karsten reuter · langmuir-hinshelwood-hougen-watson (lhhw) kinetics chemical kinetics and...

33
Technische Universität München Microkinetic Modeling Karsten Reuter Chemistry Department and Catalysis Research Center Technische Universität München

Upload: others

Post on 04-Apr-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

Technische Universität München

Microkinetic Modeling

Karsten Reuter

Chemistry Department and Catalysis Research Center Technische Universität München

Page 2: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

Testing (Kinetics)

Preparation Characterization

Catalysis Research Triangle

Page 3: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

Macrokinetic studies

Flow reactor

Fin [mol/min] Fout [mol/min]

r = rate of reaction = f(initial gas composition, T, pi) f(catalyst, active sites) f(catalyst meso/macro structure) f(reactor, flow (contact time), heat, dilution,…) Power law kinetics:

Batch reactor

creactants(t) cproducts(t)

∏=i

iipkr α

Page 4: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

From macro- to microkinetics

Reaction engineering: „Remove“ all reactor/catalyst macrostructure effects to get intrinsic rate

Normalize to rate per active site = turnover frequency

TOF = r/N [molecules site-1 s-1]

→ intrinsic steady-state TOF = TOF(T, pi )

Microkinetic modeling aims to relate this to detailed mechanistic understanding:

Top-down: deduce reaction mechanism from measured TOF data

Bottom-up: generate TOF data starting from first-principles calculations

Page 5: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

Disclaimer: Mind the gap!

Supported „real“ catalyst

Model catalysts

Courtesy: G. Rupprechter and Ch. Weiland, NanoToday 2, 20 (2007).

Page 6: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

I. The top-down approach:

Langmuir-Hinshelwood-Hougen-Watson

(LHHW) kinetics

Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet,

Plenum Press (New York, 1995)

Microkinetic simulation of catalytic reactions, P. Stoltze, Prog. Surf. Sci. 65, 65 (2000)

Page 7: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

S.B. Schwartz, L.D. Schmidt, and G.B. Fisher, J. Phys. Chem. 90, 6194 (1986)

TOF = r/N = f( pi , T )

CO oxidation over Rh(111)

TOF ~ 10-2 – 102 molecules site-1 s-1

Step 1: Measured steady-state TOF data

Page 8: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

O2(gas) + 2 (*) ↔ 2O(ad) (1) equilibrium

CO(gas) + (*) ↔ CO(ad) (2) equilibrium CO(ad) + O(ad) → CO2

(ad) + (*) (3) rate determining step CO2

(ad) → CO2(gas) + (*) (4) fast

CO + ½ O2 → CO2

r (CO2) ~ k3 θO(ad) θCO(ad)

r (CO2) ~ d/dt [CO2(gas)] = k4 θCO2(ad) first-order dependence (4)

d/dt θCO2

(ad) = k3 θO(ad) θCO(ad) - k4 θCO2(ad) ≡ 0 steady-state approximation

⇒ determine adsorbate concentrations at the surface in equilibrium with the gas phase

Step 2: Formulate a reaction mechanism and rate equation

Page 9: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

Step 3: Derive adsorption isotherms

θeq = θeq( pi , T )

e.g. Langmuir: i) finite number of equivalent sites to hold reactants ii) each site can hold at most one adsorbate iii) no interaction between adsorbed particles

CO(gas) + (*) ↔ CO(ad) r adsorption = kads pCO(gas) θ(*)

r desorption = kdes θCO(ad)

r adsorption = r desorption (equilibrium) ⇒ Keq

CO = kads / kdes = = pCO(gas) θ(*)

θCO(ad)

pCO(gas) (1 - θ CO(ad))

θCO(ad)

θCO(ad) = 1 + Keq

CO pCO(gas) Keq

CO pCO(gas) Langmuir isotherm for

non-dissociative, non-competitive adsorption

Page 10: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

Step 3: Adsorption isotherms cont’d

i) saturation due to finite number of sites ii) Keq

CO is an equilibrium property → thermodynamics

θCO(ad) = 1 + Keq

CO pCO(gas)

