j. r. s. h. jr, w. p

27
I DOE/ID/12079-61 DOE/ID/12079--61 DE82 019951 OXYGEN-ISOTOPE GEOCHEMISTRY OF QUATERNARY RHYOLITE FROM THE MINERAL MOUNTAINS, UTAH, U. S. A. _- cy by J. R. Bowman, S. H. Evans, Jr, and W. P. Nash March 1982 Department of Geol ogy and Geophysics University of Utah Salt Lake City, Utah 84112

Upload: others

Post on 12-Nov-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: J. R. S. H. Jr, W. P

I

DOE/ID/12079-61

DOE/ID/12079--61

DE82 019951

OXYGEN-ISOTOPE GEOCHEMISTRY OF QUATERNARY RHYOLITE

FROM THE MINERAL MOUNTAINS, UTAH, U. S. A. _- c y

by

J. R. Bowman, S. H. Evans, J r , and W . P. Nash

March 1982

Department o f Geol ogy and Geophysics Univers i ty o f Utah

S a l t Lake C i t y , Utah 84112

Page 2: J. R. S. H. Jr, W. P

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Page 3: J. R. S. H. Jr, W. P

DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Page 4: J. R. S. H. Jr, W. P

NOTICE

This report was prepared t o document work sponsored by the United States

Goverrment. Neither the United States nor i t s agent, the United States

Department of Energy, nor any Federal employees, nor any of their contractors,

subcontractors o r their employees, makes any warranty, express or imp1 ied , or

assumes any legal l iabil i ty or responsibility for the accuracy, completeness,

or usefulness of any information, apparatus, product or process disclosed, or

represents t h a t i t s use would not infringe privately owned rights.

NOTICE

Reference t o a company name does not imply approval o r recommendation of

the product by the University of Utah or the U.S. Department of Energy t o the

exclusion of others t h a t may be suitable.

,

Page 5: J. R. S. H. Jr, W. P

i ACKNOWLEDGEMENTS

Financial assistance for this study was provided by the Department of

Energy, D i v i sion of Geothermal Energy Contract DE-AC07-79ET27002 and conti nued

under Contract DE-AC07-80ID12079. We t h a n k Mr. Ray Lambert and Mr. John I I Covert f o r performing the mass spectrometry a n a l y s i s of these samples.

Page 6: J. R. S. H. Jr, W. P

ABSTRACT

Oxygen i sotope analyses were made 'of phenocryst and gl a s s separa tes from

f o u r Quaternary r h y o l i t e flows and danes i n the Mineral Mountains, southwest

Utah.

r h y o l i t e danes, a l l minerals appear t o be i n c l o s e oxygen isotope exchange

equi l ibrium. The geothermometry equations proposed by Bottinga and Javoy

(1973) and Javoy (1977) for quar tz , a l k a l i f e ldspa r and magnetite produce the

b e s t agreement w i t h temperature r e s u l t s from two-f e ldspar and i ron-ti t a n i urn

oxide geothermometry f o r these rhyo l i t e s .

p a r t i a l melting i n the crust, their whole-rock ( g l a s s ) 6I8O values (6.3 t o 6.9

permil ) a r e consistent w i t h generat ion from I-type (Chappell and White, 1974,

O'Neil and Chappell , 1977; O'Neil e t a1 ., 1977) sources.

With the exception of b i o t i t e i n a l l samples and a l k a l i f e l d s p a r i n the

If the r h y o l i t e s were generated by

Page 7: J. R. S. H. Jr, W. P

I NTRODUCT IO N

I n the Mineral Mountains o f southwest Utah, j u s t east o f t h e Roosevelt

Hot Springs thermal area, a se r ies o f Quaternary r h y o l i t e f lows and domes

occur along t h e c r e s t o f t h e range. The presence of young s i l i c i c volcanics

has been considered t o be an i n d i c a t o r o f t h e pyesence o f shal low magma

.

chambers and po ten t i a l heat sources f o r geothermal resources (Lipman e t a1 ., 1978; Evans and Nash, 1975, 1978), i nc lud ing the Roosevelt Hot Springs

system. Because o f t h i s p o t e n t i a l l i n k w i t h t h e Roosevelt Hot Springs

geothermal system, chemical and pe t ro log i c s tud ies o f these vo lcanics have

been made over t h e past several years t o de f i ne petrogenesis, i nc lud ing P-T

condi t ions o f c r y s t a l 1 i z a t i o n and depth estimates f o r the magma chamber, and

t h e nature o f t h e magma source area. These s tud ies (Evans and Nash, 1975,

1978; Nash and Evans, 1978) have appl ied several chemical geothermometers t o

phenocryst phases i n t h e rhyol i tes, i ncl udi ng t h e Fe-Ti oxide (Buddi ngton and

L i ndsl ey , 1964; Carmichael , 1967; Carmichael e t a1 . , 1974) and two-fel dspar

(Stormer, 1975) geothermometers, t o de f i ne temperature o f erupt ion.

