la complessa dinamica del modello di gurtin e … complessa dinamica del modello di gurtin e maccamy...

99
La complessa dinamica del modello di Gurtin e MacCamy Mimmo Iannelli Universit ` a di Trento IASI, Roma, January 26, 2009 – p. 1/99

Upload: vuquynh

Post on 19-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

La complessa dinamica

del modello di Gurtin e MacCamy

Mimmo Iannelli

Universit a di Trento

IASI, Roma, January 26, 2009 – p. 1/99

Outline of the talk

A chapter from the theory of age-structured populations :

Gurtin-McCamy model

Structured logistic growth

Juveniles-adults dynamics

Some recent results :

A numerical method for the analysis

Exploration of the models

IASI, Roma, January 26, 2009 – p. 2/99

Outline of the talk

A collaboration with :

F. Milner, Arizona University, Tempe, Mathematics Departm ent

C. Cusulin, Vienna University, Mathematics Department

S. Maset, Trieste University, Mathematics Department

D. Breda and R. Vermiglio, Udine University, Mathematics

Department

+ . . .

focused on numerical treatment of the Gurtin-McCamy model

IASI, Roma, January 26, 2009 – p. 3/99

Gurtin-MacCamy

The Gurtin-MacCamy system

∂p

∂t(a, t) +

∂p

∂a(a, t) + µ(a, S1(t), . . . , Sn(t))p(a, t) = 0,

p(0, t) =

∫ a†

0

β(a, S1(t), . . . , Sn(t))p(a, t) da,

Si(t) =

∫ a†

0

γi(a)p(a, t) da, i = 1, . . . , n,

p(a, 0) = p0(a).

IASI, Roma, January 26, 2009 – p. 4/99

Gurtin-MacCamy

The Gurtin-MacCamy system

∂p

∂t(a, t) +

∂p

∂a(a, t) + µ(a, S1(t), . . . , Sn(t))p(a, t) = 0,

p(0, t) =

∫ a†

0

β(a, S1(t), . . . , Sn(t))p(a, t) da,

Si(t) =

∫ a†

0

γi(a)p(a, t) da, i = 1, . . . , n,

p(a, 0) = p0(a).

6

age-distribution

IASI, Roma, January 26, 2009 – p. 5/99

Gurtin-MacCamy

The Gurtin-MacCamy system

∂p

∂t(a, t) +

∂p

∂a(a, t) + µ(a, S1(t), . . . , Sn(t))p(a, t) = 0,

p(0, t) =

∫ a†

0

β(a, S1(t), . . . , Sn(t))p(a, t) da,

Si(t) =

∫ a†

0

γi(a)p(a, t) da, i = 1, . . . , n,

p(a, 0) = p0(a).

XXXXXXXXXy

mortality

IASI, Roma, January 26, 2009 – p. 6/99

Gurtin-MacCamy

The Gurtin-MacCamy system

∂p

∂t(a, t) +

∂p

∂a(a, t) + µ(a, S1(t), . . . , Sn(t))p(a, t) = 0,

p(0, t) =

∫ a†

0

β(a, S1(t), . . . , Sn(t))p(a, t) da,

Si(t) =

∫ a†

0

γi(a)p(a, t) da, i = 1, . . . , n,

p(a, 0) = p0(a).

-

IASI, Roma, January 26, 2009 – p. 7/99

Gurtin-MacCamy

The Gurtin-MacCamy system

∂p

∂t(a, t) +

∂p

∂a(a, t) + µ(a, S1(t), . . . , Sn(t))p(a, t) = 0,

p(0, t) =

∫ a†

0

β(a, S1(t), . . . , Sn(t))p(a, t) da,

Si(t) =

∫ a†

0

γi(a)p(a, t) da, i = 1, . . . , n,

p(a, 0) = p0(a).

6

fertility

IASI, Roma, January 26, 2009 – p. 8/99

Gurtin-MacCamy

The Gurtin-MacCamy system

∂p

∂t(a, t) +

∂p

∂a(a, t) + µ(a, S1(t), . . . , Sn(t))p(a, t) = 0,

p(0, t) =

∫ a†

0

β(a, S1(t), . . . , Sn(t))p(a, t) da,

Si(t) =

∫ a†

0

γi(a)p(a, t) da, i = 1, . . . , n,

p(a, 0) = p0(a).

-

IASI, Roma, January 26, 2009 – p. 9/99

Gurtin-MacCamy

The Gurtin-MacCamy system

∂p

∂t(a, t) +

∂p

∂a(a, t) + µ(a, S1(t), . . . , Sn(t))p(a, t) = 0,

p(0, t) =

∫ a†

0

β(a, S1(t), . . . , Sn(t))p(a, t) da,

Si(t) =

∫ a†

0

γi(a)p(a, t) da, i = 1, . . . , n,

p(a, 0) = p0(a).

