j.w. bandler, q.s. cheng, s. koziel, and k. · pdf filewhy space mapping works j.w. bandler,...

41
Why Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory McMaster University, www.sos.mcmaster.ca, [email protected] Bandler Corporation, www.bandler.com, [email protected] Technical University of Denmark, www.dtu.dk, [email protected] presented at SURROGATE MODELLING AND SPACE MAPPING FOR ENGINEERING OPTIMIZATION (SMSMEO-06) Technical University of Denmark, Lyngby, Denmark, November 9-11, 2006

Upload: lymien

Post on 06-Mar-2018

216 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

Why Space Mapping Works

J.W. Bandler, Q.S. Cheng, S. Koziel, and K.MadsenSimulation Optimization Systems Research Laboratory

McMaster University, www.sos.mcmaster.ca, [email protected]

Bandler Corporation, www.bandler.com, [email protected] University of Denmark, www.dtu.dk, [email protected]

presented at

SURROGATE MODELLING AND SPACE MAPPING FOR ENGINEERING OPTIMIZATION (SMSMEO-06)Technical University of Denmark, Lyngby, Denmark, November 9-11, 2006

Page 2: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

The Space Mapping Concept(Bandler et al., 1994-) validation space

optimization space

mapping

prediction

surrogate update (surrogate

optimization)

(high-fidelityphysics model)

(low-fidelityphysics model)

Page 3: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

Linking Companion Coarse (Empirical) and Fine (EM) Models(Bandler et al., 1994-)

finemodel

coarsemodel

designparameters

responses responsesdesignparameters

JDH +=×∇ ωj

BE ωj−=×∇ρ=∇ D

ED ε=

HB μ=

0=∇ B

(low-fidelityphysics model)

(high-fidelityphysics model)

Page 4: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

Why Does Space Mapping Work?

because space mapping is a natural mechanism for the brain to relateobjects or images with other objects, images, reality, or experience

“experienced” engineering designers (experts), knowingly or not,routinely employ (or have employed) space mappingto achieve complex designs

with virtually no mathematics, simple everyday examples illustratespace mapping, e.g., archery, stone-throwing, cheese-cutting,log-cutting, cake-cutting, shoe-selection, . . .

the following illustrations of the “cheese-cutting problem” areinterpreted as if for implicit space mapping

Page 5: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

Implicit, Input and Output Space Mappings(Bandler et al., 2003)

Page 6: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

Cheese-Cutting Problem Tutorial: Input Space Mapping(Bandler et al., 2004)

2c = −

10cx =

*(0) 10cx =1

2c = −*(1) 12cx =

(1) 12fx =

error = 0

(0) 10fx =1

3

3

3

3

the “coarse” brick is idealized, the algorithm is non-expert

Page 7: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

Space Mapping Design of Dielectric Resonator Multiplexers(Ismail et al., 2003, Com Dev, Canada)

10-channel output multiplexer, 140 variables, Aggressive SM

Page 8: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

Cheese-Cutting Problem Tutorial: Implicit Space Mapping(Bandler et al., 2004) *(0) 10cx =

1

10cx =

*(1) 12.5cx =

(1) 12.5fx =

(1) 2.4x =

(0) 10fx =(0) 3x =

13

31

the “coarse” brick is idealized, the algorithm is non-expert

Page 9: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

Cheese-Cutting Problem Tutorial: Implicit Space Mapping*(1) 12.5cx =

(1) 12.5fx =

*(1) 12.5cx =

*(2) 11.9cx =

(2) 11.9fx =

error 30 29.7= 100%

30=1%

−×

(2) 2.52x =

31

31

Page 10: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

Implicit Space Mapping Design of Thick, Tightly CoupledConductors (Rautio, 2004, Sonnet Software)

thick, closely spaced conductorson silicon (fine model)

“space-mapping” (top) layer(coarse model)

Page 11: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

EPCOS LTCC/Feb 04 (Rautio, 2006, Sonnet Software)

(courtesy Rautio, 2006)

Page 12: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

Cheese-Cutting Problem Tutorial: Output Space Mapping(Bandler et al., 2004)

