k s tan, k h leong, l y chung, m i noordin department of pharmacy faculty of medicine university of...

32
K S Tan K S Tan , K H Leong, L Y Chung, M I , K H Leong, L Y Chung, M I Noordin Noordin Department of Pharmacy Department of Pharmacy Faculty of Medicine Faculty of Medicine University of Malaya University of Malaya Kuala Lumpur Kuala Lumpur

Upload: gregory-fletcher

Post on 22-Jan-2016

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

K S TanK S Tan, K H Leong, L Y Chung, M I Noordin, K H Leong, L Y Chung, M I NoordinK S TanK S Tan, K H Leong, L Y Chung, M I Noordin, K H Leong, L Y Chung, M I Noordin

Department of PharmacyDepartment of PharmacyFaculty of MedicineFaculty of MedicineUniversity of MalayaUniversity of MalayaKuala LumpurKuala Lumpur

Page 2: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

2

Introduction

Optimization of pharmaceutical formulation

Conventional trial-and-error approach

Mathematical Modeling Method.

Page 3: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

3

Introduction

Furosemide has a narrow absorption window (located at upper GI tract)1, 2 & 3.

Conventional oral formulation exhibits erratic bioavailability & unpredictable response4.

Furosemide

Page 4: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

4

Introduction

Absorption window

Page 5: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

5

Introduction

[Concept adapted from Reference 1]

Absorption window

o

Page 6: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

6

Introduction

Gastroretentive dosage form prolongs retention time in stomach & permits continuous drug release to optimal absorption site1, 2 & 5.

Page 7: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

7

Objectives

To optimize a formulation for furosemide characterized by a 12-hour gastroretentive and sustained release profile.

To demonstrate the usefulness of mathematical modeling method in optimization of formulation.

Page 8: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

8

Methods: OverviewDetermination of 13 model formulations (Formulae A - M)

via simplex lattice design.

Preparation of tablets (Formulae A – M)

Tablet QC tests(Uniformity of weight, friability, tablet size, hardness)

In vitro dissolution tests (8 hours)•Enzyme-free simulated gastric fluid

(SGF) pH 1.2•USP paddle method (100 rpm)

•Temperature 37±0.5˚C• Sample buffered to pH 5.8 & Assayed with UV spectrophotometry at 278 nm

In vitro tablet swelling tests•Enzyme-free simulated gastric fluid

(SGF) pH 1.2•USP paddle method (100 rpm)

•Temperature 37±0.5˚C•Measurement of swelling tablet

diameter

(To be continued in next slide)

Page 9: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

9

Methods: Overview

Data of in vitro tablet dissolution tests Data of in vitro tablet swelling tests

Multiple Linear Regression Analysis•Model-fitting

•Determination of best-fit models for individual response

Optimization of formulationDesign-Expert® integrate all models built and solve simultaneously to

search for optimal formulation based on the constraints imposed.

Verification of optimal formulation(In vitro dissolution tests & tablet swelling test)

Multiple Linear Regression Analysis•Model-fitting

•Determination of best-fit models for individual response

(Continued from previous slide)

Page 10: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

10

Methods

Mixture experimental design

Tablet excipients: Iota-carrageenan,

Lambda-carrageenan

Acacia gum.

Simplex lattice design was employed to determine excipient composition of 13 model formulations.

Each 400 mg tablet contains 60 mg furosemide.

Page 11: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

11

MethodsComposition of tablet excipients for 13 model formulations.

Page 12: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

12

Results & Discussions Formula A

0

20

40

60

80

100

0 2 4 6 8Time (Hour)

% D

rug

Re

lea

se

Formula B

0

20

40

60

80

100

0 2 4 6 8Time (Hour)

% D

rug

Re

lea

se

Formula C

0

20

40

60

80

100

0 2 4 6 8Time (Hour)

% D

rug

Re

lea

se

Formula D

0

20

40

60

80

100

0 2 4 6 8Time (Hour)

% D

rug

Re

lea

se

Formula E

0

20

40

60

80

100

0 2 4 6 8Time (Hour)

% D

rug

Re

lea

se

Formula F

0

20

40

60

80

100

0 2 4 6 8Time (Hour)

