Fuselage Nose Roll Angle ( e ) . . . . . . . . . . . . . g j Fuselage Nose Yaw Angle (a ) . . . . . . . . . . . . 96

Wing T i p Pitch Angle ( a ) . . . . . . . . . . . . . . 96

Horiz. Stab . T i p Pitch Angle ( a ) . . . . . . . . . 97

Wing T i p Vertical Deflection (h) . . . . . . . . . . 96

Horiz . Stab . T i p Vertical Deflection (h) . . . . . . 96

Vert . Stab . T i p Lateral Deflection ( a ) . . . . . . . 97 Vert . Stab . T i p Yaw Angle ($1 . . . . . . . . . . . 97

Horiz . Stab . Bending. 3.00 Hz

Fuselage Nose Roll Angle ( e ) . . . . . . . . . . . . 57 Fuselage Nose Yaw Angle ( J I ) . . . . . . . . . . . . 98 Wing T i p Vertical Deflection (h) . . . . . . . . . . 98 Wing T i p Pitch Angle (a) . . . . . . . . . . . . . . 98 Horiz. Stab . T i p Vertical Deflection (h) . . . . . . 98 Vert . Stab . T i p Lateral Deflection ( a ) . . . . . . . 99 Vert . Stab . T i p Yaw Angle ($) . . . . . . . . . . . 99

Aft Fuselage Torsion/Wing Engine Pitch. 3.35 Hz

Fuselage Nose Roll Angle ( e ) . . . . . . . . . . . . 99 Fuselage Nose Yaw Angle ($) . . . . . . . . . . . . 99 Wing T i p Vertical Deflection (h) . . . . . . . . . 100 Wing T i p Pitch Angle ( a ) . . . . . . . . . . . . . . 100

Horiz . Stab. T i p Pitch Angle ( a ) . . . . . . . . . . 100

Vert . Stab . T i p Yaw Angle ($) . . . . . . . . . . . 101

Horiz . Stab . T i p Vertical Deflection (h) . . . . . . 100

Vert . Stab . T i p Lateral Deflection ( a ) . . . . . . . 101

Vert . Stab . Bending. 3.49 Hz

Fuselage Nose Roll Angle ( e ) . . . . . . . . . . . 701 Fuselage Nose Yaw Angle ($) . . . . . . . . . . . . 1G1 Wing T i p Vertical Deflection (h) . . . . . . . . . . 102 Wing Tip Pitch Angle (CY) . . . . . . . . . . . . . . 102 Horiz . Stab . T i p Vertical Deflection (h) . . . . . . 102 Horiz . Stab . T i p Pitch Angle (&) . . . . . . . . . . 102 Vert . Stab . T i p Lateral Deflection ( 2 ) . . . . . . . 103 Vert . Stab . T i p Yaw Angle ($) . . . . . . . . . . . 103

. .

Page 61: J. R. - NASA

1 .o CLa p.:

....... . . C I . " : -

La ii. : FINAL 'o.5

, C

AC ma

PER RAD

-0.8

: 1.5 . . !..._ .. ........ . . ,-I!-

C ._ "

0, . . ,_

FlNA L '-7 - 0.5 "

..... - .. .. . . .

- 0 -

. c . , La

PRIMARY AERODYNAMIC DERIVATIVE

PERIOD MODE ESTABLISHES LEVEL OF ACCELERATION SENSITIVITY, n/u (NUMERATOR PROPERTY OF TRANSFER FUNCTION) FINAL VALUE VERY CAREFULLY CHECKED IN FLIGHT TEST BECAUSE OF PERFORM- ANCE GUARANTEES ; . '

CONTRIBUTES TO DAMPING OF SHORT-

. ,

Page 62: J. R. - NASA

NEGLIGIBLE, NOT PLOTTED

-0.1 L

0.2 *

0.1 .

F.F. ' CERT """2

-10 ATP 10 20 30 40 50 MONTHS

0

-0.1 L 0 F.F. CERT

-10 ATP 10 " . " L " .... I -I;_. .I

20 30 .40 50 MONTHS

0

0

C %

CONTRIBUTES TO SHORT-PERIOD DAMPING FINAL VALUE CHECKED USING FLIGHT TEST DYNAMIC RESPONSE MATCH

C 0;

o NEGLIGIBLE o FINAL VALUE NOT CHECKED IN

FLIGHT TEST; IMPACT TOO SMALL

C LU

SECONDARY EFFECT ON PHUGOID MODE FINAL VALUE CHECKED BY FLIGHT TEST RESULTS; NORMALLY NO ASSESSMENT OF ACCURACY MADE

AFFECTS PHUGOIO MODE FINAL VALUE CHECKED BY FLIGHT TEST RESULTS;NORMALLY NO ASSESSMENT OF ACCURACY MADE

FIGURE 12. HISTORICAL UNCERTAINTIES OF LONGITUDINAL AERODYNAMIC PARAMETERS

46

Page 63: J. R. - NASA

cD"

CD "FINAL

C Lq

CL FINAL

cD" AFFECTS PHUGOID DAMPING ,

STABILITY (NUMERATOR PROPERTY OF hhg TRANSFER. FUNCTION) FINAL VALUE VERY CAREFULLY CHECKED IN FLIGHT TEST BECAUSE OF PERFORMANCE GUARANTEES

CONTRIBUTES TO FLIGHT-PATH

0

0

c Lq

SECONDARY EFFECT ON SHORT- PERIOD MODE FINAL VALUE NOT CHECKED IN FLIGHT TEST; IMPACT TOO SMALL,

"

1.5

I . . . .

. . " - - - - - - - " - - -. - .... .... .. .. . ...... . . . . . .

..... MONTHS _._...

FIGURE 13. HISTORICAL UNCERTAINTIES OF LONGITUOINAL AERODYNAMIC PARAMETSRS

47

Page 64: J. R. - NASA

c m6.

C m6

*FINAL

NEGLIGIBLE, NOT PLOTTED

NOT PLOTTED

C m6e

PRIMARY PITCH CONTROL DERIVATIVE FINAL VALUE CHECKED BY FLIGHT TEST RESULTS; NORMALLY NO ASSESSMENT OF ACCURACY MADE ESTIMATE0 ACCURACY: +4 PERCENT

o USUALLY NEGLIGIBLE o FINAL VALUE NOT CHECKEO IN

FLIGHT TEST; IMPACT TOO SMALL

CL o PRIMARY FLIGHT CONDITION

o AFFECTS PHUGOID MODE PARAMETER

o AFFECTS FLIGHT-PATH STABILITY (NUMERATOR PROPERTY OF h h e TRANSFER FUNCTION)

o FINAL VALUE VERY CAREFULLY CHECKEO IN FLIGHT TEST BECAUSE OF PERFORMANCE GUARANTEES

. . . . . . I . . i

. . . .1_ . . L~;..C:." ; . . . . . . . :. .: : . .

