lab report icp uitm

24
TABLE CONTENT No. TITLES PAGES 1. ABSTRACT 2 2. INTRODUCTION 3-4 3. THEORY 5-7 4. APPARATUS AND MATERIAL 8 5. PROCEDURE 9 6. RESULT 10-12 7. DISCUSSIONS 13-14 8. CONCLUSION 15 9. RECOMMENDATIONS 16 10. REFERENCES 16 11. APPENDICES 17 1 | Page

Upload: faiz-shafiq

Post on 11-May-2015

223 views

Category:

Engineering


12 download

TRANSCRIPT

Page 1: Lab report icp uitm

TABLE CONTENT

No. TITLES PAGES

1. ABSTRACT 2

2. INTRODUCTION 3-4

3. THEORY 5-7

4. APPARATUS AND MATERIAL 8

5. PROCEDURE 9

6. RESULT 10-12

7. DISCUSSIONS 13-14

8. CONCLUSION 15

9. RECOMMENDATIONS 16

10. REFERENCES 16

11. APPENDICES 17

1 | P a g e

Page 2: Lab report icp uitm

1.0 ABSTRACT

This experiment was done to determine the amount of metal Zinc in the unknown

concentration of waste water samples and to determine whether they are drinkable or not. This

experiment is about to determine the concentration of samples and whether the water sample is

safe to drink or not. The ICP-AES instrument was used to analyse the composition of the sample

and refer to WHO and USEPA health standards whether the water is potable. This experiment

used 0.021 g of Zinc Chloride to dilute with 100 mL water until the concentration reach 100 ppm

to prepare an aqueous Zinc chloride (ZnCl2) solution. Then, series of standard solutions needed

to be prepared which has the concentration of 5 ppm, 10 ppm and 15 ppm and 20 ppm

respectively. Standard solution is a solution of known concentration, used as a standard of

comparison or analysis. There are 2 water samples that being tested which are sample A and

sample B .This experiment was conducted by using Inductively Coupled Plasma (ICP) Mass

Spectrometry, ICP model 600 series. From this experiment, the number of zinc in zinc chloride

solution with concentration of 5, 10, 15 and 20 ppm were 5296,5353, 8179 and 11310 ppb

respectively .Meanwhile, for the sample A and B, the number of zinc in the sample were -

0.0241907ppm and 121.583 ppm. The composition of the sample can be analyzed and the

results obtained were present into a graph of IR versus Concentration Intensity of each sample

was recorded and graph intensity of average composition against concentration (ppm) was

plotted .Since WHO and USEPA guidelines for level of heavy metals allowed in drinking water

was only 5mg/L, we can conclude that sample A is very safe to drink, consumed. and use

meanwhile sample B is unsafe to drink . Overall, the experiment was a success since the

objectives were achieved.

2 | P a g e

Page 3: Lab report icp uitm

2.0 INTRODUCTION

Inductively Coupled Plasma -Atomic Emission Spectrometry (ICP-AES) is an emission

spectrophotometric technique, exploiting the fact that excited electrons emit energy at a given

wavelength as they return to ground state. The fundamental characteristic of this process is that

each element emits energy at specific wavelengths peculiar to its chemical character. Although

each element emits energy at multiple wavelengths, in the ICP-AES technique it is most

common to select a single wavelength for a given element. The intensity of the energy emitted at

the chosen wavelength is proportional to the concentration amount of that element in the

analyzed sample. Thus, by determining which wavelengths are emitted by a sample and by

determining their intensities, the analyst can quantify the elemental composition of the given

sample relative to a reference standard. The ICP-AES is composed of two parts: the ICP and the

optical spectrometer. The ICP torch consists of 3 concentric quartz glass tube and a coil of the

radio frequency (RF) generator which surrounds part of this torch. Argon gas is typically used to

create the plasma.

An inductively coupled plasma can be generated by directing the energy of a radio

frequency generator into a ICP argon gas. Other plasma gases used are Helium and Nitrogen. It

is important that the plasma gas is pure since contaminants in the gas might quench the torch.

Coupling is achieved by generating a magnetic field by passing a high frequency electric

current through a cooled induction coil. This inductor generates a rapidly oscillating magnetic

field oriented in the vertical plane of the coil. Ionization of the flowing argon is initiated by a

spark from a coil. The resulting ions and their associated electrons from the coil then interact

with the fluctuating magnetic field. This generates enough energy to ionize more argon atoms by

collision excitation. The electrons generated in the magnetic field are accelerated perpendicularly

to the torch. At high speeds, cations and electrons, known as eddy current, will collide with

argon atoms to produce further ionization which causes a significant temperature raise. Within 2

ms, a steady state is created with a high electron density. Plasma is created in the top of the torch.