IASI, Roma, January 26, 2009 – p. 10/99

Gurtin-MacCamy

The Gurtin-MacCamy system

∂p

∂t(a, t) +

∂p

∂a(a, t) + µ(a, S1(t), . . . , Sn(t))p(a, t) = 0,

p(0, t) =

∫ a†

0

β(a, S1(t), . . . , Sn(t))p(a, t) da,

Si(t) =

∫ a†

0

γi(a)p(a, t) da, i = 1, . . . , n,

p(a, 0) = p0(a).

IASI, Roma, January 26, 2009 – p. 11/99

Gurtin-MacCamy

The basic ingredients

p(a, t) age-distribution of the population

Si(t) =

∫ a†

0

γi(a)p(a, t)da weighted selection of the population

β(a, S1(t), . . . , Sn(t)) fertility

µ(a, S1(t), . . . , Sn(t)) mortality

IASI, Roma, January 26, 2009 – p. 12/99

Structured logistic growth

Logistic growth

one single size: S(t) =

∫ a†

0γ(a)p(a, t)da

fertility: β(a, x) = R0β0(a)Φ(x)

mortality: µ(a, x) = µ0(a) + m(a)Ψ(x)

IASI, Roma, January 26, 2009 – p. 13/99

Structured logistic growth

Logistic growth

one single size: S(t) =

∫ a†

0γ(a)p(a, t)da

fertility: β(a, x) = R0β0(a)Φ(x)

mortality: µ(a, x) = µ0(a) + m(a)Ψ(x)

with

γ(a) non-decreasing

Φ(x) decreasing

Ψ(x) increasing

IASI, Roma, January 26, 2009 – p. 14/99

Structured logistic growth

Logistic growth

one single size: S(t) =

∫ a†

0γ(a)p(a, t)da

fertility: β(a, x) = R0β0(a)Φ(x)

mortality: µ(a, x) = µ0(a) + m(a)Ψ(x)

with

γ(a) non-decreasing

Φ(x) decreasing

Ψ(x) increasing

β0(a) and m(a) describe how crowding impacts on different ages

IASI, Roma, January 26, 2009 – p. 15/99

Structured logistic growth

Logistic growth

one single size: S(t) =

∫ a†

0γ(a)p(a, t)da

fertility: β(a, x) = R0β0(a)Φ(x)

mortality: µ(a, x) = µ0(a) + m(a)Ψ(x)

with

γ(a) non-decreasing

Φ(x) decreasing

Ψ(x) increasing

β0(a) and m(a) describe how crowding impacts on different ages

R0 = basic reproduction number

IASI, Roma, January 26, 2009 – p. 16/99

Structured logistic growth

Logistic growth

one single size: S(t) =

∫ a†

0γ(a)p(a, t)da

fertility: β(a, x) = R0β0(a)Φ(x)

mortality: µ(a, x) = µ0(a) + m(a)Ψ(x)

with

γ(a) non-decreasing

Φ(x) decreasing

Ψ(x) increasing

β0(a) and m(a) describe how crowding impacts on different ages

R0 = the number of off-springs produced during the whole life

IASI, Roma, January 26, 2009 – p. 17/99

Structured logistic growth

The search for a stationary state p∗(a)

∂p∗

∂a(a) + µ(a, S∗)p∗(a) = 0

=⇒ p∗(a) = Π(a, S∗)p∗(0), Π(a, S) = e−

a∫

0

µ(σ,S)dσ

1 =

a†∫

0

β(a, S∗)Π(a, S∗)da, p∗(0) =S∗

a†∫

0

γi(a)Π(a, S∗)da

IASI, Roma, January 26, 2009 – p. 18/99

Structured logistic growth

1 =

a†∫

0

β(a, S∗)Π(a, S∗)da

IASI, Roma, January 26, 2009 – p. 19/99

Structured logistic growth

1 = R0Φ(S∗)

a†∫

0

β0(a)e−∫

a

0µ0(σ)dσe−Ψ(S∗)

∫a

0m(σ)dσda

IASI, Roma, January 26, 2009 – p. 20/99

Structured logistic growth

1 = R0Φ(S∗)

a†∫

0

β0(a)e−∫

a

0µ0(σ)dσe−Ψ(S∗)

∫a

0m(σ)dσda

6

decreasing as a function of S∗

IASI, Roma, January 26, 2009 – p. 21/99

Structured logistic growth

1 = R0Φ(S∗)

a†∫

0

β0(a)e−∫

a

0µ0(σ)dσe−Ψ(S∗)