~. . ,

1.0 j j i : T CD

- . . I... ..... !..-. L. I.:.-.. .1 ..... I ..: "4 ... :. . . . . . . . . . '0.5

1 ,, : I" : ! o AFFECTS PHUGOID MOOE DAMPING . . . - . I _ . . : . I:..: :.I . .i. ..:. - .- j . . : .. I .... : : j .

I ..:. _:. ... Y- .. . I . . . . . . .: .. . - , -

, . , . . . . , . . . . , . . . . . . . . . . . . . . . - o PRIMARY PERFORMANCE . . . ._ "- -~ . -.. . . . . . . . . . . -. . . . . . .

: ! . ! . ' . ! , i '

. . . . 1 . : PARAMETER

CD ........ f " i+"+.._j".L "+". I . . . . . . . . . . . . . . . . . . , ' o AFFECTS FLIGHT-PATH STABILITY CDFINAL .!T.:".

-. _ . , . . - . . . - - j _TT".~.","~"l_i"_" .L.. . - . - o FINAL VALUE VERY CAREFULLY . ._ .

. . LLL!";. 2 ... !.i . . . . . . (NUMERATOR PROPERTY OF h/6e ! ~ ! . I : ' I ' '

I . .

. . . . . . . . . . . , . . ~ .,.. ::: . D...i'. . i j . F.F. CERT CHECKED IN FLIGHT TEST BECAUSE

. . . . . . . . . . . . . . . . , . . . . . . . ,_.. ... : ..i

. .

' ! ; ' 1 1 ' . j ! : I : I . . TRANSFER FUNCTION) i .. : , : . , . . , . . . . . , . . .

. . . .

. . I .

' 0 . c .

:.. . ..i_ L " MONTHS ... ". . . . . . . .

- I t ' I . . 1 1 dk OF PERFORMANCE GUARANTEES

! .. i -10 , . ATP : . . 10 : 20 . . 30 ., 40 . . . . . . 50 ESTIMATED ACCURACY: + 2 PERCENT . . . . . .

FIGURE 14. HISTORICAL UNCERTAINTIES OF LONGITUOINAL AERODYNAMIC PARAMETERS

48

Page 65: J. R. - NASA

C Y P

C 'PFINAL

MODERATE IMPORTANCE CONTRIBUTES TO DUTCH ROLL DAMPING FINAL VALUE CHECKED BY FLIGHT TEST RESULTS; NORMALLY NO ASSESSMENT OF ACCURACY MADE

c!?

PFINAL

P

c!?

C RP

PRIMARY LATERAL STAB1 LlTY PARAMETER AFFECTS BOTH DUTCH ROLL AND SPIRAL MODES FINAL VALUE CHECKED BY FLIGHl TEST RESULTS; NORMALLY NO ASSESSMENT OF ACCURACY MADE

FIGURE 15. HISTORICAL UNCERTAINTIES OF LATERAL-DIRECTIONAL AERODYNAMIC PARAMETERS

49

Page 66: J. R. - NASA

. . n n CI

co I 0

'Cn PER RAD

P -0.02 0 '

' . 0' 0

0 0

D F.Fi CERT 0 "0.04 1 "l.l"" 1 ' I I

-10 ATP 10 20 30 40 50 MONTHS

'nr

Cn 'FINAL

. ... MONTHS ... ..

Cn P

SECONDARY IMPORTANCE AFFECTS DUTCH ROLL DAMPING AFFECTS TURN COORDINATION CHARACTERISTICS FINAL VALUE NOT CHECKED IN FLIGHT TEST; IMPACT TOO SMALL

c!? P

BASIC ROLL DAMPING DERIVATIVE FINAL VALUE CHECKED USING FLIGHT TEST DYNAMIC RESPONSE MATCHING

NEGLIGIBLE IN MANY CASES FINAL VALUE NOT CHECKED IN FLIGHT TEST; IMPACT TOO SMALL

'nr

BASIC YAW DAMPING DERIVATIVE IMPORTANT TO DUTCH ROLL DAMPING ALSO AFFECTS SPIRAL MODE FINAL VALUE CHECKED USING FLIGHT TEST DYNAMIC RESPONSE MATCHING

FIGURE 16. HISTORICAL UNCERTAINTIES OF LATERAL-DIRECTIONAL AERODYNAMIC PARAMETERS

50

Page 67: J. R. - NASA
Page 68: J. R. - NASA

ooi.r

NEGLIGIBLE, NOT PLOTTED

I .

' 0

o NEGLIGIBLE IN MANY CASES o FINAL VALUE NOT CHECKEO IN

FLIGHT TEST; IMPACT TOO SMALL

AC " a

0 -.-w o SECONDARY CONTROL DERIVATIVE Q o AFFECTSTURN COORDINATION

CHARACTERISTICS

FLIGHT TEST; IMPACT TOO SMALL D F.F. CERT o FINAL VALUE NOT CHECKED IN

-0.01 1 1 I I I

. -10 ATP . 10 20 30 40 50 MONTHS

: I . : : . i . : .... : _ i . . : . . . . :

1 .o . .

C

C

. . .

..... ?a

0.5

. Q6 a~~~~~

I

. . . .

. . . . ! : -, 3 . . . . . . . ,a' : C- . . . . ....... . . . . . . . . . . . - . . . . : . . . . . . . , . . . . .... - .... ~ ...... " .. . -.- -- - . . '6 a ! . '

! ' , . . '

. . . . . ' A : . . . . . . . . . . . . . . . . . . . . . . . .

. . _ :. 3?-.-+ . 43. ..+ - ... i . . . . . . . . . o PRIMARY LATERAL CONTROL

! i . . ~ . ! : DERIVATIVE . . . . . . . . . _ . , . . . . . . . _ . . . . . . - , - - - - - - - -. - . . . . . . . . o FINAL VALUE CHECKEO BY FLIGHT . . . . . . . . . . . . . . . . . . . . . . . , . . . . TEST RESULTS; NORMALLY NO

. . . . . . . . . . . . . . . . . . . . . . . . . : I : ' ' . . . ! . . I

. . : :. ASSESSMENTOF ACCURACY MADE . .

i I I ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :..:.I D . j : . F.F. CERT

"6 SD

NEGLIGIBLE, NOT PLOTTED 0 NEGLIGIBLE IN MANY CASES o FINAL VALUE NOT CHECKED IN

FLIGHT TEST; IMPACT TOO SMALL

FIGURE 18. HISTORICAL UNCERTAINTIES OF LATERAL-DIRECTIONAL AERODYNAMIC PARAMETERS

52 I

Page 69: J. R. - NASA

C '6

SP

C "6

FINAL

. : . . . . :.. .- ............... .- .. .-L. :. .. . .

MONTHS

C "alp

SECONDARY CONTROL DERIVATIVE AFFECTSTURN COORDINATION CHARACTERISTICS FINAL VALUE NOT CHECKED I N FLIGHTTEST; IMPACT TOO SMALL

: . : . . . . . . ." . . .

. .

. . . . . ... . . . . .I., . . . . . . . .

