l320-diffoutputopamps-2up

Upload: van-nguyen-huu-van

Post on 18-Oct-2015

5 views

Category:

Documents


0 download

DESCRIPTION

tkevimach

TRANSCRIPT

  • Lecture 320 Differential Output Op Amps (3/27/02) Page 320-1

    ECE 6412 - Analog Integrated Circuit Design - II P.E. Allen - 2002

    LECTURE 320 DIFFERENTIAL OUTPUT OP AMPS(READING: AH 384-393, GHLM 808-857)

    ObjectiveThe objective of this presentation is:1.) Design and analysis of differential output op amps2.) Examine the problem of common mode stabilizationOutline Advantages and disadvantages of fully differential operation Six different differential output op amps Techniques of stabilizing the common mode output voltage Summary

    Lecture 320 Differential Output Op Amps (3/27/02) Page 320-2

    ECE 6412 - Analog Integrated Circuit Design - II P.E. Allen - 2002

    Why Differential Output Op Amps? Cancellation of common mode signals including clock feedthrough Increased signal swing

    v1

    v2

    v1-v2t

    t

    t

    A

    -AA

    -A

    2A

    -2A Fig. 7.3-1

    Cancellation of even-order harmonicsSymbol:

    -

    +

    vin vout+

    -

    -

    +

    -

    +

    Fig. 7.3-1A

  • Lecture 320 Differential Output Op Amps (3/27/02) Page 320-3

    ECE 6412 - Analog Integrated Circuit Design - II P.E. Allen - 2002

    Common Mode Output Voltage StabilizationIf the common mode gain not small, it may cause the common mode output voltage to

    be poorly defined.Illustration:

    VDDvod

    t

    Fig. 7.3-2

    VSS

    0

    VDDvod

    t

    VSS

    0

    VDDvod

    t

    VSS

    0

    CM output voltage = 0

    CM output voltage =0.5VDD

    CM output voltage =0.5VSS

    Lecture 320 Differential Output Op Amps (3/27/02) Page 320-4

    ECE 6412 - Analog Integrated Circuit Design - II P.E. Allen - 2002

    Two-Stage, Miller, Differential-In, Differential-Out Op Amp

    vi1 M1 M2

    M3 M4

    M5

    M6M8

    VDD

    VSS

    VBN+-

    Cc

    M9

    Cc

    VBP+-

    vi2

    vo1vo2RzRz

    M7

    Fig. 7.3-3

    Output common mode range (OCMR) = VDD+ |VSS| - VSDP(sat) - VDSN(sat)The maximum peak-to-peak output voltage 2OCMR

    Conversion between differential outputs and single-ended outputs:

    vod CL

    +

    -

    +

    -

    +

    -

    vid+

    -

    vo1 2CL

    +

    -

    +

    -

    +

    -

    vid+

    -

    vo2+

    -

    2CLFig. 7.3-4

  • Lecture 320 Differential Output Op Amps (3/27/02) Page 320-5

    ECE 6412 - Analog Integrated Circuit Design - II P.E. Allen - 2002

    Differential-Output, Folded-Cascode, Class-A Op AmpVDD

    VSS

    R1

    M14

    R2

    M8

    M10VBias

    vi1 vi2 vo1vo2 M1 M2

    M3

    M4 M5

    M7M6

    M9

    M11

    M12

    M13

    M15

    M16

    M17Fig. 7.3-5

    OCMR = VDD + |VSS| - 2VSDP(sat) -2VDSN(sat)

    Lecture 320 Differential Output Op Amps (3/27/02) Page 320-6

    ECE 6412 - Analog Integrated Circuit Design - II P.E. Allen - 2002

    Two-Stage, Miller, Differential-In, Differential-Out Op Amp with Push-Pull Output

    vi1M1 M2

    M3 M4

    M5

    M6

    M7

    VDD

    VSS

    VBN+

    -

    Cc

    M9

    Cc

    VBP+-

    vi2

    vo1 vo2RzRz

    M8

    Fig. 7.3-6

    M10 M12

    M13M14

    Comments: Able to actively source and sink output current Output quiescent current poorly defined