The objectives of t h i s study are two-fold. The f i r s t objective i s to

apply oxygen-i sotope geothermometers t o phenocryst phases i n the rhyo l i t e s t o

t e s t the c a n p a t i b i l i t y o f isotope and chemical geothermometers, and t o t e s t

whether oxygen-isotope exchange e q u i l i b r i u m has been achieved i n r e l a t i v e l y

viscous rhyo ’ l i t i o volcanics. The second ob jec t i ve i s t o d e f i n e the S1*0 value

o f t he r h y o l i t e magmas i n order t o place cons t ra in t s on t h e source area f o r

these volcanics. This i n fo rma t ion w i l l he lp evaluate whether o r not the

r h y o l i t e s were generated by p a r t i a l me l t i ng o f a source containing a

s i g n i f i c a n t canponent o f pel i t i c metasedimentary mater ia l or one dominated by

p r i m i t i v e o r mantle-derived mater ia l . These two types o f source regions were

3

Page 8: J. R. S. H. Jr, W. P

proposed by Chappell and White (1974) t o produce the two geochemically and

p e t r o l o g i c a l l y d i s t i n c t groups of Paleozoic g ran i to ids i n southeast A u s t r a l i a

which they designated ' S-type' (sedimentary) and ' I - t y p e ' (igneous) . O'Neil

and Chappel 1 (1977) subsequently demonstrated t h a t t h e S-type grani t o i d s had

h igher 6l8O values than the I - type grani to ids.

several studies (Taylor and Tur i , 1976; Taylor and S i l ve r , 1978; Longstaffe,

e t a1 ., 1980) have u t i l i z e d oxygen-isotope data t o i n f e r t he extent of

involvement o f p e l i t i c metasedimentary mater ia l i n the format ion of

in termediate t o a c i d i c igneous rocks. To these ends, oxygen-isotope analyses

were made on phenocryst and glass separates o f f o u r samples o f r h y o l i t e flows

and danes from t h e Mineral Mountains area.

I n the past several years,

GENERAL GEOLOGY

The geology o f the Mineral Mountains and o f t h e s i l i c i c volcanism has

been discussed i n Evans and Nash (1978) and w i l l not be repeated here. The

Quaternary s i l i c i c volcanism was d iv ided i n t o th ree stages and types by Evans

and Nash (1978):

1. The e a r l i e s t stage i s recorded by obsid ian f lows occurr ing along

Ba i l ey Ridge and Wild Horse Canyon. The i r macroscopic character and

c a l c u l a t i o n s o f PH20 2 3000 bars (Evans and Nash, 1978; Nash and

Evans , 1978) suggest unusual f l u i d i t y f o r t h i s bu l k composition . Radiometric dat ing o f t he Ba i l ey Ridge f l o w i n d i c a t e s an age o f 0.77

f 0.08 m.y. (Lipman e t al., 1978).

Pyroc last ic rocks occupy an intermediate p o s i t i o n i n the

s t r a t i g r a p h i c sequence and are o f ash - fa l l and ash-flow o r i g i n .

These rocks are mainly exposed i n Ranch Canyon.

2.

K - A r da t i ng on a

s i n g l e obsidian c l a s t from an ash-flow u n i t i n Ranch Canyon y ie lded

Page 9: J. R. S. H. Jr, W. P

an age of 0.68 -I 0.04 m.y., prov id ing an o l d e r l i m i t f o r t he age of

t he p y r o c l a s t i c s (Lipman e t a1 ., 1978) . anorthocl ase phenocrysts from these py roc las t i c rocks y i e l d s ages o f

0.61 f 0.04 and 0.66 f 0.03 m.y. (Evans and Brown, 1981).

The l a s t stage o f rhyol i t e volcanism i s represented by a group o f a t

l e a s t 11 domal r h y o l i t e s d i s t r i b u t e d spo rad ica l l y over 10 km near the

c r e s t o f t h e Mineral Mountains. Age determinat ions on obsidian from

Bearskin Mountain and sanidine from L i t t l e Bearskin Mountain have

y ie lded K - A r ages of 0.58 f 0.12 m.y. and 0.53 f 0.05 m.y.,

respec t i ve l y ( L i pman e t a1 . ,- 1978) .

Recent K - A r da t i ng of

3.

Petrography, b u l k chemistry and t r a c e element chemistry data on these

r h y o l i t e s can be found i n Evans and Nash (1978) and Nash and Evans (1978).

For t h i s study, mineral and glass separates were made from samples o f the

r h y o l i t e f lows from Ba i ley Ridge and Wild Horse Canyon and from two o f t he

danal rhyo l i tes--Li ttl e Bearski n and North T w i n F1 a t Peak . ANAL YT ICAL TECHNIQUES

M i neral separates were obtained using standard heavy 1 i q u i d and magnetic

separation techniques.

reac t i ng 5 t o 10 mg of sample w i t h 8rF5 a t 5 5 O O C i n n icke l r e a c t i o n vessels

f o r 14 hours (Clayton and Mayeda, 1963). The evolved 02 gas was then

converted t o C02 f o r mass spectrometric analys is by canbustion w i t h g raph i te

(Tay lor and Epstein, 1962) .

Oxygen, fran s i 1 i c a t e minerals was extracted by

I s o t o p i c measurements f o r C02 gas were made w i t h a Micromass 602 0 mass

spectrometer , a double co l 1 ec to r , 90' sector magnetic def 1 e c t i o n instrument o f

6 cm radius. The i s o t o p i c data f o r oxygen are reported r e l a t i v e t o SMOW

Page 10: J. R. S. H. Jr, W. P

(Craig, 1961).

magneti te and f 0.1 permil f o r a l l o ther phases.

