l. giannessi - m. quattromini - an overview of tredi and csr test cases

Upload: calu61

Post on 05-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    1/35

    An overview of TREDI

    & CSR test cases

    L. Giannessi M. Quattromini

    Presented at

    Coherent Synchrotron and its impact

    on the beam dynamics of high brightness electron beams

    January 14-18, 2002 at DESY-Zeuthen (Berlin, GERMANY)

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    2/35

    TREDI is a multi-purpose macroparticle 3D Monte

    Carlo, devoted to the simulation of electronbeams through

    Rf-gunsLinacs (TW & SW)SolenoidsBendingsUndulatorsqQuads

    q

    where Self Fields are accounted for by meansof Lienard-Wiechert retarded potentials

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    3/35

    SELF FIELDS

    ( )[ ]( )

    ( )

    ( )

    EnB

    Rn

    n

    Rn

    nnE

    =

    +

    =

    23

    2

    31

    1

    1

    &

    c

    tRtt

    R

    Rn

    )(timeRetarded

    =

    =

    R(t)

    Target

    Source

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    4/35

    Motivations

    q Three dimensional effects in photo-injectorsInhomogeneities of cathode quantum efficiency

    Laser misalignmentsMultipolar terms in accelerating fields

    q 3-D injector for high aspect ratio beamproduction

    . on the way

    q Study of coherent radiation emission in bendingsand interaction with beam emittance and energyspread

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    5/35

    History 1992-1995 - Start: EU Network on RF-Injectors*Fortran / DOS (PC-386 20MHz)

    Procs: VII J.D'Etude Sur la Photoem. a Fort Courant Grenoble 20-22 Septembre 1995

    1996-1997 - Covariant smoothing of SC Fields

    Ported to C/Linux (PC-Pentium 133MHz)FEL

    1996 - NIM A393, p.434 (1997) - Procs. of 2nd Melfi works. 2000 - Aracne ed.(2000)

    1998-1999 - Simulation of bunching in low energy FEL**Added Devices (SW Linac Solenoid - UM) (PC-Pentium 266MHz)

    FEL 1998 - NIM A436, p.443 (1999) (not proceedings )

    2001-2002 - Italian initiative for Short FEL

    Today: Many upgrades - First tests of CSR in new version

    *Contributions from A. Marranca

    ** Contributions from P. Musumeci

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    6/35

    FEL lasing (1998)

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    7/35

    Major upgrade to:

    Accomodate more devices (Bends, Linacs, Solenoids )

    Load field profiles from files

    Point2point or Point2grid SC Fields evaluation (NxN

    NxM) Allowed piecewise simulations

    Graphical User Interface for Input File preparation (TCL/Tk)

    Graphical Post Processor for Mathematica / MathCad / IDL

    Porting to MPI for Parallel Simulations

    Fix Data / Code architectural dependence

    SDDS support for data exchange with FEL codes

    ? Smoothing of acceleration fields (still more work required)

    Radiative energy loss

    5000 lines 12.000+ lines of code + pre/post processors

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    8/35

    TREDI

    FlowChart

    Start

    Load configuration

    & init phase space

    Charge distribution & externalfields known at time t

    Adaptive algorithm tests accuracy &evaluates step length t

    Trajectories are intagrated to t+ t

    Self Fields are evaluated at time

    t+ t

    Exit if

    Z>Zend

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    9/35

    Parallelization

    Node 3Node 2Node 1

    Node n

    Particle

    trajec

    tory

    1

    Time

    Particle

    trajec

    tory

    2

    Particle

    trajec

    tory

    3

    Particle

    traject

    ory

    k-2

    Particle

    traject

    ory

    k-1

    Particle

    trajec

    tory

    k

    ..

    Present BeamNOW

    Self Fields

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    10/35

    CSR Tests with TREDI

    Problems:

    CSR cases are memory and cpu consuming

    Parallelization required very few particles

    (300 particles 4h on IBM SP3/16 nodes - 400 MHz each)

    The program seems much slower than expected

    The real enemy is the noise:

    Analysis and suppression of numerical noise

    Test cases Basic - No compression 5 nC - 5 GeV

    500 MeV - 1.0 nC - Gaussian

    5 GeV - 1.0 nC/0.5nC - Gaussian

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    11/35

    R(t)

    Targets

    Source

    Target

    Source

    Collective (coherent)

    effect

    2 Particles interaction

    incoherent collision

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    12/35

    Effect of Noise (1st bend - no screening)

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    13/35

    Suppression of noise

    Acceleration fields Can be very large in high energy cases Decrease only with distance as 1/R

    Produce transverse forces

    In the case of pure coulomb fields Regularization is obtained

    by giving macroparticles a finite size

    In the case of radiative fields

    Regularization is obtainedby giving macroparticles a finite sizein momentum space