10cx =

*(0) 10cx =1

6d = −

*(1) 12cx =

(1) 12fx =

error = 0

(0) 10fx =1

3

3

3

3

6d = −

the “coarse” brick is idealized, the algorithm is non-expert

Page 13: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

Space Mapping: a Glossary of Terms

(parameter/input) space mapping mapping, transformation orcorrection of design variables

(response) output space mapping1 mapping, transformation orcorrection of responses

response surface approximation linear/quadratic/polynomial approximation of responsesw.r.t. design variables

1advocated by John E. Dennis, Jr., Rice University1Alexandrov’s “high-order model management”

Page 14: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

Space Mapping: (1) for Design Optimization, (2) for Modeling

Start

simulate fine model

select models and mapping framework

optimize coarse model

criterionsatisfied

yes

no

End

optimize surrogate(prediction)

update surrogate(match models)

Start

simulate fine model points

select models and mapping framework

generate base andtest points

End

multi-point parameter extraction

test SM-based model

interpolate responses

Page 15: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

Implicit, Input and Output Space Mappings(Bandler et al., 2003)

Page 16: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

High-Temperature Superconducting (HTS) Filter:Modeling + Optimization

Sonnet em fine model Agilent ADS coarse model (Westinghouse, 1993) (Bandler et al., 2004)

εr

S2

S1

S3

S1L 0

L 1

L 0

L 2

L 1

L 2

L 3

S2

W

H

Coarse Model

S_ParamSP1

Step=0.02 GHzStop=4.161 GHzStart=3.901 GHzSweepVar="freq"

S-PARAMETERS

MCLINCLin5

L=L1c milS=S1c milW=W milSubst="MSub"MCLIN

CLin4

L=L2c milS=S2c milW=W milSubst="MSub"MCLIN

CLin3

L=L3c milS=S3c milW=W milSubst="MSub"MCLIN

CLin2

L=L2c milS=S2c milW=W milSubst="MSub"MCLIN

CLin1

L=L1c milS=S1c milW=W milSubst="MSub"

MSUBMSub

Rough=0 milTanD=0.00003T=0 milHu=3.9e+034 milCond=1.0E+50Mur=1Er=23.425H=20 mil

MSub

TermTerm1

Z=50 OhmNum=1

MLINTL1

Mod=KirschningL=50 milW=W milSubst="MSub"

MLINTL2

Mod=KirschningL=50.0 milW=W milSubst="MSub"

TermTerm2

Z=50 OhmNum=2

Page 17: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

Implicit and Output SM Modeling, with Input SM: HTS Filter(Cheng and Bandler, 2006)

Page 18: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

More Base Points for SM-based Modeling(Bandler et al., 2001)

2n more base points located at the corner of the region of interestwith n design parameters

Page 19: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

HTS Filter: Modeling Region of Interest(Cheng and Bandler, 2006)

20

20

5

45

50

45

region 5 size (δ5)

20

10

4

10

20

10

region 4 size (δ4)

15

8

3

8

15

8

region 3 size (δ3)

11

6

3

6

11

6

region 2 size (δ2)

10

5

2

5

10

5

region 1 size (δ1)

80S2

80S3

20S1

180L3

200L2

180L1

reference point (x0) parameters

Page 20: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

HTS Filter: Implicit SM Modeling Surrogate Test Region 2

fine model (○) Rs surrogate (—)

Page 21: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

HTS Filter: Implicit SM Modeling + Surrogate Optimization (Cheng and Bandler, 2006)

xf* = [172 207 172 20 90 84]T

Page 22: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

SMF: User-friendly Space Mapping Software Engine(Bandler Corp., 2006)

SMF: for SM-based constrained optimization,modeling and statistical analysis

to make space mapping accessible to engineersinexperienced in the art

to incorporate existing space mapping approaches in one package

implementation: a GUI based Matlab package

Page 23: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

SMF: Optimization Flowchart (Bandler Corp., 2006)

Page 24: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

SMF Optimization of Probe-Fed Printed Double Annular Ring Antenna with Finite Ground (Zhu et al., 2006)

coarse model (FEKO) fine model (FEKO)

