la torre cuadros 2003 (traditional ecological knowledge, mexico)

22
Traditional ecological knowledge and use of vegetation in southeastern Mexico: a case study from Solferino, Quintana Roo * MARIA DE LOS ANGELES LA TORRE-CUADROS and GERALD A. ISLEBE El Colegio de la Frontera Sur, Unidad Chetumal, Herbarium, A.P . 424, Chetumal, Quintana Roo 77000, * Mexico; Author for correspondence (e-mail: mtorre@ecosur-qroo.mx; fax: 152-983-83-50440) Received 6 June 2002; accepted in revised form 3 January 2003 Key words: Ethnoclassification, Mayas, Mexico, Quantitative ethnobotany, Tropical forest Abstract. In order to assess traditional ecological knowledge of the Maya people in southeastern Mexico, we interviewed local people in Quintana Roo and estimated a number of vegetation variables in two different types of forest which are currently locally exploited, namely Monte alto (medium statured forest) and Sakal che’ (low forest). We employed the Use Value index for each plant species (UV ) to s quantify the importance of each plant for each inhabitant. The results showed that this Maya community classify the different forest types by species associations and size, and according to soil appearance. A total of nine categories of use were defined for three plant forms (tree, palm and vine). Manilkara zapota (zapote), Thrinax radiata (chiit) and Macfadyena uncata (bilin kok) showed the highest use values for each plant form. The most common uses were construction (35.5%), medicine (19.0%), craft (17.9%) and edibility (10.3%). There was a weak relationship between the cultural importance of plant species, expressed by the UV , and their availability in the medium statured forest and the medium statured–low s forest transition expressed by the Importance Value index (IVI). The medium statured forest was the most used forest type, as it provides many species for construction due to external demands rather than to local needs. Introduction The severe deforestation of tropical forests is a global concern. Recent studies 6 estimated a rate of change in the forest area of 4.9 6 1.3 3 10 ha per year (Achard et al. 2002). This may also involve a huge economic loss, as tropical forests have a 9 total estimated value of US$2007 per ha and a circulation capital of US$3813 3 10 per year (Costanza et al. 1997). Forest resources can be exploited following alternative strategies which prevent deforestation and land transformation (Peters et al. 1989; Nepstad and Schwartzman 1992; Plokin and Famolare 1992). For instance, ethnobotanists have found that non-timber products like edible fruits, oils, latex, and fiber represent the most immediate and profitable method for integrating the use and conservation of Amazonian forests (Balick and Cox 1997). The economic value of useful species in tropical forests has been assessed on national (Rutter 1990), regional (Toledo et al. ´ 1978; Richards 1991) and local scales (Prance et al. 1987; Pinedo-Vasquez et al. B i odi versi t y and C onservat i on 12:2455–2476, 2003. c 2003 Kluwer Academic Publishers. Printed in the Netherlands.

Upload: tazmania4716

Post on 14-Oct-2014

33 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: La Torre Cuadros 2003 (Traditional Ecological Knowledge, Mexico)

Traditional ecological knowledge and use ofvegetation in southeastern Mexico: a case study fromSolferino, Quintana Roo

*MARIA DE LOS ANGELES LA TORRE-CUADROS and GERALD A.ISLEBEEl Colegio de la Frontera Sur, Unidad Chetumal, Herbarium, A.P. 424, Chetumal, Quintana Roo 77000,

*Mexico; Author for correspondence (e-mail: [email protected]; fax: 152-983-83-50440)

Received 6 June 2002; accepted in revised form 3 January 2003

Key words: Ethnoclassification, Mayas, Mexico, Quantitative ethnobotany, Tropical forest

Abstract. In order to assess traditional ecological knowledge of the Maya people in southeastern Mexico,we interviewed local people in Quintana Roo and estimated a number of vegetation variables in twodifferent types of forest which are currently locally exploited, namely Monte alto (medium staturedforest) and Sakal che’ (low forest). We employed the Use Value index for each plant species (UV ) tos

quantify the importance of each plant for each inhabitant. The results showed that this Maya communityclassify the different forest types by species associations and size, and according to soil appearance. Atotal of nine categories of use were defined for three plant forms (tree, palm and vine). Manilkara zapota(zapote), Thrinax radiata (chiit) and Macfadyena uncata (bilin kok) showed the highest use values foreach plant form. The most common uses were construction (35.5%), medicine (19.0%), craft (17.9%)and edibility (10.3%). There was a weak relationship between the cultural importance of plant species,expressed by the UV , and their availability in the medium statured forest and the medium statured–lows

forest transition expressed by the ImportanceValue index (IVI). The medium statured forest was the mostused forest type, as it provides many species for construction due to external demands rather than to localneeds.

Introduction

The severe deforestation of tropical forests is a global concern. Recent studies6estimated a rate of change in the forest area of 4.9 6 1.3 3 10 ha per year (Achard

et al. 2002). This may also involve a huge economic loss, as tropical forests have a9total estimated value of US$2007 per ha and a circulation capital of US$3813 3 10

per year (Costanza et al. 1997).Forest resources can be exploited following alternative strategies which prevent

deforestation and land transformation (Peters et al. 1989; Nepstad and Schwartzman1992; Plokin and Famolare 1992). For instance, ethnobotanists have found thatnon-timber products like edible fruits, oils, latex, and fiber represent the mostimmediate and profitable method for integrating the use and conservation ofAmazonian forests (Balick and Cox 1997). The economic value of useful species intropical forests has been assessed on national (Rutter 1990), regional (Toledo et al.

´1978; Richards 1991) and local scales (Prance et al. 1987; Pinedo-Vasquez et al.

B i odi versi t y and C onservat i on 12: 2455–2476, 2003.c© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

Page 2: La Torre Cuadros 2003 (Traditional Ecological Knowledge, Mexico)

2456

˜1990; Paz y Mino et al. 1991; Phillips and Gentry 1993a; Phillips et al. 1994).Comparable analysis of tree farming in Brazil gave yields of US$3184 per ha, whilethe conversion of tropical forest for cattle pasture gave a net present value of onlyUS$2960, assuming gross revenues of US$148 per year (Peters et al. 1989). In asimilar study, Balick and Mendelsohn (1992) valued the native medicinal plantspecies taken by the local people from a forest in Belize. From two separate 1-haplots of 30- and 50-year-old forest, the total biomass of respectively 309 and 1434kg (dry weight) of medicinal plants was calculated a present value of US$726 per hafor the 30-year forest, and US$3327 per ha for the 50-year forest (Balick andMendelsohn 1992). These studies fostered a greater understanding of the value ofthe tropical forest to local inhabitants and their economy. Traditional ecologicalknowledge emphasizes and unravels the actual utilities of tropical plant species, thusenhancing the local management and conservation of local forest resources andbiodiversity (Colorado and Collins 1987; Colorado 1988; Schultes 1988; Posey

´1990; Gadgil et al. 1993; Hunn 1993; Salmon 1996; Richards 1997; Turner et al.2000). This can be assessed in Mexico, as it is one of the best studied Latin

´American countries from an ethnobotanical point of view (Toledo 1987; Martınez1994). Indeed, over 50% of the Mexican indigenous groups have been subjected tostudies dealing with plant use patterns, and further research has focused on theMestizo population (Toledo 1990; Toledo et al. 1995).

National forest clearing programs for agriculture and husbandry during the 1970sand 1980s led to 75% of the state being covered by secondary plant communities indifferent seral stages (Olmsted et al. 1983). Still, the forests of Quintana Roo remainan important source of timber and non-timber products for domestic use and foreignmarkets (e.g. extraction of chicle from the tree Manilkara zapota and of guanoleaves from the palm Sabal yapa). Ethnobotanical research in northern QuintanaRoo has been scarce, notwithstanding the fact that modern Maya natives devote a lotof traditional knowledge to medicine, ritual, construction, food, and fabric elabora-tion (Barrera et al. 1976; Mendieta and Del Amo 1981; Flores 1987; Pulido and

´ ´Serralta 1993). For instance, Mendez and Duran (1997) estimated that aboutone-third of the plant species in northern Quintana Roo have medicinal applications.However, regional plant communities have been severely impacted over time byoverexploitation of timber, chicle and tourism.

The main goal of this study was to quantify the use of undisturbed vegetation byMaya people in a community of northern Quintana Roo. In this study, we firstdetermined Maya people’s criteria in differentiating and classifying vegetation typesaccording to a number of individual interviews. Secondly we examined the use ofeach vegetation type on the base of the Use Value index (UV ) (Phillips and Gentrys

1993a, 1993b). Third, we evaluated composition, abundance and distribution oftrees and palms in two vegetation types which are regarded as undisturbed by thepeople, and compared the Importance Value Index for each species (IVI) calculatedfor each type of forest with the UV obtained. Finally, we summarize the applica-s

tions of 10 useful plant species according to their use in Solferino and in the regionof study.

Page 3: La Torre Cuadros 2003 (Traditional Ecological Knowledge, Mexico)

2457

Methods

Study area

The study was carried out in the Solferino ejido, a communal landholding with atotal area of 18400 ha located in the northern part of Quintana Roo (218129300 /218259000 N and 878069000 /878309000 W) (Figure 1). The local climate is char-acterized by annual mean temperatures varying between 24 and 26 8C, while theannual precipitation ranges from 900 to 1300 mm, with most rain between May andOctober and peaks in June and September (Escobar 1986). Soils are rich in Ca, Mg,

´Ka, Fe and Al, but poor in P and Mn (Wright 1967; Sanchez and Islebe 2001).This ejido gathers a total of 803 inhabitants (INEGI 2000). Local ethnic groups

consist of both Maya and Mestizo people from the states of Quintana Roo andYucatan, and a small group of Totonac descendants from Veracruz. The mainactivity is agriculture, either as a direct source of food (mainly traditional milpa, i.e.corn and squash bean fields /crops) or as a source of cash income (vegetables).Animal husbandry, fishing and apiculture are complementary activities.