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    14/35

    Suppression of noise II

    retpPP

    retP

    rdrrrEpdpppE

    rdpdrprprpEE

    =

    00

    ),()(),()(

    ),,,(),(

    01r01

    001

    rrrrrrrr

    rrrrrrrr

    The spatial integral istreated applying the Gauss

    theorem

    The momentum integralcan be estimated by assigning

    a minimum momentum dispersion

    0 1 2 3 4 5 6 7 81

    0.5

    0

    Transverse momentum dispersionNo dispersion

    Exkk

    Eax k

    k

    .Transverse

    Electric

    Field

    View angle

    = 10-4

    = 104

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    15/35

    Suppression of noise IIIThe integral in momentum space with a Gaussiandistribution is CPU time consuming

    Alternative:Limit angle of influence of particlesto force collective interactions

    P = impact parameter

    P=0 point like particles - no smoothing

    collisions dominateP=1 limited spread particles - collective effectsare dominant

    P>1 spread out macroparticle - reduced interaction

    nn 11

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    16/35

    Effect of impact parameter(Simulation of first bend - basic case)

    0 0.5 1 1.5 2 2.5 30.8

    0.9

    1

    1.1

    1.2

    1.3

    1.4

    P=0.1

    P=0.5

    P=1.0

    P=2.0

    Z (m)

    XEmitta

    nce(mm-mrad)

    .

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    17/35

    Step s 188=

    Z 15.96=

    Angle 0=

    Optic functions

    x 2.173=

    x 34.184=

    x 0.167=

    y 1.582=

    y 31.015=

    y 0.113=

    z 0.665=

    z 0.036=

    z 39.54=

    0 5 10 150

    0.1

    0.2

    X - Z Trajectory

    Z (m)

    X

    (mm)

    0.1 0.05 0 0.05 0.1 0.15 0.250

    0

    50

    100Z Projection

    Z (mm)

    Pz(mc)

    0.1 0 0.1

    0.05

    0

    0.05

    Y Projection

    Y (mm)

    Py(mc)

    2 1 0 1 2 3 4 52

    1

    0

    1

    2

    3X Projection

    X (mm)

    Px(mc)

    Phase space at exit still noisy !

    Basic case - P=1 - No compression - 5 GeV 1.0 nC

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    18/35

    No compression - 5 GeV 1.0 nCEstimation of emittance

    0 10 20 30 40 50 60 70 80 90 1001

    10

    100

    1.

    10

    3

    Charge (%)

    Emittance/(%C

    harge) 85

    .

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    19/35

    No compression - 5 GeV 1.0 nC - x=10.1 mm-mrad

    Step s 188=

    Z 15.96=

    Angle 0=

    Optic functionsx 1.768=

    x 31.572=

    x 0.131=

    y 1.542=

    y 30.57=y 0.11=

    z 0.266=

    z 0.06=

    z 17.905=

    0 5 10 150

    0.1

    0.2

    X - Z Trajectory

    Z (m)

    X

    (mm)

    0.04 0.02 0 0.02 0.04

    10

    5

    0

    5

    10Z Projection

    Z (mm)

    Pz(mc)

    0.4 0.2 0 0.2 0.4

    0.5

    0

    0.5X Projection

    X (mm)

    Px(mc)

    0.1 0 0.1

    0.05

    0

    0.05

    Y Projection

    Y (mm)

    Py(mc)

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    20/35

    No compression - 5 GeV 1.0 nCEmittances

    0 2 4 6 8 10 12 14 160

    5

    10

    15

    X

    YBounds of devices

    Z (m)

    Emittance(mm-mrad)

    .

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    21/35

    0 2 4 6 8 10 12 14 160

    0.02

    0.04

    0.06

    X

    Bounds of devices

    Z (m)

    EnergySpread(%)

    .

    No compression - 5 GeV 1.0 nC

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    22/35

    Energy variation ??

    0 2 4 6 8 10 12 14 166 .10

    7

    4 .107

    2 .107

    0

    X

    Bounds of devices

    Z (m)

    EnergyVaria

    tion(MeV)

    .

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    23/35

    No compression - 5 GeV 1.0 nCTransverse rms

    0 2 4 6 8 10 12 14 160

    50

    100

    150

    200

    X RMS

    Y RMS

    Bounds of devices

    Z (m)

    TransverseRMS(um)

    .

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    24/35

    E= 5 GeV - Q=1 nC

    0 2 4 6 8 10 12 14 160

    50

    100

    150

    200

    Z RMS

    Bounds of devices

    Z (m)

    ZRMS(um)

    .

    Bunch Length

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    25/35

    Phase space at exit still noisy !

    2 1.5 1 0.5 0 0.52

    1

    0

    1

    2X Projection

    X (mm)

    Px(mc)

    0.1 0.05 0 0.05 0.10.2

    0.1

    0

    0.1

    0.2Y Projection

    Y (mm)

    Py

    (mc)

    Step s 94=

    Z 15.881=

    Angle 1.819 105

    =

    Optic functions

    x

    0.724=

    x 6.403=

    x 0.238=

    y 1.099=

    y 15.131=

    y 0.146=

    z 2.406=

    z 7.384 103

    =

    z 919.209=

    0.08 0.06 0.04 0.02 0 0.02 0.04 0.06400

    200

    0

    200Z Projection

    Z (mm)

    P

    z(mc)

    0 5 10 150

    0.1

    0.2

    X - Z Trajectory

    Z (m)

    X

    (mm)

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    26/35

    Estimation of emittance

    0 10 20 30 40 50 60 70 80 90 1001

    10

    100

    Charge (%)

    Em

    ittance/(%C

    harge) 85

    .

