jet - volume 3 - issue 3 - august 2010 - za internet

Upload: vedran-prgomet

Post on 06-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    1/80

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    2/80

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    3/80

    JET

    JOURNAL OF ENERGY TECHNOLOGY

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    4/80

    JET

    VOLUME 3 / Issue 3

    RevijaJournalofEnergyTechnology(JET)jeindeksiranavnaslednjihbazah:INSPEC,CambridgeScientific Abstracts: Abstracts in New Technologies and Engineering (CSA ANTE), ProQuest'sTechnologyResearchDatabase.The JournalofEnergyTechnology (JET) is indexedandabstracted in the followingdatabases:INSPEC

    ,CambridgeScientificAbstracts:Abstracts inNewTechnologiesandEngineering (CSA

    ANTE),ProQuest'sTechnologyResearchDatabase.

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    5/80

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    6/80

    JET

    Uredniki/COEDITORS

    JurijAVSEC

    GorazdHREN

    MilanMAR

    I

    IztokPOTR

    JanezUSENIK

    JoeVORIJoePIHLER

    Urednikiodbor/EDITORIALBOARD

    Prof.dr.JurijAVSEC,

    UniverzavMariboru,Slovenija/UniversityofMaribor,Slovenia

    Prof.ddr.DenisONLAGI,

    UniverzavMariboru,Slovenija/UniversityofMaribor,Slovenia

    Prof.dr.AntonJEZERNIK,

    Fakultetazaindustrijskiineniring,Slovenija/Facultyofindustrialengineering,SloveniaProf.dr.RomanKLASINC,

    TechnischeUniversittGraz,Avstrija/GrazUniversityOfTechnology,Austriar.IvanAleksanderKODELI

    InstitutJoefStefan,Slovenija/JoefStefanInstitute,SloveniaProf.dr.JurijKROPE,

    UniverzavMariboru,Slovenija/UniversityofMaribor,Slovenia

    Prof.dr.AlfredLEIPERTZ,

    UniversittErlangen,Nemija/UniversityofErlangen,Germany

    Prof.dr.BranimirMATIJAEVI,SveuiliteuZagrebu,Hrvaka/UniversityofZagreb,CroatiaProf.dr.MatejMENCINGER,

    UniverzavMariboru,Slovenija/UniversityofMaribor,Slovenia

    Prof.dr.GregNATERER,

    UniversityofOntario,Kanada/UniversityofOntario,Canada

    Prof.dr.EnrikoNOBILE,

    UniversitdegliStudidiTrieste,Italia/UniversityofTrieste,ItalyProf.dr.IztokPOTR,

    UniverzavMariboru,Slovenija/UniversityofMaribor,Slovenia

    Prof.dr.AndrejPREDIN,UniverzavMariboru,Slovenija/UniversityofMaribor,Slovenia

    Prof.dr.AleksandarSALJNIKOV,

    UniverzaBeograd,Srbija/UniversityofBeograd,SerbiaProf.dr.BraneIROK,

    UniverzavLjubljani,Slovenija/UniversityofLjubljana,Slovenia

    Doc.dr.AndrejTRKOV,

    InstitutJoefStefan,Slovenija/JoefStefanInstitute,SloveniaProf.ddr.JanezUSENIK,

    UniverzavMariboru,Slovenija/UniversityofMaribor,Slovenia

    Prof.dr.JoeVORI,UniverzavMariboru,Slovenija/UniversityofMaribor,Slovenia

    Doc.Dr.PeterVIRTI,

    UniverzavMariboru,Slovenija/UniversityofMaribor,Slovenia

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    7/80

    JET

    Prof.dr.KoichiWATANABE,KEIOUniversity,Japonska/KEIOUniversity,JapanDoc.dr.TomaAGAR,UniverzavMariboru,Slovenija/UniversityofMaribor,SloveniaDoc.dr.FrancERDIN,UniverzavMariboru,Slovenija/UniversityofMaribor,Slovenia

    Tehnikapodpora/TECHNICALSUPPORTTamaraBREKO,

    SonjaNOVAK,

    JankoOMERZU;

    Izhajanjerevije/PUBLISHINGRevijaizhajatirikratletnovnakladi300izvodov.lankisodostopninaspletnistranirevije

    www.fe.unimb.si/si/jet.html.

    Thejournalispublishedfourtimesayear.Articlesareavailableatthejournalshomepage

    www.fe.unimb.si/si/jet.html.

    Lektoriranje/LANGUAGEEDITINGTerry

    T.

    JACKSON

    Produkcija/PRODUCTIONVizualnekomunikacijecomTECd.o.o.

    Oblikovanjerevijeinznakarevije/JOURNALANDLOGODESIGNAndrejPREDIN

    RevijaJETjesofinanciranasstraniJavneagencijezaknjigoRepublikeSlovenije.

    TheJournalofEnergyTechnologyiscofinancedbytheSlovenianBookAgency.

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    8/80

    JET

    AlternativnetehnologijehidroenergetikeVasuzavedanjaokoljskihproblemovgledeemisijvokolje,predvsemogljikovegadioksidain

    drugih toplogrednih plinov, je vse bolj oitno, da predvsem korienje obnovljivihenergetskihvirovvodikzmanjanjutegaproblema.Korienjehidroenergetskegapotencialarekje enaod bolj sprejemljivihmonosti korienjaobnovljivih virov.V zadnjem asu sezavedamo,daimaposeganjevreke,kothidroenergetskevire,veliknegativenvplivnasam

    renihabitat kakor tudinaokolje rek.Poznani soprimeri, kjer zaradinepravilnepriprave

    renega korita anaerobno v vodi razpada biolokimaterial, katerega produkti sometan,ogljikov dioksid,oziroma veina toplogrednih plinov. Prav tako klasine zajezitve rek zelo

    vplivajonaokolje,predvsem v smisludvigapodtalne vode, karjenanekaterih podrojih

    sicer zaeleno, veinomapa ne.Da biohraniliokolje,je potreben drugaen, alternativni,pristopizkorianjahidroenergije, kipravilomaomogoanijienergetskiizplenvprimerjavisklasinim nainom korienja, vendar pa mnogo manj vpliva na okolje. Pri tem nainupraviloma koristimo samo dinamini del, torej tokovni ali kinetini del, energetskega

    potenciala.Zataknoizkorianjerenegatokanepotrebujemovejihzajezitevreke,simerjetudivplivnaokoljebistvenomanji.Pritakojeposeganjevrenokoritoinbreinemanje,sajpotrebujemolesidranjevrenitokpostavljenihturbin.

    RekaMuraje edina veja slovenska reka, kije v vseh teh letihostala v naravniobliki in

    energetskoneizkoriena.Neposrednookoljerekejeobutljivo,sajjerekaprodonosna,karpomeni,dasednoinbreinerekespreminjajo.alsososedjeAvstrijci,rekovekratzajeziliinstemprekinilinaravnidotokprodaizAlpskegapodroja,kjerrekaizvira.Dnorekesev

    slovenskem delu poglablja, ustvarjajo semrtvi kanali, imenovanimrtvice, v katerih so se

    oblikovali edinstveni naravni biotopi. al poglabljanje reke vpliva tudi na upad gladinepodtalnevode,kijevnekaterihdelihPrekmurjaezaskrbljujo.

    S podelitvijo dravne koncesijeDravskim elektrarnamMaribor, zaenergetsko izkorianjerekeMure, se odpira monost izgradnje verige hidroenergetskih central na rekiMuri. Vkoncesijije predvidenih 8 elektrarn odmejnega dela rekeMure zAvstrijo do Vereja.Vkoncesiji ocenjeni energetski potencial znaa 84 MW, letna proizvodnja pa 445,8 GWh.

    Dolina reke v slovenskem delu je okrog 98 km. Povprena vodnatost reke Mure, oz.povprenipretokiznaajood170do240m

    3/s.GledenacelotnoporaboelektrikevSloveniji,

    kiznaapriblino12,9TWhzrastjookoli3%letno,bienergetskokorienjepotencialarekeMurepokrivalookrog3,5%slovenskeporabe.TrenutnovSlovenijishidroviripokrivamo3,7

    TWh,karznaapriblino28,7%celotneporabe.

    Civilnainiciativa,kisejeoblikovalazaradiohranitveokoljainrekeMure,nasprotujegradnji

    klasinihzajeznihhidroelektrarn.Ocenjujejo,dabibila izgradnjajezov inpotrebnihzgradb

    pregrobposegvokolje,kibitrajnovplivalnabiotoprekeMureinnjenoneposrednookolico.

    MordajepravalternativnipristoppriizkorianjuhidropotencialovrekeMureprilonostza

    ohranjanje

    ob

    utljivega

    okolja

    in

    samooskrbo

    regije

    z

    elektri

    no

    energijo.

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    9/80

    JET

    Alternativehydroenergytechnologies

    Due to the awareness of environmental problems in the previous decade, mainly the

    emissionsof carbondioxideandothergreenhousegases, it isbecomingevident that the

    increasinguseofrenewableenergysourcesleadstoareductionofthisproblem.Theuseof

    the hydroenergy potential of rivers is one of the acceptable possibilities for renewable

    sources.However,recently ithasbeenconfirmedthataggressive interventiononriversfor

    hydroenergyresourceshasahighlynegative impactontheriverhabitataswellasonthe

    wider environment of rivers. Cases of incorrect preparation of flood areas are known in

    whichanaerobicdecompositionofbiologicalmaterialproducedmethane,carbondioxide,

    i.e.,most

    greenhouse

    gases.

    The

    traditional

    river

    dams

    for

    hydro

    plants

    influence

    the

    environmentseverely,especiallyintermsofrisinggroundwater,whichisdesirableinsome

    areas but mostly not. In order to preserve the environment, a different, alternative,

    approachisrequiredtoexploitthehydropower,whichgenerallyleadstolowerenergygain

    comparedtoconventionalmethod,butwithlessenvironmentalimpact.Inthismanner,only

    the dynamic part of the river, i.e., the flow or kinetic part, is used for energy. For such

    exploitationofriverflow,wedonotneedalargecaptureoftheriver;consequently,there

    is less influenceon the riverenvironment. Itdoesnotdemandmajor interventionon the

    banksandriverbed;itrequiresonlytheanchoringofflowturbines.

    TheMuraRiver is theonly Slovene river that remains in itsnatural formwith itsenergy

    potential unused. The immediate environment of the river is sensitive, since the river

    transports earthmaterial and consequently thebed andbanksof the river changesover

    time.Unfortunately,inAustria,wheretheriverbegins,ithasbeendykedtheseveraltimes,

    blockinganddisruptingthenaturalflowofgroundmaterialfromthespringalpinearea.Asa

    result,thebottomoftheriver inSlovenia isdeepeningandcreatingdeadchannels,called

    oxbowlakes,whereuniquenaturalhabitatshavedeveloped.Unfortunately,thedeepening

    oftheriveralsolowersgroundwaterlevels,whichisinpartsofthePrekmurjeareaisalready

    alarming.

    WiththegrantingofgovernmentconcessionstoDravskeelektrarneMaribor(DravaHydro

    electricalPower

    Plants

    Company)

    for

    energy

    exploitation

    of

    the

    Mura,

    the

    possibility

    opens

    for the building of a chain of hydro power stations. In the concessions are eight power

    plants,fromtheAustrianbordertoVerej.Theenergypotentialisestimatedto84MW,with

    annualproductionof445.8GWh.ThelengthoftheSlovenianpartoftheriverisaround98

    km.TheaveragewatercapacityoftheMuraRiveroraverageflowrangesfrom170to240

    m3/s.With theoverallconsumptionofelectricity in theSlovenia,approximately12.9TWh

    withgrowthof3%annually, thepotentialenergyof the riverMuracoversabout3.5%of

    Sloveneelectricpowerconsumption.Withitshydroresources,Sloveniacurrentlycovers3.7

    TWh,representingapproximately28.7%oftotalconsumption.