% D

rug

Re

lea

se

In Vitro Tablet Dissolution Profiles of 13 model formulations

Formula G

0

20

40

60

80

100

0 2 4 6 8Time (Hour)

% D

rug

Re

lea

se

Formula H

0

20

40

60

80

100

0 2 4 6 8Time (Hour)

% D

rug

Re

lea

se

Formula I

0

20

40

60

80

100

0 2 4 6 8Time (Hour)

% D

rug

Re

lea

se

Formula J

0

20

40

60

80

100

0 2 4 6 8Time (Hour)

% D

rug

Re

lea

se

Formula K

0

20

40

60

80

100

0 2 4 6 8Time (Hour)

% D

rug

Re

lea

se

Formula L

0

20

40

60

80

100

0 2 4 6 8Time (Hour)

% D

rug

Re

lea

se

Formula M

0

20

40

60

80

100

0 2 4 6 8Time (Hour)

% D

rug

R

ele

ase

Formula C

0

20

40

60

80

100

0 2 4 6 8Time (Hour)

% D

rug

Re

lea

se

Formula H

0

20

40

60

80

100

0 2 4 6 8Time (Hour)

% D

rug

Re

lea

se

(n = 6)

Page 13: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

13

Results & DiscussionsFormula A

0

4

8

12

16

20

0 2 4 6 8Time (Hour)

Dia

me

ter

(mm

)

Formula C

0

4

8

12

16

20

0 2 4 6 8Time (Hour)

Dia

me

ter

(mm

)

Formula E

0

4

8

12

16

20

0 2 4 6 8Time (Hour)

Dia

me

ter

(mm

)

Formula F

0

4

8

12

16

20

0 2 4 6 8Time (Hour)

Dia

me

ter

(mm

)

In Vitro Tablet Swelling Profiles of 13 model formulations

Formula H

0

4

8

12

16

20

0 2 4 6 8Time (Hour)

Dia

me

ter

(mm

)

Formula I

0

4

8

12

16

20

0 2 4 6 8Time (Hour)

Dia

me

ter

(mm

)

Formula J

0

4

8

12

16

20

0 2 4 6 8Time (Hour)

Dia

me

ter

(mm

)

Formula K

0

4

8

12

16

20

0 2 4 6 8Time (Hour)

Dia

me

ter

(mm

)

Formula L

0

4

8

12

16

20

0 2 4 6 8Time (Hour)

Dia

me

ter

(mm

)

Formula M

0

4

8

12

16

20

0 2 4 6 8Time (Hour)

Dia

me

ter

(mm

)

Formula G

0

4

8

12

16

20

0 2 4 6 8Time (Hour)

Dia

me

ter

(mm

)

Formula B

0

4

8

12

16

20

0 2 4 6 8Time (Hour)

Dia

me

ter

(mm

)

Formula D

0

4

8

12

16

20

0 2 4 6 8Time (Hour)

Dia

me

ter

(mm

)

(n = 6)

Page 14: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

14

Results & Discussions

Formula B

0

4

8

12

16

20

0 2 4 6 8Time (Hour)

Dia

me

ter

(mm

)

Formula B

0

20

40

60

80

100

0 2 4 6 8Time (Hour)

% D

rug

Re

lea

se

Formula B: Dissolution Profile

Formula B: Tablet Swelling Profile

Formula D

0

20

40

60

80

100

0 2 4 6 8Time (Hour)

% D

rug

Re

lea

se

Formula D: Dissolution Profile

Formula D: Tablet Swelling ProfileFormula D

0

4

8

12

16

20

0 2 4 6 8Time (Hour)

Dia

me

ter

(mm

)

Page 15: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

15

Results & Discussions

Model-Fitting

The data of all response variables (tablet dissolution and swelling tests) for 13 formulations were fitted into various equations:

Linear model: Y = b1X1 + b2X2 + b3X3

Quadratic Model: Y = b1X1 + b2X2 + b3X3 + b12X1X2 + b13X1X3 +

b23X2X3

Special Cubic model:

Y = b1X1 + b2X2 + b3X3 + b12X1X2 + b13X1X3 +

b23X2X3 + b123X1X2X3

Page 16: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

16

Results & DiscussionsModels for Drug Release & Tablet Swelling Profiles

Page 17: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

17

Contour plots of individual response variable for in vitro tablet dissolution studies