. . . . . . . . . . . . . . .

. . . . C

pb SD . . . . . . . . . . . C - 1 . 0 - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ' o PRIMARY LATERAL CONTROL !

; ; . . , .

. ... .:-. -.:.:. ..... L ___: . 1. . . . . . . . . . . . . . TEST RESULTS;NORMALLY NO

, . . -. '6 . . . . I _

! . I , : . , . : . : sp :.. ," . . . . i.. .. ...... . . . . . . . . . . . . . . . . : DERIVATIVE .... ; . . . . . . . . _I. :: . . . i . . . ..:._ . . ~ . : . . o FINAL VALUE CHECKED BY FLIGHT

1 . : : ASSESSMENT OF ACCURACY MADE

. . . . . . . . . C . . . . I_ .~ . . :. . . . . . .

. . . . . .

'6 . . . . .

, . . . . . . .

$pFlNAL .'0.5 -. i : t ; . . : , , : .) ! , : . I . . . . . . - . . . . . . . . . . . . . . . I . .:.. . .

. . . . . . . . . . . .. : I . i . ! . i i

. . . . . . . . ... -. . . . . . ~ .. . - . . . . . . . . . . . . . !

. . . . . . . . . . . . . . . . . . . . . . . . . . . _ I . . . . . . . . . I . . . . . . . . . . . . . ..... _.._: ..... . . -1. ........ . . . . . . . . . . . . . .

: : . . . / . . : I : . . . . . . . . .

. . . . . . : . . . . . . . . . ! . .. 0.: i . . i . . . . . F.F. CERT : -1 0 e i I : i : . . : ,.I . ' ' ! i . ; I 6 I

, -10: i ATP,. -.;. : j 10 ' 20 - 30 ' 40 : 50 MONTHS

FIGURE 19. HISTORICAL UNCERTAINTIES OF LATERAL-DIRECTIONAL AERODYNAMIC PARAMETERS

' 3

53

Page 70: J. R. - NASA

Y

1968 I 1969 I 1970 I 1971

FIGURE 20. MANUFACTURER'S EMPTY WEIGHT GROWTH HISTORY

Page 71: J. R. - NASA

1 1 .o I-"+

0.99 ! '

1968 1969 I 1970

. . . .

. . 1 . . : - I

I ' I

I , ,

I F M A M J J 197 1

FIGURE 21. MANUFACTURER'S EMPTY WEIGHT GROWTH HISTORY

55

Page 72: J. R. - NASA

TABLE 9

MAJOR WEIGHT CHANGE SUMMARY (see Figure 6)

A. Revised estimate for wing bending material, increased allowance for insulation and in te r ior panels plus miscellaneous changes.

B. Increased engine weight, revised estimate for wing and landing gear t o provide for an increase i n takeoff gross weight plus miscellaneous changes.

C . Interior design changes, 0.1021~1 (4-inch) fuselage stretch, addition of a f t engine maintenance platform plus revised estimates for fuselage, wing and t a i l .

D. Customer requested inter ior changes plus revised estimates for miscellaneous struc- tural and subsystem items.

E. Increased engine weight, revised estimate for wing and landing gear t o provide for an increase i n takeoff gross weight plus mis- cellaneous changes.

F . Incbrpora ted more representative weights for galleys and passenger seats.

5 6

Page 73: J. R. - NASA

i TABLE 10

MOMENT OF INERTIA HISTORY

Assumed Growth Inertia Value a t Program S t a r t

Final Inertia Value

1. Manufacturers Empty .Wei.ght (MEW) Growth of 8.8 percent . . .

'X/'X Final

'Y'IY Final

'Z"Z Final . .

2. Maximum Takeoff Gross Height (MTOGW) Growth of 11 percent and Constant Fuel :

'X'IX Final

'Y/'Y Final

'Z/'Z Final

3. Maximum Takeoff Gross Weight (MTOGd) Growth of 11 percent and Constant Payload:

'X/ 'X Final

'Y/ 'Y Final

IZ'IZ Final

Final values are those calculated a t f i r s t f l i gh t (31 months a f t e r program ini t ia t ion) . The product of iner t ia (Ixz) does not change significantly.

0.95

0.92

0.93

0.96

0.88

0.92

0.85

0.93

0.89

Page 74: J. R. - NASA

(a) MAXIMUM TAKEOFF GROSS WEIGHT

MONTHS

(b) MAXIMUM LANDING WEIGHT

1.5

MLW - M L W ~ ~ ~ ~ ~

1 .o

0.5

0

(c) MAXIMUM ZERO FUEL WEIGHT - . . . . . . . .

. . . . . . . . . . . . . . . - . . . . . . . . . . . . . . . I . . . . . . . . . ........

1.5 - . . . . . . . . . . . . . - . . . . . . . . . . " .. -. ...... - ... - . -. - . - . -. . . . . . . . . . . . . . . . .

. . . . . - . .-. . -

MZFW . .

. . . . . . . . . . . . . 1.0 - n

I .

M Z F W ~ ~ ~ ~ ~ 0 0 . . . . . . I .

..... - . . . . - - .... . - . . . . . . . . . , . . . . . . . . . . . . . . . . . - . . . . . . . . ." - ... -. . . .

0.5 - . . . . . . . . . . : . I

- - - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D '^ . . . . . . . F.F. . -.. CERT I I1 . 1 . ' , I . I I I

-10 ATP 10 20 30 40 50 MONTHS

! . .

0- '

58

FIGURE 22. DESIGN WEIGHT HISTORIES

Page 75: J. R. - NASA

TABLE 11 . . ,

SYMMETRIC MODAL ANALYSES SUMMARY ~~~

FIGURE NUMBER OF TIME HISTORY

T ZERO FUEL FULL FUEL GEN

MASS

61

62

.~

63

64

65

-

66

67

68

-

GEN MASS P

. .69: >

70

71

72

73

-

75

74

-

76

FREQ

21

28

29

30

31

32

33

34

35

-

FREQ OEFL MODE DESCRIPTION

FIRST WING BENDING

WING ENGINE YAW

WING ENGINE PITCH/ FUSELAGE BENDING

HORIZONTALSTABILIZER BENDING/ AFT ENGINE PITCH

WING INNER PANEL TORSION

WING ENGINE ROLL

SECOND WING BENDING

WING FORE AN0 AFT BENDING

WING TORSION/ENGINE PITCH

THIRO WING BENDING/ AFT ENGINE PITCH

" ~~ _.~____

DEFL

91 -96

-

97-102

-

103-108

-

109-1 14

-

-

-

36

37

38

39

40

43

42

41

45

44

115-120

-

121-126

-

127-131

-

132-135

-

-

-

TABLE 12

ANTISYMMETRIC MODAL ANALYSES SUMMARY

1 . "" . ..

FREQ

46

47

48

49

50

51

52

53

54

: TIME HISTORY FIGURE NUMBER I

ZERO FUEL ~

FULL FUEL - _. ~ - .