    CivilInitiative,locallyformedtopreservetheenvironmentandtheMura,isopposedtothe

    constructionof

    classic

    hydroelectric

    plants.

    It

    is

    estimated

    that

    the

    construction

    of

    dams

    will

    bedevastatingforthebiotopeanditsimmediatesurroundings.

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    10/80

    10 JET

    PerhapsanalternativeapproachtotheMuraRiverenergyexploitationisanopportunityfor

    preservingasensitiveenvironmentaccompaniedwithregionalenergyselfsupply.

    Krko,July

    2010

    Andrej

    PREDIN

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    11/80

    JET 11

    Table of Contents /

    Kazalo

    Fuzzyapproachtooptimiseenergycapacitiesforpermanentandreliableelectricitysupply/

    Mehkipristopprioptimiranjuenergijskezmogljivostizatrajno inzanesljivooskrbozelektrino

    energijoJanezUsenik................................................................................................................................13

    IsolatedbidirectionalDCDCconverter/

    IzoliranidvosmerniDCDCpretvornik

    FrancMihali,AlenkaHren.........................................................................................................27

    CleancoaltechnologiesatVelenjecoalmine/

    istepremogovnetehnologijenaPremogovnikuVelenjeSimonZavek,LudvikGolob,Janjaula.....................................................................................41

    Energypolicy

    for

    production

    resources/

    Energetskapolitikazaproizvodnevire

    DragoPapler,tefanBojnec........................................................................................................53

    Experimentalanalysisofthermodynamicalsurgeatwaterpumpinlet/

    Eksperimentalnaanalizatermodinaminihfluktuacijtokanavstopuvvodnorpalko

    IgnacijoBilu,AndrejPredin......................................................................................................67

    Instructionsforauthors..............................................................................................................75

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    12/80

    12 JET

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    13/80

    JET 1

    JETVolume3 (2010),p.p.1326

    Issue3,August2010

    http://www.fe.unimb.si/si/jet.html

    FUZZY APPROACH TO OPTIMISE ENERGY

    CAPACITIES FOR PERMANENT AND

    RELIABLE ELECTRICITY SUPPLY

    MEHKI PRISTOP PRI OPTIMIRANJU

    ENERGIJSKE ZMOGLJIVOSTI ZA TRAJNO

    IN ZANESLJIVO OSKRBO Z ELEKTRINOENERGIJO

    JanezUsenik

    Keywords:capacity,optimalprice,energy,deterministicdynamicmodel,fuzzylogic,fuzzymodel,estimation

    Abstract

    Planningoptimalcapacitiesandtechnologiesforsustainableandreliableelectricitysupplywith

    specialattentiontoriskmanagementisbecomingincreasinglyimportant.FabijanandPredin[1]

    dealtwiththismatterbyestimatingthepowersupplymarketinthenearfutureand,basedon

    this estimation, they built a deterministic quasidynamic model for forming the price of

    electricitysupply.

    Theequation theyhavedeveloped iscorrectandapplicable.However, itsweakness is in the

    usageofestimatedvaluesasexplicitprecisedata.

    In thispaper,wewillpresentamorecurrentoptionofdesigningsuchamodel, inwhich the

    fuzzylogicapproachisapplied.Theapplicationoffuzzylogicinthiscaseisentirelyreasonable,

    sinceallthevaluesused inthemodelareonlyestimates,i.e.moreorlessreliablepredictions.

    Therearemanyoptionsforbuildingafuzzymodel,butinthispaperonlythemostcompatible

    with a given deterministic quasidynamic model will be shown. The direct comparison of

    numerical results ispossible,which laterenablesbuildingaknowledgebase for theeffective

    Corresponding author: Prof. Janez Usenik, PhD., University of Maribor, Faculty of Energy

    Technology,Tel.:+38631751203,Fax:+38676202222,Mailingaddress:Hoevarjev trg1,

    8270Krko,Slovenia,emailaddress:[email protected]

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    14/80

    1 JET

    JanezUsenik JETVol.3(2010) Issue3

    applicationofaneuralnetwork in theprocessofalgorithm (built in the fuzzysystem/model)

    learning.

    Povzetek

    Nartovanje optimalnih kapacitet in tehnologij za trajno in zanesljivo oskrbo z elektrino

    energijo,pri emerjeposebnopozornostdanaobvladovanju tveganj,je v sedanjih asih vse

    pomembneje,AvtorjaFabijan,Predin,1setemupomembnemuvpraanjuposvetitasstalia

    ocenjevanja energetskega trga v kratkoroni bodonosti in na tej podlagi izgradita

    deterministini kvazidinamini model oblikovanja cene elektrine energije. Formula, ki jo

    izpeljeta,je korektna in uporabna, njenaibkostje v tem, da z zgolj ocenjenimi vrednostmi

    operirakotzeksplicitniminatannimipodatki.

    V tem lankuje predstavljena bolj aktualnamonost, da pri oblikovanju taknegamodela k

    problemu pristopimo z uporabo mehke logike. Uporaba mehke logike je v tem primeruvsekakorsmiselna,sajsovsevrednosti,skaterimivmodeluoperiramo,zgoljocene,torejboljali

    manj zanesljive napovedi. Razlinih monosti izgradnjemehkegamodelaje ve, v lankuje

    predstavljena tista, ki v strukturi algoritma najbolj sledi danemu deterministinemu

    kvazidinaminemumodelu.Razlogzatojedvojni:monajeneposrednaprimerjavanumerinih

    rezultatov, kasneje pa je s tem omogoena izgradnja baze znanja za uinkovito uporabo

    nevronskemreevpostopekuenjaalgoritma,vgrajenegavmehkisistem/model.

    1 INTRODUCTION

    Following the paper Fabijan, Predin, 1, an optimal energy source structure for electricity

    productionistreatedbytheneedsforsatisfyingofsomeparameters,like

    - longtermreliableelectricityenergysupply,

    - systemsuitability,

    - suitabilityofproductioncapability,

    - suitabilityofelectricitygrid,

    - marketsuitability,

    - shorttermandreliablesupply.

    From the pointof viewof the transmission system operator (TSO), theoptimal structureof

    energy producing resources is treated by frequency control on the primary, secondary andtertiary(minute)controllevels.

    Energy companies areexposed tobusiness risk,production riskand financial risk ingeneral.

    Every kind of risk depends on many elements in the working of the energy system. The

    obligation of the decisionmakers is determining how to control this system, but themain

    challengeisthattheefficiencyofthesystemhastobeashighaspossibleunderallconstraints

    inoperating.

    All these risksgenerate costs,dependingondifferent technologiesand sourcesofproducing

    andsellingelectricenergy.Ifweknowthesecosts,wecancalculatethepriceofelectricenergy

    inadvance.

    Risk is becoming an increasingly serious issue in all areas of society. The concept of risk

    generallyimpliesanobjectivequantitativeestimateoftheprobabilityofaneventmeasuredby

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    15/80

    JET 1

    Fuzzyapproachtooptimiseenergycapacitiesforpermanentandreliableelectritysupply

    itsfrequency.Inindustrialsystems,unreliabilityisusuallyidentifiedwiththeobjectiveelement

    inrisk,Harris,[2].

    2 DEFINING THE PROBLEM

    Inthisarticle,weshallusethefollowingnotations:

    i jc k priceofoneunitofelectricalenergyofsourceiattimepoint jk ,

    i ju k quantityofproductionelectricalenergyinsourceiattimepoint jk ,

    jw k weightofrigidityofthesourcesstructuresintimepoint jk ,

    jp k interestratein%attimepoint jk ,

    ji k rateofthecompoundinterest,where

    100

    j

    j

    p ki k (1.01)

    jd k discountrate,where

    1j

    jj

    i k

    d k i k

    (1.02)

    jk basistermforcalculatingdiscountpresentvalue,where

    11

    1j j

    j

    k d ki k

    (1.03)

    , , 1,2,3, ,jk j J J n timedistanceinseparateyears(endofthetimeinterval/year),

    i=1,2,3,.,msetofsources

    Withrespect to theminimaof totalcosts,weobtainthe formulafor thecalculatedexpected

    referencepriceofelectricenergy1

    1 InFabijan,Predin, 1, the formula forcalculating theexpectedreferencepriceofelectricenergyexists inasimilar

    form

    ,

    ,

    ,

    1t

    t vI t vt

    t t v

    t vt

    uwc d c

    w u

    .Themininginaccordancewith(1.04)isthesame.

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    16/80

    1 JET

    JanezUsenik JETVol.3(2010) Issue3

    1

    11

    1j

    mk j i j

    j i j j m j J i

    i jjij

    w k u k c d k c k

    u kw k

    (1.04)

    In(1.04)expressions

    1 2

    1

    , 1,2,3, ,j j

    j n

    nj

    j

    w k w k w k j n

    w k w k w k w k

    (1.05)

    and

    1 2

    1

    , 1,2,3, ,i j i j

    i j m

    j j m j i j

    i

    u k u k u k j n

    u k u k u k u k

    (1.06)

    arenormalizedweightsofevery jw k and i ju k for , 1,2,3, ,jk j n and 1,2, ,i m ,i.e.

    1jj J

    w k ,

    1

    1m

    i ji

    u k .

    Considering(1.03),(1.05)and(1.06),formula(1.04)hasthesimplestbutapplicableform

    1

    j

    mk

    j j i j i j

    j J i

    c w k k u k c k

    (1.07)

    Formula

    (1.07)

    represents

    the

    deterministic

    quasidynamic

    model,

    depending

    on

    data

    not

    knowninexplicit,butonlyinestimatedform.

    This estimation contains expert knowledge, so the experts have to take an active part in the

    everypartofdecisionprocess.

    Fromthispointofview,wecanwritetheformula(1.07)intheform:

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    17/80

    JET 1

    Fuzzyapproachtooptimiseenergycapacitiesforpermanentandreliableelectritysupply

    1

    2

    1

    1 1 1 1 1 1 2 1 2 1 1 1

    2 2 1 2 1 2 2 2 2 2 2 2

    1 1 2 2

    j

    n

    mk

    j j i j i j

    j J i

    k

    m m

    k

    m m

    k

    n n n n n n m n m n

    c w k k u k c k

    w k k u k c k u k c k u k c k

    w k k u k c k u k c k u k c k

    w k k u k c k u k c k u k c k

    1 21 1 1 2 2 2

    nk k k

    n n nc k k c k k c k k

    AgraphicrepresentationisinFigure1.

    Figure1:Dynamicprocessinformula(1.07)3 FUZZY MODEL

    Everypredictionofeventsandespeciallytheirfuturevaluesisnotprecise;itdependsonmany

    circumstances,moreorlessknowninadvance.Thequasidynamicdeterministicmodelgivenby

    formula(1.07)

    is

    dependent

    on

    the

    precision

    of

    data.

    All

    numerical

    values

    in

    the

    future

    are

    not

    precise;theyareonlyestimated.Ofcourse,wedonotknowthepriceofelectricalpowerten

    yearsinthefuture.Inthistimeofglobalrecession,wedonotknowwithcertaintythepriceof

    electrical power for one year in future, to say nothing of five or more years. However,

    vagueness in prediction is appropriate for using fuzzy logic, Ross, [3]. We can a build fuzzy

    system to calculate (better: to predict) the price of energy power with regard to request for

    optimizingenergycapacitieswithapermanentandreliableelectricitysupply.