∫a

0m(σ)dσda

bifurcation graph

IASI, Roma, January 26, 2009 – p. 22/99

Structured logistic growth

1 = R0Φ(S∗)

a†∫

0

β0(a)e−∫

a

0µ0(σ)dσe−Ψ(S∗)

∫a

0m(σ)dσda

bifurcation graph

trivial state

IASI, Roma, January 26, 2009 – p. 23/99

Structured logistic growth

1 = R0Φ(S∗)

a†∫

0

β0(a)e−∫

a

0µ0(σ)dσe−Ψ(S∗)

∫a

0m(σ)dσda

bifurcation graph @@I non trivial state

IASI, Roma, January 26, 2009 – p. 24/99

Structured logistic growth

Stability by linearization at p∗(a)

deviation from the steady state v(a, t) = p(a, t) − p∗(a)

IASI, Roma, January 26, 2009 – p. 25/99

Structured logistic growth

Stability by linearization at p∗(a)

deviation from the steady state v(a, t) = p(a, t) − p∗(a)

∂v

∂t(a, t) +

∂v

∂a(a, t) + µ(a, S∗)v(a, t)+

+p∗(a)∂µ

∂S(a, S∗)

a†∫

0

γ(a)v(a, t)da = 0

v(0, t) =

a†∫

0

β(a, S∗)v(a, t)da+

+

a†∫

0

p∗(σ)∂β

∂S(σ, S∗)dσ

a†∫

0

γ(a)v(a, t)da

IASI, Roma, January 26, 2009 – p. 26/99

Structured logistic growth

Stability by linearization at p∗(a)

deviation from the steady state v(a, t) = p(a, t) − p∗(a)

∂v

∂t(a, t) +

∂v

∂a(a, t) + µ(a, S∗)v(a, t)+

+p∗(a)∂µ

∂S(a, S∗)

a†∫

0

γ(a)v(a, t)da = 0

v(0, t) =

a†∫

0

β(a, S∗)v(a, t)da+

+

a†∫

0

p∗(σ)∂β

∂S(σ, S∗)dσ

a†∫

0

γ(a)v(a, t)da

IASI, Roma, January 26, 2009 – p. 27/99

Structured logistic growth

Characteristic equation

det

∣∣∣∣∣∣∣

1 − K00(λ) −b∗ − K01(λ)

−K10(λ) 1 − K11(λ)

∣∣∣∣∣∣∣= 0

K00(t) = β(t, S∗)Π(t, S∗) K10(t) = γ(t)Π(t, S∗)

K01(t) = −p∗(0)

∫a†

0

∂µ

∂S(σ, S∗)K00(t + σ)dσ

K11(t) = −p∗(0)

∫a†

0

∂µ

∂S(σ, S∗)K10(t + σ)dσ

b∗ = p∗0(0)

∫a†

0

∂β

∂S(σ, S∗)Π(σ, S∗)dσ

IASI, Roma, January 26, 2009 – p. 28/99

Structured logistic growth

Characteristic equation

det

∣∣∣∣∣∣∣

1 − K00(λ) −b∗ − K01(λ)

−K10(λ) 1 − K11(λ)

∣∣∣∣∣∣∣= 0

K00(t) = β(t, S∗)Π(t, S∗) K10(t) = γ(t)Π(t, S∗)

K01(t) = −p∗(0)

∫a†

0

∂µ

∂S(σ, S∗)K00(t + σ)dσ

K11(t) = −p∗(0)

∫a†

0

∂µ

∂S(σ, S∗)K10(t + σ)dσ

b∗ = p∗0(0)

∫a†

0

∂β

∂S(σ, S∗)Π(σ, S∗)dσ

IASI, Roma, January 26, 2009 – p. 29/99

Structured logistic growth

Characteristic equation

det

∣∣∣∣∣∣∣

1 − K00(λ) −b∗ − K01(λ)

−K10(λ) 1 − K11(λ)

∣∣∣∣∣∣∣= 0

K00(t) = β(t, S∗)Π(t, S∗) K10(t) = γ(t)Π(t, S∗)

K01(t) = −p∗(0)

∫a†

0

∂µ

∂S(σ, S∗)K00(t + σ)dσ

K11(t) = −p∗(0)

∫a†

0

∂µ

∂S(σ, S∗)K10(t + σ)dσ

b∗ = p∗0(0)

∫a†

0

∂β

∂S(σ, S∗)Π(σ, S∗)dσ

IASI, Roma, January 26, 2009 – p. 30/99

Structured logistic growth

Characteristic equation

det

∣∣∣∣∣∣∣

1 − K00(λ) −b∗ − K01(λ)