Page 25: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

The Tuning Space Mapping Concept

tuning-augmented fine-model iterate(physically-based, fine-model surrogate with internal tuning ports)

Bρ=∇ D

0=∇ B

ω +D J

jω∇× =−E

ED ε=

HB μ=

j∇× =H

Page 26: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

circled ports are tuning ports:in series with inductorsin shunt with capacitors

Tuning Methodology (Rautio, 2005, Sonnet Software)

(courtesy Rautio, 2006)

Page 27: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

Motorola LTCC Quad Band Receiver(Rautio, 2006, Sonnet Software)

(courtesy Rautio, 2006)

Page 28: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

P1

P3

P4

P5

P6

P7

P8

P2

P1

P2

two-port EM model

eight-port EM model

Port Tuned Combline Filter (Swanson, 2006, M/A-COM)

(courtesy Swanson, 2006)

Page 29: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

TermTerm1Num=1Z=50 Ohm

TermTerm2Num=2Z=50 Ohm

CC2C=.2349 pF

CC6C=.470 pF

CC1C=.470 pF

CC5C=.2349 pF

CC4C=.2292 pF

CC3C=.2292 pF

S8PSNP1File="D:\Projects\Dan\PowerWave\Agilent\test5c\test5c.s8p"

S_ParamSP1Start=2 GHzStop=2.28 GHzStep=.0002 GHz

TLSCTL1Z=100000 OhmE=90F=2.14 GHz

Port Tuned Combline Filter (Swanson, 2006, M/A-COM)

tune for equal ripple response

or extract coupling coefficients and external Q’s

(courtesy Swanson, 2006)

Page 30: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

Recent Space Mapping Applications 1

“multifidelity optimization” (MFO) algorithm (Castro et al., 2005)

optimization in electromagnetics (Echeverria et al., 2005)

space mapping and defect correction (Echeverria and Hemker, 2005)

modeling thermally active components in new buildings(Pedersen et al., 2005)

design of electromagnetic actuators (Encica et al., 2005)

Page 31: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

Recent Space Mapping Applications 2

fast automated design of waveguide filters (Ros et al., 2005)

linear inverse SM algorithm to design linear and nonlinear RF and microwave circuits (Rayas-Sánchez et al., 2005)

optimization of planar coupled-resonator microwave filters(Amari et al., 2006)

response surface space mapping for electromagnetic optimization (Dorica and Giannacopoulos, 2006)

multifidelity optimization with variable dimensionalhierarchical models (Robinson et al., 2006)

Page 32: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

Space Mapping Applications 3: 2006 IEEE IMSInt. Microwave Symposium Workshop on MicrowaveComponent Design Using Space Mapping Technology

RF design closure—companion modeling and tuning methods (J.C. Rautio, Sonnet Software, Inc., USA)

optimization of engineering designs (S. Koziel, McMaster University, Canada)

more efficient EM simulation and optimization using port tuning (D. Swanson, M/A-COM, USA)

ANN based microwave component modeling(Q.J. Zhang, Carleton University, Canada)

Page 33: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

Space Mapping Applications 4: 2006 IEEE IMSInt. Microwave Symposium Workshop on MicrowaveComponent Design Using Space Mapping Technology

efficient CAD tools of waveguide filters (V.E. Boria-Esbert, Universidad Politécnica de Valencia, Spain)

microwave switches and multiplexers (M. Yu, Com Dev, Canada)

LTCC RF component design (Ke-Li Wu, Chinese University of Hong Kong, China)

Page 34: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

SM-based Modeling with Variable Weight Coefficients (VWC)(Koziel et al., 2006)

concept: use local fine model informationstandard: all weights equal to 1 new: weights dependent on ||x-xk||

2

0( , , , )( , , , ) arg min || ( ) ( , , , , ) ||n k k

k f skw

== −∑α β λ δ

A B c d R x R x α β λ δ

weight coefficientsmatching condition

Page 35: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

SM-based Interpolation (Koziel et al., 2006)

assumption: the fine model isavailable on a structured grid

define an interpolated fine model as

where snapping function s(.) is defined as

( 1) ( 1)

