july 2003 chuck dimarzio, northeastern university 11270-07-1 eceg105 optics for engineers course...

46
July 2003 Chuck DiMarzio, Northeastern University 11270-07-1 ECEG105 Optics for Engineers Course Notes Part 7: Diffraction Prof. Charles A. DiMarzio Northeastern University Fall 2007 August 2007

Upload: holly-conley

Post on 01-Jan-2016

215 views

Category:

Documents


1 download

TRANSCRIPT

July 2003 Chuck DiMarzio, Northeastern University 11270-07-1

ECEG105Optics for Engineers

Course NotesPart 7: Diffraction

Prof. Charles A. DiMarzio

Northeastern University

Fall 2007

August 2007

July 2003 Chuck DiMarzio, Northeastern University 11270-07-2

Diffraction Overview• General Equations

• Fraunhofer

– Fourier Optics

– Special Cases

– Image Resolution

– Diffraction Gratings

– Acousto-Optical Modulators

• Fresnel

– Cornu Spiral

– Circular Apertures

• Summary

It's All About /D

August 2007

?/D

D

July 2003 Chuck DiMarzio, Northeastern University 11270-07-3

Difraction: Quantum Approach

• Uncertainty

• Photon Momentum

• Uncertainty in p

ΔxΔp≥h

Δk x≥2πΔx

p=h

2πk

• Angle of Flight

• For a Better Result

– Use Exact PDF

– Gaussian is best

• Satisfies the equality

• Minimum-uncertainty wavepacket

sin θ =k x

k

Δsin θ =2πΔxk

= 2πλΔx2π

= λΔx

July 2003 Chuck DiMarzio, Northeastern University 11270-07-4

Quantum Diffraction Examples

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-6

-4

-2

0

2

4

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-6

-4

-2

0

2

4

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-6

-4

-2

0

2

4

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-6

-4

-2

0

2

4

6

200 Random Paths

Aperture1

Aperture2

Aperture5

Aperture10

July 2003 Chuck DiMarzio, Northeastern University 11270-07-5

Maxwell’s Eqs & Diffraction∇×E=−∂B

∂t

z

x

y

z-component of curl is zero

y-component of curl is zerox-component is notE in y direction, B in -x directionPropagation in z direction

zx

y

z-component of curl is not zeroif E changes in x direction

Now, B has a z component, soPropagation is along both z and x

July 2003 Chuck DiMarzio, Northeastern University 11270-07-6

Summary of Diffraction MathMaxwell’sEquations

HelmholtzEquation

Green’sTheorem

KirchoffIntegralTheorem

Fresnel-KirchoffIntegralFormula

FresnelDiffraction

Fourier Transforms

HankelTransforms

MieScattering

YeeNumericalMethods

All ScalarWaveProblems

Spheres

Scalar Fields

GeneralProblems

FieldsFar FromAperture

r>>λ

Obliquity=2,ParaxialApproximation

ShadowsandZonePlates

x,ySeparableProblems

CircularApertures

FraunhoferConditions

PolarSymmetry

“SimpleSystems”

July 2003 Chuck DiMarzio, Northeastern University 11270-07-7

Kirchoff Integral Theorem (1)

• General Wave Probs.

– Solve Maxwell's Eqs.

– Use Boundary Conditions

– Hard or Impossible

• Kirchoff Integral Approach

– Algorithmic

– Correct (Almost)

• Based on Maxwell's Equations

• Scalar Fields

– Complete• Amplitude and Phase

– Amenable to Approximation

– Comp. Efficient?

– Intuitive• Similar to Huygens

July 2003 Chuck DiMarzio, Northeastern University 11270-07-8

Kirchoff Integral Theorem (2)• The Idea

– Consider Point of Interest

– Correlate Wavefronts• “Best Wavefront”

– Converging Uniform Spherical Wave

• Actual Wavefront

• The Mathematics

– Start with Converging Spherical Wave

– Green's Theorem

– Helmholtz Equation• Ties to Maxwell's

Equations (Scalar Field)

– Various Approximations

– Numerical Techniques

• Results

– Fresnel Diffraction

– Fraunhofer Diffraction

July 2003 Chuck DiMarzio, Northeastern University 11270-07-9

Kirchoff Integral Setup

P

Surface A0

Surface A

The Goal: A Green’s FunctionApproach.