−K10(λ) 1 − K11(λ)

∣∣∣∣∣∣∣= 0

K00(t) = β(t, S∗)Π(t, S∗) K10(t) = γ(t)Π(t, S∗)

K01(t) = −p∗(0)

∫a†

0

∂µ

∂S(σ, S∗)K00(t + σ)dσ

K11(t) = −p∗(0)

∫a†

0

∂µ

∂S(σ, S∗)K10(t + σ)dσ

b∗ = p∗0(0)

∫a†

0

∂β

∂S(σ, S∗)Π(σ, S∗)dσ

IASI, Roma, January 26, 2009 – p. 31/99

Structured logistic growth

Characteristic equation

det

∣∣∣∣∣∣∣

1 − K00(λ) −b∗ − K01(λ)

−K10(λ) 1 − K11(λ)

∣∣∣∣∣∣∣= 0

K00(t) = β(t, S∗)Π(t, S∗) K10(t) = γ(t)Π(t, S∗)

K01(t) = −p∗(0)

∫a†

0

∂µ

∂S(σ, S∗)K00(t + σ)dσ

K11(t) = −p∗(0)

∫a†

0

∂µ

∂S(σ, S∗)K10(t + σ)dσ

b∗ = p∗0(0)

∫a†

0

∂β

∂S(σ, S∗)Π(σ, S∗)dσ

IASI, Roma, January 26, 2009 – p. 32/99

Structured logistic growth

Characteristic equation

det

∣∣∣∣∣∣∣

1 − K00(λ) −b∗ − K01(λ)

−K10(λ) 1 − K11(λ)

∣∣∣∣∣∣∣= 0

If all characteristic roots have negative real partthen the steady state p∗(a) is stable.If at least one of the characteristic roots has apositive real part then the state is unstable.

IASI, Roma, January 26, 2009 – p. 33/99

Structured logistic growth

1 R0

-

6

rstable

IASI, Roma, January 26, 2009 – p. 34/99

Structured logistic growth

1 R0

-

6

rstable unstable

IASI, Roma, January 26, 2009 – p. 35/99

Structured logistic growth

1 R0

-

6

rstable unstable

&%'$

IASI, Roma, January 26, 2009 – p. 36/99

Structured logistic growth

1 R0

-

6

rstable unstable

&%'$

IASI, Roma, January 26, 2009 – p. 37/99

Structured logistic growth

1 R0

-

6

rstable unstable

IASI, Roma, January 26, 2009 – p. 38/99

Structured logistic growth

1 R0

-

6

rstable unstabler

IASI, Roma, January 26, 2009 – p. 39/99

Structured logistic growth

1 R0

-

6

rstable unstabler )

'

&

$

%bifurcation point:two complex conjugate roots crossthe imaginary axis and a periodicsolution arises by Hopf bifurcation

IASI, Roma, January 26, 2009 – p. 40/99

Juveniles-adult dynamics

The example of juveniles-adults dynamics

two selected groups

J(t) =

∫ a∗

0

p(a, t) da, juveniles

A(t) =

∫ a†

a∗

p(a, t) da, adults

IASI, Roma, January 26, 2009 – p. 41/99

Juveniles-adult dynamics

The example of juveniles-adults dynamics

two selected groups

J(t) =

∫ a∗

0

p(a, t) da, juveniles

A(t) =

∫ a†

a∗

p(a, t) da, adults

a∗ is the maturation age

IASI, Roma, January 26, 2009 – p. 42/99

Juveniles-adult dynamics

The example of juveniles-adults dynamics

two selected groups

J(t) =

∫ a∗

0

p(a, t) da, juveniles

A(t) =

∫ a†

a∗

p(a, t) da, adults

separated niches

Allee effect

cannibalism

IASI, Roma, January 26, 2009 – p. 43/99

Juveniles-adult dynamics

The case of two different ecological niches

β(a, J,A) = R0bχ[a∗,a†](a)e−(b1J+b2A)

µ(a, J,A) = µ0(a) + m1χ[0,a∗](a)J + m2χ[a∗,a†](a)A

IASI, Roma, January 26, 2009 – p. 44/99

Juveniles-adult dynamics

The case of two different ecological niches

β(a, J,A) = R0bχ[a∗,a†](a)e−(b1J+b2A)

µ(a, J,A) = µ0(a) + m1χ[0,a∗](a)J + m2χ[a∗,a†](a)A

IASI, Roma, January 26, 2009 – p. 45/99

Juveniles-adult dynamics

The case of two different ecological niches

β(a, J,A) = R0bχ[a∗,a†](a)e−(b1J+b2A)