    Analysis of our problem has assumed that the consequences of decisions are known with

    certainty and are reversible. However, these assumptions are not factually correct for many

    problems.Resourceusedecisionsconcernthefutureaswellaspresent,andthefuturecannot

    beknownwithcertainty,Permanandall,[4].

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    18/80

    1 JET

    JanezUsenik JETVol.3(2010) Issue3

    Resourcestocksaresubjecttomanystochasticeffects.Themethodsofdecisiontheorycouldbe

    used to compute optimal management strategies in the presence of uncertainty. Dynamic

    decisiontheory,which isobviouslyrequiredforresourcedecisions, ismathematicallydifficult.

    Numerical

    computation

    of

    optimal

    policies

    encounters

    the

    curse

    of

    dimensionality,

    Levin

    et

    al.,

    [5].

    Inprinciple,everysystemcan bemodeled,analyzedandsolvedbymeansof fuzzy logic.

    Due to the complexity of the given problem and the subjective decisions of customers,

    which are better described with fuzzy reasoning, it is advisable to introduce a fuzzy

    approach. Some basic solutions of the control problems using fuzzy reasoning were

    presented inthe paperUsenik,Bogataj,[6].For someproblemsaboutthe controlofthe power supply system, we propose fuzzy reasoning. It is obvious that decision makers,

    whensolvingeverydayproblems incontrolofsystems,operatewithfuzzy logic,Terano,

    [7].

    Ourproposed

    fuzzy

    model

    will

    be

    based

    on

    these

    assumptions,

    whereby

    the

    usual

    five

    stepshavetobetaken:fuzzificationofthe inputand outputvariables,applicationofthe

    fuzzy operator in the antecedent, implication from the antecedent to the consequent,

    aggregationofthe consequentsacrossthe rules,and defuzzification.

    3.1 Fuzzy System Structure

    Thefuzzysystemstructure identifiesthefuzzy logic inferenceflowfromthe inputvariablesto

    theoutputvariables.Thefuzzificationintheinputinterfacestranslatesanaloginputsintofuzzy

    values.Thefuzzy inferencetakesplace inruleblockswhichcontainthe linguisticcontrolrules.

    Theoutputs

    of

    these

    rule

    blocks

    are

    also

    linguistic

    variables.

    The

    defuzzification

    in

    the

    output

    interfacestranslatesthemintoanalogvariables,Usenik,J.[8],FuzzyTech,[9].

    Thefollowingfigureshowsthewholestructureofthisfuzzysystem including input interfaces,

    ruleblocksandoutputinterfaces.Theconnectinglinessymbolizethedataflow.

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    19/80

    JET 1

    Fuzzyapproachtooptimiseenergycapacitiesforpermanentandreliableelectritysupply

    Figure2:StructureoftheFuzzyLogicSystem

    3.2 Fuzzification

    In the fuzzificationphase,wehave todefine fuzzysets for all fuzzyvariables (inputand

    output) and define their membership functions. Linguistic variables are used to translate

    realvaluesintolinguisticvalues.Thepossiblevaluesofalinguisticvariablearenotnumbersbut

    socalledlinguisticterms.

    For everyfuzzyset and for everyfuzzyvariable,wehavetocreatemembershipfunctions.

    Linguistic variables have to be defined for all input, output and intermediate variables. The

    membershipfunctionsaredefinedusingonlyafewdefinitionpoints.

    For the inputfuzzyvariableN_PART1,theycouldbeasshowninFigure3.Onthe xaxis,we

    measurethe variablenuclearpart_1giveninpercenteages(relativenumbers)from0to

    50%,dependingonour data.On the yaxis,wemeasuremembership for everypossible

    nuclearpart_1and for everyfuzzysetLOW,MEDIUMand HIGH.

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    20/80

    20 JET

    JanezUsenik JETVol.3(2010) Issue3

    Figure3:InputfuzzyvariableN_PART1andtheirmembershipfunctions

    The outputof the fuzzy variable PRICE couldbeas shown inFigure4.On the xaxis,we

    measure the variablepricegiven inmoneyunits; in thisexample,euros from0 to60

    EUR,dependingonourdata.On theyaxis,wemeasuremembership for everypossible

    priceand foreveryfuzzyset LOW,MEDIUMandHIGH.

    Figure4:OutputFuzzyvariablePRICEandtheirmembershipfunctions

    The output of the fuzzy process can be the logical union of two or more fuzzy

    membershipfunctionsdefinedinthe universeofdiscourseofthe outputvariable.

    3.3 Rule Blocks

    Theruleblockscontainthecontrolstrategyofafuzzylogicsystem.Eachruleblockconfinesall

    rulesforthesamecontext.Acontext isdefinedbythesameinputandoutputvariablesofthe

    rules.

    The Ifpartof the rulesdescribes the situation forwhich the rulesaredesigned,while the

    thenpartdescribestheresponseofthefuzzysysteminthissituation.Thedegreeofsupport

    (DoS)isusedtoweigheachruleaccordingtoitsimportance.

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    21/80

    JET 21

    Fuzzyapproachtooptimiseenergycapacitiesforpermanentandreliableelectritysupply

    Theprocessingof therulesstartswithcalculating theifpart.Theoperator typeof therule

    block determines which method is used. The generalization of the Boolean and is the

    minimumoperatorandageneralizationoftheBooleanoristhemaximumoperator.

    The computationof fuzzy rules is called fuzzy inference and consists of three steps: the

    application of the fuzzy operator (and/or) in the antecedent, the implication from the

    antecedent to the consequent and the aggregation of the consequentsacross the rules.

    The first step determines the degree to which the complete if part of the rule is

    satisfied.Inthisstep,weusuallyuse the operatorORfor the minimumand theoperator

    AND for the maximum.The secondstepmakesuse ofthe supportofthe preconditionto

    calculate the support of the consequence. Finally, the aggregation step determines the

    maximumdegreeofsupportfor eachconsequence.

    In our work, we applied FuzzyTech software. In accordance of this software tool, the

    ruleswere

    automatically

    created.

    Forexampleintheruleblock03,wehavesixrules:

    1. if PRICE_T3isLOWandTIME3isLOW,thenPRICE3isLOW

    2. if PRICE_T3isLOWandTIME3isHIGH,thenPRICE3isMEDIUM

    3. if PRICE_T3isMEDIUMandTIME3isLOW,thenPRICE3isLOW

    4. if PRICE_T3isMEDIUMandTIME3isHIGH,thenPRICE3isHIGH

    5. if PRICE_T3isHIGHandTIME3isLOW,thenPRICE3isMEDIUM

    6. if PRICE_T3isHIGHandTIME3isHIGH,thenPRICE3isHIGH

    3.4 Defuzzification

    Defuzzification is the conversion of a given fuzzy quantity toaprecise crisp quantity. In

    literature, at least seven methods, Usenik [10], are common for defuzzifying: max

    membership principle, centroid method, weighted average method, meanmax

    membership,centreofsums,centreofthe largestarea,first(last)ofmaxima.

    Differentmethodscanbeusedforthedefuzzification,resultingeither intothemostplausible

    result or the best compromise. The best compromise is produced by the methods CoM

    (Center of Maximum), CoA (Center of Area) and CoA BSUM, a version especially for efficient

    VLSIimplementations.

    The

    most

    plausible

    result

    is

    produced

    by

    the

    methods

    MoM

    (Mean

    of

    Maximum)andMoMBSUM,aversionespeciallyforefficientVLSI implementations,Ruspiniet

    all.,[11],FuzzyTech,UsersManual,[9].

    The resultfromthe evaluationoffuzzyrules isfuzzy.Defuzzification isthe conversionof

    a given fuzzy quantity to a precise crisp quantity. The most frequently method used in

    praxis is CoM defuzzification (the CenterofMaximum). As more than one output term

    can be accepted as valid, the defuzzification method should be a compromise between

    differentresults.The CoM methoddoesthisbycomputingthe crispoutputasaweighted

    average of the term membership maxima, weighted by the inference results. CoM is a

    kind

    of

    compromise

    between

    the

    aggregated

    results

    of

    different

    terms

    j

    of

    a

    linguistic

    outputvariableand isbasedonthemaximumYjofeachtermj.

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    22/80

    22 JET

    JanezUsenik JETVol.3(2010) Issue3

    4 NUMERICAL EXAMPLE

    4.1 Numerical example using deterministic approach

    Asan

    example

    in

    Fabijan,

    Predin,

    [1],

    an

    estimate

    for

    reference

    price

    in

    Slovenia

    is

    done

    with

    regardtothenexttenyears.Thecontrollercalculateswiththreetimepoints:thefirst isnext

    year,thesecondisforthenextthreeyearsandthethirdisfornexttenyears,i.e. 1,3,10j j

    k

    are 1 3,k k and 10k .

    Bankinterestcouldbetakenasfixedforallthreetimepoints:

    1 3 10 4%p k p k p k ,

    1 3 10 0,04i k i k i k ,

    1 3 100,04

    0,038461,04

    d k d k d k and

    1 3 10 0 96154k k k , .

    Fourtypesofelectricpowerplantsareconsidered:nuclearpowerplants,coalpowerplants,gas

    powerplantsandhydropowerplants.ForEurope,wecanpredict:a)fornuclearpowerplants

    theprice

    of

    35/MWh

    in

    the

    first

    time

    point,

    the

    price

    of

    40/MWh

    in

    second

    time

    point

    and

    thepriceof50/MWhinthethirdtimepoint,b)forthermopowerplantsthepriceof45/MWh

    inthefirsttimepoint,thepriceof50/MWhinsecondtimepointandthepriceof70/MWhin

    thethirdtimepoint,c)forgaspowerplantsthepriceof60/MWh inthefirsttimepoint,the

    priceof65/MWhinsecondtimepointandthepriceof85/MWhinthethirdtimepointandd)

    forhydropowerplantsthepriceof35/MWh inthefirsttimepoint,thepriceof40/MWhin

    second time point and the price of 60/MWh in the third time point. In our notations this

    meansfollowingdata(ineuros):

    a) fornuclearpowerplants i=1: 1 1 35c k , 1 3 40c k and 1 10 50c k ,

    b) forthermopowerplantsi=2:

    2 145c k ,

    2 350c k and

    2 1070c k ,

    c) forgaspowerplants i=3: 3 1 60c k , 3 3 65c k and 3 10 85c k ,

    d) forhydropowerplants i=4: 4 1 35c k , 4 3 40c k and 4 10 60c k .

    FromtheOEDCdata,weassumethat inthefirsttimepointtheratiobetweennuclearpower

    plantsversusthermalpowerplantsversusgaspowerplantsversushydropowerplantswillbe

    23% : 39% : 25% : 13%. Following expression (1.05), this means 1 1 0,23u k , 2 1 0,39u k ,

    3 1 0,25u k and 4 1 0,13u k .Inthesecondtimepoint,theratiobetweennuclearpowerplants

    versusthermalpowerplantsversusgaspowerplantsversushydropowerplantswillbe20% :

    38% : 30% : 12%. Following expression (1.05), this means 1 3 0,20u k , 2 3 0,38u k ,

    3 3 0,30u k and 4 3 0,12u k .Inthethirdtimepoint,theratiobetweennuclearpowerplants

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    23/80

    JET 2

    Fuzzyapproachtooptimiseenergycapacitiesforpermanentandreliableelectritysupply

    versusthermalpowerplantsversusgaspowerplantsversushydropowerplantswillbe15%:

    36% : 38% : 11%. Following expression (1.05), this means 1 10 0,15u k , 2 10 0,36u k ,

    3 10 0,38u k and 4 10 0,11u k .