The temperature within the plasma ranges from 6,000-10,000 K. A long, well-defined tail

emerges from the top of the high temperature plasma on the top of the torch. This torch is the

3 | P a g e

Page 4: Lab report icp uitm

spectroscopic source. It contains all the analyte atoms and ions that have been excited by the heat

of the plasma.

The detector (photomultiplier tube) is fixed in space at the far end of the spectrometer.

Rotation of the diffraction grating sequentially moves each wavelength into the detector. The

computer control ensures that the detector is synchronized with the grating so that the intensity at

the detector at any given time is correlated with the wavelength being diffracted by the grating.

The zinc wavelength is entered which we are wishes to detect into the computer, the grating

sequentially moves to the specified wavelengths, and the energy intensity at each wavelength is

measured to provide a quantitative result that can be compared to a reference standard.

4 | P a g e

Page 5: Lab report icp uitm

3.0 THEORY

The ICP was developed for optical emission spectrometry (OES) by Fassel et al. at Iowa

State University in the US and by Greenfield et al. at Albright & Wilson, Ltd. in the UK in the

mid-1960s. As shown in Figure 1, the so-called ICP “torch’ is usually an assembly of three

concentric fused-silica tubes. These are frequently referred to as the outer, intermediate, and

inner gas tubes. The diameter of the outer gas tube ranges from 9 to 27 mm. A water-cooled,

two- or three-turn copper coil, called the load coil, surrounds the top section of the torch, and is

connected to a RF generator. The outer argon flow (10-15 L min -1) sustains the high-temperature

plasma, and positions the plasma relative to the outer walls and the induction coil, preventing the

walls from melting and facilitating the observation of emission signals. The plasma under these

conditions has annular shape. The sample aerosol carried by the inner argon flow (0.5-1.5 L min -

1) enters the central channel of the plasma and helps to sustain the shape. The intermediate argon

flow (0-1.5 min-1) is optional and has the function of lifting the plasma slightly and diluting the

inner gas flow in the presence of organic solvents.

Figure 3.1 Schematic diagram of an ICP assembly showing the three concentric tubes

composing the torch, the RF coil, the different plasma regions, and the temperature as a function

of height above the load coil.

5 | P a g e

Page 6: Lab report icp uitm

The ICP is generated as follows. RF power, typically 700-1500 W, is applied to the load

coil and an alternating current oscillates inside the coil at a rate corresponding to the frequency

of the RF generator. For most ICP/OES instruments, the RF generator has a frequency of either

27 or 40 MHz. The oscillation of the current at this high frequency causes the same high-

frequency oscillation of electri and magnetic fields to be set up inside the top of the torch. With

argon gas flowing through the torch, a spark from a Tesla coil is used to produce “seed”

electrons and ions in the argon gas inside the load coil region. These ions and electrons are then

accelerated by the magnetic field, and collide with the argon atoms, causing further ionization in

a chain reaction manner. This process continues until a very intense, brilliant white, teardrop-

shaped, high-temperature plasma is formed. Adding energy to the plasma via RF-induced

collision is known as inductive coupling, and thus the plasma is called an ICP. The ICP is

sustained within the torch as long as sufficient RF energy is applied. In a cruder sense, the

coupling of RF power to the plasma can be visualized as positively charged. Ar ions in the

plasma gas attempting to follow the negatively charged electrons flowing in the load coil as the

flow changes direction 27 million times per second.

Figure 3.1 shows the temperature gradient within the ICP with respect to height above the

load coil. It also gives the nomenclature for the different zones of the plasma as suggested by

Koirtyohann et al. The induction region (IR) at the base of the plasma is “doughnut-shaped” as

described above, and it is the region where the inductive energy transfer occurs. This is also the

region of highest temperature and it is characterized by a bright continuum emission. From the

IR upward towards to the tail plume, the temperature decreases.

An aerosol, or very fine mist of liquid droplets, is generated from a liquid sample by the

use of a nebulizer. The aerosol is carried into the center of the plasma by the argon gas flow

through the IR. Upon entering the plasma, the droplets undergo three processes. The first step is

desolvation, or the removal of the solvent from the droplets, resulting in microscopic solid

particulates, or a dry aerosol. The second step is vaporization, or the decomposition of the

particles into gaseous-state molecules. The third step is atomization, or the breaking of the

gaseous molecules into atoms. These steps occur predominantly in the preheating zone (PHZ).