Analy t ica l e r r o r f o r oxygen isotope r a t i o s i s f 0.2 permil f o r

No ta t i on

A l l i s o t o p i c data are reported i n the d e l t a notat ion, where

RA - Rstd x 1000. 6 A = n

'std

6A represents t h e 6l8O value o f sample A, and R i s t h e 180/160 r a t i o o f t he

sample o r standard. For coex is t i ng phases A and B,

3 = 6 - 6 - A B - A A-B 10 I n a A-B

where a A-B i s t h e f r a c t i o n a t i o n f a c t o r , def ined as

ANALYTICAL RESULTS

The oxygen-isotope canposi t i o n s measured f o r phenocryst and glass

separates fran t h e f o u r r h y o l i t e samples a re canpi led i n Table 1.

included f o r thermometry purposes i s t h e i s o t o p i c f r a c t i o n a t i o n f a c t o r , A, o r

d i f f e rence i n 6l8O value, f o r t h e var ious p a i r s o f phases. The minerals

e x h i b i t a cons is ten t order o f l8O enrichment, w i t h quartz (Qz) > a l k a l i

f e ldspar (Pg) > b i o t i t e ( B i ) L m a g n e t i t e ( M t ) , i n d i c a t i n g an approach t o

oxygen-isotope exchange equ i l i b r i um i n a1 1 r h y o l i t e samples.

f r a c t i o n a t i o n between minerals i s i l l u s t r a t e d i n the concordance p l o t s o f

Figures 1 and 2. Equi l ibr ium isotope f r a c t i o n a t i o n f a c t o r s i n fe r red from

Also

The i s o t o p i c

Page 11: J. R. S. H. Jr, W. P

natura l data (Bot t inga and Javoy, 1973, 1975; Javoy, 1977) a re a lso p l o t t e d i n

these f i g u r e s f o r comparison.

Concordance diagrams have been used i n previous s tud ies (Anderson e t a1 ., 1971; Bot t inga and Javoy, 1973, 1975; Clayton and Epstein, 1961; Javoy e t al.,

1970) t o il l u s t r a t e systematic co r re la t i ons o f oxygen-isotope data and t o

evaluate g r a p h i c a l l y t h e degree o f a t ta i rment o f isotope exchange e q u i l ibr ium

between mineral phases. I n such p lo t s , a l l mineral p a i r s t h a t have

d i f f e rences i n dl8O values equal t o those def ined by t h e f r a c t i o n a t i o n

equations a r e i n te rp re ted as having achieved isotope exchange equi l ibr ium.

However, t he re i s disagreement between the experimental ly and emp i r i ca l l y

determined f r a c t i o n a t i o n f a c t o r s f o r many mineral pairs, i n c l u d i n g quartz-

p l agi oc l ase and quartz-magneti t e pai r s , which exceed a n a l y t i c a l e r r o r over

much o f the temperature range 300-10OO0C.

regard i ng attainment o f i sotope exchange equ i l i b r i um depends on which

f r a c t i o n a t i o n equations a re chosen. Many o f t h e oxygen-isotope f r a c t i o n a t i o n s

based on experiment, i nc lud ing quartz and plagioclase, y i e l d temperatures

d i f f e r e n t from those based on empir ical cal i b ra t i ons . The empir ical

f r a c t i o n a t i o n s appear t o have achieved b e t t e r success a t prov id ing

g e o l o g i c a l l y reasonable temperatures (Bot t inga and Javoy, 1973, 1975; Javoy,

1977) and greater i n t e r n a l consistency among temperatures from i n d i v i d u a l

mineral pairs, and a r e prefer red here on t h i s basis. However, i t i s n o t c l e a r

whether t h e observed c o r r e l a t i o n s o f oxygen-i sotope data from rock samples

r e s u l t s o l e l y fran f rozen- in e q u i l i b r i u m thermal e f fec ts . Bot t inga and Javoy

(1975) noted t h a t t h e data from rock samples contained sca t te r which they

i n te rp re ted as departures f r a n isotope exchange equi l ibr ium. Dienes (1977)

has cautioned t h a t natura l oxygen-i sotope c o r r e l a t i o n s f o r mineral p a i r s may

be a d d i t i o n a l l y in f luenced by random e r r o r s o r systematic re t rograde e f f e c t s ,

I n these cases, a conclusion

Page 12: J. R. S. H. Jr, W. P

poss ib l y re1 ated t o coo l i ng o r i n c i p i e n t hydrothermal processes. There are

thus unce r ta in t i es i n both t h e experimental and e m p i r i c a l l y der ived oxygen-

isotope f r a c t i o n a t i o n s f o r many mineral p a i r s which warrant some cau t ion i n

t h e i r appl icat ion. Despite the unce r ta in t i es i n t h e empir ical c a l i b r a t i o n s ,

t h e r e i s good c o r r e l a t i o n o f 6180 values f o r natural quartz-pl agiocl ase-

magneti te t r i p l e t s (Bot t inga and Javoy, 1973, 1975; Deines, 1977; Javoy,

1977). Further, t h e geothermometry equations based on these c o r r e l a t i o n s have

o f ten produced geo log ica l l y reasonable temperatures (Bot t inga and Javoy, 1973,

1975), which i s j u s t i f i c a t i o n f o r t h e i r continued use.

The Sl80 values of quartz, p lag ioc lase and magnetite from samples 22 and

25 p l o t w i t h i n a n a l y t i c a l e r r o r o f t h e empir ical concordance l i n e s i n Figures

1 A and l B , suggesting t h a t these minerals are i n oxygen-isotope exchange

equi l ibr ium.

Figures 1 A and 16.

- above the Qz-Mt/Pg-Mt 1 ine, i n d i c a t i n g t h a t the *(Qz-Pg) f r a c t i o n a t i o n f a c t o r

i s too l a r g e and t h e A(Pg-Mt) f a c t o r i s too small r e l a t i v e t o t h e A(Qz-Mt)

factor . These discrepancies i n d i c a t e t h a t t he Sl8O value o f p lag ioc lase i s

be i n isotope exchange e q u i l i b r i u m w i th quartz and

n sample 24 has suf fered a t l e a s t minor sub-sol idus

a f e a t u r e o f t e n observed i n igneous rocks (Bot t inga

Ne i l and Taylor, 1967; Taylor, 1968, 1971, 1974).