    Of course, 1 1 2 1 3 1 4 1 1u k u k u k u k , 1 3 2 3 3 3 4 3 1u k u k u k u k and

    1 10 2 10 3 10 4 10 1u k u k u k u k .

    Thesourcestructureischangedslowlyandthereforeincreasestheinfluenceoffirstyearand

    decreasesalllatertimesintheratio50%:30%:20%infirst,secondandthirdtimepoint,

    respectively.Following(1.04),wehave 1 0,5w k , 3 0,3w k and 10 0,2w k ;

    1 3 10 1w k w k w k .

    YEAR INTER.RATE PRICENUCL PRICECOAL PRICEGAS PRICEHYDRO WEIGHTNUCL WEIGHTCOAL WEIGHTGAS WEIGHTHYDRO WEIGHTOFTIME

    1 4 35 45 60 35 0.23 0.39 0.25 0.13 0.5

    3 4 40 50 65 40 0.20 0.38 0.3 0.12 0.3

    10 4 50 70 85 60 0.15 0.36 0.38 0.11 0.2

    1.0Table1:Datafornumericalexample

    Fromformula(1.07)weobtain:

    1

    3

    10

    1

    1 1 1 1 1 1 2 1 2 1 3 1 3 1 4 1 4 1

    3 3 1 3 1 3 2 3 2 3 3 3 3 3 4 3 4 3

    10 10 1 10 1 10 2 10

    j

    mk

    j j i j i j

    j J i

    k

    k

    k

    c w k k u k c k

    w k k u k c k u k c k u k c k u k c k

    w k k u k c k u k c k u k c k u k c k

    w k k u k c k u k c 2 10 3 10 3 10 4 10 4 10k u k c k u k c k

    Thenumericalresultis:

    1

    3

    10

    0,5 1,04 0,23 35 0,39 45 0,25 60 0,13 35

    0,3 1,04 0,20 40 0,38 50 0,30 65 0,12 40

    0,2 1,04 0,15 50 0,36 70 0,38 85 0,11 60 45,06

    c

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    24/80

    2 JET

    JanezUsenik JETVol.3(2010) Issue3

    On the basis of all predictions data and formula (1.07) for the deterministic quasidynamic

    model,weobtainedtheestimatedreferencepriceofelectricenergyinthismomentinthevalue

    of45.06/MWh.

    4.2 Numerical example using fuzzy approach

    Usingthefuzzyapproachforthisdeterministicquasidynamicmodel,withequaldatawegeta

    final price of c=45.00 EUR. This result is very good and is based on the suitable form of

    membershipfunctionsinthefuzzyvariablesandonsuitableruleblocks(ifthenrules).

    Theerrorissmall:just0.13%fordatafromTable1.

    InTable2,wecanseetheresultininteractivedebugmodeofsoftwareFuzzyTech,ver.3.55.

    Table2:Resultofinteractivedebugmode

    5 CONCLUSION

    Thefuzzyapproach isverysuccessfulwithrealproblems,especially incasesofambiguityand

    imprecise data. Predicting the prices of electrical energy for some years in advance is not

    explicit;thisaveryappropriatesubjectforfuzzylogicthinking.Allpredictionsforthefutureare

    just estimates, more or less good, depending on thequantity of the relevant data, but very

    sensitive for every change of variable conditions in the prediction system. The electricity

    market, both in Europe and in Slovenia, depends on many variables; good and precise

    prediction

    of

    them

    is

    nearly

    impossible.

    A

    fuzzy

    system

    is,

    at

    its

    core,

    founded

    on

    vagueness,

    inaccuracy, approximation and with this suitable for description events in the future by the

    methodofcommonsense.

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    25/80

    JET 2

    Fuzzyapproachtooptimiseenergycapacitiesforpermanentandreliableelectritysupply

    Requiringprecision inengineeringmodelsandproducts translates to requiringhighcostand

    long leadtimes inproductionanddevelopment.Forothersystems,expense isproportionalto

    precision:moreprecisionentailshighercost.Whenconsideringtheuseoffuzzylogicforagiven

    problem,

    an

    engineer

    or

    scientist

    should

    ponder

    the

    need

    for

    exploiting

    the

    tolerance

    for

    imprecision,Ross,[3].

    Intheprocessofbuildingthefuzzysystem,wehadtoincludesomequalifiedexpertsandmake

    an expert model. The expert system has separate domainspecific knowledge and problem

    solving methodology and includes the concepts of the knowledge base and the inference

    engine.Theexpertsystemshouldthinkthewaythehumanexpertdoes,Zimmermann,[12].

    However, itcanbe said that fuzzyapproach ishighlyefficient for theoptimizationofenergy

    capacitieswithcriterialfunctionofpermanentandreliableelectricitysupply. InSection2,the

    developedfuzzymodelforestimatingthepriceofelectricalenergyforthecomingyearsworks

    quitewellintheambiguousconditionsoftheenergymarket.Buildingafuzzymodelisjustone

    stepin

    the

    creation

    of

    the

    relevant

    system;

    the

    robustness

    and

    the

    quality

    of

    algorithm

    depend

    onmanyexamples.Forthisreason,theusageofneurallearningisrequired;thisisthenextstep

    infutureresearchformakingtherelevantexpertsystem.

    References

    [1] Fabijan, D., Predin, A.: Optimal energy capacities and technologies for permanent andreliable electricity supply, considering risk control, JET Journal of Energy Technology,

    Volume2(2009),p.p.6984.

    [2]Harris,

    J.:

    Fuzzy

    Logic

    Applications

    in

    Engineering

    Science,

    Published

    by

    Springer,

    P.O.

    Box

    17,

    3300AADordrecht,TheNetherlands,2006.

    [3] Ross, J.T.: Fuzzy Logicwith EngineeringApplications, 2nd ed., JohnWiley Sons Ltd, TheAtrium,SouthernGate,Chichester,WestSussexPO198SQ,England,2004,reprinted2005,

    2007.

    [4] Perman, R., Ma Y., McGilvray, J., Common M.: Natural Resource and EnvironmentalEconomics,PearsonEducationLimited,EdinburghGate,Harlow,EssexCM202JE,England,

    1999.

    [5]Levin,S.A.,Hallam,T.G.,Gross,L.,J.:AppliedMathematicalEcology,SpringerVerlagBerlinHeidelberg

    New

    York,

    1989.

    [6]Usenik, J.,Bogataj,M.:Afuzzysetapproachfora locationinventorymodel.Transp.plan.technol.,2005,vol.28,no.6,pp.447464.

    [7]Terano,T.,Asai,K.,Sugeno,M.:FuzzySystemsTheoryanditsAplicactions,AcademicPress,Inc.,SanDiego,London,1992.

    [8]Usenik, J.:FuzzyApproach inprocessofmultipleattributedecisionmaking, JET JournalofEnergyTechnology,Volume1(2009),p.p.4358.

    [9]FuzzyTech,Usersmanual,2000,INFORMGmbH,InformSoftwareCorporation.[10]Usenik,J.:Mathematicalmodelofthepowersupplysystemcontrol,JETJournalofEnergy

    Technology,Volume2(2009),p.p.1734.

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    26/80

    2 JET

    JanezUsenik JETVol.3(2010) Issue3

    [11] Ruspini, E. H., Bonissone, P. P., Pedrycz, W. (Editors in Chief): Handbook of FuzzyComputation,InstituteofPhysicsPublishing,BristolandPhiladelphia,1998.

    [12] Zimmermann, H. J.: Fuzzy set theory and its applications, 4th ed., Kluwer AcademicalPublishers,

    Norwell,

    Massachusetts,

    2001.

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    27/80

    JET 2

    JETVolume3(2010),p.p.2740

    Issue3,August2010

    http://www.fe.unimb.si/si/jet.html

    ISOLATED BI-DIRECTIONAL DC-DC

    CONVERTER

    IZOLIRANI DVOSMERNI DC-DC

    PRETVORNIK

    FrancMihaliandAlenkaHren

    1

    Keywords:Switchedmodepowersupply,BidirectionalDCDCconvertercircuit,PulseWidth

    Modulation(PWM)

    Abstract

    This paper presents principles of operation and safe startup procedures for an isolated bi

    directionalDCDCconverterinbuckandboostmodes.Thisconverterhasbeendevelopedasa

    partofamultifunctional4kWpowersupplysystemthatusesahighDClinkvoltage(450V).The

    isolated bidirectional DCDC converter can charge 28 V batteries and supply auxiliary low

    voltageDC loads.Additionally,the isolatedbidirectionalconvertercanalsodrawpower from

    the batteries or from a trucks driven alternator to maintain the high voltage DClink.

    Modulationstrategiesandstartupproceduresof thisconverterhavebeenvalidatedbyusing

    the Matlab SymPowerSystems Toolboxes and, finally, they have been also experimentally

    verified.

    Correspondingauthor:Assoc.Prof.FrancMihali,Tel.:+38622207331,Fax:+38622207315,

    Mailingaddress:UniversityofMaribor,FacultyofElectricalEngineeringandComputerScience,

    Smetanova17,2000Maribor,SLOVENIA,Emailaddress:[email protected] Mailing address: University of Maribor, Faculty of Electrical Engineering and Computer

    Science,Smetanova17,2000Maribor,SLOVENIA,Emailaddress:[email protected]

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    28/80

    2 JET

    FrancMihaliandAlenkaHren JETVol.3(2010) Issue3

    Povzetek

    VprispevkustapredstavljenaprincipdelovanjainvarenzagonizoliranegadvosmernegaDCDC

    pretvornikavdelovnemreimunavzdol innavzgor.Tapretvornikjebilrazvitkotsestavnidel

    vefunkcionalneganapajalnegasistemamoido4kWzvisokonapetostnoenosmernozbiralko

    (450 V). Izolirani dvosmerni pretvornik lahko polni 28V baterije in napaja zunanje nizko

    napetostneenosmerneporabnike.eve,tapretvornik lahkorpaenergijo izzunanjihbaterijali iz alternatorja tovornega vozila in tako napaja visoko napetostno enosmerno zbiralko.

    Modulacijski principi in zagonske procedure pretvornika so bili najprej razviti in preverjeni s

    pomojoraunalnikegaprogramaMatlabSymPowerSystemsinnatoeksperimentalnopotrjeni.

    1 INTRODUCTION

    Isolatedbi

    directional

    DC

    DC

    converters

    are

    commonly

    used

    in

    electronic

    equipment

    such

    as

    uninterruptible power supplies (UPS), electric vehicles and as frontend converters for

    distributedpowersystemapplications,amongothers. Inallapplications, thekey featuresare

    thesafetyofthesystemoperationandoperationatthehighestpossibleefficiency.Nowmore

    thanever,wehavetofacetheproblemsofenergysupply,sincetheconsumptionofoilfuelsis

    continuallyrisingandtheirpricesareunstable.Therefore,thismustbethechallengeforallRD

    centresthroughouttheworld:todevelopmodernandnewpowersupplysystemsoperatingat

    thehighestpossibleefficiencies[1],[2].

    Ablockdiagramofthemultifunctionalpowersupplysystem(wherethedieselenginesupplying

    theDClinkcanbereplacedwithanyalternativeenergysources,e.g.,solar,wind,fuelcellsetc.)

    isshowninFigure1.