U x,y,z =∫ G x,y,z,x 1 ,y1 ,z 1 U x 1 ,y1 ,z 1 dV 1

July 2003 Chuck DiMarzio, Northeastern University 11270-07-10

Kirchoff Integral Thm. Solution

July 2003 Chuck DiMarzio, Northeastern University 11270-07-11

Helmholtz-Kirchoff Integral

P

Surface A0

Surface A

P

Surface A

r’ r

n

A0

U=U0eikr'

r

July 2003 Chuck DiMarzio, Northeastern University 11270-07-12

H-K Integral Approximations

July 2003 Chuck DiMarzio, Northeastern University 11270-07-13

Some Approximations

July 2003 Chuck DiMarzio, Northeastern University 11270-07-14

Paraxial Approximationx1 x

z

July 2003 Chuck DiMarzio, Northeastern University 11270-07-15

Integral Expressions

(Hankel Transform)

July 2003 Chuck DiMarzio, Northeastern University 11270-07-16

Fraunhofer and Fresnel

z

z

• Fraunhofer works

– in far field or

– at focus.

• Fresnel works

– everywhere else.

– For example, it predicts effects at edges of shadows.

August 2007

July 2003 Chuck DiMarzio, Northeastern University 11270-07-17

Fraunhofer Diffraction• Equations

• A Hint of Fourier Optics

• Numerical Computations

• Special Cases (Gaussian, Uniform)

• Imaging

• Brief Comment on SM and MM Fibers

• Gratings

• Brief Comment on Acousto-Optics

August 2007

July 2003 Chuck DiMarzio, Northeastern University 11270-07-18

Fraunhofer Diffraction (1)

Very ImportantParameter

July 2003 Chuck DiMarzio, Northeastern University 11270-07-19

Fraunhofer Diffraction (2)

July 2003 Chuck DiMarzio, Northeastern University 11270-07-20

Fraunhofer Lens (1)

July 2003 Chuck DiMarzio, Northeastern University 11270-07-21

Fraunhofer Lens (2)

z

z

July 2003 Chuck DiMarzio, Northeastern University 11270-07-22

Fraunhofer Diffraction Summary

z

z

July 2003 Chuck DiMarzio, Northeastern University 11270-07-23

Numerical Computation (1)

July 2003 Chuck DiMarzio, Northeastern University 11270-07-24

Numerical Computation (2)

• Quadratic Phase of Integrand

– Near Focus (z=f): Not a problem

– Otherwise

• Many cycles in integrating over aperture

• Contributions tend to cancel, so

• roundoff error becomes significant

• but geometric optics is pretty good here,

– except at edges.

– We will approach this problem later.

July 2003 Chuck DiMarzio, Northeastern University 11270-07-25

Circular Aperture, Uniform Field

D

h

July 2003 Chuck DiMarzio, Northeastern University 11270-07-26

Square Aperture, Uniform Field

z

D

July 2003 Chuck DiMarzio, Northeastern University 11270-07-27

No Aperture, Gaussian Field

D

July 2003 Chuck DiMarzio, Northeastern University 11270-07-28

Fraunhoffer Examples

July 2003 Chuck DiMarzio, Northeastern University 11270-07-29

Imaging: Rayleigh Criterion

R/d0 is f#

August 2007

July 2003 Chuck DiMarzio, Northeastern University 11270-07-30

Single-Mode Optical Fiber

Beam too Large(lost power at edges)

Beam too Small(lost power through cladding)

