john m. wiest duane johnson, alan lane, dave nikles, · magnetic layer 150 nm under layer 1.5 µm...

34
THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGY An NSF Science and Engineering Center Flexible Media Research John M. Wiest for Duane Johnson, Alan Lane, Dave Nikles, Shane Street, Gary Mankey and K. Vemuru, M. Piao, B. He, L. Dong, H. Bagaria, D. Vickery, A. Bhandar

Upload: others

Post on 07-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Flexible Media Research

John M. Wiest

for

Duane Johnson, Alan Lane, Dave Nikles, Shane Street, Gary Mankey

and

K. Vemuru, M. Piao, B. He, L. Dong, H. Bagaria, D. Vickery, A. Bhandar

Page 2: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Magnetic Tape

TEM Cross-sections of DLT IV Tape

Made by a double slot-die coating process:

Magnetic layer 150 nm

Under layer 1.5 µm

Base film 6.8 µm

Back coat 500 nm

The magnetic layer contains iron particles oriented parallel to the length of the tape

Hc ~1,800 Oe

Mrδ 7 to 8 memu/cm2

SQ 0.76 to 0.81

The under layer contains TiO2 or α-Fe2O3 particles

The back coat contains carbon black for anti-static

Page 3: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Magnetic tape remains the primary medium for archival data storage.

However, the future of magnetic tape relies on a continuing rate of increase in data density while maintaining the current (or better) competitive advantage in cost.

The current limiting factors are track density,bit density, and tape thickness.

Page 4: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

INSIC Magnetic Tape Storage Roadmap

2001 2006 2011

Track density (tpi) 900 2,700 9,800

Bit density (kbpi) 125 250 500

Tape Thickness (µm) 8.8 5.3 3.8

Length (m) 600 1,000 1,400

Areal Density (Gb/in2) 0.11 0.68 4.9

Volumetric Density (TB/in3) 0.03 0.3 3

Tape cartridge capacity (TB) 0.10 1 10

Page 5: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Particulate Magnetic Tape in the Year 2015

Data cartridges with storage capacities approaching 100 terabytes -more than 20 TB/in3

Particle sizes less than 40 nm with polydispersity less than 5%

Highly ordered, self-assembled particles with particle volume fractions exceeding 50%

Magnetic film thickness less than 50 nm

New particles, beyond iron

Base films with thickness of one micron or less

Solventless coating processes that eliminate air pollution

Sustainable manufacturing and materials packages

Page 6: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Track density and bit density are limited by noise.

Need thinner, smoother, more ordered magnetic layer containing smaller particles.

Page 7: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Heart of the Matter: Dispersions of Magnetic Particles

Page 8: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Heart of the Matter: Dispersions of Magnetic Particles

Cartoon

Reality

• Reverse micelle / association colloid templates to synthesize monodisperse particles.

• Block co-polymer nanoreactors to synthesize monodisperse particles

Page 9: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Interdendrimer Magnetic Nanoparticles

Monodisperse, acicular,metallic Cobalt nanoparticles obtained in aqueous media by photochemical reduction in the presence of dendrimer.

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000-1.0x10-5

-5.0x10-6

0.0

5.0x10-6

1.0x10-5

HC = 300.6Oe

M (e

mu)

H (Oe)

Page 10: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Dispersion/Oxidation Problems

“Ideal” “Reality”

Page 11: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Pre-dispersed/Pre-protected Particles

Oxide Oxide

Metal Metal

Page 12: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Dispersion CharacterizationProbes the particle moments in an AC field with a perpendicular DC field.

– DC field amplitude sweep– Transient response to DC field– AC frequency sweep– AC field amplitude sweep– Drying over time– Gelling over time

AC

Sus

cept

ibili

ty

0

4

8

1.E+1 1.E+2 1.E+3 1.E+4

ω (Hz)

χ 0

0

2

1 4 7χ'

χ''

χ'

χ"

Rhe

olog

y

Steady Shear Flow Small Amplitude Oscillatory Shear

1

10

100

0.01 0.1 1 10 100

ω (s-1)

G"

(Pa)

10

100

1000

0.01 0.1 1 10 100

ω (s-1)

G' (

Pa)

0.1

1

10

100

1000

10000

100000

0.0001 0.001 0.01 0.1 1 10 100 1000

γ (s-1)

η (P

a s)

.