Sample 24 p l o t s somewhat away from the concordance l i n e i n both

Sample 24 p l o t s below t h e Qz-Mt/Qz-Pg concordance l i n e and

t o o low f o r t h e phase t o

~ magnetite. P i ag ioc l ase

oxygen-i sotope exchange , and Javoy, 1973, 1975; 0

Both samples 22 and

-

24 p l o t s i g n i f i c a n t l y o f f t h e concordance l i n e i n

Figure 2.

oxygen-i sotope exchange equi l ibr ium, then e i t h e r t h e b i o t i t e i n sample 22 has

not equi l i b r a t e d i sotopical l y w i t h t h e quartz and p lag ioc lase o r the

f r a c t i o n a t i o n f a c t o r used f o r t h e concordance l i n e i n Figure 2 does not

Because quartz and plagioclase i n sample 22 a r e i n approximate

Page 13: J. R. S. H. Jr, W. P

represent equ i l i b r i um f r a c t i o n a t i o n f o r b i o t i t e . None o f the other proposed

b i o t i t e f a c t o r s (Table 2 ) produce concordance e i t h e r , so t h e b i o t i t e may

simply no t be i n isotope exchange equi l ibr ium. Assuming t h a t the A(Qz-Si)

f a c t o r i s co r rec t , b i o t i t e would a lso be ou t o f exchange e q u i l i b r i u m w i t h

quartz and plagioclase i n sample 24, because the p o i n t p l o t s above the

concordance 1 ine, and i t has j u s t been demonstrated (Figures 1 A and 1B) t h a t

h(Qz-Pg) i s t o o l a r g e f o r sample 24. These f i g u r e s demonstrate t h a t b i o t i t e

i n both samples 22 and 24 and plagioclase i n sample 24 are depleted i n l 8 0

r e l a t i v e t o 6l80 values i n coex is t i ng quartz and magnetite. Apparently bo th

b i o t i t e samples have e i t h e r not e q u i l i b r a t e d w i t h t h e magma, o r not maintained

e q u i l i b r i u m w i t h t h e magma, o r have undergone post-sol idus i n t e r a c t i o n w i t h an

external , 180-depleted oxygen rese rvo i r , presumably meteoric water. Hydrogen-

isotope analyses would be useful i n detect ing 1 im i ted meteoric water-rock

i n te rac t i on , b u t s u f f i c i e n t q u a n t i t i e s o f b i o t i t e f o r hydrogen-isotope

analys is could not be separated.

I SOT0 PE THERMOMETRY

The attainment of i n t e r n a l oxygen-isotope exchange equi l ibr ium, as

i nd i ca ted by t h e concordance diagrams, does not necessar i ly mean t h a t t he

phenocryst phases have preserved t h e i r o r i g i n a l c r y s t a l l i z a t i o n

temperatures. The concordance diagram al lows an evaluat ion o f exchange

e q u i l i b r i u m and i d e n t i f i c a t i o n o f exchange w i t h external reservo i rs . It does

not a1 1 ow eval ua t i on of t h e primary nature o f recorded temperatures, as shown

by numerous examples o f disagreement between isotope and chemical o r phase

equ i l i b r i um thermometers (Bot t inga and Javoy, 1975; Javoy, 1977). Experience

over the l a s t t e n t o f i f t e e n years w i t h oxygen-isotope geothermometry has

revealed t h a t i n slow-cool i ng systems (metamorphic and p l u ton ic rocks),

Page 14: J. R. S. H. Jr, W. P

coexi s t i n g s i 1 i ca te /ox ide phases a re vu1 nerabl e t o retrograde isotope

exchange. Such exchange can occur under near-equil i b r i um cgndi t ions,

produci ng concordant sl8O Val ues f o r mineral p a i r s bu t isotope temperatures

t h a t a re lower than t r u e format ion temperatures.

cmmonly " f rozen" i n minerals formed i n r a p i d l y cooled basic volcanic rocks

(Anderson e t al., 1971).

v 01 canic rocks , however.

Fortunately, @O values are

L i t t l e in format ion i s ava i l ab le f o r more a c i d i c

A second problem w i t h oxygen-isotope geothermometry i s t h e lack o f

agreement as t o which geothermometer equation t o use. Table 2 i s a

canpi1 a t i o n o f several geothermometer equations proposed f o r t h e mineral s

found i n the Mineral Mountains r h y o l i t e s o r computed f r a n ava i l ab le mineral-

water f r a c t i o n a t i o n expressions.

experimental measurement [ f o r example Qz-Pg ( A ) ] and empir ical c a l i b r a t i o n o f

measured 6l80 values i n igneous and metamorphic rocks [ f o r example Qz-Mt (B)].-

The r e s u l t s o f a l l geothermometry equations are presented i n Table 3.

The var ious equations are based on bo th

Unconstrained use of a1 1 geothermometry 'equations produces unacceptably 1 arge

ranges i n isotope temperatures. For example t h e th ree a l t e r n a t e Q - &

geothermometers g i ve a temperature range o f 344 t o 765OC f o r p r e c i p i t a t i o n o f

quar tz and p lag ioc lase i n sample 22, with t h e lower ranges o f temperature

being f a r below t h e so l idus f o r magma o f r h y o l i t e composition. However some

o f t h e i sotope geothermometers produce temperatures i n good agreement w i t h

those from independent chemical geothermaneters. For sample 22, t h e

geotherometry equations proposed by Bot t inga and Javoy (1973, 1975) provide

temperatures o f 765OC, 724OC, and 725OC from quartz-pl agiocl ase, quartz-

magnetite, and p l agioclase-magneti t e p a i r s respect ively. These temperatures

agree w i t h i n ana ly t i ca l uncer ta in ty w i t h the r e s u l t s o f Fe-Ti oxide ( 7 4 O O C )