KeqCO pCO(gas)

Similarly: molecular adsorption on several sites dissociative adsorption (e.g. 2 sites) competitive adsorption Refinement: multiple sites → Freundlich/Toth isotherms adsorbate interactions → Tempkin/Fowler isotherms (only averaged interactions, still analytical) → Lattice gas Hamiltonians (explicit interactions, no longer analytical)

linear saturation

Page 11: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

Step 4: Plug isotherms into rate equation

Langmuir isotherms competitive adsorption of O and CO rapid O2 dissociation ( first order in θO(ad) )

r (CO2) ~ k3 θO(ad) θCO(ad) θCO(ad) = 1 + Keq

CO pCO(gas) + KeqO2 pO2

(gas)

KeqCO pCO(gas)

θO(ad) = 1 + Keq

CO pCO(gas) + KeqO2 pO2

(gas)

KeqO2 pO2

(gas)

CO oxidation over Rh(111)

S.B. Schwartz, L.D. Schmidt, and G.B. Fisher, J. Phys. Chem. 90, 6194 (1986)

Fits perfectly…

Page 12: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

II: The bottom-up approach:

First-principles kinetic Monte Carlo simulations

First-principles kinetic Monte Carlo simulations for heterogeneous catalysis: Concepts, status and frontiers K. Reuter, in “Modeling Heterogeneous Catalytic Reactions: From the Molecular Process to the Technical System”,

(Ed.) O. Deutschmann, Wiley-VCH, Weinheim (2009). http://www.fhi-berlin.mpg.de/th/paper.html

Page 13: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

Elementary processes and catalytic function

- Continuous bond making and breaking Challenge I: predictive-quality QM energetics - Rare event time scale: > ~msec Challenge II: long time-scale simulations

Page 14: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

First-principles modeling of surface reactions

COcus + Ocus → CO2

- Active site model

- „Level of theory“

0.9 eV

M. Sabbe, M.F. Reyniers, and K. Reuter, Catal. Sci. Technol. 2, 2010 (2012); invited perspective

Page 15: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

A

B

Molecular Dynamics

TS

Markovian state dynamics: Kinetic Monte Carlo simulations

kA→B

kB→A

kinetic Monte Carlo

N

t

B A

∑∑ →→ +−=j

jijj

ijii tPktPkdt

tdP )()()(

ΔEA→B ΔEB→A

∆−Γ=

=

→→

TkEZ

ZhTkk

ji

i

jiji

B

)(TSB

exp

Transition State Theory

Page 16: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

Molecular Dynamics: the whole trajectory

Kinetic Monte Carlo: coarse-grained hops

ab initio MD: up to 50 ps

ab initio kMC: up to minutes

Kinetic Monte Carlo: essentially „coarse-grained MD“

Page 17: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

Ru O

Building a first-principles kinetic Monte Carlo model

26 elementary processes (site-specific):

- O2 adsorption/desorption (dissociative/associative) - CO adsorption/desorption (unimolecular) - O and CO diffusion - CO + O reaction

K. Reuter and M. Scheffler, Phys. Rev. B 73, 045433 (2006)

O

CO

K. Reuter, Oil&Gas Sci. Technol. 61, 471 (2006)

CO oxidation @ RuO2(110)

Page 18: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

600 K

CObr/-

pO (atm) 2

1

CObr/COcus

Obr/Ocus p C

O (

atm

)

1

10-5

105

10-5 10+5 10-15 10-10

Obr/ -

CObr/COcus

Obr/Ocus

Surface structure and composition in the reactive environment

K. Reuter, D. Frenkel and M. Scheffler, Phys. Rev. Lett. 93, 116105 (2004)

T = 600 K, pO = 1 atm, pCO = 7 atm 2

CO oxidation at RuO2(110)

Page 19: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

TPR

Steady-state and transient parameter-free turnover frequencies

x

x x

x x

x x x x x x

x

x

x x x

x x x

pCO (10-9 atm)

Exp.