Page 13: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Dispersion Characterization

Shear thinning in viscosity a consequence of network reformation time being greater than characteristic time of flow.

The network is weaker, but re-forms more rapidly, at lower particle volume fractions.

Using rheology to probe structure

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.01 0.1 1 10 100 1000

10/s1/s0.1/s0.01/s

t(s)

Ý γ 0

φ = 0.044

Normal Stress Growth

0.01

0.1

1

10

100

1000

10000

100000

0.001 0.01 0.1 1 10 100 1000

MP4.8MP4.4MP3.9MP3.2

Ý γ (s-1)

Viscosity

time

stra

in

Creep-Recovery

?

Page 14: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Order and Self-Assembly

Order Parameter:s = 9

2tr(S ⋅S ⋅S)3S = uu−

13

δ

S = 1 : perfect prolate order S = -1/2 : perfect oblate order

Page 15: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Order and Self-Assembly — Model

10-6 10-4 10-2 100 102

100

102

104

][ 1−sγ&

η[P

a s]S

Hγ&

Assume:• Anisotropic Hydrodynamic Drag• Maier-Saupe Steric Interaction• Magnetic Mean Field

Evolution of S:∂S∂t

+ v ⋅∇S = ....

Stress:τ = ...

Page 16: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Order and Self-Assembly — Model

Need to incorporate:

• Polydispersity• Variable Magnetic Moments• Better Mean Field Potentials• Spatial Inhomogeneity• Equilibrium Network Structure

Page 17: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Cryo-VSM: Angular Dependence of Remanence

Orientation Distribution

-1

-0.5

0

0.5

1

1.5

2

0 40 80 120 160

Ms (memu)Mp (memu)Mt (memu)

Rem

anen

ce (m

emu)

Angle (degrees)

Angular dependence of parallel remanence (Mp) and transverse remanence (Mt)

Page 18: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Cryo-VSM: Angular Dependence of Remanence

f (θ ) =(Mp + ∂Mt

∂θ)2

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180Angle (Degrees)

“Calculating orientation distributions in magnetic tapes” J. W. Harrell, Y. Yu, Y. Ye, J. P. Parakka, D. E. Nikles, H. G. Zolla J. Appl. Phys. 1997, 81(8) 3800.

0 50 100 150 200 250 300 350 400 450 500Applied Field (Oe)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Ord

er P

aram

eter

(S)

Page 19: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Small Angle Neutron Scattering in Shear and Magnetic Field(with Gary Mankey)

Measurements made at the Center for Neutron Research at NIST

Page 20: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Model PredictionsSANS Data

Page 21: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

SANS of Ferro/Nonmagnetic Dispersions in Shear Flow

Ferromagnetic Particles• Application of magnetic field perpendicular to

shear flow alters the orientational ordering.• Mixtures of F/NM particles will be studied to

extract the relative strengths of magnetic interactions on orientational ordering.

Shear

Fiel

d

Ferromagnetic Nonmagnetic

Ref: Poster by V.V. Krishnamurthy et al.

Page 22: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Co-axial Shear Magnetometry

Measure susceptibility in flowing dispersion (with or without constant magnetic field in flow direction) toinfer order parameter.

Page 23: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Coating Simulation Coating Stability

Goal: Thinner, Smoother Magnetic Layer

Page 24: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Tape CharacterizationParticle Orientation Distribution

Angle

Page 25: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Tape CharacterizationOrientation Distributions in Fuji Ultrium LTO Tape

0

0.2

0.4

0.6

0.8

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

f =

(Mp +

dM

t/dφ)

/2Angle (radians)

-1

-0.5

0

0.5

1

1.5

2

0 40 80 120 160

Ms (memu)Mp (memu)Mt (memu)

Rem

anen

ce (m

emu)

Angle (degrees)

Angular dependence of parallel remanence (Mp) and transverse remanence (Mt)

Orientation Distribution

Page 26: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Tape CharacterizationSummary of Results for DLT IV Tapes

Sample Hc (Oe) SQ Mrt (memu/cm2) SUA-DLT IV-001

1 1768 0.779 7.61 0.6432 1835 0.785 7.62 0.639

UA-DLT IV-0031 1826 0.753 7.21 0.6272 1894 0.764 7.11 0.5953 1864 0.828 6.17 0.581

UA-DLT IV-0041 1746 0.817 7.98 0.6732 1813 0.810 7.75 0.6573 1779 0.818 8.03 0.663

A lot of room for improvement!