( ) ( 1) ( ) ( 1)

( ) ( ( ))

( ) ( ( ))

i if f

i i i is s

s

s

+ +

+ +

= +

+ −

R x R x

R x R x

arg min || ||,( ) : || || min || ||Xf f

f Xs X

∈= − ≠∈

⎧ ⎫= ∈ − = − ∧ ∀⎨ ⎬⎩ ⎭z

y z x y xzx x x x z x x y≺

x(4)

x(1)

s(x(3))

s(x(1))

x(2)

s(x(2))

x(3)

s(x(4))

Page 36: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

Space Mapping Technology: Our Current Work

new space mapping frameworks, optimization algorithms,and convergence proofs

methodologies for device and component model enhancement(with Q.J. Zhang, Carleton University)

SMF: user-friendly software engine for optimization andmodeling with sockets to drive popular simulators http://www.bandler.com/SMF/

(Bandler Corporation, 2006)

Page 37: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

Bibliography 1 M.B Steer, J.W. Bandler, and C.M. Snowden, “Computer-aided design of RF and microwave circuits and systems,”IEEE Trans. Microwave Theory Tech., vol. 50, no. 3, pp. 996-1005, Mar. 2002.

J.W. Bandler and S.H. Chen, “Circuit optimization: the state of the art,” IEEE Trans. Microwave Theory Tech., vol. 36, no. 2, pp. 424-443, Feb. 1988.

J.W. Bandler, W. Kellermann, and K. Madsen, “A superlinearly convergent minimax algorithm for microwave circuit design,” IEEE Trans. Microwave Theory Tech., vol. 33, no. 12, pp. 1519-1530, Dec. 1985.

J.W. Bandler, Q.S. Cheng, S.A. Dakroury, A.S. Mohamed, M.H. Bakr, K. Madsen, and J. Søndergaard, “Space mapping: the state of the art,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 1, pp. 337-361, Jan. 2004.

J.W. Bandler, R.M. Biernacki, S.H. Chen, P.A. Grobelny, and R.H. Hemmers, “Space mapping technique for electromagnetic optimization,” IEEE Trans. Microwave Theory Tech., vol. 42, no. 12, pp. 2536-2544, Dec. 1994.

J.W. Bandler, R.M. Biernacki, S.H. Chen, R.H. Hemmers, and K. Madsen, “Electromagnetic optimization exploiting aggressive space mapping,” IEEE Trans. Microwave Theory Tech., vol. 43, no. 12, pp. 2874-2882, Dec. 1995.

J.W. Bandler, Q.S. Cheng, N.K. Nikolova, and M.A. Ismail, “Implicit space mapping optimization exploiting preassigned parameters,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 1, pp. 378-385, Jan. 2004.

Q.S. Cheng, S. Koziel, and J.W. Bandler, “Simplified space mapping approach to enhancement of microwave device models,” Int. J. RF and Microwave Computer-Aided Engineering, 2006.

Page 38: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

Bibliography 2 Q.S. Cheng and J.W. Bandler, “An implicit space mapping technique for component modeling,” in Proc. 36th European Microwave Conf., Manchester, UK, Sept. 2006.

J.W. Bandler, Q.S. Cheng, D.M. Hailu, and N.K. Nikolova, “A space-mapping design framework,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 11, pp. 2601-2610, Nov. 2004.

S. Koziel, J.W. Bandler, and K. Madsen, “Space mapping optimization algorithms for engineering design,” in IEEE MTT-S Int. Microwave Symp. Dig., San Francisco, CA, June 2006.

S. Koziel and J.W. Bandler, “Space-mapping-based modeling utilizing parameter extraction with variable weight coefficients and a data base,” in IEEE MTT-S Int. Microwave Symp. Dig., San Francisco, CA, June 2006.

S. Koziel, J.W. Bandler, A.S. Mohamed, and K. Madsen, “Enhanced surrogate models for statistical design exploiting space mapping technology,” in IEEE MTT-S Int. Microwave Symp. Dig., Long Beach, CA, June 2005, pp. 1609-1612.