µ(a, J,A) = µ0(a) + m1χ[0,a∗](a)J + m2χ[a∗,a†](a)A

IASI, Roma, January 26, 2009 – p. 46/99

Juveniles-adult dynamics

The case of two different ecological niches

β(a, J,A) = R0bχ[a∗,a†](a)e−(b1J+b2A)

µ(a, J,A) = µ0(a) + m1χ[0,a∗](a)J + m2χ[a∗,a†](a)A

IASI, Roma, January 26, 2009 – p. 47/99

Juveniles-adult dynamics

The case of two different ecological niches

β(a, J,A) = R0bχ[a∗,a†](a)e−(b1J+b2A)

µ(a, J,A) = µ0(a) + m1χ[0,a∗](a)J + m2χ[a∗,a†](a)A

IASI, Roma, January 26, 2009 – p. 48/99

Juveniles-adult dynamics

The case of two different ecological niches

β(a, J,A) = R0bχ[a∗,a†](a)e−(b1J+b2A)

µ(a, J,A) = µ0(a) + m1χ[0,a∗](a)J + m2χ[a∗,a†](a)A

IASI, Roma, January 26, 2009 – p. 49/99

Juveniles-adult dynamics

The case of two different ecological niches

R0

J

R0,2

R0,1

1

IASI, Roma, January 26, 2009 – p. 50/99

Juveniles-adult dynamics

The Allee effect

β(a, J,A) = R0bχ[a∗,a†](a)e−(b1J+b2A)

µ(a, J,A) = µ0(a) + m1χ[0,a∗](a)J + m2χ[a∗,a†](a)A+

− [θ1µ0(a) + θ2m1J ] χ[0,a∗](a)α(A)

A positive effect (a decrease of mortality) on

juveniles, due to adults presence

IASI, Roma, January 26, 2009 – p. 51/99

Juveniles-adult dynamics

The Allee effect

β(a, J,A) = R0bχ[a∗,a†](a)e−(b1J+b2A)

µ(a, J,A) = µ0(a) + m1χ[0,a∗](a)J + m2χ[a∗,a†](a)A+

−[θ1µ0(a) + θ2m1J ] χ[0,a∗](a)α(A)

A positive effect (a decrease of mortality) on

juveniles, due to adults presence

IASI, Roma, January 26, 2009 – p. 52/99

Juveniles-adult dynamics

The Allee effect

β(a, J,A) = R0bχ[a∗,a†](a)e−(b1J+b2A)

µ(a, J,A) = µ0(a) + m1χ[0,a∗](a)J + m2χ[a∗,a†](a)A+

− [θ1µ0(a) + θ2m1J ] χ[0,a∗](a)α(A)

A positive effect (a decrease of mortality) on

juveniles, due to adults presence

IASI, Roma, January 26, 2009 – p. 53/99

Juveniles-adult dynamics

The Allee effect

β(a, J,A) = R0bχ[a∗,a†](a)e−(b1J+b2A)

µ(a, J,A) = µ0(a) + m1χ[0,a∗](a)J + m2χ[a∗,a†](a)A+

− [θ1µ0(a) + θ2m1J ] χ[0,a∗](a)α(A)

A positive effect (a decrease of mortality) on

juveniles, due to adults presence

IASI, Roma, January 26, 2009 – p. 54/99

Juveniles-adult dynamics

The Allee effect

IASI, Roma, January 26, 2009 – p. 55/99

Juveniles-adult dynamics

The Allee effect

IASI, Roma, January 26, 2009 – p. 56/99

Juveniles-adult dynamics

Cannibalism (of adults on juveniles)

β(a, J,A) = R0bχ[a∗,a†](a)e−(b1J+b2A)

µ(a, J,A) = µ0(a) + m1χ[0,a∗](a)A

1 + θJ

A negative effect (increase of mortality) on

juveniles, due to predation by adults, regulated by a

functional response of Holling type

IASI, Roma, January 26, 2009 – p. 57/99

Juveniles-adult dynamics

Cannibalism (of adults on juveniles)

β(a, J,A) = R0bχ[a∗,a†](a)e−(b1J+b2A)

µ(a, J,A) = µ0(a) + m1χ[0,a∗](a)A

1 + θJ

A negative effect (increase of mortality) on

juveniles, due to predation by adults, regulated by a

functional response of Holling type

IASI, Roma, January 26, 2009 – p. 58/99

Juveniles-adult dynamics

Cannibalism (of adults on juveniles)