  • Lecture 320 Differential Output Op Amps (3/27/02) Page 320-7

    ECE 6412 - Analog Integrated Circuit Design - II P.E. Allen - 2002

    Two-Stage, Differential Output, Folded-Cascode Op AmpVDD

    VSS

    R1

    M16 M8

    M10

    VBias

    vi1 vi2vo1vo2 M1 M2

    M3

    M4 M5

    M7M6

    M9

    M11

    M14 M15

    M12 M13

    CcRz CcRz

    M17M18

    M19

    M20

    Fig. 7.3-7A

    Note that the followers M11-M13 and M10-M12 are necessary for level translation to theoutput stage.

    Lecture 320 Differential Output Op Amps (3/27/02) Page 320-8

    ECE 6412 - Analog Integrated Circuit Design - II P.E. Allen - 2002

    Unfolded Cascode Op Amp with Differential-OutputsVDD

    VSS

    VBias

    R2 M22

    M23

    R1M19

    M20

    M1 M2

    M3 M4M5 M6M7 M8

    M9 M10

    M11

    M12M13

    M14

    M15 M16M17 M18

    M21

    vo1vi1 vi2

    vo2

    Fig. 7.3-8

  • Lecture 320 Differential Output Op Amps (3/27/02) Page 320-9

    ECE 6412 - Analog Integrated Circuit Design - II P.E. Allen - 2002

    Cross-Coupled Differential Amplifier StageOne of the problems with some of the previous stages, is that the quiescent output currentwas not well defined.The following input stage solves this problem.

    M1 M2

    M3 M4

    VGS2

    VSG4

    VGS1

    VSG3

    i1

    i1i2

    i2

    vi1 vi2

    Fig. 7.3-9

    vGS1+

    -

    vSG4+

    -

    vSG3+

    -

    vGS2+

    -

    Operation:Voltage loop vi1 - vi2 = -VGS1+ vGS1 + vSG4 - VSG4 = VSG3 - vSG3 - vGS2 + VGS2

    Using the notation for ac, dc, and total variables gives,vi2 - vi1 = vid = (vsg1 + vgs4) = -(vsg3 + vgs2)

    If M1 = M2 = M3 = M4, then half of the differential input is applied across each transistorwith the correct polarity.

    i1 = gm1vid

    2 = gm4vid

    2 and i2 = -gm2vid

    2 = -gm3vid

    2

    Lecture 320 Differential Output Op Amps (3/27/02) Page 320-10

    ECE 6412 - Analog Integrated Circuit Design - II P.E. Allen - 2002

    Class AB, Differential Output Op Amp using a Cross-Coupled Differential InputStage

    M1 M2

    M3 M4

    M5 M6

    M7

    VDD

    VSS

    VBias+

    -

    R1

    M24

    M25

    R2

    M27

    M28

    M8M9 M10

    M11 M12

    M13

    M14

    M15

    M16M17 M18

    M19 M20

    M21 M22

    M26

    M23

    vo2

    vi2vi1

    vo1

    Fig. 7.3-10

    Quiescent output currents are defined by the current in the input cross-coupleddifferential amplifier.

  • Lecture 320 Differential Output Op Amps (3/27/02) Page 320-11

    ECE 6412 - Analog Integrated Circuit Design - II P.E. Allen - 2002

    Common-Mode Output Voltage StabilizationVDD

    VSS

    io2(source)

    io2(sink)

    io1(source)

    io1(sink)

    Ro1

    Ro3

    Ro2

    Ro4

    M1 M2Common-modefeedback circuit

    vo1 vo2

    Fig. 7.3-11Model of output of differential

    output op amp

    Operation:M1 and M2 sense the common-mode output voltage.If this voltage rises, the currents in M1 and M2 decrease.This decreased current flowing through Ro3 and Ro4 cause the common-mode outputvoltage to decrease with respect to VSS.