Theory

0.0 1.0 2.0 3.0 6

4

2

0 TOF C

O2 (

1012

mol

/cm

2 s)

pO2 = 10-10 atm

350 K

M. Rieger, J. Rogal, and K. Reuter, Phys. Rev. Lett. 100, 016105 (2008)

K. Reuter and M. Scheffler, Phys. Rev. B 73, 045433 (2006)

Page 20: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

J.K. Nørskov et al., Nature Chem. 1, 37 (2009)

The dawn of a new era

Page 21: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

III. Towards error-controlled

first-principles microkinetic models

Page 22: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

Key ingredients to „predictive-quality“ microkinetic modeling

Accurate rate constants: Transition state theory and beyond DFT functionals: „self-interaction“ van der Waals interactions Reaction mechanism: Process identification Lattice mapping / spatial distributions „Hot chemistry“ beyond Markov

CO + * ↔ CO* O2 + 2* ↔ O* + O* CO* + O* ↔ CO2 …

∆−Γ= →

→ TkE

k jiji

B

exp

Page 23: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

Mean-field approximation: Phenomenological rate equations

∑∑ →→ +−=j

jijj

ijii tPktPkdt

tdP)()(

)(

),CO( ),O(

),CO,O(

cusbr

cusbr

tt

tP

θθ ⋅

θ(Ocus) θ(Obr) θ(COcus) θ(CObr)

{ }

{ }

),CO(),,CO(),,O(),,O(, ),O(

),CO(),,CO(),,O(),,O(, ),O(

brcusbrcus2

br

brcusbrcus1

cus

ttttkfdt

td

ttttkfdt

td

ji

ji

θθθθθ

θθθθθ

=

=

Page 24: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

Spatial arrangement and catalytic activity

T = 600 K pO2 = 1 atm

This image cannot currently be displayed.

pCO (atm)

TOF

(site

-1s-1

)

1

106

104

102

100

10 100

O-poisoned CO-poisoned

→ Inhomogeneous spatial distribution even in

absence of lateral interactions

in kMC model

Page 25: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

B. Temel et al., J. Chem. Phys. 126, 204711 (2007)

Fitted rate constants deviate from “real” rate constants by up to two orders in magnitude for dominant processes

Effective parameters without microscopic meaning

The „power“ of fitting

pCO (atm) 0.5 5 100

TOF

(site

-1s-1

)

100

102

104

kMC

MFA(kDFT) MFA(kFit)

pO2 = 1 atm, T = 600 K

CO oxidation at RuO2(110)

Page 26: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

[CO]Rh + [OH]Rh+ [H]Rh

CO2

H2

[CO2]Rh +2[H]Rh[H]Rh +[OH]Rh + Rh

[H2O]Rh + 2Rh

CO

H2O

RDS

COOH*+* → CO*+OH* CO*+OH* → COOH*+* COOH*+* → CO2*+H* CO2*+H* → COOH*+* CO2* + H2O* → COOH* + OH* COOH* + OH* → CO2* + H2O* CO2*+H* → HCOO** HCOO** → CO2*+H* CO2* + OH* + *→ HCOO** + O* HCOO** + OH* → CO2* + H2O* CH* + H* → CH2* + * CH* + * → C* + H* C* + H* → CH* + * CH3* + O* → CH2* + OH* CH2* + OH* → CH3* + O* CH* + OH* → CH2* + O* CH2* + O* → CH* + OH* …

0

0.5

1

1.5

2

0 2 4 6 8 10

mm

ol/s

Axial length [mm]

H2

CO

CH4

O2

H2O CO

2

400

500

600

700

800

900

1000

1100

Tem

pera

ture

[°C

] T catalyst

T gas

Macroscale Microscale

~ 102 potential steps @ different coverages

„E pluribus unum“: Water-gas-shift at Rh(111)