Fieldwork was undertaken between October 2000 and January 2002. Approxi-mately 100 individuals were interviewed in a semi-structured open-ended format,asking them about the most important useful plants in the area. From these

Figure 1. Map showing the location of the Solferino ejido in the Yucatan Peninsula.

Page 4: La Torre Cuadros 2003 (Traditional Ecological Knowledge, Mexico)

2458

interviews we selected 21 informants who had substantial knowledge about theforest. As a consequence, our sample shows a bias toward older male informants (18individuals, average age 61 years) with only three women being interviewed (detailsin La Torre-Cuadros and Ross, accepted paper). A second semi-structured interviewwas applied to obtain precise information on the use (category of use and part ofplants used) of those species which are presently exploited, and their location in thefield. These data were analyzed by the consensus of the informants technique, wherethe relative importance of each use is calculated by the degree of consensus in thevarious answers given by each informant (Adu-Tutu et al. 1979; Trotter and Logan1986; Phillips and Gentry 1993a). To quantify the plant resources present in eachvegetation type and contrast this estimate with the interview data, we divided thestudy area in four zones, based on aerial photography on a 1:75000 scale, andpositioned by GPS. These study zones comprised a medium statured forest disturbedby agriculture, a medium statured forest without disturbance, a transition vegetationbetween medium and low forests, and savanna. A total of 20 plots were establishedonly in the two undisturbed zones, namely 12 in the medium forest and 8 in thetransition. The plot area was standardized at 0.1 ha according to previous vegetation

´ ´ ´studies in the region (Duran 1986; Sanchez 2000; Sanchez and Islebe 2001), i.e. 202 2

3 50 m in the medium forest patches, and 10 3 100 m in the transition zone,because of the spatial distribution of the trees. We identified tree and palmindividuals with diameter at breast height (dbh) $5 cm, and collected data on theiruse by local people, incorporating use of vines too. All plant specimens werecollected and subsequently identified at the ECOSUR Herbarium.

Data analysis

We employed the Use Value index of each species s for each informant i (UV ) andis

the Use Value for each species s (UV ) proposed by Phillips and Gentry (1993a,s

1993b) to quantify the importance of each species for each informant. UV isis

defined as UV 5 oU /n , where U amounts to the number of uses quoted in eachis is is is

interview (event) by informant i, and n stands for the number of quotations foris

species s given by informant i. An ‘event’ is defined as the process of asking oneinformant on 1 day about the uses they know for one given species (Phillips andGentry 1993a). In our case, there were two events of informants’ interviews. Theoverall use value for each species s is equated by UV 5 o UV /n , where n equalss i is s s

the number of informants interviewed for species s.The informants quoted 61 types of plant uses, which have been categorized in

Table 3. We maintained the common name for each species following the criteria byBerlin (1973, 1992).

Detrented correspondence analysis (DCA) was applied on 20 plots with 922species and basal area (cm ), which was used as the variable of dominance (Curtis

1959). DCA was implemented in the PC-ORD package v. 3.0 (McCune andMefford 1997). The IVI for each species was used to characterize vegetation typesand explore species dominance patterns in our sampling zones. The IVI for a speciesis the sum of its relative density, relative dominance (basal area) and relative

Page 5: La Torre Cuadros 2003 (Traditional Ecological Knowledge, Mexico)

2459

frequency (Curtis and McIntosh 1951). In order to assess species occurrencepatterns in each vegetation type, a classification method was carried out as proposed

´by Sanchez and Islebe (2002).

Results

Local Maya’s classification of vegetation types

A total of four major types of vegetation were identified by natives, who namedthem after a number of synonyms. Three of these vegetation types were consideredas undisturbed and were classified into a further eight vegetation subtypes regardingdominance or presence /absence patterns of plant species (Table 1). In over 50% ofthe interviews, natives put the focus on species size and soil characteristics as themain factors differentiating the medium statured forest from the low forest. Seralvegetation patches were recognized by locals by their exploitation, while speciesassociations and dynamics were reported for allocating the vegetation patches to asavanna forest type (Figure 2, Table 2).

Use values

Interviews reflected that the local vegetation is widely used by local Maya forconstruction (35.5%), medicine (19.0%), craft (17.9%) and edibility (10.3%).Patterns of use of vegetation resources are shaped by their accessibility (85.7%),morphological appearance (80.9%), and sometimes by information exchange

Figure 2. Plant species attributes reported by local Maya people for classifying the study vegetationtypes, i.e. Mb: Monte bajo (disturbed forest), Ma: Monte alto (medium statured forest), Sak: Sakal che’or Monte blanco (low forest), Sa: Sabana (savanna).

Page 6: La Torre Cuadros 2003 (Traditional Ecological Knowledge, Mexico)

2460

Tab

le1.

Typ

esof

vege

tatio

nfo

und

inth

est

udy

area

,with

the

clas

sific

atio

nan

dno

men

clat

ure

repo

rted

bylo

calM

aya

nativ

esco

mpa

red

with

the

ecol

ogic

alcl

assi

ficat

ion.

Cla

ssifi

catio

nD

egre

eof

dist

urba

nce

aD

istu

rbed

Und

istu

rbed

Und

istu

rbed

Und

istu

rbed

Loca

lM

aya

nativ

es˜

Type

sof

vege

tatio

nM

onte

bajo

(kub

ches

orhu

amil,

Mon

teal

toor

Mon

tana

(Ma)

Saka

lche

’or

Mon

tebl

anco

Saba

na(S

a)˜

˜ca

nada

,can

aro

sa)

(Mb)

orTs

ek’e

la(S

ak)

Subt

ypes

ofve

geta

tion

Gua

nal

Tasi

stal

Zaca

tal

Chi

tal

Tint

alTu

lar

Cat

zim

alC

orch

al

Mira

nda

(197

8)

Ecol

ogic

alty

peso

fveg

etat

ion

Succ

essi

onal

vege

tatio

nin

Med

ium

stat

ured

fore

stLo

wfo

rest

‘Sav

anna

fore

st’

diff

eren

tre

gene

ratio

nst

ages

aV

eget

atio

nw

ithm

inor

hum

anin

terv

entio

n.

Page 7: La Torre Cuadros 2003 (Traditional Ecological Knowledge, Mexico)

2461

Table 2. Definition of the criteria utilized in the local classification of the vegetation types.

Criteria Attributes mentioned by locals

Morphological appearance and Size: high, low, medium, small, little, ‘chaparro’in situ observations Color: white, green, black, pale

Thickness: thin, thickVegetative structures: thorny, entangled, ‘gajudo’Hardness: smooth, hardCover: little, dense, ‘piece’, ‘manchones’, ‘coposo’, gloomy, leafyCharacteristic of the soil: muddy, stone slab, pure stone, rocky,hard, burned, blackish, red

Association Presence or absence of different plants or animalsUse Places to cut wood, seed bed, wood for house, medicinal plants,

ornamental plants, corn harvesting milpa, animal food, restingplace, fishing, use of the ground

Dynamic As consequence of water level, phenological cycles and beliefsLocation Reference to an adjacent type of vegetation, place, distance in km

or in timeArea Characteristic of the landscapeOthers General perception of the environment

among cohabitants (38.2%) or in situ observations such as bark hardness or sapcolor (28.6%). The uses of trees, palms and vines were considered, and could beallocated to a total of nine categories, which composed the Use Value index (Table3).

A regression analysis showed a positive but weak relationship between Use Valuefor each species and its availability (defined by IVI) in each type of vegetation,

2despite its significance in the medium statured forest (r 5 0.17, P , 0.01, n 5 68;2transition zone: r 5 0.04, P 5 0.13, n 5 65).

Vegetation structure

DCA of the 20 plots separated the medium statured forest from the medium–lowforest along the first axis (eigenvalue 5 0.69, Figure 3), which represents an edaphicgradient. In plot 16 we found several species characteristic of secondary vegetationtypes in late regeneration stages. The second axis had a low eigenvalue (0.25) andrepresents a disturbance gradient, as the more disturbed plots according to theirbasal area and floristic composition are located on the upper left side of Figure 3.The vegetation of plots 12, 9, 11 and 13 is influenced by the nearby medium staturedforest, because it is composed by species shared between these plots and the plots onthe left side of Figure 3.

In the medium statured forest a total of 2010 individuals (dbh $5 cm) wasrecorded, belonging to 29 families, 52 genera and 68 species. Species richness wasdominated by Fabaceae (6 species), Moraceae (6 species), Sapindaceae (4 species),Sapotaceae (4 species), Caesalpiniaceae (4 species) and Polygonaceae (4 species),which contributed to almost 50% of the species pool present. The most diverse

Page 8: La Torre Cuadros 2003 (Traditional Ecological Knowledge, Mexico)

2462

Tab

le3.