    Figure1:Blockdiagramofthemultifunctionalpowersupplysystem.

    An isolatedbidirectionalDCDCconverter isthecombinedconfigurationofabatterycharging

    circuitandDCDC convertercircuit. Itallowspower flow inbothdirections, i.e., towards the

    batteryandfromthebattery,andhasawiderangeofapplicationsfromuninterruptedpower

    supplies,batterycharginganddischarging systems,aerospaceapplications toauxiliarypower

    supplies for hybrid electrical vehicles. Possible implementations of bidirectional converters

    with fullbridge topologyusing resonance [4], soft switchingorhard switching [5]havebeen

    reported in literature. Each implementation has disadvantages, including higher component

    ratings,increasedcircuitcomplexity,lossofswitchingsignalsatlightloadsforsoftswitchcircuitetc. In thispaper, thebidirectional fullbridgeDCDCconverter topology (shown inFigure2),

    usinghardswitchPWMwithemphasisonsafe startupprocedures inboostandbuckmode

    operation,willbediscussed.

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    29/80

    JET 2

    IsolatedbidirectionalDCDCconverter

    2 ISOLATED BI-DIRECTIONAL CONVERTER DESCRIPTION

    BidirectionalDCDC converters are used to interconnect differentDC voltage buses and to

    transfer

    energy

    between

    them.

    In

    most

    applications,

    in

    addition

    to

    the

    wide

    input

    and

    output

    voltagerangeoperation,ahighvoltagetransferratioisalsorequired(e.g.,switchingfrequency

    fS=25kHz,DClinkvoltageUDC=450V,batteryvoltageUBat=28Vandnominaloutputpower

    Po=4kW). Insuchacase,adirectbidirectionalconverter isnotanappropriateoption,since

    theconverterwouldbeoperatedwithasmalldutyratioinbuckmodeoperationoralargeduty

    ratioinboostmodeoperation.Theserequirementscausehighcurrentripple;consequently,the

    componentswithhigherratingshavetobechosenandtheefficiencyofthepowersystemwill

    be low, due to the increase in the switching losses. Therefore, for such an application, an

    isolatedbidirectionalconverterhas tobe implemented.Galvanic isolation isalsoneeded for

    safety concerns and electromagnetic compatibility reasons. The use of such isolated bi

    directionalDCDCconvertershasthepotentialtoimprovetheoverallefficiency,fueleconomy,

    reliabilityandsafetyofthemultifunctionalpowersupplysystem.

    2.1 Isolated DC-DC Buck Converter

    LikeinadirectDCDCbuckconverter(showninFigure2),theoutputvoltageinanisolatedbuck

    converterisalsocontrolledbythedutyratioD=ton/TS=ton.fS(dutyratioisalwaysintherange

    0

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    30/80

    0 JET

    FrancMihaliandAlenkaHren JETVol.3(2010) Issue3

    (a)

    (b)

    Figure3:(a)Thedrivingsignalsinbuckconverter.(b)Blockdiagramofthecontrolschemeforthebuckmodeofoperation.

    TheparametersofbothPIcontrollershavebeendesignedbyusingRoot LocusMethod and

    smallsignal CCM converter transfer functions [7]. The startup of the isolated DCDC buck

    converterwithnoloadandfulltohalfloadoperationisshowninFigure4(a).

    0 0.1 0.2 0.3 0.4 0.50

    10

    20

    30

    UBattery

    [V]

    Start-up + full load 50%

    0 0.1 0.2 0.3 0.4 0.50

    50

    100

    150

    IBattery

    [A]

    0 0.1 0.2 0.3 0.4 0.50

    1000

    2000

    3000

    4000

    PLoad

    [W]

    (a)

    0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.5525

    26

    27

    28

    29

    30

    UBattery[

    V]

    Output voltage - zoom

    (b)

    Figure4:(a)Startup,fulltohalfloadoperationandshutdownoftheisolatedbidirectionalDCDCconverterinbuckmode:outputvoltage(top),outputcurrent(middle)andoutputpower

    (bottom).(b)Outputvoltageiswithinthe5%limits.Itisevidentthatwiththechosencontrolschemetheoutputvoltageremainswithinthe5%of

    the28Vevenat the fullloadoperationat0.15 s (seeFigure4(b)).At50% load (from0.3s

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    31/80

    JET 1

    IsolatedbidirectionalDCDCconverter

    0.4s), the results are even better, which confirms the efficiency of the cascade control

    structure.Itisalsoevidentthat,whentheshutdownoftheconvertersoccursatfullload,the

    outputvoltagedecreasesrapidlyandwithoutovervoltagespikes.

    2.2 Isolated DC-DC Boost Converter

    The same configuration (shown in Figure 2) can operate in the opposite direction, i.e., it can

    boostthebatteryvoltagetoahighDClinkvoltagewhentheMOSFETsfullbridgeconverter is

    drivenintheappropriatemanner,dependingonthedutyratioDandtransformersturnsration

    as:

    (1 )

    Bat

    DC

    nUU

    D (2)

    Like

    a

    direct

    boost

    converter,

    an

    isolated

    boost

    converter

    also

    has

    a

    start

    up

    problem.

    At

    the

    beginning, the bulk input capacitors are empty (UCo = 0V and UDC = 0V); if we start the

    converter in boost mode, the control unit will put the maximum duty ratio to the MOSFETs

    switches to keep pumping energy into the inductor Lk. Since the output voltage is zero, the

    inductorcannotbedischarged;asaresult,the inductorwillbesaturatedandthecurrentwill

    (theoretically)gotoinfinity.Ifoverloadconditionoccurs(orimmediateshutdown),onecannot

    simplyturnoffalltheswitches,becausetheenergystoredintheinductorcannotgoanywhere,

    anditwillgeneratehighvoltagespikes,whichdestroytheswitches.

    Onepossible(and lowcost)solutionforsolvingproblemsatthestartupprocedureistousea

    chargingresistor forthe inputcapacitorCo (RP),asshown inFigure2 (thesamecouldalsobe

    appliedto

    the

    bulk

    capacitor

    CDC

    at

    the

    high

    voltage

    terminals

    through

    an

    adequate

    charging

    resistor). The charging currents are limited through the resistance, but when isolation is lost

    therearecertainlossesandthecircuitisnotprotectedagainstoverloadandshutdownduring

    theoperation.

    At high power levels, output rectifiers (in our case D1D4 and D2D3) in continuouscurrent

    mode(CCM)boostconvertershaveseverereverserecoveryproblemsduetothehighrectifier

    forwardcurrentand the high output voltage.Asa result, the activeswitches encounter huge

    turnon current spikes, which are not only responsible for high turnon loss but also cause

    severeelectromagneticinterference(EMI)noise.Toreducetheswitchinglosses,theoperating

    frequency of the CCMboost converter must be reduced. However, reducing the operating

    frequency

    is

    not

    a

    good

    solution

    in

    terms

    of

    power

    density,

    cost

    and

    efficiency.

    An

    effective

    solution to alleviate rectifier reverserecovery problems is proposed in [8]. By using only one

    additionalrectifierandcoupledwindingontheboostinductor,thecurrentthroughtheoriginal

    rectifiercanbesteeredtoanewbranch.Withproperdesign,thecurrentthroughtheoriginal

    rectifiercanbereducedtozerobeforetheboostswitchturnson.

    A similar solution for the aforementioned problems during the startup procedure and shut

    downprotection,inisolatedbidirectionalDCDCconverterrunninginboostmodeisshownin

    Figure 2, where acouplingwinding is added to the inductor Lkand an additionaldiode DS1 is

    connected to the output terminal. First, input capacitor Co must be charged through the

    charging resistor Rp (with auxiliary contactor K

    2 on). When the input capacitors voltage has

    reachedthebatteryvoltage C Bat U U ,themaincontactorK1canbeturnedon.Nowthestartup

    procedurecanbegin:thedrivingpulsesfortheMOSFETsareshowninFigure5(a)withtheduty

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    32/80

    2 JET

    FrancMihaliandAlenkaHren JETVol.3(2010) Issue3

    ratiofrom0to50%forbothlegs(whenthestartingreferencevoltagereachesUStart,Ref=1)and

    theoutputvoltageis:

    2

    Bat

    DC

    U

    U nD

    (3)

    With thisscheme, theconvertercanoperate inflybackmodeduringstartup,and transfer

    theenergystoredinthemaininductorLktothebulkcapacitorCDCattheDClinkcircuit.Asina

    buck converter,whole system has inner, currentPIcontroller for theprimary current Ip and

    outer,voltagePIcontrollerfortheDClinkvoltageUDC,asshowninFigure5(b).Theparameters

    ofbothPIcontrollershavebeendesignedbyusingtheRootLocusMethod.ThedesignofthePI

    current controller parameterswas performed using the transfer function that describes the

    relationshipbetweentheinductorcurrentandthedutyratio.

    (a)

    (b)

    Figure5:(a)Startupdrivingsignalsinboostconverter.(b)Blockdiagramofthecontrolschemeforboostmodeofoperation.

    Now, theentiresystem is ready for investigation:PWMdrivingpulses foreachMOSFETs leg,

    inductor voltage and output voltage of the boost converter (i.e., secondary voltage of the

    transformer)areshowninFigure6(a).Itisevidentthattheinductorvoltageisbuildingupina

    positivedirectionwhenM1andM4areconducting;thisvoltageisnegative,whenM2andM3are

    active. As seen in Figure 6(a), the output voltage of theDCDC boost converter US (i.e. the

    secondaryvoltageofthetransformer)isalternative;therefore,itcanbetransformeduptothe

    highvoltageprimaryside,where it isrectified throughthebodydiodesD1 toD4ofthe IGBTs

    fullbridge

    converter.

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    33/80

    JET

    IsolatedbidirectionalDCDCconverter

    0.08 0.08 0.08 0.08 0.08 0.0801 0.0801 0.0801 0.0801 0.08010

    0.5

    1

    P

    WMM1,PWMM3

    Driving pulses: start-up

    M1

    M3

    0.08 0.08 0.08 0.08 0.08 0.0801 0.0801 0.0801 0.0801 0.08010

    0.5

    1

    PWMM2,PWMM4 M

    2

    M4

    0.08 0.08 0.08 0.08 0.08 0.0801 0.0801 0.0801 0.0801 0.0801-20

    -10

    0

    10

    20

    ULk,Us

    [V]

    Inductors voltage

    ULk

    Us

    (a)

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.350

    150

    300

    450

    UDC-Linka

    [V]

    Start-up + min. load

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.350

    50

    100

    150

    200

    IBat

    [A]

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.350

    1000

    2000

    3000

    4000

    5000

    PIN,POUT

    [W] P

    IN

    POUT

    (b)

    Figure6:(a)Startupoftheboostconverter:drivingpulsesineachMOSFETsleg,inductorvoltage

    and

    output

    voltage

    of

    the

    converter

    (US).

    (b)

    Start

    up

    operation

    with

    minimal

    load:

    outputvoltage(top),inputcurrent(middle)andinputandoutputpower(bottom).

    Duringthestartup(from0to0.2s),theHVDClinkvoltageincreaseslinearly(seeFigure6(b)),

    even though the input current ILk isdiscontinuous (as shown in Figure7(a)).Notice that the

    boost converter works in flyback mode only during the startup procedure. The coupling

    windingandtheprotectiondiodeDS1donotoperateduringthenormalboostmode.Therefore,

    theadditionalwindingonthemaininductorandappliedprotectiondiodecanbesmall.