MODE DESCRIPTION . ~ ~ ~ _ _

WING ENGINE YAW

FIRST WING BENDING

AFT ENGINE YAW

HORIZONTAL STABILIZER BENDING

VERTICALSTABILIZER BENOING

AFT FUSELAGE TORSION/ WING ENGINE PITCH

AFT FUSELAGE LATERAL BENDING

SECOND WING BENDING

SECOND VERTICAL STABILIZER BENDING

GEN MASS

GE N MASS

~ - DEFL FREQ OEFL

-

166-173

-

174-180

189-196

181-188

-

-

-

__ __

77

78

79

80

81

82

83

84

85

-

136-143

-

144-149

150-157

158-165

-

-

-

55

56

-

57

59

58

-

60

-

5.9

Page 76: J. R. - NASA

FIGURE 23.. MODE SHAPES AND MODE LINES -L". ,,"&""". ..- - . " -. "

FIGURE 25. MODE SHAPES AND MODE LINES

"-"- . .." 0 ws

FIGURE 24. MODE SHAPES AND MODE LINES -

.. .

... . . . . ". ""1 ._. . . - ." *.. -.

\-\ \ \

FIGURE 26. MODE SHAPES AND MODE LINES

~

Page 77: J. R. - NASA

Q\ ' ' .~ . U FIGURE 29. EVOLUTION OF FREQUENCY RATIO

Page 78: J. R. - NASA

I - ' "' : I '

I I YING STIFFHESS AN0 AFT PYLON STIFFHESS I l l !

FIGURE 33. EVOLUTION OF FREQUENCY RATIO

I ' - 1

I . !

FIGURE 32. EVOLUTION OF FREQUENCY RATIO

Page 79: J. R. - NASA

.,FIGURE 35. EVOLUTION OF FREQUENCY RATIO FIGURE 36. EVOLUTION OF FREQUENCY RATIO .I . !. :I. . j. .. .

!.:. 1 . . ... !

y! . ...

...

!

.7..

"

.E.! I 'I ' I

I

i I

!.

w FIGURE 37. EVOLUTION OF FREQUENCY RATIO FIGURE 38. EVOLUTION OF FREQUENCY RATIO

Page 80: J. R. - NASA

....

....

RI

E' ! - !

I ... .I I

I..

FIGURE 39. EVOLUTION OF FREQUENCY RATIO FIGURE 40. EVOLUTION OF FREQUENCY RATIO

NG

I 1.

FIGURE 41. EVOLUTION OF FREQUENCY RATIO

Page 81: J. R. - NASA

FIGURE 43. EVOLUTION OF FREQUENCY RATIO FIGURE 44. EVOLUTION OF FREQUENCY RATIO !

' I

..

I .

,

I

"

9 'i .. L

FIGURE 46. EVOLUTION OF FREQUENCY RATIO

A

Page 82: J. R. - NASA

FIGURE 47. EVOLUTION OF FREQUENCY RATIO

FIGURE 49. EVOLUTION OF FREQUENCY RATIO

FIGURE 48. EVOLUTION OF FREQUENCY RATIO

L

Page 83: J. R. - NASA

8,

" 9 I ...

i ..,.. !

m 4 FIGURE 53. EVOLUTION OF FREQUENCY RATIO

4.. i

FIGURE 54. EVOLUTION OF FREQUENCY RATIO

Page 84: J. R. - NASA

!

.. .

.: ,

. . FIGURE 55. EVOLUTION OF FREQUENCY RATIO

B

FIGURE 57. EVOLUTION OF FREQUENCY RATIO

FIGURE 56. EVOLUTION OF FREQUENCY RATIO . .

FIGURE 58. EVOLUTION OF FREQUENCY RATIO

Page 85: J. R. - NASA

I

Page 86: J. R. - NASA

, I !

I

. I

m

FIGURE 64. EVOLUTION OF GENERALIZED MASS RATIO

FIGURE 65. EVOLUTION OF GENERALIZED MASS RATIO FIGURE 66. EVOLUTION OF GENERALIZED MASS RATIO

Page 87: J. R. - NASA

I

FIGURE 67. EVOLUTION OF GENERALIZED MASS RATIO

FIGURE 69. EVOLUTION OF GENERALIZED MASS RATIO

FIGURE 68. EVOLUTION O F GENERALIZE0 MASS RATIO

T

- .. . .

FIGURE 70. EVOLUTION OF GENERALIZED MASS RATIO

Page 88: J. R. - NASA

FIGURE 71. EVOLUTION O F GENERALIZEO MASS RATIO ~ ~~

FIGURE 72. EVOLUTION O F GENERALIZEO MASS RATIO

FIGURE 74. EVOLUTION OF GENERALIZED MASS RATIO

Page 89: J. R. - NASA

FIGURE 75. EVOLUTION OF GENERALIZED MASS RATIO

4 cr, FIGURE 77. EVOLUTION OF GENERALIZED MASS RATIO

FIGURE 76. EVOLUTION OF GENERALIZED MASS RATIO

L.

t I

FIGURE 78. EVOLUTION OF GENERALIZED MASS RATIO

Page 90: J. R. - NASA

FIGURE 79. EVOLUTION OF GENERALIZED MASS RATIO

FIGURE 81. EVOLUTION OF GENERALIZED MASS RATIO

FIGURE 80. EVOLUTION OF GENERALIZED MASS RATIO

k GLHERALIZEO

FIGURE 82. EVOLUTION OF GENERALIZED MASS RATIO

Page 91: J. R. - NASA

FIGURE 84. EVOLUTION OF GENERALIZED MASS RATIO

FIGURE 86. EVOLUTION OF GENERALIZED MASS RATIO

Page 92: J. R. - NASA

FIGURE 87. EVOLUTION OF GENERALIZED MASS RATIO

I

FIGURE 89. EVOLUTION OF GENERALIZED MASS RATIO

FIGURE 88. EVOLUTION OF GENERALIZED MASS RATIO

~

FIGURE 90. EVOLUTION OF GENERALIZED MASS RATIO . ' , ' I

Page 93: J. R. - NASA

. , .

I

FIGURE 92. EVOLUTION OF DISPLACEMENT RATI0.h

DlSPLACElERT RAT1 0 Ih/h,,)

! i ' ! . . . I . . I . : I ! ' ' : - ' I K i j . : . : ) . : . ! I . .. , I . I T I M c m n w --

4 4 FIGURE 93. EVOLUTION OF DISPLACEMENT RATIO h FIGURE 94. EVOLUTION OF DISP,LACEMENT RATIO 01

Page 94: J. R. - NASA

i

I !

I

I

I

1

I ! i I i I

I

I , t

i- t

1 .I

1.2

1 1;

b

' .I

I .2

0

I C

I; I 1 , . ' I ! . ~

TM .mms . .

FIGURE 95. EVOLUTION OF DISPLACEMENT RATIO h . . .