Use

Val

uein

dex

(UV

)fo

r47

spec

ies

oftr

ees,

4sp

ecie

sof

palm

san

d10

spec

ies

ofvi

nes,

UV

com

pone

ntfo

rea

chca

tego

ryof

use

(cU

V),

dist

ribu

tion

byty

peof

ss

x

vege

tatio

n,pl

ant

part

used

and

info

rman

tnu

mbe

r(2

1in

terv

iew

s).

ab

Life

Com

mon

Scie

ntifi

cFa

mily

UV

cUV

cUV

cUV

cUV

cUV

cUV

cUV

cUV

cUV

Loca

lveg

etat

ion

[p.

part

Part

(s)us

ed[

info

r.s

hcm

cte

ce

edr

dot

form

nam

ena

me

Tree

sza

pote

Man

ilkar

aza

pota

Sapo

tace

ae2.

610.

560.

441.

000.

61m

a,sa

k4

ex,b

k,tr,

fr9

alam

oFi

cus

sp.

Mor

acea

e2.

501.

000.

501.

00m

a3

wp,

tr,fr

1k’

anix

te’

Pout

eria

cam

pech

iana

Sapo

tace

ae2.

251.

001.

000.

25m

a2

tr,fr

2ba

lche

’Lo

ncho

carp

usca

still

oiFa

bace

ae2.

001.

001.

00m

a1

bk1

maj

agua

Ham

pea

trilo

bata

Mal

vace

ae2.

000.

751.

25m

b,m

a3

bk,t

r,br

4pa

lode

rosa

Sim

ira

salv

ador

ensi

sR

ubia

ceae

2.00

1.00

1.00

ma

1bk

1pi

chEn

tero

lobi

umcy

cloc

arpu

mFa

bace

ae2.

001.

001.

00m

a2

fr,t

r1

cara

colil

loSi

dero

xylo

nga

umer

iSa

pota

ceae

1.50

1.00

0.50

ma

2fr

,tr

1ce

dro

Ced

rela

odor

ata

Mel

iace

ae1.

500.

750.

75m

a1

tr2

kaat

sim

Mim

osa

baha

men

sis

Mim

osac

eae

1.50

0.50

1.00

ma,

sak

2rt,

bk1

kita

mch

e’C

aesa

lpin

iaga

umer

iC

aesa

lpin

acea

e1.

500.

501.

00m

a,sa

k2

tr,st

nara

nja

agrı

aC

itrus

aura

ntiu

mR

utac

eae

1.50

1.00

0.50

ma,

sa1

fr1

tank

anch

e’M

acha

onia

linde

nian

aR

ubia

ceae

1.50

0.33

0.25

0.50

0.17

sak

3rt,

bk6

zacb

ach

Allo

phyl

usco

min

iaSa

pind

acea

e1.

501.

000.

50m

a3

tr,bk

,lv

1el

emuy

/yay

aM

alm

eade

pres

saA

naca

rdia

ceae

1.33

1.00

0.33

ma,

mb

3bk

,rt,

tr7

ts’u

’ts’u

k/su

suk

Dip

hysa

cart

hage

nens

isFa

bace

ae1.

331.

33m

a,sa

k1

tr3

chak

te’/

bras

ilete

Cae

salp

inea

mol

lisC

aesa

lpin

acea

e1.

290.

291.

00m

a,sa

k1

tr7

chuk

umH

avar

dia

albi

cans

Faba

ceae

1.25

0.25

1.00

ma,

mb

2bk

,tr

2lu

’um

che’

Eryt

hrox

ylum

conf

usum

Eryt

hrox

ylac

eae

1.25

1.00

0.25

ma,

mb

2tr,

bk2

nint

eRh

eedi

aed

ulis

Clu

siac

eae

1.25

0.50

0.75

ma,

mb

2fr

,br

2Ta

’an

che’

Cel

tistr

iner

via

Ulm

acea

e1.

251.

000.

25m

a,m

b,sa

k1

tr6

wilo

tebl

anco

sp.2

Faba

ceae

1.25

1.25

ma

1tr

2gu

iroC

resc

entia

cuje

teB

igno

niac

eae

1.17

0.83

0.33

sa1

fr3

palo

detin

teH

aem

atox

ylum

cam

pech

ianu

mC

aesa

lpin

acea

e1.

140.

140.

070.

93sa

k,sa

(tin)

3bk

,br,

tr7

taas

tab/

verd

elu

cero

Gue

ttard

aco

mbs

iiR

ubia

ceae

1.13

0.13

0.88

ma,

mb

1tr

4ch

in’

tok

Kru

giod

endr

onfe

rreu

mR

ham

nace

ae1.

070.

860.

070.

14m

a2

br,t

r7

caim

itoC

hrys

ophy

lum

mex

ican

umSa

pota

ceae

1.00

1.00

ma

1tr

1ce

iba

Cei

bape

ntan

dra

Bom

baca

ceae

1.00

1.00

ma

1tr

1C

opal

/pon

Prot

ium

copa

lB

urse

race

ae1.

001.

00m

a1

ex1

chak

a’ro

joBu

rser

asi

mar

uba

Bur

sera

ceae

1.00

1.00

ma,

mb

1tr

1ch

eech

emne

gro

Met

opiu

mbr

owne

iA

naca

rdia

ceae

1.00

1.00

ma,

mb

1tr

1gr

anad

illo

Plat

ymis

cium

yuca

tanu

mFa

bace

ae1.

001.

00m

a1

tr1

guar

umbo

Cec

ropi

ape

ltata

Cec

ropi

acea

e1.

001.

00m

a1

lv1

Page 9: La Torre Cuadros 2003 (Traditional Ecological Knowledge, Mexico)

2463

guay

abill

oPs

idiu

msa

rtor

ianu

mM

yrta

ceae

1.00

1.00

ma

1tr

1hu

leC

astil

lael

astic

aM

orac

eae

1.00

0.50

0.50

ma

1ex

2ja

’ab

inPi

scid

iapi

scip

ula

Faba

ceae

1.00

1.00

ma

1tr

limon

agrio

Citr

uslim

onia

Rut

acea

e1.

001.

00m

a,m

b1

fr1

mor

aC

hlor

opho

ratin

ctor

iaM

orac

eae

1.00

1.00

ma

1ex

1na

nce

indi

oBy

rson

ima

cras

sifo

liaM

alpi

ghia

ceae

1.00

1.00

ma

1fr

1pa

sa’a

k/ne

grito

Sim

arou

bagl

auca

Sim

arou

bace

ae1.

001.

00m

a1

wp

1po

mol

che’

Jatr

opha

gaum

eri

Euph

orbi

acea

e1.

001.

00m

a,m

b1

ex3

rosa

l/sa

kni

kte’

Plum

eria

rubr

aA

pocy

nace

ae1.

001.

00m

a1

tr1

siric

ote

Cor

dia

dode

cand

raB

orag

inac

eae

1.00

1.00

ma

1tr

1tz

ilil/

sac-

tzili

lD

iosp

yros

cune

ata

Eben

acea

e1.

000.

500.

50m

a1

tr1

wilo

tene

gro

sp.3

Faba

ceae

1.00

1.00

ma,

mb

1tr

2za

c-pa

hBy

rson

ima

buci

daef

olia

Mal

pigh

iace

ae1.

001.

00m

a,m

b1

fr3

zapo

tefa

isan

Pout

eria

amyg

dalin

aSa

pota

ceae

1.00

1.00

ma

1tr

1Pa

lms

chiit

Thri

nax

radi

ata

Palm

ae2.

090.

910.

910.

090.

18m

a(c

hi),

sak

3tr,

lv,f

r11

tasi

ste

Acoe

lorr

haph

ew

righ

tiiPa

lmae

1.10

1.00

0.10

sa(ta

),sa

k3

tr,lv

,fr

5gu

ano

Saba

lya

paPa

lmae

1.06

0.06

1.00

ma,

sak

1lv

9co

coyo

lAc

roco

mia

mex

ican

aPa

lmae

1.00

1.00

mb,

ma

1fr

1V

ines

bilin

kok

Mac

fady

ena

unca

taB

igno

niac

eae

1.94

0.11

1.33

0.50

ma,

mb

2bk

,wp

9an

ika

kC

ydis

taae

quin

octia

lisB

igno

niac

eae

1.87

0.59

1.23

0.05

ma,

sak,

mb

2w

p,fr

11ek

ish

(ek

kixi

l)C

ydis

tapo

tosi

naB

igno

niac

eae

1.58

0.36

0.36

0.86

ma,

sak,

mb

2w

p7

ak’

xuux

Aden

ocal

ymm

afis

sum

Big

noni

acea

e1.

301.

30m

a,sa

k1

wp

5ch

ilillo

Gau

dich

audi

acf

.muc

rona

taM

alpi

ghia

ceae

1.00

1.00

ma,

mb,

sak

1lv

1pu

k’a

kU

nide

ntifi

edB

igno

niac

eae

1.00

1.00

ma,

mb,

sak

1bk

2sa

bya

abVi

tistil

iifol

iaV

itace

ae1.

001.

00m

a,sa

k,m

b1

bk1

po’o

kakc

aPa

ssifl

ora

sp.

Pass

iflor

acea

e1.

001.

00m

a,m

b1

bk1

kunb

emba

Psitt

acan

thus

amer

ican

aLo

rant

hace

ae1.

001.

00m

a,sa

k2

lv,f

r1

cm

ukD

albe

rgia

glab

raFa

bace

ae1.

001.

00m

a,m

b,sa

k1

wp

179

.51

14.2

215

.11

28.2

03.

504.

198.

162.

012.

072.