Page 15: J. R. S. H. Jr, W. P

and two-feldspar (77OOC) geothermometry (Evans and Nash, 1978) f o r t h i s sample

(Table 4). The consistency o f these three isotope temperatures r e f l e c t s the

concordance of t he mineral 6 0 values w i t h the f r a c t i o n a t i o n f a c t o r s shown i n

Figures 1 A and l B , which were def ined by the same geothermometry equations of

Bot t inga and Javoy (1973, 1975). The agreement between the isotope and

chemical geothenometry r e s u l t s and the f a c t t h a t these temperatures are

geological l y q u i t e reasonable suggests these c l o s e l y represent format ion

( c r y s t a l l i z a t i o n ) temperatures f o r these phases i n sample 22. These same

geothermometer equations produce concordant temperatures f o r sample 25 as

we1 1 . However, t he temperatures provided by t h e Bot t inga and Javoy 1973)

equations f o r quartz-pl ag ioc l ase, quartz-magnetite, and p l agioclase-magneti t e

18

p a i r s fran sample 24 d i f f e r by an amount exceeding a n a l y t i c a l uncertainty.

The quartz-pl agiocl ase geothermometer (By Tab1 e 2) equation incorporat ing

the experimental data of O'Neil and Taylor (1967) i s s i m i l a r t o t h a t proposed

by Bot t inga and Javoy (1973) and produces q u i t e s i m i l a r temperature r e s u l t s

(Table 3).

e i t h e r lower (samples 22 and 25) o r higher (sample 24) than the o the r two

versions. The quartz-magnetite geothermmeter based on t h e experimental data

o f C1 ayton e t a1 . (1972) f o r quartz produces temperatures systematical l y

higher than t h e other isotope geothermometers ( w i t h t h e exception o f those

incorporat ing b i o t i t e ) and t h e Fe-Ti oxide and two-feldspar geothermometers.

A1 1 proposed isotope geothermometers i nvo lv i ng b i o t i t e g ive unacceptabl e o r

even i r r a t i o n a l values f o r temperature, i nc lud ing those based whol ly o r i n

p a r t on t h e c a l i b r a t i o n s o f Bo t t i nga and Javoy (1973) (B and E, Table 3).

Th is disagreement i nd i ca tes e i t h e r t h a t b i o t i t e i s out o f isotope exchange

e q u i l i b r i u m w i t h t h e other phenocrysts, o r t h a t none o f t h e proposed

geothenometer equations adequately accounts f o r the oxygen-isotope

However, equation ( C ) f o r t h i s mineral p a i r produces temperatures

>

Page 16: J. R. S. H. Jr, W. P

I .

1

I

charac te r i s t cs o f magmatic b i o t i t e s . One f a c t o r t h a t c e r t a i n l y needs t o be

evaluated i n t h i s regard i s t h e e f f e c t of Fe f o r Mg s u b s t i t u t i o n on t h e

oxygen-isotope composition o f b i o t i t e .

Temperature r e s u l t s f ran t h e geothermometers proposed by B o t t i nga and

Javoy (1973) are presented i n Table 4 f o r a l l f o u r samples, along w i t h r e s u l t s

from a p p l i c a t i o n o f chemical geothermometers (Evans and Nash, 1978) f o r

canparison. There i s good agreement between the chemical and & - &,-& - - M t

and - geothermaneters f o r samples 22 and 25. The & - p a i r f rom

sample 23 provides a geological l y reasonabl e temperature (762OC) , b u t no other

geothermometry data e x i s t f o r comparison. The & - & p a i r from sample 24

provides a temperature (682) i n s a t i s f a c t o r y agreement w i t h t h e Fe-Ti oxide

and two-feldspar geothermmetry, b u t bo th t h e Q - & and & - s i g n i f i c a n t l y d i f f e r e n t .

some retrograde exchange and i s no longer i n i s o t o p i c exchange e q u i l i b r i u m

w i t h quartz and magnetite. For the o the r samples, t h e agreement o f t he

chemical geothermometers w i t h t h e r e s u l t s from t h e geothermometer equations

proposed by Bot t inga and Javoy (1973) and Javoy (1977) supports the content ion

of t h e l a t t e r author t h a t these geothermmeters are i n t e r n a l l y more consis tent

and produce temperatures t h a t a re o f t e n more reasonable geol ogical l y than

those based on experimental data alone.

r e s u l t s are

I n sample 24, plagioc lase has apparently experienced

MAGMA SOWCE

The 6l80 values of t h e g lass groundmass c l o s e l y approximate the 6l8O

values of t he r h y o l i t e magmas, as t h i s phase c o n s t i t u t e s greater than 95

volume % of these rocks. 6l80 values o f t h e glass range from 6.3 t o 6.9

permil , which a re i n the low range of values f o r a c i d i c volcanics.

Val ues are consi s ten t w i t h d e r i v a t i o n o f t h e Mineral Mountai ns rhyol i t e s from

These

Page 17: J. R. S. H. Jr, W. P

an I - t ype source (Chappell and White, 1974; O'Meil e t a1 ., 1977). The oxygen-

isotope data i n d i c a t e t h a t i f t h e r h y o l i t e s were generated by p a r t i a l me l t i ng

i n t h e c rus t , t he source reg ion cannot con ta in a s i g n i f i c a n t component of

pel i t i c metasedimentary mater i a1 . CONCLUSIONS

App l i ca t i on o f oxygen-

M i neral Mounta i ns rhyo l i tes

geol o g i c a l l y reasonable and

poss i b l e

r hyol i t e

permi 1--

sotope thermometry t o phenocryst phases o f t he

y i e l d s some temperature r e s u l t s t h a t are

cons is ten t w i t h r e s u l t s from appl i c a t i o n o f

chemical geothermometers. The geothermometry equat ions proposed by Bot t inga

and Javoy (1973, 1975) a re most successful and y i e l d temperatures o f 716-765OC

f o r t he r h y o l i t e f lows and 626-686OC f o r t he r h y o l i t e domes. These r e s u l t s

are i n good agreement w i t h temperatures ca lcu la ted from Fe-Ti oxide and two-

f e l d s p a r geothermometers.