July 2003 Chuck DiMarzio, Northeastern University 11270-07-31

Diffraction Grating

i

d

ReflectionExample

d

July 2003 Chuck DiMarzio, Northeastern University 11270-07-32

Grating Equation

-100 0 100 200-1

-0.5

0

0.5

1sin(d)

sin(i)

degrees

-sin(i) n=0

-1

-2

12

3

4

5

-3ReflectedOrders

TransmittedOrders

July 2003 Chuck DiMarzio, Northeastern University 11270-07-33

Grating Fourier AnalysisGrating Diffraction Pattern

Slit

Convolve

Sinc

Multiply

Repetition Pattern

Multiply Convolve

Apodization

Result

Result

July 2003 Chuck DiMarzio, Northeastern University 11270-07-34

Grating for Laser Tuning

f

Gain

f

Cavity Modes

i

August 2007

July 2003 Chuck DiMarzio, Northeastern University 11270-07-35

Monochrometer

i

sin

n=1 n=2 n=3

Aliasing

August 2007

July 2003 Chuck DiMarzio, Northeastern University 11270-07-36

Acousto-Optical Modulator

Absorber

Sound Source

• Acoustic Wave:

– Sinusoidal Grating

• Wavefronts as Moving Mirrors

– Signal Enhancement

– Doppler Shift

• Acoustic Frequency Multiplied by Order

August 2007

More Rigorous Analysis is Possible but Somewhat Complicated

July 2003 Chuck DiMarzio, Northeastern University 11270-07-37

Fresnel Diffraction

• Fraunhofer Diffraction Assumed:– Obliquity = 2– Paraxial Approximation– At focus or at far field

• Relax the Last Assumption– More Complicated Integrals– Describe Fringes at edges of shadows

July 2003 Chuck DiMarzio, Northeastern University 11270-07-38

Rectangular Aperture

July 2003 Chuck DiMarzio, Northeastern University 11270-07-39

Cornu Spiral

C(u), Fresnel Cosine Integral

S(u)

, Fre

snel

Sin

e In

tegr

al

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-5<u<5

u=0

u=1u=2

July 2003 Chuck DiMarzio, Northeastern University 11270-07-40

Using the Cornu Spiral

C(u), Fresnel Cosine Integral

S(u)

, Fre

snel

Sin

e In

tegr

al

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

a=1

July 2003 Chuck DiMarzio, Northeastern University 11270-07-41

Small Aperture

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-6 -4 -2 0 2 4 6 8-3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

=500 nm, 2a=100m, z=5m.Fraunhofer Diffraction would have worked here.

position, mm

July 2003 Chuck DiMarzio, Northeastern University 11270-07-42

Large Aperture

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02 0.0250

0.5

1

1.5

2

2.5

3

=500 nm, 2a=1mm, z=5m.

position, m

July 2003 Chuck DiMarzio, Northeastern University 11270-07-43

Circular Aperture

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

FresnelCosineIntegrand

Outputof FresnelZonePlate

kr/2z

kr/2z

July 2003 Chuck DiMarzio, Northeastern University 11270-07-44

Phase in Pupil (1)

Linear PhaseShift is tilt

D/2

Quadratic PhaseShift is focus

July 2003 Chuck DiMarzio, Northeastern University 11270-07-45

Phase in Pupil (2)

Quartic Phaseis SphericalAberration

Fresnel Lens has wrapped quadraticphase

Atmoshperic Turbulencecan be modeled as randomphase in the pupil plane

July 2003 Chuck DiMarzio, Northeastern University 11270-07-46

Summary of Diffraction MathMaxwell’sEquations

HelmholtzEquation

Green’sTheorem

KirchoffIntegralTheorem

Fresnel-KirchoffIntegralFormula

FresnelDiffraction

Fourier Transforms

HankelTransforms

MieScattering

YeeNumericalMethods

All ScalarWaveProblems

Spheres

Scalar Fields

GeneralProblems

FieldsFar FromAperture

r>>λ

Obliquity=2,ParaxialApproximation

ShadowsandZonePlates

SeparableProblems

CircularApertures

FraunhoferConditions

PolarSymmetry

“SimpleSystems”