67

Cat

egor

yof

use

(x):

1.ha

ndm

ade

craf

ts(h

c):b

aske

ts,f

urni

ture

,doo

rs,a

shtr

ay,n

apki

nri

ng,m

usic

alin

stru

men

t,co

okin

gut

ensi

ls,b

room

s,tr

aps,

ador

nmen

t.2.

med

icin

e(m

):to

trea

t:sw

ellin

g,fr

ight

,dy

sent

ery,

gast

ritis

,di

arrh

ea,

kidn

eyst

ones

,gu

llet

irri

tatio

n,co

ugh,

labi

alhe

rpes

,to

otha

che,

stom

acha

che,

head

ache

,an

emia

,pi

mpl

es,

diab

etes

,ch

oles

tero

l,ci

catr

izan

t,di

sinf

ecta

nt.

3.co

nstr

uctio

n(c

):ro

oftil

es,

roof

s,be

am,

fork

,po

stor

colu

mn,

wal

llin

ing,

tyin

g,fe

nce,

who

lelo

g,ro

pe.

4.tr

aditi

onal

tech

nolo

gy(t

ec):

chic

le,g

lue,

trap

s,ta

nnin

(tan

ning

),ra

wm

ater

ial

for

icec

ream

orto

oth

pale

ttes.

5.en

ergy

(e):

firew

ood,

torc

h.6.

edib

le(e

d):

diff

eren

tpa

rts

used

for

food

,flav

ouri

ng,c

onfit

ure.

7.ri

tual

(r):

fest

iviti

es,i

ncen

se,t

hank

sgiv

ing.

8.dy

eing

(d):

natu

rald

yein

g.9.

othe

rs(o

t):s

hade

,aro

mat

ic,w

ater

cont

aine

r,re

fuge

.Loc

alna

me

˜of

vege

tatio

nin

Solf

erin

o:(m

a)m

onte

alto

orm

onta

na,

(mb)

mon

teba

jo(s

ak)

saka

lch

e’,

(sa)

saba

na.

Subt

ypes

ofve

geta

tion:

(chi

):ch

ital

,(t

a):

tasi

stal

.Pl

ant

part

(s)

aus

ed:b

r:br

anch

es,b

b:bu

ld,b

k:ba

rk,e

x:ex

udat

es(s

ap,r

esin

,lat

ex),

fl:flo

wer

,fr:

frui

t,lv

:lea

ves,

rt:r

oot,

sd:s

eed,

st:s

tem

s,tr

:tru

nk,w

p:w

hole

plan

t.Pr

iori

tyor

der

bac

cord

ing

tost

ruct

ure

inte

rvie

ws.

Info

rman

ts:n

521

,18

men

and

3w

omen

(men

mea

n5

58.2

,wom

enm

ean5

75,d

iffe

renc

eis

mar

gina

llysi

gnifi

cant

,F5

3.14

;MSE

c5

723.

8;r5

0.09

2).

Con

side

red

vine

,al

thou

ghth

elif

efo

rmis

tree

.

Page 10: La Torre Cuadros 2003 (Traditional Ecological Knowledge, Mexico)

2464

2Figure 3. DCA applied on 20 plots with 92 species and basal area (cm ) in the Solferino ejido.

genera were Ficus (4 species), Coccoloba (3 species) and Caesalpinia, Diospyros,and Lonchocarpus (2 species each) (Table 4).

Regarding the medium–low forest transition, a total of 684 individuals (dbh $ 5cm) were recorded, grouped in 31 families, 55 genera and 65 species. The mostdiverse families were Fabaceae (8 species), Caesalpiniaceae (5 species), Euphor-biaceae (4 species), Arecaceae and Sapotaceae (3 species each), amounting to 35%of the total number of species in this vegetation type, while the most diverse generawere Coccoloba, Caesalpinia, Croton and Lonchocarpus (2 species each) (Table 5).

Plant individuals in the medium statured forest showed a height range between 1¯and 15 m (X 5 6 m, Figure 4a), while the trunk diameter had a maximum of 81.1 cm

¯(X 5 11.3 cm, Figure 5a). In the transition zone, individual heights varied between 1¯ ¯and 10 m (X 5 4.7 m, Figure 4b), and the maximum trunk diameter was 97.9 cm (X

25 11.5 cm, Figure 5b). The total basal area was 269358 cm in 1.2 ha. The highest

2basal areas per species resulted from Manilkara zapota (55852 cm ), Metopium2 2brownei (31044 cm ), Bursera simaruba (19029 cm ), Dendropanax arboreus

2 2(17681 cm ) and Thrinax radiata (164141 cm ). These five species accounted for50% of the total basal area in this vegetation type (Table 4). As to the medium–low

2forest transition, we estimated a total basal area of 111448 cm in 0.8 ha. Here thespecies contributing with highest basal areas were Haemotoxylum campechianum

2 2(62619 cm ), Lysiloma latisiliquum (7499 cm ), Erythroxylum confusum (4291

Page 11: La Torre Cuadros 2003 (Traditional Ecological Knowledge, Mexico)

2465

2T

able

4.IV

Iin

med

ium

stat

ured

fore

st(1

2pl

ots

of20

350

m,

dbh$

5cm

).

2N

o.Sc

ient

ific

nam

eFa

mily

No.

ofB

A(c

m)

FrR

DR

BR

FIV

IU

VsIV

I3

UVs

Ind3

Uvs

ind.

1M

anilk

ara

zapo

taSa

pota

ceae

128

5585

2.22

12.0

06.

3720

.74

3.27

30.3

72.

6179

.27

334.

082

Thri

nax

radi

ata

Palm

ae22

616

414.

0812

.00

11.2

46.

093.

2720

.61

2.09

43.0

747

2.34

3M

etop

ium

brow

nei

Ana

card

iace

ae11

431

044.

0812

.00

5.67

11.5

33.

2720

.47

1.00

20.4

711

4.00

4N

ecta

ndra

cori

acea

eLa

urac

eae

251

8778

.69

12.0

012

.49

3.26

3.27

19.0

20.

000.

000.

005

Burs

era

sim

arub

aB

urse

race

ae11

219

029.

0712

.00

5.57

7.06

3.27

15.9

11.

0015

.91

112.

006

Den

drop

anax

arbo

reus

Ara

liace

ae11

517

681.

0611

.00

5.72

6.56

3.00

15.2

80.

000.

000.

007

Pout

eria

cam

pech

iana

Sapo

tace

ae73

1064

8.90

12.0

03.

633.

953.

2710

.86

2.25

24.4

216

4.25

8Vi

tex

gaum

eri

Verb

enac

eae

3911

779.

4911

.00

1.94

4.37

3.00

9.31

0.00

0.00

0.00

9sp

.3Fa

bace

ae76

6012

.55

11.0

03.

782.

233.

009.

011.

009.

0176

.00

10Tr

ophi

sra

cem

osa

Mor

acea

e80

4820

.29

11.0

03.

981.

793.

008.

770.

000.

000.

0011

Coc

colo

basp

icat

aPo

lygo

nace

ae56

6289

.74

12.0

02.

792.

343.

278.

390.

000.

000.

0012

Chr

ysop

hyllu

mm

exic

anum

Sapo

tace

ae50

4697

.62

12.0

02.

491.

743.

277.

501.

007.

5050

.00

13M

alm

eade

pres

saA

nnon

acea

e65

3968

.60

10.0

03.

231.

472.

727.

431.

339.

8886

.45

14C

aesa

lpin

iaga

umer

iC

aesa

lpin

acea

e32

8395

.94

8.00

1.59

3.12

2.18

6.89

1.50

10.3

348

.00

15Lo

ncho

carp

usxu

ulFa

bace

ae51

3944

.40

9.00

2.54

1.46

2.45

6.45

0.00

0.00

0.00

16Sa

bal

yapa

Palm

ae19

7356

.02

9.00

0.95

2.73

2.45

6.13

1.06

6.50

20.1

417

sp.2

Faba

ceae

5218

38.9

29.

002.

590.

682.

455.

721.

257.

1565

.00

18Si

mar

ouba

glau

caSi

mar

ouba

ceae

2047

50.2

310

.00

1.00

1.76

2.72

5.48

0.00

0.00

0.00

19sp

.5U

nide

ntifi

ed43

1551

.00

10.0

02.

140.

582.

725.

440.

000.

000.

0020

Exot

hea

diph

ylla

Sapi

ndac

eae

3220

66.4

910

.00

1.59

0.77

2.72

5.08

0.00

0.00

0.00

21H

ampe

atr

iloba

taM

alva

ceae

3412

84.2

410

.00

1.69

0.48

2.72

4.89

2.00

9.79

68.0

022

Sapi

ndus

sapo

nari

aSa

pind

acea

e32

3705

.75

6.00

1.59

1.38

1.63

4.60

0.00

0.00

0.00

23G

uetta

rda

com

bsii

Rub

iace

ae27

2010

.59

9.00

1.34

0.75

2.45

4.54

1.13

5.13

30.5

124

Lysi

lom

ala

tisili

quum

Faba

ceae

1349

65.1

87.

000.

651.

841.

914.

400.

000.

000.

0025

Zuel

ania

guid

onia

Flac

ourta

ceae

1829

65.6

47.

000.

901.

101.

913.

900.

000.

000.

0026

Gym

nopo

dium

flori

bund

umPo

lygo

nace

ae31

2630

.93

5.00

1.54

0.98

1.36

3.88

0.00

0.00

0.00

27Pi

scid

iapi

scip

ula

Faba

ceae

1226

58.9

76.

000.

600.

991.

633.

221.

003.