R0

J

R0,2

R0,1

1

IASI, Roma, January 26, 2009 – p. 59/99

A numerical method for stability analysis

The starting point: linearization at a steady state p∗(a)

∂v

∂t(a, t) +

∂v

∂a(a, t) + µ(a, S∗)v(a, t)+

+p∗(a)∂µ

∂S(a, S∗)

a†∫

0

γ(a)v(a, t)da = 0

v(0, t) =

a†∫

0

β(a, S∗)v(a, t)da+

+

a†∫

0

p∗(σ)∂β

∂S(σ, S∗)dσ

a†∫

0

γ(a)v(a, t)da

IASI, Roma, January 26, 2009 – p. 60/99

A numerical method for stability analysis

The starting point: the resulting characteristic equation

det

∣∣∣∣∣∣∣∣∣

1 − K00(λ) −b∗ − K01(λ)

−K10(λ) 1 − K11(λ)

∣∣∣∣∣∣∣∣∣

= 0

The goal: to approximate the roots

IASI, Roma, January 26, 2009 – p. 61/99

A numerical method for stability analysis

The starting point: the resulting characteristic equation

det

∣∣∣∣∣∣∣∣∣

1 − K00(λ) −b∗ − K01(λ)

−K10(λ) 1 − K11(λ)

∣∣∣∣∣∣∣∣∣

= 0

The goal: to approximate the roots

reformulation of the linearization as an abstract Cauchy pr oblem

discrete approximation of the generator

computation of the spectrum of the approximated generator

IASI, Roma, January 26, 2009 – p. 62/99

A numerical method for stability analysis

Reformulation as an abstract Cauchy problem

∂v

∂t(a, t) +

∂v

∂a(a, t) + µ(a, S∗)v(a, t)+

+p∗(a)∂µ

∂S(a, S∗)

a†∫

0

γ(a)v(a, t)da = 0

v(0, t) =

a†∫

0

β(a, S∗)v(a, t)da+

+

a†∫

0

p∗(σ)∂β

∂S(σ, S∗)dσ

a†∫

0

γ(a)v(a, t)da

v(a, 0) = v0(a)

IASI, Roma, January 26, 2009 – p. 63/99

A numerical method for stability analysis

Reformulation as an abstract Cauchy problem

∂v

∂t(a, t) +

∂v

∂a(a, t) + µ(a, S∗)v(a, t)+

+p∗(a)∂µ

∂S(a, S∗)

a†∫

0

γ(a)v(a, t)da = 0

v(0, t) =

a†∫

0

β(a, S∗)v(a, t)da+

+

a†∫

0

p∗(σ)∂β

∂S(σ, S∗)dσ

a†∫

0

γ(a)v(a, t)da

v(a, 0) = v0(a)

IASI, Roma, January 26, 2009 – p. 64/99

A numerical method for stability analysis

Reformulation as an abstract Cauchy problem

∂v

∂t(a, t) +

∂v

∂a(a, t) + (Hv(·, t))(a) = 0

v(0, t) = K0v(·, t)v(a, 0) = v0(a)

IASI, Roma, January 26, 2009 – p. 65/99

A numerical method for stability analysis

Reformulation as an abstract Cauchy problem

∂v

∂t(a, t) +

∂v

∂a(a, t) + (Hv(·, t))(a) = 0

v(0, t) = K0v(·, t)v(a, 0) = v0(a)

d

dtu(t) = Au(t), t ≥ 0,

u(0) = u0 ∈ X.

IASI, Roma, January 26, 2009 – p. 66/99

A numerical method for stability analysis

Reformulation as an abstract Cauchy problem

∂v

∂t(a, t) +

∂v

∂a(a, t) + (Hv(·, t))(a) = 0

v(0, t) = K0v(·, t)v(a, 0) = v0(a)

d

dtu(t) = Au(t), t ≥ 0,

u(0) = u0 ∈ X.

'

&

$

%

L1

([0, a†], R)

IASI, Roma, January 26, 2009 – p. 67/99

A numerical method for stability analysis

Reformulation as an abstract Cauchy problem

∂v

∂t(a, t) +

∂v

∂a(a, t) + (Hv(·, t))(a) = 0

v(0, t) = K0v(·, t)v(a, 0) = v0(a)

d

dtu(t) = Au(t), t ≥ 0,

u(0) = u0 ∈ X.

'

&

$

%9

)

u(t) ≡ v(·, t)u0 ≡ v0(·)

IASI, Roma, January 26, 2009 – p. 68/99

A numerical method for stability analysis

Reformulation as an abstract Cauchy problem

∂v

∂t(a, t) +

∂v

∂a(a, t) + (Hv(·, t))(a) = 0

v(0, t) = K0v(·, t)v(a, 0) = v0(a)

d

dtu(t) = Au(t), t ≥ 0,

u(0) = u0 ∈ X.