e q u i l i b r a t i o n may be i nd i ca ted by t h e isotope thermometry r e s u l t s f o r the

Some degree o f sub-sol idus re t rograde re-

as low as 650°C may be

e f f e c t i v e i n lower ing the

the rhyo l i t e - -+ 6.3 t o + 6.9

s t y p i c a l o f I - t y p e magmas, i n d i c a t i ng ,hat no s i g n i f i c a n t pel i t i c

danal rhyo l i tes. However, 1 i qui dus temperatures

i f f l u o r i n e and water were s u f f i c i e n t l y

l i qu idus . The range o f Sl80 values f o r

metasedimentary component i s i nvol ved i n the generat ion o f t h e Mineral

Mountains r h y o l i t e s .

Page 18: J. R. S. H. Jr, W. P

REF ERENC ES

P

.

I-

,

I

Anderson, A. T., Jr., Clayton, R. N., and Mayeda, T. K.: Oxygen iso tope thermometry o f maf ic igneous rocks. J. Geol., v. 79, no. 6, p. 715-729, 1971 .

Becker, R. H.: Carbon and oxygen isotope r a t i o s i n i r o n format ion and associated rocks from t h e Hammersley Range o f western A u s t r a l i a and t h e i r imp1 i ca t i ons . Ph.D. D isse r ta t i on , Univ. o f Chicago, 138 p., 1971.

Bertenrath, R. and Fr iedr ichsen, H.: The oxygen iso tope geochemistry of b i o t i t e s and i t s a p p l i c a t i o n as a geologic thermometer. Pa r t I - The oxygen i sotope f r a c t i o n a t i o n i n t h e system phl ogopi te-anni te ( i n prep .)

Bot t inga, Y . and Javoy, M.: Comments on oxygen iso tope thermometry. Ear th Planet. Sci. Le t te rs , v. 20, p. 250-265, 1973.

: metamorphic rocks. 1975.

Oxygen isotope p a r t i t i o n i n g among t h e minera ls i n igneous and Rev. Geophys. Space Phys., v. 13, no. 2, p. 401-418,

Buddington, A. F. and L inds ley, D. H.: I r on - t i t an ium ox ide minera ls and syn the t i c equivalents. J. Pe t ro l . v. 5, p. 310-357, 1964.

Carmichael , I. S. E.: The i ron - t i t an ium oxides o f s a l i c vo l can ic * rocks and t h e i r associated ferromagnesian s i 1 icates. Contr ib. Mineral . Pet ro l . , V . 14, p. 36-64, 1967.

Carmichael, I. S. E., Turner, F. J., Verhoogen, J.: Igneous Petrology. McGraw H i l l , New York, 739 p., 1974.

Chappell, B. W . and White, A. J. R.: Two con t ras t i ng g r a n i t e types. Pac i f i c Geology, v. 8, p. 173-174, 1974.

Clayton, R, N. and Epstein, S.: The use o f oxygen isotopes i n h igh temperature geological thennometry. J. Geol . , V . 69, p. 447-452, 1961.

Clayton, R. N. and Mayeda, T. K.: The use o f bromine pen ta f l uo r ide i n t h e e x t r a c t i o n o f oxygen f r a n oxides and s i l i c a t e s f o r i s o t o p i c analysis. Geochim. Cosmochim. Acta, v. 27, p. 43-52, 1963.

Clayton, R. N., O'Nei1, J, R., and Mayeda, T. K.: Oxygen iso tope exchange between quartz and water. 1972 . J. Geophys. Res., v. 77, no. 17, p. 3057-3067

Craig, H.: Standard f o r r e p o r t i n g concentrat ions o f deuterium and oxygen-18 i n na tura l waters. Science, v. 133, p., 1833-1834, 1961.

Deines, P.: On the oxygen isotope d i s t r i b u t i o n among mineral t r i p l e t s i n igneous and metamorphic rocks. Geochim. Cosmochim. Acta, v. 41, p. 1709-1730, 1977.

Page 19: J. R. S. H. Jr, W. P

Evans, S. H., Jr. and Nash, W. P.: Roosevelt geothermal area, Utah. 7, no. 7, p. 1070, 1975.

Low-temperature r h y o l i t e s from the Geol. SOC. Amer. Abs. w i th Programs, v.

Evans, S. H., J r . and Nash, W. P.: Quaternary r h y o l i t e from the Mineral Mountains, Utah, U. S. A. Univ. Utah Geo. Geophys. Dept., Topical Report volume 77-10, DOE/DGE con t rac t EY-76-S-07-1601, 1978.

Evans, S. H., Jr. and Brown, F. H,: Summary o f K - A r da t i ng -- 1981. Univ, Utah Geol . Geophys. Dept., Topical Report #12079-45, DOE/DGE con t rac t DE-AC07-80ID-12079, 1981.

Friedman, I. and O'Nei l , J. R.: Compilat ions o f s tab le- isotope f r a c t i o n a t i o n f a c t o r s o f geochemical i n t e r e s t . U. S. Geol. Surv. Prof. Paper 440-KK, 1977.

Javoy, M.: Stab le isotopes and geothermometry. J. Geol. SOC. Lond., v. 133,

Javoyf6M.f8Fourcade, S., A l legre, C. 3.: Graphical method o f examination of

I

p. 609-636, 1977.