2212

.00

28Al

loph

ylus

com

inia

Sapi

ndac

eae

1751

3.18

7.00

0.85

0.19

1.91

2.94

1.50

4.42

25.5

029

Thev

etia

gaum

eri

Apo

cyna

ceae

1550

4.43

7.00

0.75

0.19

1.91

2.84

1.50

4.26

22.5

030

Bros

imum

alic

astr

umM

orac

eae

816

84.3

26.

000.

400.

631.

632.

660.

000.

000.

0031

Spon

dias

mom

bin

Ana

card

iace

ae13

2658

.20

3.00

0.65

0.99

0.82

2.45

0.00

0.00

0.00

32Sw

artz

iacu

bens

isC

aesa

lpin

acea

e11

1681

.87

4.00

0.55

0.62

1.09

2.26

0.00

0.00

0.00

33Ps

idiu

msa

rtor

ianu

mM

yrta

ceae

1277

1.91

5.00

0.60

0.29

1.36

2.25

0.00

0.00

0.00

34Si

dero

xylo

nfo

etid

issi

mum

Sapo

tace

ae5

2296

.26

4.00

0.25

0.85

1.09

2.19

0.00

0.00

0.00

35Es

enbe

ckia

pent

aphy

llaR

utac

eae

611

35.6

15.

000.

300.

421.

362.

080.

000.

000.

0036

Prot

ium

copa

lB

urse

race

ae8

832.

845.

000.

400.

311.

362.

071.

002.

078.

00

Page 12: La Torre Cuadros 2003 (Traditional Ecological Knowledge, Mexico)

2466

Tab

le4.

(con

tinu

ed)

2N

o.Sc

ient

ific

nam

eFa

mily

No.

ofB

A(c

m)

FrR

DR

BR

FIV

IU

VsIV

I3

UVs

Ind3

Uvs

ind.

37Fi

cus

cotin

ifolia

Mor

acea

e8

1288

.23

4.00

0.40

0.48

1.09

1.97

2.50

4.92

20.0

038

Coc

colo

baac

apul

cens

isPo

lygo

nace

ae14

984.

413.

000.

700.

370.

821.

880.

000.

000.

0039

sp.1

Mim

osac

eae

1074

8.74

3.00

0.50

0.28

0.82

1.59

0.00

0.00

0.00

40Lu

ehea

spec

iosa

Tilia

ceae

884

3.70

3.00

0.40

0.31

0.82

1.53

0.00

0.00

0.00

41Fi

cus

max

ima

Mor

acea

e5

1634

.66

2.00

0.25

0.61

0.54

1.40

0.00

0.00

0.00

42C

amer

aria

latif

olia

Apo

cyna

ceae

936

3.21

3.00

0.45

0.13

0.82

1.40

0.00

0.00

0.00

43C

aesa

lpin

iam

ollis

Cae

salp

inac

eae

674

8.28

2.00

0.30

0.28

0.54

1.12

1.29

1.45

7.74

44By

rson

ima

buci

daef

olia

Mal

pigh

iace

ae4

206.

333.

000.

200.

080.

821.

091.

001.

094.

0045

Cro

ton

refle

xifo

lius

Euph

orbi

acea

e4

95.4

93.

000.

200.

040.

821.

050.

000.

000.

0046

Rand

iaob

cord

ata

Rub

iace

ae3

76.1

83.

000.

150.

030.

820.

990.

000.

000.

0047

Dio

spyr

oscu

neat

aEb

enac

eae

457

0.30

2.00

0.20

0.21

0.54

0.96

1.00

0.96

4.00

48K

rugi

oden

dron

ferr

eum

Rha

mna

ceae

310

8.77

2.00

0.15

0.04

0.54

0.73

1.07

0.79

3.21

49sp

.9U

nide

ntifi

ed3

96.4

52.

000.

150.

040.

540.

730.

000.

000.

0050

sp.1

0U

nide

ntifi

ed2

128.

992.

000.

100.

050.

540.

690.

000.

000.

0051

Cup

ania

glab

raSa

pind

acea

e2

47.5

22.

000.

100.

020.

540.

660.

000.

000.

0052

sp.1

1U

nide

ntifi

ed3

296.

391.

000.

150.

110.

270.

530.

000.

000.

0053

Euph

orbi

ahe

tero

phyl

laEu

phor

biac

eae

328

0.94

1.00

0.15

0.10

0.27

0.53

0.00

0.00

0.00

54Fi

cus

sp.2

Mor

acea

e2

283.

731.

000.

100.

110.

270.

480.

000.

000.

0055

Dio

spyr

osya

tesi

ana

Eben

acea

e3

137.

641.

000.

150.

050.

270.

470.

000.

000.

0056

sp.1

2U

nide

ntifi

ed1

349.

671.

000.

050.

130.

270.

450.

000.

000.

0057

Coc

colo

baco

zum

elen

sis

Poly

gona

ceae

370

.08

1.00

0.15

0.03

0.27

0.45

0.00

0.00

0.00

58Fi

cus

sp.1

Mor

acea

e1

263.

021.

000.

050.

100.

270.

420.

000.

000.

0059

sp.1

3U

nide

ntifi

ed2

106.

231.

000.

100.

040.

270.

410.

000.

000.

0060

Jatr

opha

gaum

eri

Euph

orbi

acea

e2

63.8

11.

000.

100.

020.

270.

400.

000.

000.

0061

Cec

ropi

ape

ltata

Cec

ropi

acea

e2

56.9

41.

000.

100.

020.

270.

391.

000.

392.

0062

Lonc

hoca

rpus

cast

illoi

Faba

ceae

111

8.82

1.00

0.05

0.04

0.27

0.37

2.00

0.73

2.00

63sp

.14

Uni

dent

ified

150

.27

1.00

0.05

0.02

0.27

0.34

0.00

0.00

0.00

64Er

ythr

ina

stan

dley

ana

Cae

salp

inac

eae

133

.18

1.00

0.05

0.01

0.27

0.33

0.00

0.00

0.00

65sp

.15

Uni

dent

ified

123

.76

1.00

0.05

0.01

0.27

0.33

0.00

0.00

0.00

66N

eea

psyc

hotr

oide

sN

ycta

gina

ceae

122

.06

1.00

0.05

0.01

0.27

0.33

0.00

0.00

0.00

67Xy

losm

afle

xuos

aFl

acou

rtace

ae1

21.2

41.

000.

050.

010.

270.

330.

000.

000.

0068

Mun

tingi

aca

labu

raEl

aeoc

arpa

ceae

119

.63

1.00

0.05

0.01

0.27

0.33

0.00

0.00

0.00

Tota

l20

1026

935

8.00

0.00

100.

0010

0.00

100.

0030

0.00

34.0

810

224.

0068

500.

80

No.

ofin

d.:

num

ber

ofin

divi

dual

s,B

A:

basa

lar

ea,

Fr:

freq

uenc

y,R

D:

rela

tive

dens

ity,

RB

:re

lativ

edo

min

ance

,R

F:re

lativ

efr

eque

ncy,

IVI:

impo

rtan

ceva

lue

inde

x,U

V:

use

valu

ein

dex.

s

Page 13: La Torre Cuadros 2003 (Traditional Ecological Knowledge, Mexico)

2467

2T

able

5.IV

Iin

the

tran

sitio

nal

zone

med

ium

stat

ured

fore

st-l

owfo

rest

(8pl

ots

of10

310

0m

,db

h$

5cm

).

2N

o.Sc

ient

ific

nam

eFa

mily

No.

ofin

d.B

A(c

m)

FrR

DR

BR

FIV

IU

VsIV

I3

UV

Ind3

UV

ss

1H

aem

atox

ylum

cam

pech

ianu

mC

aesa

lpin

acea

e15

262

619.

258

22.2

256

.19

5.00

83.4

11.

1495

.09

173.

282

Eryt

hrox

ylum

conf

usum

Eryt

hrox

ylac

eae

7042

90.9

37

10.2

33.

854.

3818

.46

1.25

23.0

787

.50

3Ly

silo

ma

latis

iliqu

umFa

bace

ae25

7498

.75

23.

656.

731.

2511

.63

0.00

0.00

0.00

4M

etop

ium

brow

nei

Ana

card

iace

ae23

3181

.59

63.

362.

853.

759.

971.

009.

9723

.00

5Ac

oelo

rrha

phe

wri

ghtii

Palm

ae36

1543

.15

55.

261.

383.

139.

771.

1010

.75

39.6

06

Man

ilkar

aza

pota

Sapo

tace

ae14

3283

.45

42.

052.

952.

507.

492.

6119

.56

36.5

47

Pisc

idia

pisc

ipul

aFa

bace

ae15

3025

.78

42.

192.

712.

507.

411.

007.

4115

.00

8Vi

tex

gaum

eri

Verb

enac

eae

1324

85.0

75

1.90

2.23

3.13

7.26

0.00

0.00

0.00

9M

imos

aba

ham

ensi

sM

imos

acea

e19

822.

485

2.78

0.74

3.13

6.64

1.50

9.96

28.5

010

Jacq

uini

am

acro

carp

aTh

eoph

rast

acea

e16

1051

.18

52.

340.

943.

136.

410.

000.

000.

0011

Burs

era

sim

arub

aB

urse

race

ae14

2005

.61

42.

051.

802.

506.

351.

006.

3514

.00

12C

resc

entia

cuje

teB

igno

niac

eae

917

93.8

65

1.32

1.61

3.13

6.05

1.17

7.08

10.5

313

Ficu

sco

tinifo

liaM

orac

eae

1316

61.9

34

1.90

1.49

2.50

5.89

0.00

0.00

0.00

14Ps

idiu

msa

rtor

ianu

mM

yrta

ceae

2158

6.36

33.