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    34/80

    JET

    FrancMihaliandAlenkaHren JETVol.3(2010) Issue3

    0.19 0.19 0.19 0.19 0.1901 0.1901 0.1901 0.1901 0.1901 0.1901

    -100

    0

    100

    Up

    [V]

    Boost converter: start-up

    0.19 0.19 0.19 0.19 0.1901 0.1901 0.1901 0.1901 0.1901 0.19010

    20

    40

    UDS4

    [V]

    0.19 0.19 0.19 0.19 0.1901 0.1901 0.1901 0.1901 0.1901 0.19010

    1

    2

    IDs1

    [A]

    0.19 0.19 0.19 0.19 0.1901 0.1901 0.1901 0.1901 0.1901 0.19010

    4

    8

    1212

    ILk

    [A]

    (a)

    0.46 0.46 0.46 0.46 0.46 0.4601 0.4601 0.4601 0.4601 0.46010

    0.5

    1

    PWMM1

    Driving pulses in boost mode

    0.46 0.46 0.46 0.46 0.46 0.4601 0.4601 0.4601 0.4601 0.46010

    0.5

    1

    PWMM2

    0.46 0.46 0.46 0.46 0.46 0.4601 0.4601 0.4601 0.4601 0.4601-20

    -10

    0

    10

    20

    30

    ULk

    [V]

    Inductors voltage

    (b)

    Figure7:(a)StartupoftheisolatedbidirectionalDCDCconverterinboostmode:primaryvoltage,UDSoftheM4,currentthroughtheprotectiondiodeDS1andmaininductorLk.(b)Normal

    operationoftheisolatedbidirectionalDCDCconverterinboostmode:drivingsignalsandthe

    inductor'svoltage.

    TheoperationofthewholesystemintheboostmodeoperationcanbeobservedinFigure7(b).

    Duringthenormalboostoperation,the inductorsvoltagewaveform isequaltotheULk=UBat

    within the turnon time and then equal to the ULk=UBatUDC/nwithin the turnoff time.As

    predicted,thewholesystem isoperatingstablyduringthestartupwithminimal load(i.e.,for

    safety, there are always minimal load resistances Rp1 and Rp2 connected in parallel to the

    capacitorsterminals;seeFigure2),aswellwithfullload(orhalfload).Furthermore,immediate

    shutdownisnotdangerous(asshowninFigure8(a)andwithcloseexaminationoftheoutput

    high

    voltage

    terminals

    in

    Figure

    8(b)).

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    35/80

    JET

    IsolatedbidirectionalDCDCconverter

    0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.70

    150

    300

    450

    UDC-Linka

    [V]

    Full load 50% + shut-down

    0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.70

    50

    100

    150

    200

    IBat

    [A]

    0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.70

    1000

    2000

    3000

    4000

    5000

    PIN,POUT

    [W]

    PIN

    POUT

    (a)

    0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7420

    430

    440

    450

    460

    470

    480

    UDC-Link

    [V]

    Output voltage - zoo m

    (b)

    Figure8:(a)Steadystateoperationwithfull/halfload:outputvoltage(top),inputcurrent(middle)andinputandoutputpower(bottom).(b)Outputvoltageiswithinthe5%limits.

    Whenovervoltage(orimmediateshutdown)occurs,alloftheMOSFETswitchescanbeturned

    off because the energy stored in themain inductor can find itsway through theprotection

    diodeDS1totheoutputcapacitorCDCwhere it isusedbythe load,asconfirmed inFigure9(a)

    and(b),respectively.

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    36/80

    JET

    FrancMihaliandAlenkaHren JETVol.3(2010) Issue3

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    IDS1

    [V]

    Current through the protection diode

    (a)

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7-800

    -700

    -600

    -500

    -400

    -300

    -200

    -100

    0

    UDS1

    [V]

    Protection diode voltage

    (b)

    Figure9:(a)CurrentthroughtheprotectiondiodeDS1duringstartupandatshutdown.(b)VoltageatprotectiondiodeDS1duringstartupandatshutdown.

    Based on the resulting waveforms in Figure 9(a),(b) the current and voltage rate of the

    protection diode DS1 can be chosen below 10A and 1000V, respectively. For other

    characteristics,theswitchingspeedisveryimportant,whichleadstothedecisionthataShottky

    diode should be used. The dissipation in this diode is limited,whichmeans that no special

    coolingofthedeviceisrequired.

    3 EXPERIMENTAL SETUP AND RESULTS

    In order to verify all the published theoretical background and the simulation results in the

    previoussection,

    an

    experimental

    prototype

    of

    the

    bi

    directional

    DC

    DC

    power

    converter

    proposedinFigure2wasbuiltandispresentedinFigure10.

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    37/80

    JET

    IsolatedbidirectionalDCDCconverter

    Figure10:PrototypeofthebidirectionalDCDCconverter.

    The simulation results, obtained by the exact model of the complete converter within the

    Matlab Simulink (shown in Figure7(a)) and theexperimental results (Figure11) are in good

    agreementduringthestartupoftheboostconverter.Thesystemwasalsotestedunderhigher

    loadconditions; results for UDC=450Vand Po=1000Ware shown inFigure12. It isevident

    thatthesystemisfunctioningstablyandwithinthepresumptionsgivenatthebeginningofthis

    paper.Furtherinvestigations,measurementsandoptimizationsareinprogress.

    Figure11:Experimentalresultsstartupoftheboostconverter:CH1:IDS1(1A/div),CH2:ILk(10A/div),CH3:UDS4(40V/div),CH4:Up(200V/div),timebase(10s/div).

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    38/80

    JET

    FrancMihaliandAlenkaHren JETVol.3(2010)

    Issue3

    Figure12:Experimentalresultssteadystateoftheboostconverter:CH1:ULk(40V/div),CH2:ILk(20A/div),CH3:UDS4(40V/div),CH4:Up(200V/div),timebase(10s/div).

    4 CONCLUSION

    Thenew

    full

    bridge

    topology

    of

    the

    isolated

    bi

    directional

    DC

    DC

    converter

    has

    been

    proposed

    and its safe operation has been discussed. The drawbacks of the conventional converter

    topologiesduring startup inbuckandboostmodesofoperationhavebeenpresented,and

    solutions for safe startupshavebeenproposed.The solutionsarebasedon theadditionof

    couplingwinding to the inductor and anextradiode connected to theoutput terminal. The

    operationoftheproposednew topologyhasbeenverifiedbysimulationsandexperimentally

    validated; the results are in good agreement. Based on this procedure, the building of the

    prototypewasmucheasierwithfewerunexpectedobstaclesandproblems.

    References[1] Tolbert, L.M., Peterson, W.A., Scudiere, M.B., White, C.P., Thesis, T.J., Andriulli, J.B.,

    Ayers,C.W.,Farquharson,G.,Ott,G.W.,Seiber,L.E.: Electronicpower conversion system

    foranadvancedmobilegeneratorset,IEEEIAS2001AnnualMeeting,Chicago,IL,pp.1763

    1768,2001.

    [2] Tolbert,L.M.,Peterson,W.A.,White,C.P.,Thesis,T.J.,Scudiere,M.B.:AbidirectionalDC

    DC converter with minimum energy storage elements, IEEE IAS 2002 Annual Meeting,

    Pittsburg,PA,pp.15721577,2002.

    [3] Virti,P.,Piek,P.,tumberger,B.,Hadiselimovi,M.,Mari,T.:Axialfluxpermanent

    magnet synchronous generators for wind turbine applications,Journal

    of

    Energy

    Technology,vol.2,issue2,pp.6574,2009.

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    39/80

    JET

    IsolatedbidirectionalDCDCconverter

    [4] Krismer,F.,Biela,J.,Kolar,J.W.:AcomparativeevaluationofisolatedbidirectionalDC/DC

    converters with wide input and output voltage range, IEEE 40th Industry ApplicationsConference,2005,vol.1,pp.599606,2005.

    [5] Garcia,O.,Flores,L.A.,Oliver,J.A.,Cobos,J.A.,Pea,J.:Bi

    directional

    DC/DC

    converter

    for

    hybrid vehicles, IEEE36th

    PowerElectronicsSpecialistsConference,2005,pp.18811886,

    2005.

    [6] Usenik, J.: Mathematical model of thepower supply system control, Journal of Energy

    Technology,vol.2,issue3,pp.2946,2009.

    [7] EriksonR.W.,Maksimovi,D.:FundamentalsofPowerElectronics,secondedition,Kluwer

    AcademicPublishers,2001.

    [8] Zhao,Q.,Tao,F.,Lee,F.C.,Xu,P.,Wei.,J.:Asimpleandeffectivemethodtoalleviatethe

    rectifierreverserecoveryproblemincontinuouscurrentmodeboostconverters,IEEETrans.

    PowerElectron.,

    vol

    16,

    pp.

    649658,

    Sept.

    2001.

    Nomenclature

    (Symbols) (Symbolmeaning)

    D dutyratiofS switchingfrequencyn transformersturnsratioton turnontimeoftheswitchTS switchingperiodUBat batteryvoltageUDC DClinkvoltage

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    40/80

    0 JET

    FrancMihaliandAlenkaHren JETVol.3(2010) Issue3

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    41/80

    JET 1

    JETVolume3(2010),p.p.4152

    Issue3,August2010

    www.fe.unimb.si/si/jet.html

    CLEAN COAL TECHNOLOGIES AT

    VELENJE COAL MINE

    ISTE PREMOGOVNE TEHNOLOGIJE NAPREMOGOVNIKU VELENJE

    SimonZavek,LudvikGolob,Janjaula

    Keywords:coal,bestavailabletechnologies,energyefficiency,degasification,capture,transportandstorageofCO2,undergroundgasificationofcoal.

    Abstract

    The importance of coal is growing again after a rather long period in which it was notcompetitiveagainstoilandnaturalgasasanenergyresource.

    Thereare importantreasonsforthis:priceperenergyunit,thedispersionofglobalresourcesand the relationbetweenglobal resourcesandconsumption.ThedevelopmentofCleanCoalTechnologies(CCT),friendliertoenvironment,keepscoalcompetitive.

    Theintroductionandapplicationofnewandmodern,bestavailabletechnologies(BAT)enablekeepingasubstantialpartofpowersupplyincoalcombustionirrespectiveoftheincreasinguseofrenewableresourcesandincreasedenergyefficiency.

    Infuture,

    new

    CCT

    will

    play

    akey

    role

    in

    assuring

    sufficient

    power

    production

    around

    the

    world

    andintheEU.

    AttheVelenjeCoalMine,weareawareoftheproblemsoccurringbecauseofgreenhousegasemissions.Therefore,we launchedaresearchprojectonCCT in2007.Thisproject istoapplythebestavailabletechnologiesthatshouldcontributetomorerationalcoalextraction,bettersafetyatworkandimprovedworkingconditions,aswellassolvingtheenvironmentalproblemsofcoalgases.

    Correspondingauthor:SimonZavek,PhD.,CoalMineVelenje,Tel.:+38638996274,Fax:

    +3863586

    9131,

    Mailing

    address:

    Partizanska

    cesta

    78,

    SI

    3320

    Velenje,

    Email

    address:

    [email protected]

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    42/80

    2 JET

    SimonZavek,LudvikGolob,Janjaula JETVol.3(2010) Issue3

    Thispaperpresentstheplansforthecleanerproduction,preparationandutilizationofcoal.In

    the framework of power generation, these plans enable the conditions for the transfer of

    knowledge,researchresultsandtechnologiesintoworkingpractice.