FIGURE 96. EVOLUTION OF DISPLACEMENT RATIO a

I 4

1 .z

1 .o

! .I

6

4

2

' : a STIFFNESS ! IIG , . Y l N G PYLON nlFFNLSS

CYGlRf YEIWT M D FUSEUGC STlFFkSS Y HG STIFFNESS MO Y T PILI% STIFFNESS

. . . . , .

Y NG EllGlNE YElCHT L H O YlNG PYLON STIFFNESS , : ' ~

Y NG STIFFNISS Y I IG STIFFNCSS MO FUSELAGL STlFFNESS

' . i ' " 1 U1 G STIFFNESS UING STIFFNESS

YIII PVLol l STIFFNESS AFT E N G l l f UEIWT AHD PYLON STIFFMES!

! C.fRTIFIUTION (GYT!

* 1 l , , , , , , ' 0 2 4 6 8 10 I2 14 I6 11 20 22 24 26 28 XI 32 y y

. .

FIGURE 97. EVOLUTION OF DISPLACEMENT RATIO CY FIGURE 98. EVOLUTION OF DISPLACEMENT RATIO h

Page 95: J. R. - NASA

I

, . . . I /

, .4

I

. . . .

, o 2 4 L I I O I Z 1 4 1 6 18 zo n 2 1 % a 1 0 3 2 Y x

i ' TIM-IOITM P

FIGURE 100. EVOLUTION 0F.DISPLACEMENT RATIO 01 ' ' .

. . . .

. I , . ..

FIGURE 102. EVOLUTION OF DISPLACEMENT RATIO Cll

Page 96: J. R. - NASA

. .

SrlfFnfss' : .I

I .

, , .

: ! 0 2 4 I I 1 0 1 2 1 4 1 6 1$ 20 22 2 4 2 6 Za 3 0 3 2 Y X ! . - TIM %m~r)15 -_I

: . j . . I . ! I I

FIGURE 105. EVOLUTION OF DISPLACEMENT RATIO h FIGURE 106. EVOLUTION OF DISPLACEMENT RATIO 01

Page 97: J. R. - NASA

I

FIGURE 107. EVOLUTION OF DISPLACEMENT RATIO h FIGURE 108. EWOLUTION OF OISPLACEMENT RATIO 01

m FIGURE 109. EVOLUTION OF OISPLACEMENT RATIO a +- FIGURE 110. EVOLUTION OF DISPLACEMENT RATIO h

Page 98: J. R. - NASA

m Iu

-I- -1. -1.

FIGURE 111. EVOLUTION OF OISPLACEMENT RATIO h . 1~

FIGURE 112. EVOLUTION OF DISPLACEMENT RATIO 01

FIGURE 113. EVOLUTION OF DISPLACEMENT RATIO h FIGURE 114. EVOLUTION O F DISPLACEMENT RATIO 01

Page 99: J. R. - NASA

FIGURE 115. EVOLUTION OF OISPLACEMENT RATIO a FIGURE 116. EVOLUTION OF OISPLAC€M€NT RATIO h

FIGURE 117. EWOLUTION OF DISPLACEMENT RATIO WING h FIGURE 118. EVOLUTION OF DISPLACEMENT RATIO WING (I

Page 100: J. R. - NASA

FIGURE 119. EVOLUTION O F DISPLACEMENT RATIO h FIGURE 120. EVOLUTION OF DISPLACEMENT RATIO a

8 '