'

&

$

%

Aϕ = −ϕ′ −Hϕ

D (A) = ϕ ∈ X | ϕ′ ∈ X, ϕ(0) = K0ϕ

IASI, Roma, January 26, 2009 – p. 69/99

A numerical method for stability analysis

Discrete approximation of the generator

IASI, Roma, January 26, 2009 – p. 70/99

Recent results: a numerical method for stability analysis

Discrete approximation of the generator

[0, a†] ΩN =θi =

a†

2 cos(

N−iN π

)+

a†

2 : i = 0, . . . , N

IASI, Roma, January 26, 2009 – p. 71/99

A numerical method for stability analysis

Discrete approximation of the generator

[0, a†] ΩN =θi =

a†

2 cos(

N−iN π

)+

a†

2 : i = 0, . . . , N

ϕ ∈ X y ∈ XN∼= CN

set yi = ϕ(θi), i = 1, . . . , N

IASI, Roma, January 26, 2009 – p. 72/99

A numerical method for stability analysis

Discrete approximation of the generator

[0, a†] ΩN =θi =

a†

2 cos(

N−iN π

)+

a†

2 : i = 0, . . . , N

ϕ ∈ X y ∈ XN∼= CN

set yi = ϕ(θi), i = 1, . . . , N

A AN : XN → XN ,

build ϕN an interpolating polynomial through yi such that

ϕN (0) = K0ϕN

compute zi = −ϕ′N (θi) − (HϕN ) (θi), i = 1, . . . , N

set (ANy)i = zi

IASI, Roma, January 26, 2009 – p. 73/99

A numerical method for stability analysis

Discrete approximation of the generator

the eigenvalues of AN approximate the eigenvalues of A

If λ is an eigenvalue of A with multiplicity ν, then for N sufficiently large,

AN has exactly ν eigenvalues λi, i = 1, . . . , ν, such that

max1≤i≤ν

|λ − λi| ≤(

C2

C3

)1/ν(

εN +1√N

(C1

N

)N)1/ν

IASI, Roma, January 26, 2009 – p. 74/99

Exploration of juveniles-adults dinamics

Back to adults-juveniles competition:the case of separate niches

R0

J

R0,2

R0,1

1

IASI, Roma, January 26, 2009 – p. 75/99

Exploration of juveniles-adults dinamics

Separate niches: exploring the bifurcation graph

R0

J

R0,2

R0,1

1

IASI, Roma, January 26, 2009 – p. 76/99

Exploration of juveniles-adults dinamics

Separate niches: exploring the bifurcation graph

R0

J

R0,2

R0,1

1

−8 −6 −4 −2 0 2−40

−30

−20

−10

0

10

20

30

40

ℜ (λ)ℑ

(λ)

K

mAA

PPi

IASI, Roma, January 26, 2009 – p. 77/99

Exploration of juveniles-adults dinamics

Separate niches: exploring the bifurcation graph

R0

J

R0,2

R0,1

1

−8 −6 −4 −2 0 2−40

−30

−20

−10

0

10

20

30

40

ℜ (λ)ℑ

(λ)

K

mstableA

A

PPi

IASI, Roma, January 26, 2009 – p. 78/99

Exploration of juveniles-adults dinamics

Separate niches: exploring the bifurcation graph

R0

J

R0,2

R0,1

1

−8 −6 −4 −2 0 2−40

−30

−20

−10

0

10

20

30

40

ℜ (λ)ℑ

(λ)

J

mstableA

B

PPi mbifurcationB

IASI, Roma, January 26, 2009 – p. 79/99

Exploration of juveniles-adults dinamics

Separate niches: exploring the bifurcation graph

R0

J

R0,2

R0,1

1

−8 −6 −4 −2 0 2−40

−30

−20

−10

0

10

20

30

40

ℜ (λ)ℑ

(λ)

I

mstableA

C

PPi mbifurcationB munstableC

IASI, Roma, January 26, 2009 – p. 80/99

Exploration of juveniles-adults dinamics

Separate niches: exploring the bifurcation graph

R0

J

R0,2

R0,1

1

−8 −6 −4 −2 0 2−40

−30

−20

−10

0

10

20

30

40

ℜ (λ)ℑ

(λ)