    Regarding itsdefinition,theconceptofCCT isverywide;however,theresearchprojectattheVelenje Coal Mine consists of three main technologies: Lignite Degasification; the Capture,

    TransportandStorageofCO2;andUndergroundCoalGasification.

    Accomplishing these,we intend to come closer togoalsofCleanCoalTechnologies, thereby

    improvingtheefficiencyandenvironmentalacceptabilityofligniteproduction,preparationand

    use.

    Povzetek

    Po dokaj dolgem obdobju, koje bil premog kot energent v primerjavi z nafto in zemeljskim

    plinomnekonkureneninzaraditegamanjzanimiv,senjegovpomenvzadnjemasuspetvea.

    Razlogovjeve,insicer:cenanaenotoenergije,razlinarazprenostglobalnihzaloginrazmerje

    medsvetovnimizalogami inporabo.Prednostpredkonkurentomamuzagotavljarazvojnovih,

    ekoloko bolj prijaznih tehnologij uporabe premoga, tako imenovanih istih premogovnih

    tehnologij (Clean Coal Technologies). Zaradi uvajanja in uporabe novih modernih tehnologij

    (BAT)bo, kljub veji rabiobnovljivih virov in vejienergetskiuinkovitosti,mogoeeprecej

    asaohranjati znatendeleoskrbe zelektrinoenergijo izpremoga.Nove iste premogovne

    tehnologijebodovbodoe igralekljunovlogoprizagotavljanjuzadostnihkoliinproizvedene

    elektrineenergijetakoposvetukottudivEUindoma.

    KersenaPremogovnikuVelenjezavedamoproblemov,kijihpredstavljajoemisijetoplogrednihplinov (TGP), smo e leta2007ustanovili razvojniprojekt, kije ciljno in razvojnonaravnan v

    aplikacijo najboljih tehnologij, ki bodo prispevale k racionalizaciji procesa pridobivanja

    premoga,zagotavljanjuvejevarnostiinhumanostiterreevanjuokoljskihproblemov.

    Vprispevkusoobravnavaniinprikazaninartizapodrojeisteproizvodnje,predelaveinizrabe

    premoga, ki v okviru proizvodnje elektrine energije zagotavljajo pogoje za prenos znanj,

    rezultatovraziskavintehnologijvprakso.epravjepojemistepremogovnetehnologijeglede

    na definicijo velikoiri, pa razvojni projekt na Premogovniku Velenje v tej fazi vsebuje tri

    pomembneje sklope, in sicer: razplinjevanje lignita, zajem, transport in skladienje CO2 in

    podzemnouplinjanjepremoga.Zrealizacijonavedenihsklopovsenameravamopribliaticiljem,

    ki jih obsegajo iste premogovne tehnologije in so izboljanje uinkovitosti in okoljskesprejemljivostipridobivanjalignita,njegovepredelaveinizkorianja.

    1 INTRODUCTION

    Irrespectiveofgrowinguseofrenewableenergyresourcesandbetterenergyefficiency,oil,gas

    andcoalwillrepresentasubstantialpart in thepowersupply for the foreseeable future.The

    importanceofcoal isgrowingagainafterarather longperiod inwhich itwasnotcompetitive

    againstoilandnaturalgasasanenergyresource.Therearesome importantreasons for this:

    price per energy unit, the dispersion of global resources and the relation between globalresourcesand consumption.CleanCoalTechnologiesare friendlier toenvironmentand their

    development also enables the coal consumption for future power generation. Coalbased

    power generation represents more than 40% of global energy production, Kessels, [7]. The

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    43/80

    JET

    CleancoaltechnologiesatCoalmineVelenje

    authorcitesmanyreasonsforthat.Amongthese,isthefactthatthecoalisoftenastate'sown

    energyresource,therebyenablingenergysecurityand independence.Thenextreasonrelates

    toglobalcoalproductionandconsumption (reaching6Gt),bearing inmind that,contrary to

    other

    primary

    energy

    resources,

    coal

    resources

    are

    abundant.

    Kessels

    notes

    that

    coal

    resources

    inAlaskareachover5Gt,i.e.,morethan40%ofcoalresourcesintheUSA.

    Figure1showstheenergyproductionforecastto2030;itcanbeseenthatthecoal,inaddition

    tonuclearpowerand renewable resources (togetherwithenergyefficiency), isplayingakey

    roleinassuringsufficientpowerproduction,Tanaka,[9].Globalpowerdemandwillriseby45%

    until2030,withtheaverageannualrise isestimatedat1.6%.Theshareofcoal isonethirdof

    theentiregrowth.Thisforecastwasdesignedbeforetheeconomiccrisisandthereforedoesnot

    reflectitseffects.

    Figure1:Energyproductionforecasttill 2030(reference scenario, IEA [6]

    2 CLEAN COAL TECHNOLOGIES

    CleanCoalTechnologies(CCT)aretiedtotechnologicalprogress leadingtomoreefficientand

    environmentally friendly coal consumption. The plan and explanation of Clean Coal

    TechnologiesfollowtheDTI/IEA1999standard,DTI/IEA[2].AsseeninFig.2,theconceptisvery

    wideandincludes:

    a) Coalproduction,preparation,transportandcoalyard;

    b) Unconventional coal production through Underground Coal Gasification (UCG) or

    extractingmethane fromundergroundcoalseams, i.e.,CoalBedMethaneExtraction

    (CBME);

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    44/80

    JET

    SimonZavek,LudvikGolob,Janjaula JETVol.3(2010) Issue3

    c) Power generation through combustion of pulverised coal, i.e., Pulverised Fuel

    Combustion(PC);

    d) Power generation through coal gasification, i.e., Integrated Gasification Combined

    Cycle(IGCC);

    e) Otherpossibleadvancedtechnologies,suchashybridcombinedcycles,heatengines,

    fuelcells;

    f) Industrial and domestic use of coal in steel production, cement industry, heating

    plants;

    g) Othertechnologiesthatturncoalintoenergy,suchasliquefactionorbriquetting;

    h) Combustion remains use: fly ash, clinker, gasification remains, gas cleaning remains

    (gypsum);

    i)

    otherclean

    CCT

    possibilities

    including

    co

    combustion

    of

    natural

    gas,

    biomass,

    co

    generationandcapture,transportandstorageofCO2,i.e.,CarbonCaptureandStorage

    (CCS).

    Figure2:DiagramofCCT(adaptedaftermethodologyofDTI/EIA1999)

    Theprocess

    of

    lignite

    production

    at

    the

    Velenje

    Coal

    Mine

    includes

    the

    activities

    of

    coal

    extraction, coal preparation, coal transport, coal yard (A), combustion remains use; in the

    nearby thermalpowerplantTEotanj theprocessofpowergenerationwithpulverizedcoal

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    45/80

    JET

    CleancoaltechnologiesatCoalmineVelenje

    combustion is mastered (C). According to the Clean Coal Technologies Project, we are

    incorporatingsomeother fields, includingundergroundcoalgasificationpossibilitiesandcoal

    bedmethane (B),powergeneration throughcoalgasification (D)additionalcleanpossibilities

    (I).

    3 DEVELOPMENT PROJECT CCT AT VELENJE COAL MINE

    Accordingto longtermproductionplanof lignite inVelenjeCoalMine,projectedto2045and

    presently assuring a 30% shareof Slovenia's power production,we decided to follow global

    trends and founded aproject group to dealwith these problems at the end of 2007. Fig. 3

    shows the Clean Coal Technologies project's three sections: Lignite Degasification, Capture,

    TransportandStorageofCO2andUndergroundCoalGasification.

    3.1 Lignite degasification

    Lignitedegasification isobtainingmethane intheprocessof lignitedegasification.Asthecoal

    gas of theVelenjemine containsmethane in addition toCO2,we plan to capture both and

    therefore the part section of the project is referring also to activity I, i.e., other clean

    possibilities(CO2captureandstorage).Regardingthefactthatdegasificationofthincoalseams

    haslongbeenanunderstoodandpracticedprocedure,theVelenjeCoalMinewillfocusonthe

    degasificationdevelopmentofaverythickcoalseam.Weplantodegasifytheexcavationpillars

    beforecoalexcavationwiththelongwallmethod.

    Oneof

    the

    goals

    of

    the

    degasification

    project

    should

    be

    the

    development

    of

    astatement

    on

    the

    developmentandapplicationofthebesttechnologiesthatcontributetotherationalizationof

    thecoalextractionprocess.Degasificationdiminishestheamountofgasattheactive longwall

    face and positively affects production. Reduction of gas amounts in the excavation pillar

    contributes tobettersafetyandworkingconditions,as the reducedgasconcentrationsallow

    reduced air volumes and, in consequence, ventilation that is more rational and has fewer

    problemswith coaldust. Theproject isdivided into the technological,and the research and

    developmentparts. In the technologicalpart, theSlovenianprojectpartners inaconsortium.

    Thedevelopmentpartoftheprojectisconstitutedinternationallyandregisteredforcofunding

    withtheRFCS(ResearchFoundforCoalandSteel)fund.Bothprojectswilllastforthreeyears,

    startingwith

    the

    developmental

    part,

    followed

    by

    the

    project

    itself.

    Project

    activities

    will

    consist

    ofarevisionofbasiccoalseamandexcavationdata,fieldandlaboratoryresearchofimportant

    coalseamcharacteristics, insitumeasurementsandanalysisof the longwall faceadvanceonstresses, gas pressure, gas permeability and gas diffusion. The project foresees monitoring

    activities too.Common interpretationandnumericalmodellingof fieldand laboratory results

    fordegasificationplanningandgasoutburstcontrolwillfollow.Theprojectwillconcludewitha

    pilottestdrainingmeantasasystemforcontrolleddegasificationandcontrolofgasoutbursts

    atcoalexcavationofverythickcoalseams.

    Throughthecoordinationofresearchprojectssuchasgascomponenttracking,Velenje lignite

    petrography, and the structuralmodel, and through doctoral study education, the research

    resultsof

    other

    projects

    are

    also

    incorporated

    into

    the

    project.

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    46/80

    JET

    SimonZavek,LudvikGolob,Janjaula JETVol.3(2010) Issue3

    Figure3:SchemeofCleanCoalTechnologiesProject(Zavek,[12])

    3.2 CO2 capture, transport and storage (CCS)

    Ingeneral,theCO2gasfrompowerplantsand industrialunitsmustbecaptured,compressed

    andtransportedtotheareaswheresufficientlydeepstorageispossible.TheCO2sourceiscoal,

    gas, oil and biomass combustion. Themajor part of the CO2 results from power and heat

    production,fromchemicalplants,steelandcementproduction.CCStechnologyrepresentsthe

    key to safe fossil fueluse, and therefore remains a realoption for transitioningbeyond the

    periodof

    intensive

    fossil

    fuel

    use,

    Kessels,

    [7].

    Theknownfossilfuelresourcesintheworldcontainahugeamountofcarbonthatwillthreaten

    theatmosphere.Thedescribedtechnologycanhelptorealizeplansfordiminished increaseof

    CO2intheatmosphere.

    Thesituationconsideringtheaverageefficiencyandemissionsperproducedenergyunit isas

    follows:world28%(1110gCO2/kWh),EU36%(880gCO2/kWh).Today,thereachablePCorIGCC

    TEtechnologiesarenearingtheefficiencyof42%andemissionsof740gCO2/kWh.