Page 27: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Dimensional Stability

Thinner, smoother tape composed of smaller, better oriented particles must be able to with-stand increasingly demanding conditions in drives and libraries — without loosing (literally) the data.

Stretch-restretch for UA-DLT IV-001

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 0.01 0.02 0.03 0.04 0.05Strain

first stretchsecond stretch

Page 28: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Mechanical Behavior of Magnetic Tape

Thinner, smoother tape composed of smaller, better oriented particles must be able withstand increasingly demanding conditions in drives and libraries.

This requires understanding the mechanical properties of the tape and how those properties are influenced by the materials package — the constitutive behavior of the tape and how it depends on tape structure.

Particle Order

π − pδ = 23

G − K

trγ [0]( )δ − Gγ [0]

−G1S: γ [0] S +13

δ

+ G3

N + B − 3( )S+ G N + B( ) S ⋅S− S : S S + 13

δ

Constitutive Relations

LTO

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120time (sec)

0.1 mm/min

1 mm/min

5 mm/min

Tape Guiding,Wear, & Aging

Studies

Page 29: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

GMR Heads

Thinner, smoother, more ordered magnetic layers reduce noise, but they also result in smaller signal.

Low noise does no good if you lose the signal, too!

Challenge for tape drive designers is how to implement GMR heads

Page 30: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

GMR Heads Require GMR Friendly Tape

In addition to thinner, smoother, more ordered magnetic layer

GMR head issues for tape:

• Corrosion (binder chemistry)

• Thermal stability

• Electrostatic Discharge

• Head wear

Page 31: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

New Binder Polymers• Polymers must prevent particle flocculation in dispersions.

• Polymers must protect particles against corrosion.

• Polymers must not corrode head materials (eliminate PVC, a source of inorganic chloride that may corrode the heads).

• Binder thermal properties will be more important (increase Tgto resist deformation due to hot GMR heats).

Amine-Quinone Polyurethane with Acrylate Groups in the Side ChainSr # POLYURETHANES HO-R-OH Mn

1 AQPUDA-1

(PEG 400)

400

2 AQPUDA-2

(Terathane 650)

650

3 AQPUDA-3

(Polycaproactone diol)

1250

4 AQPUDA-4 404

HO(CH2CH2O)nH

HO(CH2CH2CH2CH2O)nH

H[(OCH2)5C(=O)]nOCH2CH2OCH2CH2O[C(=O)(CH2)5O]nH

(OCH2CH2)nOHHO(CH2CH2O)n

Page 32: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Tape Thermal Study

Cold tape does not like hot (e.g., GMR) heads!

ρ ˆ C p∂T∂t

+ v ⋅∇T

= −∇ ⋅q

q = −

κ magnetic

κ undercoat

κ substrate

κ backcoat

⋅∇T

Models for Layer ThermalConductivity Tensors Temperature in Tape

Page 33: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

Some ‘Crazy Ideas’

• Self-assembled acicular particle arrays(requires monodisperse particles).

• Eliminate milling (pre-dispersed particles).

• There’s a lot of room in the undercoat — use it! (e.g., mechanical properties, heat management)

• Do away with the substrate (simultaneous coating of substrate monomer).

• Do away with the solvent (solvent = binder monomer).

• Self-assemble FePt nanoparticles on a flexible substrate.

Page 34: John M. Wiest Duane Johnson, Alan Lane, Dave Nikles, · Magnetic layer 150 nm Under layer 1.5 µm Base film 6.8 µm Back coat 500 nm The magnetic layer contains iron particles oriented

THE UNIVERSITY OF ALABAMA CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGYAn NSF Science and Engineering Center

A ‘Crazy’ Idea: Self-assemble FePt nanoparticles on a flexible substrate

(FePt)80Au20

Ferromagnetic FePt Nanoparticles After Heat-treatment at 500°C for 60 min in a pressure reactor

-2 10-4

-1 10-4

0 100

1 10-4

2 10-4

-20 -15 -10 -5 0 5 10 15 20

Mag

netiz

atio

n

Magnetic Field (kOe)0

50

100

150

200

20 25 30 35 40 45 50 55 60

Inte

nsity

(cou

nts)