070.

531.

885.

471.

005.

4721

.00

15By

rson

ima

buci

daef

olia

Mal

pigh

iace

ae12

994.

054

1.75

0.89

2.50

5.15

1.00

5.15

12.0

016

Cel

tistr

iner

via

Ulm

acea

e17

1400

.67

22.

491.

261.

254.

991.

256.

2421

.25

17C

roto

nre

flexi

foliu

sEu

phor

biac

eae

1363

8.40

41.

900.

572.

504.

970.

000.

000.

0018

Den

drop

anax

arbo

reus

Ara

liace

ae10

1454

.05

21.

461.

301.

254.

020.

000.

000.

0019

Lonc

hoca

rpus

xuul

Faba

ceae

1383

5.60

21.

900.

751.

253.

900.

000.

000.

0020

Gym

nopo

dium

flori

bund

umPo

lygo

nace

ae14

551.

262

2.05

0.49

1.25

3.79

0.00

0.00

0.00

21C

occo

loba

spic

ata

Poly

gona

ceae

955

9.17

31.

320.

501.

883.

690.

000.

000.

0022

Hav

ardi

aal

bica

nsFa

bace

ae12

476.

052

1.75

0.43

1.25

3.43

1.25

4.29

15.0

023

sp.1

Faba

ceae

726

7.77

31.

020.

241.

883.

140.

000.

000.

0024

Swar

tzia

cube

nsis

Cae

salp

inac

eae

475

3.94

30.

580.

681.

883.

140.

000.

000.

0025

Saba

lya

paPa

lmae

412

83.9

32

0.58

1.15

1.25

2.99

1.06

3.17

4.24

26C

occo

loba

cozu

mel

ensi

sPo

lygo

nace

ae8

473.

072

1.17

0.42

1.25

2.84

0.00

0.00

0.00

27H

ampe

atr

iloba

taM

alva

ceae

516

2.18

30.

730.

151.

882.

752.

005.

5010

.00

28sp

.2Fa

bace

ae5

158.

333

0.73

0.14

1.88

2.75

1.25

3.44

6.25

29C

hrys

ophy

llum

mex

ican

umSa

pota

ceae

748

6.64

21.

020.

441.

252.

711.

002.

717.

0030

Gue

ttard

aco

mbs

iiR

ubia

ceae

742

5.33

21.

020.

381.

252.

661.

133.

007.

9131

Rand

iaob

cord

ata

Rub

iace

ae3

94.8

33

0.44

0.09

1.88

2.40

0.00

0.00

0.00

32Zu

elan

iagu

idon

iaFl

acou

rtace

ae5

380.

522

0.73

0.34

1.25

2.32

0.00

0.00

0.00

33C

amer

aria

latif

olia

Apo

cyna

ceae

619

9.41

20.

880.

181.

252.

310.

000.

000.

0034

Gym

nant

hes

luci

daEu

phor

biac

eae

532

9.99

20.

730.

301.

252.

280.

000.

000.

00

Page 14: La Torre Cuadros 2003 (Traditional Ecological Knowledge, Mexico)

2468

Tab

le5.

(con

tinu

ed)

2N

o.Sc

ient

ific

nam

eFa

mily

No.

ofin

d.B

A(c

m)

FrR

DR

BR

FIV

IU

VsIV

I3

UV

Ind3

UV

ss

35Lo

ncho

carp

usru

gosu

sFa

bace

ae5

241.

152

0.73

0.22

1.25

2.20

0.00

0.00

0.00

36sp

.3Fa

bace

ae5

175.

412

0.73

0.16

1.25

2.14

1.00

2.14

5.00

37D

iosp

yros

cune

ata

Eben

acea

e5

171.

642

0.73

0.15

1.25

2.14

1.00

2.14

5.00

38C

aesa

lpin

iaga

umer

iC

aesa

lpin

acea

e4

286.

562

0.58

0.26

1.25

2.09

1.50

3.14

6.00

39D

iphy

saca

rtha

gene

nsis

Faba

ceae

420

0.29

20.

580.

181.

252.

011.

332.

685.

3240

Nec

tand

raco

riac

eaLa

urac

eae

416

6.87

20.

580.

151.

251.

980.

000.

000.

0041

sp.4

Uni

dent

ified

243

6.09

20.

290.

391.

251.

930.

000.

000.

0042

Sim

arou

bagl

auca

Sim

arou

bace

ae3

146.

932

0.44

0.13

1.25

1.82

0.00

0.00

0.00

43C

occo

loba

acap

ulce

nsis

Poly

gona

ceae

311

6.70

20.

440.

101.

251.

790.

000.

000.

0044

sp.5

Uni

dent

ified

373

.05

20.

440.

071.

251.

750.

000.

000.

0045

Gua

pira

linea

ribr

acte

ata

Nyc

tagi

nace

ae6

227.

741

0.88

0.20

0.63

1.71

0.00

0.00

0.00

46Al

loph

ylus

com

inia

Sapi

ndac

eae

252

.25

20.

290.

051.

251.

591.

502.

383.

0047

Xylo

sma

flexu

osa

Flac

ourta

ceae

243

.39

20.

290.

041.

251.

580.

000.

000.

0048

Bauh

inia

diva

rica

taC

aesa

lpin

acea

e4

130.

571

0.58

0.12

0.63

1.33

0.00

0.00

0.00

49Tr

ophi

sra

cem

osa

Mor

acea

e3

186.

721

0.44

0.17

0.63

1.23

0.00

0.00

0.00

50Eu

geni

abu

xifo

liaM

yrta

ceae

287

.29

10.

290.

080.

631.

000.

000.

000.

0051

Amyr

issy

lvat

ica

Rut

acea

e2

69.0

21

0.29

0.06

0.63

0.98

0.00

0.00

0.00

52sp

.6U

nide

ntifi

ed2

67.8

01

0.29

0.06

0.63

0.98

0.00

0.00

0.00

53C

aesa

lpin

iam

ollis

Cae

salp

inac

eae

245

.95

10.

290.

040.

630.

960.

000.

000.

0054

Side

roxy

lon

foet

idis

sim

umSa

pota

ceae

112

6.68

10.

150.

110.

630.

880.

000.

000.

0055

Plum

eria

rubr

aA

pocy

nace

ae1

96.7

71

0.15

0.09

0.63

0.86

1.00

0.86

1.00

56Pr

otiu

mco

pal

Bur

sera

ceae

180

.12

10.

150.

070.

630.

841.

000.

841.

0057

Jatr

opha

gaum

eri

Euph

orbi

acea

e1

66.4

81

0.15

0.06

0.63

0.83

0.00

0.00

0.00

58An

nona

glab

raA

nnon

acea

e1

60.8

21

0.15

0.05

0.63

0.83

0.00

0.00

0.00

59C

roto

nch

iche

nens

isEu

phor

biac

eae

154

.11

10.

150.

050.

630.

820.

000.

000.

0060

sp.7

Uni

dent

ified

139

.59

10.

150.

040.

630.

810.

000.

000.

0061

Thri

nax

radi

ata

Palm

ae1

38.4

81

0.15

0.03

0.63

0.81

2.09

1.68

2.09

62sp

.8U

nide

ntifi

ed1

36.3

21

0.15

0.03

0.63

0.80

0.00

0.00

0.00

63Rh

eedi

aed

ulis

Clu

siac

eae

125

.52

10.

150.

020.

630.

790.

000.

000.

0064

Mal

mea

depr

essa

Ann

onac

eae

410

3.08

10.

580.

090.

630.

581.

330.

785.

3265

Hip

pocr

atea

exce

lsa

Hip

pocr

atea

ceae

120

.43

10.

150.

020.

630.

150.

000.

000.

00To

tal

684

111

448.

3810

0.00

100.

0010

0.00

298.

639

34.4

610

291.

1123

570.

64

No.

ofin

d.:

num

ber

ofin

divi

dual

s,B

A:

basa

lar

ea,

Fr:

freq

uenc

y,R

D:

rela

tive

dens

ity,

RB

:re

lativ

edo

min

ance

,R

F:re

lativ

efr

eque

ncy,

IVI:

impo

rtan

ceva

lue

inde

x,U

V:

use

valu

ein

dex.

s

Page 15: La Torre Cuadros 2003 (Traditional Ecological Knowledge, Mexico)

2469

2Figure 4. (a) Height frequency distribution for the plants (n 5 2010) collected from 12 plots (20 3 50 mper plot) in the medium statured forest, considering different forest–village distances; (b) height

2frequency distribution for the plants (n 5 684) collected from eight plots (10 3 100 m per plot) in themedium–low forest transition.

Figure 5. (a) Diameter (dbh) frequency distribution for the plants (n 5 2010) collected from 12 plots (202

3 50 m per plot) in the medium statured forest, considering different forest–village distances; (b)2diameter (dbh) distribution for the plants (n 5 684) collected from eight plots (10 3 100 m per plot) in

the medium–low forest transition.

2 2cm ) and M. zapota (3283 cm ). These five species accounted for nearly 70% of thetotal basal area in the transition zone (Table 5).

The species having top importance values (IVI) were M. zapota (30.4), T. radiata(20.6), M. brownei (20.5), Nectandra coriacea (19.0), and Bursera simaruba (15.6)in the medium statured forest, and H. campechianum (83.4), E. confusum (18.5), L.latisiliquum (11.6), M. brownei (10.0) and A. wrightii (9.8) in the transition zone(Tables 4 and 5).