1 1 - I

- 1 - I

. I- I

t

FIGURE 121. EVOLUTION OF O!SPLACEMENT RATIO u FIGURE 122. EVOLUTION OF DISPLACEMENT RATIO h

Page 101: J. R. - NASA

~~~

FIGURE.123. EVOLUTION OF OlSPLiACEPdlENT RATIO h FIGURE 124. EVOLUTION OF DISPLACEMENT RATIO a

CD VI FIGURE 125. EVOLUTION OF DISPLACEMENT RATIO h FIGURE 126. EVOLUTION OF DISPLACEMENT RATIO a

Page 102: J. R. - NASA

. 6 I

FIGURE 127. EVOLTUION O F FUSELAGE Q DISPLACEMENT RATIO

t '

, , 1,111. nlllsr , , . . , ,

' ,

FIGURE 128. EVOLUTIOPd OF DlSPLACEMEPdT RATIO h . . . .

Page 103: J. R. - NASA

I

.

FIGURE 132. EVOLUTION OF DISPLACEMENT RATIO a

FIGURE 133. EVOLUTION OF DISPLACEMEBIT RATIO h FIGURE 134. EVOLUTION OF DISPLACEMENT RATIO h

Page 104: J. R. - NASA

FIGURE 135. EVOLUTION OF OISPLACEMEMT RATIO ct FIGURE 136. EVOLUTION OF DISPLACEMENT RATIO 0

FIGURE 137. EVOLUTION OF DISPLACEMENT RATIO $ FIGURE 138. EVOLUTION OF DISPLACEMENT RATIO h

Page 105: J. R. - NASA

i

FIGUR€ 139. EVOLUTION OF DISPLACEMENT RATIO ct FIGURE 140. EVOLUTION OF DISPLACEMENT RATIO R

a m FIGURE 141. EVOLUTION OF DISPLACEMENT RATIO a FIGURE 142. EWOLUTIORI OF DISPLACEMENT RATIOP

Page 106: J. R. - NASA

FIGURE 143. EVOLUTION OF DISPLACEMENT RATIO $

FIGURE 145. EVOLUTION OF DISPLACEMENT RATIO a FIGURE 146. EVOLUTION OF DISPLACEMENT RATIO h

Page 107: J. R. - NASA

FIGURE 147. EVOLUTION OF DISPLACEMENT RATIO (Y FIGURE 148. EVOLUTION OF DISPLACEMENT RATIO II

FIGURE 150. EVOLUTION OF DISPLACEMENT RATIO e

Page 108: J. R. - NASA

P

FIGURE 152. EVOLUTION OF DISPLACEMENT RATIO h

FIGURE 154. EVOLUTION OF DISPLACEMENT RATIO h

Page 109: J. R. - NASA

FIGURE 155. EVOLUTION OF DISPLACEMENT RATIO 01 FIGURE 156. EVOLUTION OF DISPLACEMENT RATIO L

9 w .. - . . FIGURE,.157. EVOLUTION OFDISPLACEMENT RATIO + FIGURE 158. EVOLUTION OF.DISPLACEMENT RATIO e .: . . - : ..

Page 110: J. R. - NASA

FIGURE 161. EVOLUTION OF DISPLACEMENT RATIO CY FIGURE 162. EVOLUTION OF DISPLACEMENT RATIO h

Page 111: J. R. - NASA

FIGURE 163. EVOLUTION OF DISPLACEMENT RATIO (Y

FIGURE 165. EVOLUTION OF DISPLACEMENT RATIO -4 FIGURE 166. EVOLUTION OF DISPLACEMENT RATIO e

Page 112: J. R. - NASA

FIGURE 170. EVOLUTION OF DISPLACEMENT RATIO h

Page 113: J. R. - NASA

b :.I

FIGURE 171. EVOLUTION OF DISPLACEMENT RATIO CY

I

FIGURE 174. EVOLUTION OF DISPLACEMENT RATIO e

Page 114: J. R. - NASA

FIGURE 175. EVOLUTION OF DISPLACEMENT RATIO J/

FIGURE 177. EVOLUTION OF DISPLACEMENT RATIO a

FIGURE 176. EVOLUTION OF DISPLACEMENT RATIO h

FIGURE 178. EVOLUTION OF DISPLACEMENT RATIO h

Page 115: J. R. - NASA

-

FIGURE 179. EVOLUTION OF DISPLACEMENT RA T

i - . .9 :- 9 . . FIGURE-l81..' EVOLUTION OF DlSPLACEMENT RATIO 0 :.

FIGURE 180. EVOLUTION OF DISPLACEMENT RATIO rL

Page 116: J. R. - NASA

. .

I.

FIGURE 185. EVOLUTION OF DISPLACEMENT RATIO h

FIGURE 184. EVOLUTION OF DISPLACEMENT RATIO a

FIGURE 186. EVOLUTION OF DISPLACEMENT RATIO a

Page 117: J. R. - NASA

...

1 ... : . i

..... ' ! . . .... . . ..... . .

I. , L..:. . / I

. , .... I.

FIGURE 187. EVOLUTION OF DISPLACEMENT RATIO II

. .

. .

FIGURE 188. EVOLUTION OF DISPLACEMENT RATIO J, . ! ; ; , I ' I . , . . . . 4 . .

, .

I

I.

FIGURE 190. EVOLUTION OF DISPLACEMENT RATIO J, ' j

$?

Page 118: J. R. - NASA

: ' .I . . !.

STIFFIIESS . . .

I 2 1 6 d 10 12 14 16 I( 20 22 21 26 28 YI 32 Y 1

" I 2

..... I ' : ,..I..

m m s

FIGURE 191. EVOLUTION OF DISPLACEMENT RATIO h FIGURE 192. EVOLUTION OF DISPLACEMENT RATIO CY

FIGURE 194. EVOLUTION OF DISPLACEMENT RATIO CY FIGURE 193. EVOLUTION OF DISPLACEMENT RATIO h

Page 119: J. R. - NASA

. .

!. .

FIGURE 195. EVOLUTION OF DISPLACEMENT RATIO II FIGURE 196. EVOLUTION OF DISPLACEMENT RATIO JI !

Page 120: J. R. - NASA
Page 121: J. R. - NASA

SECTION 4

SOME POSSIBLE APPLICATIONS

As noted previously, this report is intended to provide a data base for the control system designer so t h a t he can estimate the likelihood that an advanced system will provide i t s intended function a t f i r s t f l i g h t i n the presence of uncertainties i n plant and control system dynamics. The specific application of these da ta will depend on the designer's favorite analytical too ls and the general design approach used by a manufacturer. T h i s section will suggest a few ways of using these data. As will be apparent, the assess- ment of s t ab i l i t y margins will be reasonably straight-forward, b u t the estimation o f flying qualities is not quite as easy. Reference 4 gives some results of recent t ranspor t simulator handling quali t ies tests. I t is apparent that conflict exists between various popular handling quali t ies measures, so the system designer will need t o use several yardsticks to measure the effects of these reported parameter variations.

CLASSICAL SERVO ANALYSIS APPLICATIONS

Normally the system designer uses classical analysis methods t o a f i r s t -cu t definition o f a system based on nominal aerodynamics and an exact specifica- t i o n o f control dynamics. A second iteration then considers the change in closed-loop dynamics and system performance due t o p l a n t and controller parameter v a r i a t i o n . The classical analyst depends on the vis ibi l i ty .of system characteristics v i a root-locus, Bode, and time history plots t o a i d . h i m i n the system design, so i t would be desirable t o reflect the effects of parameter variabi 1 i t y graphical ly.

I f we consider a simple pitch ax is problem, the aircraft nominal open-loop dynamics might appear as shown i n Figure 197.

The tuck/subsidence, short-period, actuator and f i r s t s t ruc tura l modes (nominal 1 are shown along w i t h the pitch to elevator numerator. The control system designer may be interested i n an attitude-hold system for this a i r - c r a f t and would then make the usual rate plus pos i t ion closure as shown i n

, Figure 198.

105

Page 122: J. R. - NASA

X

X

FIRST . . .

, STRUCTURAL MODE . .

. .

. . I . .

ACTUATOR.DYNAMICS . ' .

SHORT-PERIOD MODE

FIGURE 197. TYPICAL LONGITUDINAL ROOT LOCATION

The nominal closed-loop system i s well behaved and performs t o specification, 6 u t the effects of variations i n the system parameters are not obvious.

Past work has established the mathematics for assessing the effects of uncertainties on closed-loop characteristics (e.g., Reference 8) bu t these '

methods have been so tedious f o r higher order systems that they have not been generally applied. Computer capacity and speed are now suff ic ient t o allow sensi t ivi ty methods such as those developed i n reference 8 to be programined. A Monte Carlo parameter var ia t ional approach could be used t o establish the, "envelopes" o f open-loop and closed-loop system parameters for expected plant parameter variations as sketched i n Figure 199.

I /

. .

106

-h * W ............ FIGURE 198. TYPICAL LONGITUDINAL FIGURE 199. CLOSED-LOOP ROOT

SYSTEM ROOT LOCUS . VARIATION . ,

Page 123: J. R. - NASA

I - - ~ ~

The designer's task will be to design the system such t h a t rmin < r, <max, ,