H

mstableA

D

PPi mbifurcationB munstableC

mbifurcationDPPPPi

IASI, Roma, January 26, 2009 – p. 81/99

Exploration of juveniles-adults dinamics

Separate niches: exploring the bifurcation graph

R0

J

R0,2

R0,1

1

−8 −6 −4 −2 0 2−40

−30

−20

−10

0

10

20

30

40

ℜ (λ)ℑ

(λ)

E

mstableA

E

PPi mbifurcationB munstableC

mbifurcationDPPPPi

munstabletwo complex roots

EAAAAAU

IASI, Roma, January 26, 2009 – p. 82/99

Exploration of juveniles-adults dinamics

A complete pattern

−7 −6 −5 −4 −3 −2 −1 0 1−1

0

1

2

3

4

5

ℜ (λ)

ℑ(λ

)

R0

J

R0,2

R0,11

IASI, Roma, January 26, 2009 – p. 83/99

Exploration of juveniles-adults dinamics

A complete pattern

−7 −6 −5 −4 −3 −2 −1 0 1−1

0

1

2

3

4

5

ℜ (λ)

ℑ(λ

)

R0

J

R0,2

R0,11

IASI, Roma, January 26, 2009 – p. 84/99

Exploration of juveniles-adults dinamics

A complete pattern

−7 −6 −5 −4 −3 −2 −1 0 1−1

0

1

2

3

4

5

ℜ (λ)

ℑ(λ

)

R0

J

R0,2

R0,11

IASI, Roma, January 26, 2009 – p. 85/99

Exploration of juveniles-adults dinamics

A complete pattern

−7 −6 −5 −4 −3 −2 −1 0 1−1

0

1

2

3

4

5

ℜ (λ)

ℑ(λ

)

R0

J

R0,2

R0,11

IASI, Roma, January 26, 2009 – p. 86/99

Exploration of juveniles-adults dinamics

A complete pattern

−7 −6 −5 −4 −3 −2 −1 0 1−1

0

1

2

3

4

5

ℜ (λ)

ℑ(λ

)

R0

J

R0,2

R0,11

IASI, Roma, January 26, 2009 – p. 87/99

Exploration of juveniles-adults dinamics

A complete pattern

−7 −6 −5 −4 −3 −2 −1 0 1−1

0

1

2

3

4

5

ℜ (λ)

ℑ(λ

)

R0

J

R0,2

R0,11

IASI, Roma, January 26, 2009 – p. 88/99

Exploration of juveniles-adults dinamics

Orbits by numerical computation of the solution

IASI, Roma, January 26, 2009 – p. 89/99

Exploration of juveniles-adults dinamics

Orbits by numerical computation of the solution

0 1 2 3 4 50

0.1

0.2

0.3

0.4

0.5

0.6

J

A

R0=340

R0=300

R0=200R

0=100R

0=50

R0=30

R0=75R

0=35

R0=24

R0=411

R0=150

IASI, Roma, January 26, 2009 – p. 90/99

Future work

IASI, Roma, January 26, 2009 – p. 91/99

Future work

systematic use of the numerical method for a complete

analysis of some specific population models

IASI, Roma, January 26, 2009 – p. 92/99

Future work

systematic use of the numerical method for a complete

analysis of some specific population models

extension of the method to age structured models with

diffusion

IASI, Roma, January 26, 2009 – p. 93/99

Future work

systematic use of the numerical method for a complete

analysis of some specific population models

extension of the method to age structured models with

diffusion

extension to epidemic models

IASI, Roma, January 26, 2009 – p. 94/99

Future work

systematic use of the numerical method for a complete

analysis of some specific population models

extension of the method to age structured models with

diffusion

extension to epidemic models

building of a (friendly enough) simulation system includin g

IASI, Roma, January 26, 2009 – p. 95/99

Future work

systematic use of the numerical method for a complete

analysis of some specific population models

extension of the method to age structured models with

diffusion

extension to epidemic models

building of a (friendly enough) simulation system includin g

numerical methods for the computation of the solution

IASI, Roma, January 26, 2009 – p. 96/99

Future work

systematic use of the numerical method for a complete

analysis of some specific population models

extension of the method to age structured models with

diffusion

extension to epidemic models

building of a (friendly enough) simulation system includin g

numerical methods for the computation of the solution

computation of steady states

IASI, Roma, January 26, 2009 – p. 97/99

Future work

systematic use of the numerical method for a complete

analysis of some specific population models

extension of the method to age structured models with

diffusion

extension to epidemic models

building of a (friendly enough) simulation system includin g

numerical methods for the computation of the solution

computation of steady states

stability analysis via numerical computation of

characteristic roots

IASI, Roma, January 26, 2009 – p. 98/99

THANK YOU FORYOUR ATTENTION

IASI, Roma, January 26, 2009 – p. 99/99