    A very important shorttermmeasure is to increase theefficiency. The goals for the further

    technologicaldevelopmentuntil2020 areheading towards48% and665 gCO2/kWh,but the

    essentialemissions

    decrease,

    which

    is

    expected

    after

    2020,

    will

    require

    commercially

    affordable

    CCStechnologies(Tanaka,[9],afterVGB2007:efficiencyHHV.net,Topper,[10]).

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    47/80

    JET

    Cleancoaltechnologies atCoalmineVelenje

    InEurope,morespecificallyinGermany,theplansforpilotanddemonstrationCCSprojectsare

    readyandsomeofthemarealreadyrunning,Hll,[4].

    Capture,transportandstorageofCO2areatVelenjeCoalMineplaced intothesecondpartof

    theClean

    Coal

    Technologies

    Project

    complex.

    Activities

    coordinated

    by

    HSE

    (Holding

    of

    SlovenianPowerPlants)areapartoftheprojectcalledImplementationoftheClimateEnergy

    PackageinSlovenianThermalEnergy(ZETePO)withthegoalofreducingGHGemissionsinthe

    postKyotoera(Fig.4).

    Figure4:SchemeoftheZETePOproject

    Besides thecoordinatorandproject leaderHSE, theSlovenian thermoenergycompaniesand

    MOP (Ministry for Environment and Spatial Planning) and MG (Ministry for Economy) are

    involved.The

    ZETe

    PO

    project

    is

    divided

    into

    two

    sub

    projects:

    the

    first

    includes

    CCS

    (Carbon

    Capture and Storage) technologies and the second IGCC (Integrated Gasification Combined

    Cycle) technologies. The first subproject is interesting for theVelenjeCoalMinebecauseof

    geologicalCO2storage, implementationofEU legislationcoveringCCS, implementationofCCS

    legislationinSloveniaandactivecooperationintheETPZEP.Theprojecthasbeenlaunchedand

    is in thephaseof collecting tenders forproject tasks and applicationof cofundingof single

    projects in different EU programmes. In recent years, the Velenje Coal Mine funded and

    cooperated inCO2storageresearchwherethepossibilitiesofstorage ingeologicalformations

    andprimarilythecoalseamwerestudied,Oreniketal.,[8].

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    48/80

    JET

    SimonZavek,LudvikGolob,Janjaula JETVol.3(2010) Issue3

    3.3 Underground coal gasification

    The underground coal gasification, representing the third part of our project, is an

    unconventional typeofcoalutilization. Ingeneral, theprocedure isquitesimple,asonly two

    boreholes(or

    two

    wells)

    are

    needed

    (Fig.

    5).

    Through

    the

    injection

    well,

    air

    and

    steam

    are

    broughtunderpressureintothecoalseamwherethecombustionbegins.Theproductionwellis

    usedtoobtainthegas,calledsyntheticgasorsyngas.Themaincomponentsofsyngasare

    hydrogen and carbon monoxide. The underground coal gasification (UCG) technology is very

    complexanddemandingas themost successful tests in theworldhave shown.UCGneedsa

    multidisciplinary approach of geology, hydrogeology, chemical engineering, chemistry and

    thermodynamics.

    The most interesting advantage of the UCG will be economic, because minor operative and

    investmentcostsare foreseen.Thenextadvantageshouldbe theflexibleuseofsyngas.Even

    the environmental view is considered advantageous, as most combustion products remain

    underground,including

    heavy

    metals

    SOx,

    and

    NOx,

    Couch,

    [1].

    The

    costs

    for

    CO2separationare

    minor; there may be possibilities for carbon storage in the cavities or adjacent rocks. The

    disadvantagesof theUCGare theoperational risksdue to the lackof tested largescaleUCG

    trialsand the frequentproblems thathaveoccurredduring tests in theUSAandEurope.The

    process can be uncertain considering environmental impacts and public acceptability. The

    possible disadvantages may be the ground water pollution (contamination) and surface

    subsidence.TheUCGproductcanbeused indifferentways:cogeneration,gas turbine, from

    coaltoliquidsetc.

    Figure 5:Sketch oftheundergroundcoalgasificationprocedure (UCG

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    49/80

    JET

    CleancoaltechnologiesatCoalmineVelenje

    RegardingUCG,theVelenjeCoalMinehasa longerhistory. Inthe late1950s,astudyonUCG

    possibilitiesinthelignitedepositsofformerYugoslaviawascompletedattheChemicalInstitute

    inLjubljana(KemijskiintitutuBorisaKidria)Inthe1980s,somelaboratorytestingwasdoneon

    smaller

    samples

    as

    well

    as

    bigger

    samples

    of

    Velenje

    lignite,

    Eberl,

    [3].

    In

    2002,

    a

    feasibility

    studyofUCG inVelenjeCoalMinewasnotentirely completed,but the finished component

    partscomprisethepreliminarydepositevaluation,depositevaluationwithanalysisofexistent

    data(generaldata,geology,hydrogeology),additionalresourcecharacterization,technological

    difficultiesof theprocess,and technologicaldifficultiesofdepositpreparation.The studydid

    notexaminetheissuesofprocessproductuse,environmentalsusceptibility,economyandfinal

    evaluation.

    ThroughthethirdsectionoftheCleanCoalTechnologiesProjectatVelenjeCoalMine,thetask

    forcehasbeen revivedand the feasibility study continuedwith themissingparts. Important

    factorsarediscussedincludeprocessproductuse(quantityandqualityoftheproduct,product

    qualityoscillation,sizeoftheenergeticstructure,andenergeticuseoftheproduct),economyand finalevaluation. Incontinuation theactivitieswill run toprepare theproposalofproject

    task for pilot UCG test in Velenje, to gain the concession for research of coal in Goriko

    (Slovenia)andtoprepareaproposalofprojecttaskforpilotUCGtestinGoriko,Zavek,[12].

    3.4 Conclusion

    ThroughrealizationofthegoalsoftheCleanCoalTechnologiesProject,thewaytodevelopment

    andapplicationofbestavailabletechnologiesispaved.Thiswillcontributetomorerationalcoal

    extraction,bettersafetyatwork,betterworkingplaceconditionandsolvingtheenvironmental

    problemsregardingcoalgases.

    Inthe fieldsofcoalproductionandconventionalorunconventionalcoalutilization,theClean

    Coal Technologies Project brings conditions for transfer of knowledge, research results and

    technologies into practicalwork. Based on the realization of the research and development

    phasesof the technologiesdiscussed,we can continue to follow innovation; the task force's

    work isaimedattheacquisitionofnationalandEuropeanresearch fundsandtheopeningof

    marketpossibilities.

    References

    [1] GRCouch,2009.Progresswithundergroundcoalgasification (UCG),IEACleanCoalCentre,London,2009.UK.

    [2] DTI/IEA(1999).CleanerCoalTechnologies:Options.DepartmentofTradeandIndustry.

    London, England (1999). International Energy Agency, Organisation for Economic

    CooperationandDevelopment.Paris,France(1999).

    [3] E. Eberl, 1986.Nova tehnologijapridobivanja inpredelavepremoga podzemeljskouplinjanje,Rudarskometalurkizbornik,Vol.33No.12,str.7388.

    [4] A.Hll,2009.COORETEC:TheGermanR&DInitiativeforCleanCoalTechnologies,4thInternational Conference on Clean Coal Technologies CCT 2009, 1821 May 2009Dresden,Germany.

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    50/80

    0 JET

    SimonZavek,LudvikGolob,Janjaula JETVol.3(2010) Issue3

    [5] IEA(2007).Worldenergyoutlook2007:Chinaand India insights. InternationalEnergyAgency, Organization for Economic Cooperation and Development, Paris, France

    (2007).

    [6] IEA (2008).World energy outlook 2008:Global energy trends to 2030. InternationalEnergy Agency, Organization for Economic Cooperation and Development, Paris,

    France(2008).

    [7] J. Kessels,2009.Emission trading; incentiveorobstacle tofundingofcarboncaptureand storage demonstration projects, 4

    th International Conference on Clean Coal

    TechnologiesCCT2009,1821May2009Dresden,Germany.

    [8] K. Orenik, B. Justin, Z Mazej, 2006. Monosti trajnega skladienja ogljikovegadioksida:poroilozaleto2005.Velenje:ERICo,februar2006.Slovenija.

    [9] N. Tanaka, 2009. What Role for Coal in a Carbon Carbonconstrained World? 4thInternational Conference on Clean Coal Technologies CCT 2009, 1821 May 2009

    Dresden,Germany.

    [10] J.Topper,2009.IEACleanCoalCentreMembers,4thInternationalConferenceonCleanCoalTechnologiesCCT2009,1821May2009Dresden,Germany.

    [11]A.Zapuek,ssod.,2009.tudijaomonostipodzemnegauplinjanjapremoga,3.faznoporoilo, IREET, Intitut za raziskave v energetiki, ekologiji in tehnologiji, d.o.o.,

    september2009,

    Ljubljana.

    [12]S. Zavek, 2009. iste premogovne tehnologije na Premogovniku Velenje, 1.mednarodna konferenca:ENERGETIKA IN KLIMATSKE SPREMEMBE , 1.7.3.7.2009

    Velenje,Slovenija.

    [13]S.Zavek,J.ula,2009.Razplinjevanje lignitavPremogovnikuVelenje,PP,september2009,Velenje,Slovenija.

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    51/80

    JET 1

    CleancoaltechnologiesatCoalmineVelenje

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    52/80

  • 8/3/2019 Jet - Volume 3 - Issue 3 - August 2010 - Za Internet

    53/80

    JET

    JETVolume3(2010),p.p.5366

    Issue3,August2010

    http://www.fe.unimb.si/si/jet.html

    ENERGY POLICY FOR PRODUCTION

    RESOURCES

    ENERGETSKA POLITIKA ZA PROIZVODNE

    VIRE

    DragoPapler,tefanBojnec

    Keywords:competitiveness,efficiency,renewablesourcesofenergy,energypolicy,education,sustainabledevelopment,factoranalysis

    Abstract

    TheRepublicofSlovenia'smostrecentenergypolicy,withtheadoptionoftheclimateenergypackageandobligationsoftheEuropeanUnion,givesgreaterimportancetoalternativesourcesof energy and to climate change. How realistic it is to set an obligation for a 20% share ofrenewablesourcesofenergyintheprimarystructureofenergyby2020ortheevenhigher25%sharesetinSlovenia?

    Surveys, using a written questionnaire, were conducted among the managers in the energysector, focusingoncompetitiveness in supply,efficientuseofenergyand sourcesofenergy.Withthisresearch,wehaveanalysedtheopinionsamongexpertsonthesequestions,andwecomparetheresultswiththeothersurveyedgroupsfromthesocialsciences,naturalsciences,

    andelectrical

    energy

    education.

    The

    methods

    of

    the

    analysis

    used

    are

    descriptive

    statistics

    with

    calculations of mean values, correlation analysis and multivariate factor analysis, which arebasedonthesurveydata. Intheresearch,we findassociationsbetweendifferent factorsandtheir impacts within the identified common factors. The comparisons of the results provideopportunities to derive implications on similarities and differences in the opinions betweendifferent professional groups and user structures. The average age of the managers in thesample in the energy sector was 39.4 years. The education structure is rather normallydistributed;theaverageamountofcompletededucationpermanageris16.0years.

    Corresponding

    author:

    Drago

    Papler,

    MSc,

    Tel.:

    +386

    4283

    232,

    Fax:

    +386

    4283

    512,

    Email

    address:[email protected]:UniversityofPrimorska,FacultyofManagement,Cankarjeva5,SI6104Koper

  • 8/3/2019 Jet - Volume 3 - Issue 3 - Aug