etc., to satisfy the basic flying qualities and structural cri teria. Where the modes being s tabi l ized are potent ia l ly "f l ight cr i t ical" (e.g., the first- order divergence o r second-order low-damped modes shown i n Figure 199 could possibly result i n unacceptable characterist ics), the designer will take a1 1 possible assurances that the total pilot/vehicle system will perform reasonably well before the first f l ight opportunity arrives.

STATE-SPACE SYNTHESIS METHODS

In an in i t i a l design exercise, state-space methods are now often used i n the form of linear-quadratic-Gaussian synthesis procedures for quickly identifying candidate control systems (References 5 and 6). W i t h estimates of plant uncertainties available, state-space methods can be employed to determine eigenvalue sens i t iv i t ies i n addi t ion to time response and frequency response sensitivities already discussed. Sensitivities may be determined for individual as well as s ta t is t ical ly selected combinations of parameter variations. Alternative control system configurations which yield approxi- mately equivalent dynamic performance characteristics are easily synthesized using state-space methods. The sensi t ivi ty of these systems t o p l a n t param- eter var j i t ions . , offer c r i te r ia fo r selection of a particular configuration.

E i gehval ue sensi t ivi t ies can be obtained from a pole Placement synthesis program which employs a f i r s t order perturbation approximation t o relate chinges. i n . the cl'osed-loop system coefficient matrix, A , t o changes i n the system eigenvalues , A.

The matrix equation employed i s :

D Aa =

Where D is the- eigenvalue sensitivity matrix, Aa is a vector consisting of the system parameter variations, and A A is a vector consisting of the eigenvalue changes. The sens i t iv i t ies of the eigenvalues t o parameter variations from the nominal values may be determined merely by examining the matrix, D. D would be calculated for various control configurations, and would also be recalculated for cases where the parameters are varied from the nominal values. ' -[Note . tha t ,Aa consists .of the non-zero elements of the matrix A A ) .

107

Page 124: J. R. - NASA

The of f -nominal sens i t iv i ty matrix (A + AA) ra the r t han

matrix is obtained the ,nominal matrix

by c a l c u l a t i n g D using the A. 1

PARAMETER IDENTIFICATION AND ADAPTIVE CONTROL APPROACH-

Yet another system design philosophy could be t o conduct an exercise that shows the aircraft/control system has closed-loop dynamics meeting the d e s i g n e r ' s s p e c i f i c a t i o n f o r the entire range of plant dynamics described by the plant parameters w i t h their expected variation. Such a system might be required to converge w i t h i n a f ixed per iod of time (which would be much less than the time f o r c o n t r o l problems to deve lop) from any and a l l c o r n e r s o f the open-loop dynamic envelope of Figure 199, and a t a l l f l i g h t c o n d i t i o n s . The approach would represent a s i g n i f i c a n t d e p a r t u r e from the previous two approaches where cont ro l system ga ins a r e assumed fixed a t a s p e c i f i c f l i g h t condition.

Such a system design would employ parameter identification techniques to determine plant parameters and t o update the control laws i n response to on- l ine measurements of the p l a n t s t a t e s . A comprehensive bibliography on the system i d e n t i f i c a t i o n problem is contained i n Reference 7.

POSSIBLE STATISTICAL USAGE OF STRUCTURAL DYNAMIC RESULTS

The previous ly descr ibed s tudy u t i l i zes on ly one a i rp lane as a b a s i s f o r parameter var iabi l i ty determinat ion. The l ack o f da t a fo r a l a r g e number of a i rp l anes is compensated t o a g r e a t extent by the considerat ion of parameter var iab i 1 i t y w i t h i n a reasonably large group of different flexible modes.

For each modal parameter, a measure of v a r i a b i l i t y can be es t ab l i shed by bringing the results toge the r from each of the modes. Let r i j ( t ) d e n o t e the value a t time t of any of the parameter ra t ios expressed i n the p lo ts . The s u b s c r i p t s i n d i c a t e t h a t the result f o r the i - t h parameter i s being considered f o r the j - t h f l e x i b l e mode and r i j ( t ) + ' l a s t + T, where T denotes the d u r a t i o n s t o c e r t i f i c a t i o n . If b i ( t ) s i g n i f i e s the average of the logarithms of the i - t h parameter values over the modes ( i - e . , o v e r j ) , then

M b i ( t ) = - z log r. . ( t ) 1

j=1. 1J

108

Page 125: J. R. - NASA

M is the number of modes presented i n the plots i n a defined category (e.g. symmetric, zero fuel ) and bi (t) is the bias tendency of the 1 og of the i - t h parameter a t time t i n the design cycle, Then the variability can be measured by vi (t) , where

Having the bias and variability estimates f0.r each parameter, combinations of parameter magnitudes can be selected for investigating the control system design. In studying the airplane performance to control and external inputs, the parameters used for the airplane can be selected as follows: If p . .(t) is the value determined a t t h e t for the i - t h parameter of the j - t h mode, then a se t of nominal parameter values n . . (t) can,, be obtained as

1 J

1 J

log n . . ( t ) = log p i j ( t ) - b i ( t ) ; i = 1 , ..., N

j = 1 , ..., M *

1 J *

(The number of airplane flexible modes M* used for the control system design may be different t h a n the number M defined above. N* i s the number of parameters pertinent to the M* modes).

The determination of parameter combinations from the P = M* N* parameters can be done as follows: In one combination a l l parameters can be se t a t their nominal values . For the other 2P combinations, ( P - 1 ) of the oarameters a re s e t a t t he i r nominal values while the remaining parameter i s s e t a t each of i t s extremes. T h i s simple scheme gives 2P + 1 parameter combinations.

In a previous discussion, i t is indicated t h a t a Monte Carlo procedure can be used i n selecting the parameters. In this approach i t can be assumed t h a t the log r C t ) have independent normal distri butions w i t h mean bi ( t) and s t anda rd devi ation vi (t). From a table o f random numbers, values of log r. . ( t ) are drawn for each of the P parameters. Now pi j ( t) i s the value of the parameter

109

i j 1 J

Page 126: J. R. - NASA

@ P w ~ . . . .

. . . ' - * . . '

determined \ . a t time , t i n the design , . . I cycle, . a : . , L e t p r . ( t ) be a randomly deter- mined wlue -. ' f o r ,. , -the ~ sqrne. . . - parameter,. . .This. ..yal.ue .can be found as follows 'from the randomly selected r. .(t) value:

1J

. .,:;_. , , , . .

. . 1. J . > . 8 ,

.. .

. . . . . . . . . .

where. n1 j&) ds previously defined.. The. number of combinations required. for a Monte Carlo approach will a t l e a s t be as- large .as that used..Qn the above simple scheme.

The usages o f the .plotted results t h a t have been discussed above can be further clarified by considering the following airpqane openloop different ia l equations . fo r the fqexible modes: The..equation for. the j-th,mode, i n s-mbolic form, is . , . . . . / . ' . , \ . . - , . i

x . , . .

, , ' . I . 1 "