O/ 0 f rac t i ona t ions i n s i l i c a t e rocks. Ear th Planet. Sci. Le t te rs , V. 10, p. 12-16, 1970.

Lipman, P. W., Rowley, P. D., Mehnert, H., Evans, S. H., Nash, W. P., and Brown, R. F.: Pleistocene r h y o l i t e o f t h e Mineral Mountains, Utah: geothermal and archaeological s ign i f i cance. Res. U. S. Geol. Survey, V. 6, p. 133-147, 1978.

Longstaf fe, F. J., Smith, T. E., and Muehlendachs, K., 1980, Oxygen Isotope evidence f o r t h e genesis o f Upper Paleozoic g ran i to ids from Southwest Nova Scot ia: Can. 3. Ear th Sci., v. 17, p. 132-141.

Nash, W. P. and Evans, S. H., Jr.: F l u i d dynamic p roper t i es o f r h y o l i t e magmas, Mineral Mountains, Utah. Report, vol . 77-13, DOE/DGE EY-76-S-07-1601, 1978.

O'Nei l , J: R. and Chappell, B. W.: t he Ber r i da le Batho l i th . J. Geol. SOC. Lond., v. 133, p. 559-571, 1977.

Univ. Utah Geol. Geophys. Dept., F ina l

Oxygen and hydrogen isotope r e l a t i o n s i n

O'Nei l , 3. R. and Taylor, H. P., Jr.: chemistry o f fe ldspars. Am. Mineral., v. 52, p. 1414-1437, 1967.

O'Nei l , J. R., Shaw, S. E., and Flood, R. H.: Oxygen and hydrogen isotope canposi t ions as i n d i c a t o r s o f g r a n i t e genesis i n the New England Ba tho l i t h , Aus t ra l ia . Contr. Pet. Mineral., v. 62, p. 313-328, 1977.

The oxygen isotope and c a t i o n exchange

Stormer, J. C., Jr.: A p r a c t i c a l two-feldspar geothermometer. Amer. Mineral ., v. 60, p. 667-674, 1975.

Taylor, H. P., Jr.: The oxygen iso tope geochemistry of igneous rocks. Contr. Min. Petrol . , v. 19, p. 1-71, 1968.

Page 20: J. R. S. H. Jr, W. P

: Oxygen isotope evidence f o r 1 arge-scal e i n t e r a c t i o n between meteoric ground waters and T e r t i a r y g ranod io r i t e i n t rus ions , western Cascade Range, Oregon. J. Geophys. Res., v. 76, p. 7855-7874, 1971.

: hydrothermal a l t e r a t i o n and ore deposit ion. 883, 1974.

i n c o e x i s t i n g mineral o f igneous and metamorphic rocks.

The appl i c a t i o n o f oxygen and hydrogen i sotope s tud ies t o Econ. Geol., v. 69, p. 843-

Taylor, H. P., Jr. and Epstein, S.: The r e l a t i o n s h i p between l80/l6O r a t i o s Geol. SOC. Am.

B u l l 0, V. 73, p. 461-480, 1962.

Taylor, H. P., Jr. and S i l ve r , L. T.: Oxygen isotope r e l a t i o n s h i p s i n p l u t o n i c igneous rocks o f t h e Peninsular Ranges Ba tho l i t h , Southern and Baja Ca l i f o rn ia . ' Fourth I n t ' l . Conf. Geochron., Cosmochron., and Isotope Geology, Snomass, Colorado, U.S.A. U.S. Geol . Survey Open-File Report 78-101, 1978.

Taylor, H. P., Jr., and Tu r i , 6.: High - l80 igneous r0ck.s from the Tuscan magmatic province, I t a l y . Contrib. Mineral. Petrol ., v. 55, p. 33-54, 1976.

Page 21: J. R. S. H. Jr, W. P

, . . .

I

FIGURE CAPTIONS

Figure 1. P l o t s o f the Mineral Range oxygen-isotope data on concordance diagrams o f A(Qz-mt) versus A(Qz-Pg) i n F igure 1 A and A(Qz-mt) versus A(Pg-mt) i n Figure 18. The concordance l i n e s are based on the data o f Becker (1971), Bot t inga and Javoy (1973) and Javoy (1977). E r r o r bars f o r each mineral p a i r r e f l e c t t h e combined ana ly t i ca l e r r o r f o r i nd i v idua l mineral analysis.

Figure 2. P l o t o f Mineral Range oxygen-isotope data on d concordance diagram o f A(Qz-Bi) versus A(Qz-Pg). The concordance l i n e i s based on the data of Bot t inga and Javoy (1973) and O'Nei l and Tay lo r (1967). E r r o r bars f o r each mineral p a i r r e f l e c t the combined ana ly t i ca l e r r o r f o r i nd i v idua l mineral analysis.

Page 22: J. R. S. H. Jr, W. P

'. .

\E

I I

I I

I I

\-

N

0

Page 23: J. R. S. H. Jr, W. P

-- m

I N

. - - . . - . - . . . . ._ . - .- . .