Y30 min:% Drug released in 30 minutes Y1h:% Drug released in 1 hour Y1.5h:% Drug released in 1.5 hour Y2h:% Drug released in 2 hours

Y3h:% Drug released in 3 hours Y4h:% Drug released in 4 hours Y5h:% Drug released in 5 hours Y6h:% Drug released in 6 hours

Y7h:% Drug released in 7 hours Y8h:% Drug released in 8 hours

Y1.5h:% Drug released in 2 hour

Page 18: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

18

Contour plots of individual response variable for in vitro tablet swelling studies

Z30min: Tablet diameter at 30th minZ15min: Tablet diameter at 15th min Z45min: Tablet diameter at 45th min Zih: Tablet diameter at 1st hour

Zi.5h: Tablet diameter at 1.5th hour Z2h: Tablet diameter at 2nd hour Z3h: Tablet diameter at 3rd hour Z4h: Tablet diameter at 4th hour

Z5h: Tablet diameter at 5th hour Z6h: Tablet diameter at 6th hour Z7h: Tablet diameter at 7th hour Z8h: Tablet diameter at 8th hour

Page 19: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

19

Results & Discussions

Optimization of Formulation

Constraints imposed on:Drug release at 2hr (12-16%), 4hr (24-32%), 6hr (42-52%) & 8 hr (70-100%).

Tablet swelling: 13-19 mm (maximizing).

Optimized formula:

Excipients Excipient Composition (%)

ι-carrageenan, X154.44

λ-carrageenan, X221.11

Acacia gum, X324.45

Page 20: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

20

Results & DiscussionsOptimized formulation

0

4

8

12

16

20

0 2 4 6 8Time (Hour)

Dia

met

er (

mm

)

Tablet dissolution profile (A) and swelling profile (B) of optimal formulation predicted by the model.

B

0

20

40

60

80

100

0 2 4 6 8Time (Hour)

% D

rug

Rel

ease

d

A

Page 21: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

21

Results & DiscussionsVerification of Optimal Formulation

0

4

8

12

16

20

0 2 4 6 8Time (Hour)

Dia

met

er (

mm

)

Observed response Predicted response

B

Tablet dissolution profile (A) and swelling profile (B) of optimal formulation (Comparing observed vs. predicted data)

0

20

40

60

80

100

0 2 4 6 8Time (Hour)

% D

rug

Rel

ease

d

Observed response Predicted response

A (Paired-samples T-test, p > 0.05) (Paired-samples T-test, p > 0.05)

Page 22: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

22

Results & Discussions

0

20

40

60

80

100

0 2 4 6 8 10 12 14Time (Hour)

% D

rug

Rel

ease

The optimal formulation exhibits a zero-order release kinetic. (Fitted into Korsmeyer-Peppas model, n = 0.94)

In Vitro Tablet Dissolution Profiles

Page 23: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

23

Results & Discussions

0

20

40

60

80

100

0 2 4 6 8 10 12 14Time (Hour)

% D

rug

Rele

ase

Commercial Product GRDF OF2

Commercial Product: furosemide 60 mg (Wakelkamp et al 1999)

GRDF: A gastroretentive dosage form, furosemide 60 mg developed by Klausner et al (2003)5

OF: The optimal formulation obtained in this study.

In Vitro Tablet Dissolution Profiles

Page 24: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

24

Conclusions

Optimal formulation with desirable release profile & tablet swelling characteristics was obtained.

An efficient optimization process: omitting the cost- and time-consuming procedures as in the conventional trial-and-error approach.

Mathematical modeling permits the characterization of drug release kinetics during the optimization process.

Graphical optimization allows evaluation of excipient’s functionality in the dosage form.

Page 25: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

25

References

1. Chawla, G, Gupta, P, Koradia, V & Bansal, AK 2003, ‘Gastroretention a means to address regional variability in intestinal drug absorption’, Pharmaceutical Technology, vol. 27, no. 7, pp. 50-68.