(6 .j = 1 for a = j ; = 0 otherwise) - j = .1; . .:. , M* 1..

, I

This second order equation 'can be converted into two.first order equations for the state-space formulation. T h i s transformation is.straight-forward and,wi11 not be done here. The parameters expressed i n .the above equations represent the following for the j - t h mode: , . . . . .

- m - generalized mass j

5 - cr l t ica l damping factor : .

. .

f j - natural frequency

IBj - modal coordinate a t location ? ' ' :

. .

110

Page 127: J. R. - NASA

- . . . . , . . . . .' - - . . !

a , v

.Cja, 'ja:. Cd , j a - 'genera1ized"unsteady aerodynamic c o e f f i c i e n t m a t r i x . . elements . . as.s,ociated,' respect ively, wi th aerodynamic

. . . ;.. . . . - . . forces produced, by accelerat ions, ve loc i t ies and . .

. , . di,spl acements . B P I . .

. . '

The time-dependent quant i t y q,(,t)' i s the" general i zed displacement f o r t h e CY -th mode. d a ( t ) and qJt ) are the assoc iated . f i rs t .and second t ime derivatives. Fg ( t ) is.-an external- t ime-varying' force act ing on the mode shapes, a t the . '

number- 8 modal coordinate. ' .

The number, A, of.modes over, which the left-hand side sumncit.ion ' i s conducted equals the number.of f lex ib le p lus r ig id bodyminodes being considered. The numljer .o f modal. coordinates B . for the r ight-hand side sumnation i s given by the s i z e o f t h e modal ' eigenvectors. The number of parameters N* necessary t o def ine each modal equation i s a t most 3 + 3A + B. (A modal coordinate b i s not needed i f no fo rce i s assoc ia ted w i th it).

The N* parameters f o r t h e . j - t h mode can be placed i n t h e j - t h column o f a matr lx array. The i - t h row element o f t h i s column i s the parameter quantity

P i j previously defined. Since the 'parameters pertain to a part icular t ime t , -

i n t h e design, they are designated as pi j(t). No data has been presented I n th i s . repo r t f o r the parameter pij(t) = 5 . t o c a l c u l a t e i t s b i a s o r v a r i a b i l i . t y . I t s va lue se lected for any contro l system study will then rema in f i xed a t i t s determined value. A s imi lar s ta tement appl ies to , each.of the coef f ic ients

C& C jo V and Cja. Thus o f t h e p o s s i b l e . s e t of N* parameters f o r t h e j - t h modal equation, the results i n the g iven plots will provide'bias and v a r i a b i l t y i n fo rma t ion f o r a t most 2 + 6 of the parameters.

, . I

J

CONCLUSIONS AND 'RECOMMENDATIONS: .. ' I .

Base& upon the uncertainty invest igat ion over the design per iod of a s ingle la rge t ranspor t a i rc ra f t the fo l low ing conc lus ions -a re made: ? .

1. The l a r g e s t v a r i a t i o n i n modal 'parameters occurs during the early design '. phase, ref lect ing major .design changes.

. .

2. .Analyses performed af ter the 'ear ly des ign phase show l e s s v a r i a t i o n i n modal parameters, r e f l e c t i n g mi'nor mod i f i ca t ion to . the a i rp lane des ign data.

. ,

. . .- 111 , . . . . . .

. I

, . . .

Page 128: J. R. - NASA

3. No discernable trend was seen i n the parameter uncertainties between fuel condition or airplane symnetry.

4. The modal generalized mass and displacement parameters show much larger variatfons than do the modal frequency parameters and are of limited use except as i n p u t to fur ther response analyses.

5. The magnitude of the i n p u t modal displacement ra t io shows l i t t l e or no correlation to the magnitude of the output response acceleration ratio.

6. By the time the basic design characterist ics have stabi.lized, the struc- tural dynamic modal characterist ics can be predicted adequately for use i n the control system design.

7. The generalized mass and modal amplitudes, by themselves, do not provide i n s i g h t t o the airplane f l ight response characteristics.

The modal parameter uncertainty results presented herein represent a s tar t ing point for further studies. Recommendations are as follows:

1. The preferred location of sensors is often a t nodal or antinodal points. The uncertainty of these points should be determined to enable optimum sensor placement a t an early part of the design cycle.

2. The effect of variations i n airplane (i.e. plant) parameters on airplane f l i g h t control should be evaluated i n a follow-on phase. The parameters whose varlations produce the most pronounced effects should be identified. Control system designs should then be s tudied to determine the extent to which these sensit ivit ies can be reduced. The proper positioning of sensors and control surfaces would be pa r t of this study along w i t h the design of the control system.

3. The effect of unsteady aerodynamics uncertainties should be investigated for the purpose of not only improving control system functions b u t for the imnediate problem of f l u t t e r prevention.

112

Page 129: J. R. - NASA

. APPENDIX A . .

BODY AXES EQUATIONS OF"MOTION . '

Longitudinal Set: . . . .

ir = - woq - ge COS e, + xuu + x q + \W + bt, + x6,6, q . 1

. , .: ~

. .

9 = Uoq - gQ sin 8, + Zuu + Z q + Zww.+ ZQa +..Z6e6ee' . . . I

q . . _ . . . I . . . _

4 = MUu + M q + MWw + M# + MA,&, . . . 4 L , .

Lateral-Directional Set:

+ = - Uor + Wop + g + sin Q0 + G $ cos 8, + Yrr +,Yvv .+.Y p ' : . , P

. .

+ Y6,6, + YQr + Y, 6 SP S P

= i- + Lrr + L,v + L p + LGaSa + L6k6r + L6 6

i- = + NVv + Nrr + N p + N6,6, + N, 6 . + N 6 s p ~ s p

I X P S P SP I

z P r r

Page 130: J. R. - NASA
Page 131: J. R. - NASA

APPENDIX B

DEFINITION OF COEFFICIENTS' OF EQUATIONS. OF HOTIQN (DIHENSIWAL STABILITY DERIVATIVES)

*O = a . U

0 0

xu - - (-% - - PUS m

xq

xw = - 2m (CL - CD,)

xu - - - - P S F C

3- P U S c 4m D,.,

PUS

4m D b

*

Yr P - PUSb' c h . Y r

Yv = - .'PUS CY '

N" =- pUSb 212 n

PiJSb2 : Nr 4IZ 'nr

.. I ,

.1 1 5

Page 132: J. R. - NASA

PU2SE M6 -- - e 2 1 ~ 'm6 e

NP " P USb2 -

41z 'n p t

' , pU2Sb r 2 1 ~ 'n, r N, =-

pU2Sb "' ,a = -"n 21Z

N,

L€i - S P 21x

PU2S y€i -

PU2Sb =- SP

21z Ct16 SP

pU2Sb "

SP

" - SP ..

2m F, SP

116

Page 133: J. R. - NASA

REFERENCES

1. F i n c k , R.D.; E l l i son , D.E.; and Malthan, L.V., e t al.: USAF S t a b i l i t y And Control Datcom. October 1960, revised January 1974.

2. DeYoung, J.; and Harper, C.W.: "Theoretical Span Loading a t Subsonic Speeds f o r Wings Having Arbi t rary Plan Foim." NACA TR-921 1948. . '

3. Hedman, S.G.: "Vortex Latt ice Method for Calculat ion of Quasi_Steady S t a t e Loadings on T h i n E l a s t i c Wings i n Subsonic Flow." Report..l05, The Aeronautical Research Insti tute of Sweden, October 1965. .

. .

4. Rickard, W.W.: "Longitudinal Flying Qualit ies i n the Landing Approach." Proceedings of the 12th Annual Conference on Manual Control , May 1976.

6. Markland, C.A.: "Optimal Model-Following Control System Synthesis Techniques." Proc. I.E.E., Vol. 117, No. 3, March 1970. -

8. McRuer, D.J.; and Stap leford , R.L.: ' Sens i t i v i ty and Modal Response f o r Single-Loop and Mu1 ti-Loop Systems." ASD-TDR-62-812, January 1963.

9. Vandierendonck, A.J.: "Design Method for Ful ly Augmented Systems f o r Variable Flight Conditions." AFFDL-TR-71-152, January 1972.

117