M. Maestri and K. Reuter, Chem. Eng. Sci. 74, 296 (2012)

Page 27: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

Diffusion at metal surfaces: surprises…

Hopping mechanism Ag(100) ∆E = 0.45 eV Au(100) ∆E = 0.83 eV

B.D. Yu and M. Scheffler, Phys. Rev. B 56, R15569 (1997)

Exchange mechanism Ag(100) ∆E = 0.73 eV Au(100) ∆E = 0.65 eV

Page 28: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

Hyperdynamics

Automatized process identification

TAD

Accelerated molecular dynamics:

Other approaches: - metadynamics - dimer method …

Extending the Time Scale in Atomistic Simulation of Materials, A.F. Voter, F. Montalenti and T.C. Germann,

Annu. Rev. Mater. Res. 32, 321 (2002)

Page 29: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

Error propagation through rate-determining steps

C.T. Campbell, J. Catal. 204, 520 (2001); Nature 432, 282 (2004)

Sensitivity analysis: pO2 = 1 atm T = 600 K

COcus + Ocus

Obr/Ocus ad

Ocus/Ocus ad

CObr ad

pCO (atm)

Χrc

,i

COcus +Obr

O-poisoned CO-poisoned

H. Meskine et al., Ertl Special Issue

Surf. Sci. 603, 1724 (2009)

ij Kki

ii k

kX,

rc,TOF

TOF

=

CO oxidation at RuO2(110)

Page 30: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

Source for „rough“ rate constants: Hybrid UBI-QEP ?!

[ ])()( ,b,b,bQEP-UBI

BAAB ABABBA EDEEPE +−−−=∆ +→ φ

Unity Bond-Index Quadratic Exponential Potential

E. Shustorovich and H. Sellers, Surf. Sci. Rep. 31, 5 (1998)

[ ]

+−

=−=∆ +→+→ )()()(min

2MEPTSQEP-UBI

BAABAB

ABABxBAAB DP

DPEEEAB

φφ

M. Maestri and K. Reuter, Angew. Chemie Int. Ed. 123, 1226 (2011)

Pt(111), Rh(111)

Page 31: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

More than Markov?

( ) 2

~ B

uc

TmkpA

TSkπ=

Z=1.5 Å

J. Meyer and K. Reuter (submitted)

Heat dissipation during dissociative adsorption: O2/Pd(100)

Page 32: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

First-Principles Microkinetic Modeling: Where do we stand?

State-of-the-art in catalysis modeling: - Prevalence of highly coarse-grained models based on effective parameters without true microscopic meaning rate equation theory based on empirical rate constants - Emergence of ad-hoc 1p-microkinetic models kMC and mean-field model catalysts, show case reactions

Steps towards a predictive character multiscale catalysis modeling: - Replace effective parameters by clean first-principles data fitted vs. DFT-based rate constants battle the curse of complexity (off-lattice, complex networks) electronic non-adiabaticity, heat dissipation - Refined modeling at each individual level reliable and efficient 1p-rate constants (where needed) necessity to resolve spatial arrangement at surface integrate 1p-surface chemistry into reactor models - Robust links between theories that enable reverse-mapping sensitivity analysis to control flow of error across scales

Page 33: Karsten Reuter · Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995) Microkinetic

Technische Universität München

www.th4.ch.tum.de

Past members: Matteo Maestri (→ U Milan, I) Hakim Meskine (→ Wiley, D) Michael Rieger (→ BASF, D) Jutta Rogal (→ RU Bochum, D)

Collaborations: Daan Frenkel (Cambridge, UK) Edvin Lundgren (U Lund, SE) Horia Metiu (UCSB, USA) Matthias Scheffler (FHI Berlin, D)

www.th4.ch.tum.de

Present members: Max Hoffmann, Sebastian Matera, Jörg Meyer