2. Davis, SS 2006, ‘Formulation strategies for absorption windows’, Drug Discovery Today, vol. 10, no. 4, pp. 249-257.

3. Rouge, N, Buri, P & Doelker, E 1996, ‘Drug absorption sites in the gastrointestinal tract and dosage forms for site-specific delivery’, International Journal of Pharmaceutics, vol. 136, pp. 117-139.

4. Ponto, LLB & Schoenwald, RD 1990, ‘Furosemide (frusemide): a pharmacokinetic/pharmacodynamic review (part I)’, Clinical Pharmacokinetics, vol. 18, no. 5, pp. 381-408.

5. Klausner, EA, Lavy, E, Stepensky, D, Cserepes, E, Barta, M, Friedmann, M & Hoffman, A 2003b, ‘Furosemide pharmacokinetics and pharmacodynamics following gastroretentive dosage form administration to healthy volunteers’, Journal of Clinical Pharmacology, vol. 43, pp. 711-720.

6. Wakelkamp, M, Blechert, Å, Eriksson, M, Gjellan, K & Graffner, C 1999, ‘The influence of frusemide formulation on diuretic effect and efficiency’, British Journal of Clinical Pharmacology, vol. 48, pp. 361-366.

Page 26: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

26

Page 27: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

27

Page 28: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

28

Results & Discussions

Model Coefficient Y30min Y1h Y1.5h Y2h Y3h Y4h Y5h Y6h Y7h Y8h

Linear

SD 1.99 2.50 3.30 5.17 7.80 7.55 9.24 11.56 11.49 11.50

R2 0.4107 0.5764 0.7170 0.6991 0.7058 0.7435 0.7135 0.6716 0.6787 0.6223

Adjusted R2 0.2929 0.4917 0.6604 0.6390 0.6470 0.6921 0.6561 .0.6059 0.6145 0.5468

Predicted R2 -0.1500 0.1291 0.3717 0.3541 0.4497 0.5153 0.5124 0.4130 0.3826 0.3493

PRESS 77.25 128.48 241.32 573.19 1138.36 1078.04 1452.52 2387.25 2538.70 2278.71

Quadratic

SD 1.98 2.26 2.72 4.46 7.82 7.62 9.92 12.33 11.26 12.36

R2 0.5905 0.7579 0.8651 0.8428 0.7933 0.8171 0.7688 0.7383 0.7844 0.6948

Adjusted R2 0.2979 0.5850 0.7687 0.7305 0.6457 0.6865 0.6037 0.5514 0.6303 0.4768

Predicted R2 -1.2390 -0.3316 0.2168 -0.0622 -0.1154 0.0648 -0.1068 -0.1933 0.1959 -0.1896

PRESS 150.40 196.44 300.80 942.72 2307.11 2080.17 3297.06 4853.03 3306.65 4165.98

Special cubic

SD 2.09 2.33 2.61 4.57 8.02 7.17 9.61 9.55 7.73 9.35

R2 0.6104 0.7799 0.8932 0.8589 0.8135 0.8613 0.7688 0.8653 0.9127 0.8504

Adjusted R2 0.2207 0.5597 0.7864 0.7179 0.6271 0.7227 0.6037 0.7306 0.8254 0.7007

Predicted R2 -1.8123 -0.6640 0.0790 -0.3133 -0.3791 -0.0138 -0.1068 0.1293 0.6351 0.3314

PRESS 188.92 245.47 353.72 1165.50 2852.61 2255.02 3297.06 3541.14 1500.56 2341.21

Cubic

SD 1.53 1.90 1.97 4.01 9.03 8.31 11.53 11.34 10.73 11.85

R2 0.8952 0.9267 0.9696 0.9458 0.8817 0.9068 0.8660 0.9052 0.9160 0.8798

Adjusted R2 0.5809 0.7069 0.8785 0.7830 0.5267 0.6270 0.4642 0.6207 0.6639 0.5192

Predicted R2 -25.242 -25.7135 -11.4817 -11.0792 -21.5643 -16.1550 -33.0634 -13.4233 -11.7876 -15.7273