Discussion

Vegetation types and native classification

This study has shown that the Maya in northern Quintana Roo classify the local

Page 16: La Torre Cuadros 2003 (Traditional Ecological Knowledge, Mexico)

2470

vegetation by a number of consistent features which can be easily identified fromone habitat to another, and clearly distinguish undisturbed patches of forest fromother patches subjected to various degrees of disturbance and/or in different

˜regeneration stages (e.g. canadas or areas impacted by selective logging, naturalfires or hurricanes). These features are mainly soil appearance, species associationsand size, and were mostly reported in combination with qualitative observationsabout the forest (e.g. the high forest is green, the soil is of red type, etc.). Thenatives’ perception of vegetation type patterns coincided with that derived fromquantitative sampling and DCA, both underpinning the occurrence of two majorundisturbed vegetation types, namely Monte alto (medium statured forest) and Sakalche’ (low forest) (Table 1, Figure 3, Appendix 1).

The species associations encountered in the medium statured forest could beassigned to the Manilkara zapota–Thrinax radiata and Vitex gaumeri–Caesalpinia

´gaumeri communities, as described by Sanchez and Islebe (2002). Both com-munities grow in two different soil types. They are the K’ankab soil (chromicluvisols following the FAO (1988) soil classification), which is characterized by ared brownish color, average depth of 80 cm, slow superficial drainage and 20% ofrock cover, and the Tsek’el soil (lithosolrendzina following FAO criteria), whichhas dark brown to black color, average depth from 15 to 20 cm, fast superficialdrainage, and can be associated with bedrocks covering 45–65% of the forestsurface.

The Manilkara zapota–Thrinax radiata community resembles the Manilkara´zapota–Coccothrinax readii community (Sanchez and Islebe 2002), whereby C.

readii is replaced by T. radiata as a characteristic species, since C. readii is mainlydistributed in coastal environments and T. radiata can be found up to 50 km inlandin northern Quintana Roo (Quero 1992).

The medium–low forest transition featured a Hampea trilobata–M. brownei–B.´simaruba community described by Sanchez and Islebe (2002), and a H. campech-

ianum–E. confusum–L. latisiliquum community after Miranda (1978, sensu sub-deciduous low forest), so-called ‘tintal’ owing to the dominance of H. campech-ianum (logwood) (Table 5, Appendix 1). Both communities grow in Tsek’el andAk’alche (calcic gelysols) soils, the latter having a dark brown colour, slow drainageand a depth between 15 and 60 cm.

Use of each vegetation type and availability of plant species

Unlike Phillips et al. (1994), we did not aim at compiling a full list of useful speciesbut focused on patterns of use of the different vegetation types regardless of whetherthe plant species occurred in the study plots or not. By allocating species tocategories of use following the informant’s reports, a total of nine use categorieswere defined and only 10 species could be allocated to most of those categories. Weconsidered that the relationship between the cultural importance of plant speciesexpressed by the index of Use Value (UV ) and their availability was weak in thes

case of Solferino, because only 17 and 4% of the UV variation was explained bys

their availability in the medium forest and the transition zone, respectively. In the

Page 17: La Torre Cuadros 2003 (Traditional Ecological Knowledge, Mexico)

2471

medium statured forest the relationship was statistically significant because the UVs

of many of the most valued species were proportional to their density, frequency andbasal area in the study plots (Table 4). This was particularly obvious for dominantspecies such as Manilkara zapota and Thrinax radiata. Additionally, UV valuess

were maximized for those species having various useful parts, e.g. M. zapota, ofwhich exudates (latex) are used for by-products, bark and trunk for construction andfruits as food. The medium statured forest was the most valuable vegetation type forthe local community, all trees, palms and vines mainly supplying raw materials forconstruction (e.g. dormers, root tiles, tanders or thatched palm roofs, so-calledpalapas) and charcoal-making (Table 3). Although the transition zone sharedseveral species with the medium statured forest, these were not available for usebecause of their poor appearance and low density (Tables 4 and 5). Of the 10dominant species in the medium statured forest, seven contributed to the topImportance Values (IVI) in this forest type, and only three of them had a UV aboves

1.00 (Table 4). This indicated that most of the dominant species supported less thanthree kinds of uses, though those uses were reported with a high degree of consensusamong native informants (Table 3).

In the following we summarize the applications of 10 useful plant speciesaccording to their use in Solferino and in the region of study.

The tree Manilkara zapota was the most valuable species for locals, and in factdominated the medium statured forest both in terms of frequency and basal area.This species provides chicle (latex), and wood mainly for rustic constructions.Individuals suitable for chicle extraction usually have diameters between 25 and 64cm (Hidalgo 1995), thus we found that some 40% of the individuals (n 5 130) fellwithin that range in the 1.2 ha of medium statured forest sampled. The tree Hampeatrilobata is the main local species utilized for construction (high UV ), but its IVIss

were generally low in the medium statured forest and the transition zone becauseonly individuals between 0.5 and 5 cm in diameter are appropriate for exploitation,and they are characteristic of secondary vegetation.

The tree Krugiodendron ferreum is employed as medicine and dyeing agent, andmarginally for construction. It has a scattered distribution, and only occurs in themedium statured forest where its relatively low frequency, abundance and basal arearesult in low IVIs. Two species, Haematoxylum campechianum and Erythroxylumconfusum, are dominant taxa in the transition zone. The bark of H. campechianum isused for dyeing and its trunk as fence posts, while E. confusum is only used forconstruction (Table 3).

The leaves of several palm species in the medium statured forest, mainly T.radiata and S. yapa, are employed for construction of roofs and walls of palapasand brooms. T. radiata is more abundant than S. yapa at any distance from thevillage center. People also use the trunk parts of T. radiata to make lobster traps.The trunks of the palm Acoelorraphe wrightii, which only occurred in the transitionforest (n 5 36), are employed in palapa walls.

Vines occurred in all vegetation types; however, some were difficult to find, e.g.Cydista aequinoctialis. They are basically utilized for construction, medicine andcrafts, though craft making is reduced since people get minor benefits from selling

Page 18: La Torre Cuadros 2003 (Traditional Ecological Knowledge, Mexico)

2472

their products. The vine Cydista aequinoctialis is used to make baskets, as medicineand animal food (Table 3), and the vine Dalbergia glabra is the plant offering themost suitable material for furniture making and is collected from secondaryvegetation patches.

For all these 10 species, use patterns were determined by species accessibility andmorphological appearance. Accessibility is enhanced by the existing network ofpaths and roads.

Conclusions

The Maya community in northern Quintana Roo embodies a detailed knowledge onthe local forest environment, which optimizes the exploitation of plant resources andimplies their classification by vegetation types. People know where and when thedesired plant species is available for both domestic and external uses (e.g. trade).

The relationships between the cultural importance of plant species expressed bythe UV and its availability expressed by the IVI have two implications: (1) not alls

plant species are used according to their availability in the system, and (2) a real useand a cognitive use of a resource can generate a positive or negative impact in itssustainability. In order to increase their income, people put particular pressure onspecies which are used for construction. Thus, external demands on plant materialsfor construction of touristic facilities has led to the predominant exploitation of themedium statured forest. The demand for external use also puts stress on thepopulations of trees and palms. For example, Sabal yapa is the species with thehighest pressure, leading to a lack of control of its use.

The diversity of plant uses and the non-sustainable use of many valuable speciesin each vegetation type urges to establish regulations triggering the conservation andmanagement of target plant resources. Local knowledge on plant resources needs tobe integrated in management policies in order to attain a sustainable extraction ofcommercial plant species in northern Quintana Roo.

Acknowledgements

We appreciate the collaboration of all informants, their families and local authorities´in the Solferino ejido during fieldwork. Odilon Sanchez helped in species identifica-

´ ´tions. Luz Marıa Calvo, Gerardo Ceballos, Horacio Almanza and Jose Quintal gave´ ´logistic support in the field. Jose Antonio Gonzalez and Mario Osorio helped in GIS

work. Margarito Tuz, Edilberto Chi Tah and Korbany Quintal acted as field´ ´assistants. Finally, we also like to thank Salvador Herrando-Perez, Sophie Calme,

Oliver Phillips, and one anonymous reviewer for commenting on earlier versions ofthis paper. M.A.L.T.C. was supported by a Secretaria de Relaciones Exteriores ofthe Mexican Government (SRE) doctoral scholarship (2000–2002).

Page 19: La Torre Cuadros 2003 (Traditional Ecological Knowledge, Mexico)

2473

App

endi

x1.

Spec

ies

com

posi

tion

in20

plot

sof

0.1

ha(d

bh$

5cm

)in

two

type

sof

fore

st.

Page 20: La Torre Cuadros 2003 (Traditional Ecological Knowledge, Mexico)

2474

App

endi

x1.

(con

tinu

ed)

Page 21: La Torre Cuadros 2003 (Traditional Ecological Knowledge, Mexico)

2475

References

Achard F., Hugh D.E., Stibig H.J., Mayaux P., Gallego J., Richards T. et al. 2002. Determination ofdeforestation rates of the world’s humid tropical forests. Science 297: 999–1002.

Adu-Tutu Y., Afful M., Asante-Appiah K., Lieberman D., Hall J.B. and Elvin-Lewis M. 1979. Chewingstick usage in southern Ghana. Economic Botany 33: 320–328.

Balick M.J. and Cox P.A. 1997. Plants, People and Culture: The Science of Ethnobotany. ScientificAmerican Library, New York.