    Lecture 320 Differential Output Op Amps (3/27/02) Page 320-12

    ECE 6412 - Analog Integrated Circuit Design - II P.E. Allen - 2002

    Two-Stage, Miller, Differential-In, Differential-Out Op Amp with Common-ModeStabilization

    vi1 M1 M2

    M3 M4

    M5

    M6M7

    VDD

    VSS

    VBN+-

    Cc

    M9

    Cc

    VBP+

    -

    vi2

    vo1vo2RzRz

    M8

    Fig. 7.3-12

    M10 M11

    Comments: Simple Unreferenced

  • Lecture 320 Differential Output Op Amps (3/27/02) Page 320-13

    ECE 6412 - Analog Integrated Circuit Design - II P.E. Allen - 2002

    A Referenced Common-Mode Output Voltage Stabilization SchemeVDD

    VSS

    M1 M2M3 M4

    M5 M6

    Vocm To correctioncircuitry

    vo1 vo2

    I5I6

    Iocm

    Fig. 7.3-13Operation:1.) The desired common-mode output voltage, Vocm, creates Iocm.2.) The actual common-mode output voltage creates current I5 which is mirrored to I6 .3.) If M1 through M4 are matched and the current mirror is ideal, then when Iocm = I6

    the actual common-mode output voltage should be equal to the desired common-mode output voltage.

    4.) The above steps assume that a correction circuitry exists that changes the common-mode output voltage in the correct manner.

    Lecture 320 Differential Output Op Amps (3/27/02) Page 320-14

    ECE 6412 - Analog Integrated Circuit Design - II P.E. Allen - 2002

    Common Mode Feedback CircuitsImplementation of common mode feedback circuit:

    v1M1 M2

    M3 M4

    M5

    VDD

    VSS

    IBias

    VCM

    v4v3

    v2

    MC2A

    MC2B

    MC1

    MC3MC4

    MC5MB

    I3 I4IC4IC3

    Fig. 7.3-13A

    Common-mode feed-back circuit

    Self-resistancesof M1-M4

    This scheme can be applied to any differential output amplifier.Caution:

    Be sure to check the stability of common-mode feedback loops, particularly those thatare connected to op amps that have a cascode output. The gain of the common-modefeedback loop can easily reach that of a two-stage amplifier.

  • Lecture 320 Differential Output Op Amps (3/27/02) Page 320-15

    ECE 6412 - Analog Integrated Circuit Design - II P.E. Allen - 2002

    Common Mode Feedback Circuits ContinuedThe previous circuit suffers in performance when the differential output voltage becomestoo large and one of the MC2A-MC2B transistors shuts off.The following circuit alleviates this disadvantage:

    v1M1 M2

    M3 M4

    M5

    VDD

    VSS

    IBias

    VCM

    v4v3

    v2MC2MC1

    MC3MC4

    MC5MB

    I3 I4IC4IC3

    Common-mode feed-back circuit

    RCM1 RCM2

    Fig. 7.3-15New

    Lecture 320 Differential Output Op Amps (3/27/02) Page 320-16

    ECE 6412 - Analog Integrated Circuit Design - II P.E. Allen - 2002

    External Common-Mode Output Voltage Stabilization Scheme for Discrete-TimeApplications

    Ccm+

    -

    +

    -

    +

    -

    vid

    vo1

    vo2CMbias

    1 2

    Ccm Vocm

    1 2

    1

    1

    1 Fig. 7.3-14 Operation:1.) During the 1 phase, both Ccm are charged to the desired value of Vocm and CMbias

    = Vocm.2.) During the 2 phase, the Ccm capacitors are connected between the differential

    outputs and the CMbias node. The average value applied to the CMbias node will beVocm.

  • Lecture 320 Differential Output Op Amps (3/27/02) Page 320-17

    ECE 6412 - Analog Integrated Circuit Design - II P.E. Allen - 2002

    SUMMARY Advantages of differential output op amps:

    - 6 dB increase in signal amplitude- Cancellation of even harmonics- Cancellation of common mode signals including clock feedthrough

    Disadvantages of differential output op amps:- Need for common mode output voltage stabilization- Compensation of common mode feedback loop- Difficult to interface with single-ended circuits

    Most differential output op amps are truly balanced For push-pull outputs, the quiescent current should be well defined Common mode feedback schemes include,

    - Unreferenced- Referenced