. 4 a"

2

2

Page 24: J. R. S. H. Jr, W. P

Table 1. --Oxygen-isotope compositions and f r a c t i o n a t i o n f a c t o r s f o r mineral p a i r s from rhyo l i t e f 1 ows and domes, Mineral Mountains, Roosevel t Hot Spr i ngs Thermal Area

Rock U n i t Sample No. 6l80 (SMOW) A(Qz-Pg) A(Qz-Mt) A(Qz-Bi) A(Pg-Mt) h(Pg-Bi) b(Bi -Mt)

Ba i ley Ridge MR - 7 6 -2 2 quartz (Qz) 7.2 0.9 5.6 5 05 4.7 4.6 0.1 g l ass 6.3 fe ldspar (P ) 6.3 b i o t i t e ( B i 7 1.7 magnetite (Mt) 1.6

Wild Horse Canyon MR-76-2 3 quartz 7 .1 glass 6.3 magnetite - 1.9

L i t t l e Bearskin MR -76 -2 4 quartz 7.5 glass 6.9 f e l dspar 6.0 b i o t i t e 2.1 magnet i t e 1.4

5.2

1.5 6.1 5.4

North Twin F l a t Peak MR-76-25 quartz 7.4 1.2 6.2 glass 6.4 fe ldspar 6.2 mag net i t e 1.2

4.6

5.0

3.9 0.7

Page 25: J. R. S. H. Jr, W. P

Table 2. Compilation o f oxygen-isotope f r a c t i o n a t i o n f a c t o r s used i n geothermometry ca l cu la t i ons .

Mineral P a i r 10% na ' Data Sources

Qz-Pg ( A )

Qz-Pg (B)

Q2-W ( C ) Qz-Mt ( A )

Qz-Mt (B)

Pg-Mt ( A ) Pg-Mt (B)

Pg-Mt (C) Qz-Bi ( A )

Qz-Bi (B)

Qz-Bi (C)

Qz-Bi (D)

Qz-Bi ( E ) Pg-Bi ( A )

Pg-Bi (B) Pg-Bi ( C )

B i - M t ( A ) B i - M t (B)

+ 1-95 0 5 0 0 ° c ) + 0.51 ( < 5 O O 0 C )

6 -2 1.19 (10 T ) ' - 0.29 6 -2 0.97 (10 T )

+ 2.24

5.57 ( 1 0 F ) 4.38 (106T-2) + 0.30

6 -2 3.01 (10 T ) + 2.24 6 -2 4.60 (10 T

2.15 (106T-2) 6 -2 + 1.27 (>5OO0C) 3.02 (10 T ) - 0.17 (<5OO0C)

6 2 3.74 (10 T- ) - 0.97 1OZT- i ) - 0.17 ( > 5 O O 0 C ) 10 T' ) - 1.61 (<500°C)

6 -2 6 -2 6 -2

4.92 (IO T

3.69 (10 T 2.55 (IO T

) - 2.41 ) - 0.60 ) - 0.68

6 -2 3.73 (10 T ) - 2.12 2.72 - 0.60 1.83 (10 6 T -2 ) + 0.97

6 -2 0.65 (10 T ) + 2.41

Clayton e t a l . (1972); O'Neil and Taylor (1967)

Bot t inga and Javoy (1973); O'Neil and Taylor (1967) Bot t inga and Javoy (1973) Becker (1971); Bot t i nga and Javoy (1973); Clayton e t a l . (1472)

Becker (1971); Javoy (1977) Becker (1971); Bot t inga and Javoy (1973); O'Neil and Taylor (1967) Bot t i nga and Javoy (1973); Clayton e t a l . (1972) B o t t i nga and Javoy (1973) ;' Javoy (1977) Bot t inga and Javoy (1975); Clayton e t a1 (1972); O'Neil and Taylor (1967)

Bot t inga and Javoy (1973, 1975); O'Neil and Taylor (1967) Bertenrath and Fr iedr ichsen ( i n

Ber tenrath and Fr iedr ichsen ( i n B o t t i nga and Javoy (1973) Bot t inga and Javoy (1975); O'Ne Bertenrath and Fr iedr ichsen ( i n

Bot t inga and Javoy (1973)

B i - M t ( C ) 1.88 (10 T ) + 0.60 " " . 6 -2

Bot t inga and Javoy (1973, 1975); O'Nei

Ber tenrath and Fr iedr ichsen ( i n prep); Bot t inaa and Javov 11973)

Clayton e t a1 . (1972)

Bot t i nga and Javoy (1973)

ay l o r (1967) O'Neil and Taylor (1967)

and Tay o r (1967') Bot t i nga and Javoy (1973)

Page 26: J. R. S. H. Jr, W. P

Table 3. Compilation of oxygen-isotope geothermometry r e s u l t s ("C) from the equations i n Table 2 fo r mineral pa i rs from r h y o l i t e flows and domes i n the Mineral Mountains.

-- ~~- -~ ~ ~-

Q 2 - N Qz-Mt Pg-Mt Qz-B i Pg-Bi B i - M t

Sample A B C A B A B C A B C D E A B C A B C ~~ ~

MR-76-2 2 344 727 765 815 724 725 833 716 440 487 493 516 505 422 472 450 -1177 -257 -1666

MR-76-23 886 762

MR- 76-2 4 670 542 531 742 682 736 856 727 448 493 500 521 511 473 514 504 -2330 -344 4063

MR-76-25 457 621 626 730 675 692 771 686

Page 27: J. R. S. H. Jr, W. P

Table 4. Comparison o f oxygen-isotope (Bottinga and Javoy, 1973; Javoy, 1977) and chemical geothermmetry ("C) results for the Mi neral Mountains rhyol i t e s .

F1 ow Unit Qz-Pg ( C ) Qz-Mt ( B ) Pg-Mt ( C ) Fe-Ti Oxide Two-Feldspar

Bailey Ridge MR -76 -2 2

Wild Horse Canyon MR-76-23

Lit t l e Bearski n MR-76 -24

North Twin F1 a t Peak , MR-76-25

765 724 71 6 7 40 770 f 115 t 27 t 32

762 f 29

531 682 72 7 640 f 60 . f 24 f 33

62 6 675 686 650 f 75 f 24 f 29

670

71 0