Balick M.J. and Mendelsohn R. 1992. Assessing the economic value of traditional medicines fromtropical rainforests. Conservation Biology 6: 128–130.

´ ´Barrera M.A., Barrera V.A. and Lopez F.R.M. 1976. Nomenclatura Etnobotanica Maya. Una inter-´ ´ ´pretacion taxonomica. INAH-Centro Regional del Sureste, Mexico, DF.

Berlin B. 1973. The relation of folk systematics to biological classification and nomenclature. AnnualReview of Ecology and Systematics 4: 259–271.

Berlin B. 1992. Ethnobiological Classification: Principles of Categorization of Plants and Animals inTraditional Societies. Princeton University Press, Princeton, New Jersey.

Colorado P. 1988. Bridging native and western science. Convergence 21: 49–59.Colorado P. and Collins D. 1987. Western scientific colonialism and the re-emergence of native science.

Practice: Journal of Politics, Economics, Psychology, Sociology and Culture Winter 1987: 50–65.Costanza R., d’Arge R., de Groot R., Farber S., Grasso M., Hannon B. et al. 1997. The value of the

world’s ecosystem services and natural capital. Nature 387: 253–260.Curtis J.T. 1959. The Vegetation of Wisconsin. An Ordination of Plant Communities. University of

Wisconsin Press, Madison, Wisconsin.Curtis J.T. and McIntosh R.P. 1951. An upland forest continuum in the prairie forest border region of

Wisconsin. Ecology 32: 476–496.´ ´Duran G.R. 1986. Estudio de la vegetacion de la selva baja subcaducifolia Pseudophoenix sargentii,

´ ´ ´profesional, Universidad Autonoma de Mexico, Facultad de Ciencias, Mexico, DF.´Escobar N.A. 1986. Geografıa General del Estado de Quintana Roo. Fondo de Fomento Editorial del

´Gobierno del Estado de Quintana Roo, Chetumal, Quintana Roo, Mexico.FAO 1988. Soil Map of the World with Revised Legend. World Soil Resources Report 60. FAO, Rome.

´ ´Flores J.S. 1987. Uso de los Recursos Vegetales en la Penınsula de Yucatan; pasado, presente y futuro.´INIREB, Xalapa, Veracruz, Mexico.

Gadgil M., Berkes F. and Folke C. 1993. Indigenous knowledge for biodiversity conservation. Ambio 22:151–156.

Hidalgo F.R. 1995. Programa de manejo forestal para el aprovechamiento de recursos forestales de los´ ´ ´montes del area forestal permanente del ejido de Kantunilkin. Municipio Lazaro Cardenas, Quintana

´Roo, Mexico.Hunn E. 1993. What is traditional ecological knowledge? In: Williams N.M. and Baines G. (eds),

Traditional Ecological Knowledge: Wisdom for Sustainable Development. Centre for Resource andEnvironmental Studies, Australian National University, Canberra, Australia, pp. 13–15.

´ ´INEGI 2000. Anuario Estadıstico Quintana Roo. INEGI, Gobierno del Estado, Mexico.´ ´ ´ ´Martınez M.A. 1994. Estado actual de las investigaciones etnobotanicas en Mexico. Boletın de la

´ ´Sociedad Botanica de Mexico 55: 65–74.´ ´ ´ ´Mendez M. and Duran R.G. 1997. Diagnostico del conocimiento etnobotanico actual de las plantas

´ ´ ´ ´ ´medicinales de la Penınsula de Yucatan. Boletın de la Sociedad Botanica de Mexico 60: 15–24.´Mendieta R. and Del Amo S. 1981. Plantas medicinales del estado de Yucatan. Continental, Xalapa,

´Veracruz, Mexico.´ ´Miranda F. 1978. Vegetacion de la Penınsula Yucateca. 2nd edn. Colegio de Postgraduados, Chapingo,

´Mexico.McCune B. and Mefford M.J. 1997. PC-ORD. Multivariate Analysis of Ecological Data. MJM Software

Design, Gleneden Beach, Oregon.Nepstad D.C. and Schwartzman S. 1992. Non-timber products from tropical forests. Advances in

Economic Botany 9: 1–164.

Page 22: La Torre Cuadros 2003 (Traditional Ecological Knowledge, Mexico)

2476

´ ´ ´ ´Olmsted C.I., Duran R.G. and Lopez A. 1983. Vegetacion de Sian Kaan. CICY-SEMARNAT, MexicoCity, Mexico.

˜ ´Paz y Mino G., Balslev H. and Valencia R. 1991. Aspectos etnobotanicos de las lianas utilizadas por los´ ´ ´indıgenas Siona-Secoya de la Amazonıa del Ecuador. In: Rıos M. and Pedersen H.B. (eds), Las

Plantas y el Hombre. Quito, Ecuador, pp. 105–118.Peters C., Gentry A. and Mendelsohn R.O. 1989. Valuation of an Amazonian rain forest. Nature 339:

655–656.Phillips O. and Gentry A. 1993a. The useful woody plants of Tambopata Peru. I. Statistical hypothesis

test with a new quantitative ethnobotany. Economic Botany 47: 33–43.Phillips O. and Gentry A. 1993b. The useful woody plants of Tambopata, Peru. II. Further statistical test

of hypotheses in quantitative ethnobotany. Economic Botany 47: 15–32.´Phillips O., Gentry A., Reynel C., Wilkin P. and Galvez-Duran C. 1994. Quantitative ethnobotany and

Amazonian conservation. Conservation Biology 8: 225–248.´Pinedo-Vasquez M.D., Zarin P.J. and Chota-Inuma J. 1990. Use-values of tree species in a communal

forest reserve in northeast Peru. Conservation Biology 4: 405–416.Plokin M. and Famolare L. 1992. Sustainable Harvest and Marketing of Rain Forest Products. Island

Press, Washington, DC.´Prance G.T., Balee W., Boom B.M. and Carneiro R.L. 1987. Quantitative ethnobotany and the case for

conservation in Amazonia. Conservation Biology 1: 296–310.¨ ¨Posey D.A. 1990. The science of the Mebengokre. Orion 9: 16–21.

Pulido M. and Serralta L. 1993. Lista anotada de las plantas medicinales de uso actual en el estado de´Quintana Roo. CIQRO, Chetumal, Quintana Roo, Mexico.

´ ´Quero H.J. 1992. Las palmas silvestres de la Penınsula de Yucatan. Publicaciones Especiales No. 10.´ ´Instituto de Biologıa, UNAM, Mexico, DF.

Richards P. 1991. Saving the rain forest: contested futures in conservation. In: Wallman S. (ed.),Anthropology and the Future. RKP Press, London, pp. 180–189.

Richards R.T. 1997. What the Natives know: wild mushrooms and forest health. Journal of ForestrySeptember 1997: 5–10.

´ ´ ´ ´Rutter A. 1990. Catalogo de las plantas utiles de la Amazonıa Peruana. Lima, Peru.´ ´ ´ ´ ´Sanchez O.M. 2000. Analisis estructural de la selva del jardın botanico. In: Sanchez O.M. and Islebe

´ ´ ´G.A. (eds), El Jardın Botanico Dr Alfredo Barrera Marın fundamento y estudios particulares.´CONABIO-ECOSUR, Quintana Roo, Mexico, pp. 59–74.

´Sanchez O.M. and Islebe G.A. 2001. Vulnerability of species of trees from the Mexican Carribbean.Feddes Report 112/5–6: 391–399.

´Sanchez O.M. and Islebe G.A. 2002. Tropical forest communities in southeastern Mexico. Plant Ecology158: 183–200.

´Salmon E. 1996. Decolonizing our voices. Winds of Change Summer 1996: 70–72.Schultes R.E. 1988. Primitive plant lore and modern conservation. Orion 7: 8–15.

´ ´ToledoV.M. 1987. La etnobotanica en Latinoamerica: vicisitudes, contextos y perspectivas Memorias del´ ´Simposio de Etnobotanica. IV Congreso Latinoamericano de Botanica. Instituto Colombiano para el

´Fomento de la Educacion Superior, pp. 13–24.´Toledo V.M. 1990. La perspectiva etnoecologica. Cinco reflexiones acerca de las ‘ciencias campesinas’

´sobre la naturaleza con especial referencia en Mexico. Ciencias 4: 22–29.´Toledo V.M., Caballero J., Argueda A., Rojas P., Aguirre E., Viccon J. et al. 1978. Estudio botanico y

´ ´ ´ ´ecologico de la region del rıo Uxpanapa. El uso multiple de la selva basado en el conocimientotradicional. Biotica 3: 85–101.

´ ´ ´Toledo V.M., Martınez E., Becerra R. and Ramos C.H. 1995. La selva util: Etnobotanica cuantitativa de´ ´ ´ ´los grupos indıgenas del tropico humedo de Mexico. Interciencia 20: 177–187.

Trotter R.T. and Logan M.H. 1986. Informant consensus: a new approach for identifying potentiallyeffective medicinal plants. In: Etkin N.L. (ed.), Plants in Indigenous Medicine and Diet. Redgrave,Bedford Hills, New York, pp. 91–112.

Turner N.J., Boelscher M. and Ignace R. 2000. Traditional ecological knowledge and wisdom ofaboriginal peoples in British Columbia. Ecological Applications 10: 1275–1287.

´ ´ ´Wright A.C.S. 1967. El reconocimiento de los suelos en la Penınsula de Yucatan, Mexico. Final Report,´FAO. Report Colegio de Posgraduados, Chapingo, Mexico.