PRESS 1762.83 3940.73 4793.94 10720.08 46674.36 38158.03 101500 58657.11 52583.49 58577.50

Model-fitting Summary for Tablet Dissolution Profiles

Page 29: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

29

Results & DiscussionsModel-fitting Summary for Tablet Swelling Profiles

Model Coefficient Z15min Z30min Z45min Z1h Z1.5h Z2h Z3h Z4h Z5h Z6h Z7h Z8h

Linear SD 0.27 0.32 0.28 0.28 0.39 0.61 0.54 1.15 2.46 4.19 2.64 2.72

R2 0.7941 0.8817 0.9163 0.9422 0.9403 0.8925 0.9390 0.8671 0.7438 0.6904 0.8721 0.8767

Adjusted R2 0.7530 0.8581 0.8996 0.9307 0.9284 0.8710 0.9268 0.8405 0.6926 0.6285 0.8466 0.8520

Predicted R2 0.6120 0.8096 0.8571 0.8897 0.8992 0.7876 0.8877 0.6836 0.3987 0.3534 0.7344 0.7816

PRESS 1.40 1.67 1.34 1.54 2.62 7.29 5.33 31.32 142.46 366.66 145.08 130.93

Quadratic SD 0.27 0.36 0.24 0.29 0.35 0.43 0.60 0.70 1.61 3.61 2.21 3.17

R2 0.8565 0.8980 0.9581 0.9584 0.9674 0.9615 0.9477 0.9658 0.9235 0.8392 0.9374 0.8826

Adjusted R2 0.7540 0.8251 0.9282 0.9286 0.9442 0.9340 0.9104 0.9414 0.8689 0.7244 0.8927 0.7987

Predicted R2 0.2257 0.6130 0.7697 0.7368 0.8895 0.8396 0.6958 0.7329 0.5035 0.4860 0.7743 -0.038

PRESS 2.80 3.40 2.16 3.67 2.87 5.50 14.44 26.44 117.63 291.50 123.28 622.22

Special cubic

SD 0.27 0.33 0.21 0.30 0.31 0.47 0.61 0.70 1.55 3.67 2.17 3.09

R2 0.8752 0.9263 0.9718 0.9602 0.9780 0.9616 0.9526 0.9706 0.9389 0.8577 0.9484 0.9047

Adjusted R2 0.7505 0.8526 0.9437 0.9204 0.9560 0.9232 0.9051 0.9412 0.8778 0.7155 0.8968 0.8093

Predicted R2 0.1188 0.6836 0.7845 0.6754 0.9091 0.7942 0.6440 0.6875 0.4416 0.4565 0.7673 -0.176

PRESS 3.18 2.78 2.02 4.53 2.36 7.06 16.90 30.93 132.28 308.24 127.12 704.94

Cubic SD 0.23 0.4 0.22 0.32 0.26 0.56 0.62 0.52 1.42 4.52 2.65 0.84

R2 0.9564 0.9444 0.9847 0.9780 0.9924 0.9724 0.9759 0.9918 0.9746 0.8919 0.9613 0.9965

Adjusted R2 0.8255 0.7777 0.9388 0.9120 0.9695 0.8896 0.9036 0.9672 0.8982 0.5677 0.8453 0.9860

Predicted R2 -7.0160 -7.5731 -1.1472 -2.0822 -0.4004 -3.5707 -2.3061 -0.2095 -2.9667 -13.896 -4.8503 -0.073

PRESS 28.97 75.40 20.15 43.02 36.39 156.86 156.94 119.73 939.72 8447.37 3195.22 643.30

Page 30: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

30

Results & Discussions

Experimental dissolution data of optimal formula fitted into Korsmeyer-Peppas model.

Korsmeyer-Peppas model:

Mt

M∞

a

n

===

=

Cumulative amount of drug released at time tCumulative amount of drug at infinite timeConstant incorporating structural and geometric characteristics of the deviceRelease exponent, indicative of the mechanism of release.

Page 31: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

31

Tan K S - Aug 2007

Tablet Swelling Profile: Optimal Formulation

0

4

8

12

16

20

0 2 4 6 8 10 12 14Time (Hour)

Dia

met

er (

mm

)

Page 32: K S Tan, K H Leong, L Y Chung, M I Noordin Department of Pharmacy Faculty of Medicine University of Malaya Kuala Lumpur

32

Tan K S - Aug 2007