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    27/35

    0 2 4 6 8 10 12 14 160

    20

    40

    60

    80

    X

    Y

    Bounds of devices

    Z (m)

    Emittan

    ce(mm-mrad)

    .

    Emittance vs. z

    dispersion

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    28/35

    Energy spread

    0 2 4 6 8 10 12 14 160.697198

    0.697199

    0.6972

    0.697201

    Z (m)

    EnergyS

    pread(%)

    s1

    % s1

    Rs1( )2

    m

    Rs1( )2

    m, M km 0,,

    .

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    29/35

    Phase space at exit with 85% of the charge, x=2.3 mm-mrad

    0.15 0.1 0.05 0 0.050.2

    0.1

    0

    0.1

    0.2

    X Projection

    X (mm)

    Px(mc)

    0.1 0.05 0 0.05 0.10.1

    0

    0.1

    0.2Y Projection

    Y (mm)

    Py(mc)

    Step s 94=

    Z 15.881=

    Angle 2.632 105

    =

    Optic functions

    x

    0.45=

    x 4.582=

    x 0.263=

    y 1.276=

    y 16.83=

    y 0.156=

    z 5.33=

    z 0.015=

    z 1.95 103

    =

    0.06 0.04 0.02 0 0.02 0.04 0.06400

    200

    0

    200Z Projection

    Z (mm)

    Pz(mc)

    0 5 10 150

    0.1

    0.2

    X - Z Trajectory

    Z (m)

    X

    (mm)

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    30/35

    0 2 4 6 8 10 12 14 160

    50

    100

    150

    200

    Z RMS

    Bounds of devices

    Z (m)

    ZRMS

    (um)

    .

    E= 5 GeV - Q=0.5 nC

    Bunch Length

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    31/35

    Phase space at exit with 85% of the charge, x=1.4 mm-mrad

    0.15 0.1 0.05 0 0.050.2

    0.1

    0

    0.1

    0.2X Projection

    X (mm)

    Px(mc)

    0.15 0.1 0.05 0 0.05 0.1 0.150.2

    0.1

    0

    0.1

    0.2Y Projection

    Y (mm)

    Py(mc)

    Step s 94=

    Z 15.93=

    Angle 3.468 105

    =

    Optic functionsx 0.466=

    x 5.188=

    x 0.235=

    y 1.178=

    y

    16=

    y 0.149=

    z 5.839=

    z 0.016=

    z 2.146 103

    =

    0.06 0.04 0.02 0 0.02 0.04 0.06400

    200

    0

    200Z Projection

    Z (mm)

    Pz(m

    c)

    0 5 10 150

    0.1

    0.2

    X - Z Trajectory

    Z (m)

    X(mm

    )

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    32/35

    0 2 4 6 8 10 12 14 160

    50

    100

    150

    200

    Z RMS

    Bounds of devices

    Z (m)

    ZRMS(um)

    .

    E= 500MeV - Q=1.0 nC

    Bunch Length

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    33/35

    Emittance at exit - 500 MeV - 1.0 nC ??

    0 10 20 30 40 50 60 70 80 90 1001

    10

    100

    Charge (%)

    Emittance/(%C

    harge)

    .

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    34/35

    Phase space at exit with 92% of the charge, x=21 mm-mrad

    1 0.5 0 0.5 1

    0.2

    0

    0.2

    X Projection

    X (mm)

    Px(mc)

    0.6 0.4 0.2 0 0.2 0.4 0.6

    0.05

    0

    0.05Y Projection

    Y (mm)

    Py(mc)

    Step s 94=

    Z 15.89=

    Angle 0.003=

    Optic functionsx 0.493=

    x 3.967=

    x 0.313=

    y 2.065=

    y

    22.26=

    y 0.237=

    z 0.869=

    z 6.571 103

    =

    z 267.046=

    0.1 0.05 0 0.05 0.120

    10

    0

    10

    20Z Projection

    Z (mm)

    Pz(mc

    )

    0 5 10 15

    0

    0.1

    0.2

    X - Z Trajectory

    Z (m)

    X

    (mm)

  • 8/2/2019 L. Giannessi - M. Quattromini - An Overview of Tredi and Csr Test Cases

    35/35

    Conclusions

    The noise suppression method has reduced the effects of SF onlongitudinal phase space, without being completely effective in thetransverse phase space

    A rigorous model of fields regularization, relying on a realisticmomentum dispersion of macroparticles will be soon implemented

    The low number of macroparticles in severely limiting the reliabilityof the results

    Diagnostic on fields will be implemented to improve insight on thesmoothing procedure

    The reason of the slow down of the code must be understood

    Before the end of the workshop the 1000 particles case will befinished - we will see.