S. Koziel, J.W. Bandler, and K. Madsen, “Space-mapping based interpolation for engineering optimization,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 6, pp. 2410-2421, June 2006.

Q.S. Cheng and J.W. Bandler, “An automated space mapping framework,” in Frontiers in Applied Computational Electromagnetics (FACE 2006), Victoria, BC, Canada, 2006.

SMF, Bandler Corporation, P.O. Box 8083, Dundas, ON, Canada L9H 5E7, 2006.

Page 39: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

Bibliography 3 M. A. Ismail, D. Smith, A. Panariello, Y. Wang, and M. Yu, “EM-based design of large-scale dielectric-resonator filters and multiplexers by space mapping,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 1, pp. 386-392, Jan. 2004.

J.C. Rautio, “A space-mapped model of thick, tightly coupled conductors for planar electromagnetic analysis,” IEEE Microwave Magazine, vol. 5, no. 3, pp. 62-72, Sep. 2004.

J.P. Castro, G.A. Gray, A.A. Guinta, and P.D. Hough, “Developing a computationally efficient dynamic multilevel hybrid optimization scheme using multifidelity model interactions,” Technical Report SAND2005-7498, Sandia National Laboratories, Livermore, CA, Nov. 2005.

D. Echeverria, D. Lahaye, L. Encica, and P.W. Hemker, “Optimisation in electromagnetics with the space-mapping technique,” COMPEL The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 24, no. 3, pp. 952-966, 2005.

D. Echeverria and P.W. Hemker “Space mapping and defect correction,” CMAM The International Mathematical Journal Computational Methods in Applied Mathematics vol. 5, no. 2, pp. 107-136, 2005.

F. Pedersen, “Modeling thermally active building components using space mapping,” SIAM Conference on Optimization, Stockholm, Sweden, May 2005.

Page 40: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

Bibliography 4L. Encica, D. Echeverria, E. Lomonova, A. Vandenput, P. Hemker, and D. Lahaye, “Efficient optimal design of electromagnetic actuators using space-mapping,” in 6th World Congress on Structural and Multidisciplinary Optimization, Rio de Janeiro, Brazil, 30 May-03 June 2005.

J.V.M. Ros, P.S. Pacheco, H.E. Gonzalez, V.E.B. Esbert, C.B. Martin, M.T. Calduch, S.C. Borras, and B.G. Martinez, “Fast automated design of waveguide filters using aggressive space mapping with a new segmentation strategy and a hybrid optimization algorithm,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 4, pp. 1130-1142, Apr. 2005.

J.E. Rayas-Sánchez, F. Lara-Rojo, and E. Martínez-Guerrero, “A linear inverse space-mapping (LISM) algorithm to design linear and nonlinear RF and microwave circuits,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 960-968, Mar. 2005.

S. Amari, C. LeDrew, and W. Menzel, “Space-mapping optimization of planar coupled-resonator microwave filters,”IEEE Trans. Microwave Theory Tech., vol. 54, no. 5, pp. 2153-2159, May 2006.

M. Dorica and D.D. Giannacopoulos, “Response surface space mapping for electromagnetic optimization,” IEEE Trans. Magn., vol. 42, no. 4, pp. 1123-1126, Apr. 2006.

T.D. Robinson, M.S. Eldred, K.E. Willcox, and R. Haimes, “Strategies for multifidelity optimization with variable dimensional hierarchical models,” in Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2nd AIAA Multidisciplinary Design Optimization Specialist Conference), Newport, Rhode Island, May 1-4, 2006.

Page 41: J.W. Bandler, Q.S. Cheng, S. Koziel, and K. · PDF fileWhy Space Mapping Works J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen Simulation Optimization Systems Research Laboratory

Bibliography 5 W. Yu and J.W. Bandler, “Optimization of spiral inductor on silicon using space mapping,” in IEEE MTT-S Int. Microwave Symp. Dig., San Francisco, CA, June 2006.

J. Zhu, J.W. Bandler, N.K. Nikolova, and S. Koziel, “Antenna design through space mapping optimization,” in IEEE MTT-S Int. Microwave Symp. Dig., San Francisco, CA, June 2006.