Finally, excitation and ionization of the atoms occur, followed by the emission of radiation from

these excited species. These excitation and ionization processes occur predominantly in initial

6 | P a g e

Page 7: Lab report icp uitm

radiation zone (IRZ), and the normal analytical zone (NAZ) from which analytical emission is

usually collected.

The main advantages of the ICP over the other excitation sources originate from its

capability for efficient and reproducible vaporization, atomization, excitation, and ionization for

a wide range of elements in various sample matrices. This is mainly due to high temperature,

6000-7000 K, in the observation zones of the ICP. This temperature is much higher than the

maximum temperature of flames or furnaces (3300 K). The high temperature of the ICP also

makes it capable of exciting refractory elements, and renders it less prone to matrix interferences.

Other electrical-discharge-based sources, such as alternating current and direct current arcs and

sparks, and the MIP, also have high temperatures for excitation and ionization, but the ICP is

typically less noisy and better able to handle liquid samples. In addition, the ICP is an

electrodeless source, so there is no contamination from the impurities present in the electrode

material. Furthermore, it is relatively easy to build an ICP assembly and it is inexpensive,

compared to some other sources, such as a LIP.

7 | P a g e

Page 8: Lab report icp uitm

4.0 APPARATUS AND MATERIAL

1. Inductive Coupled Plasma Spectrometer apparatus

2. Accu – Jet

3. Pipette

4. Beaker

5. Plastic test tubes

6. Waste water sample

7. Zinc Chloride, ZnCl2 in solid form

8. Distilled water

9. Sample container

10. 200 ml of volumetric flask

11. 50 ml of volumetric flask

12. Tissue paper

13. Glass rod

8 | P a g e

Page 9: Lab report icp uitm

5.0 PROCEDURE

1. Mass of zinc chloride where the relative molecular mass of zinc chloride is 136.59 g/mol

had been calculated.

2. The stock solution is prepared by weighing zinc chloride to be approximately 0.021 g.

3. The mass of zinc that had been weighed filled into the volumetric flask.

4. Ionized water is filled into the volumetric flask until 100 ml.

5. The solution was shake to obtain homogenous solution.

6. When the stock solution was prepared, labeled four 50 ml of volumetric flask to 5 ppm,

10 ppm, 15 ppm and 20 ppm.

7. Volume of stock solution needed had been calculated.

8. For 5 ppm, 2.5 ml volume of stock solution was filled by using accu-jet and pipette into

50 ml of volumetric flask then filled the ionized water until 50ml.

9. Step 5 is repeated for 10 ppm with 5ml volume of stock solution, 15 ppm with 7.5 ml

volume of stock solution and for 20 ppm filled with 10 ml volume of stock solution.

10. After shakes the solutions, poured 2/3 solutions from flask into the several plastic test

tubes.

11. Placed the plastic test tubes into ICP Spectroscopy machine to be analyses.

12. Results had been collected and discussed.

9 | P a g e

Page 10: Lab report icp uitm

6.0 RESULT

100 ml of stock solution equivalent to 10 mg/L

Relative molecular mass of zinc chloride is 136.59 g/mol

Relative molecular mass oh zinc is 65.38 g/mol

No of mole of zinc = 10

mgL

100 ml× 100

gL=10 mg

Mass oh zinc = 136.59

gmol

65.38g

mol

× 10 mg

= 2089 mg

¿0.021 g

Volume of stock solution needed :

M1 V1 ¿M2 V2

For 5 ppm solution,

M1 V1 ¿M2 V2

( 100) (V1) = (5) (50)

V1 = 2.5 ml

10 | P a g e

Page 11: Lab report icp uitm

PPM (Flask) Volume of stock solution needed (ml)

5 2.5

10 5

15 7.5

20 10

Figure 6.1

Concentration, ppm Average composition of

Zn, Cts/S

Standard

deviation

Relative

Standard

Deviation

(%RSD)

Blank 144.2 2.687 1.316

5 5296 14.79 0.2594

10 5353 0.11748 1.10593

15 8179 0.128964 0.819705

20 11310 0.0833189 0.390343

Sample A (0 ppm) -0.0241907 0.0463612 191.649

Sample B (0 ppm) 121.583 0.544576 0.447904

1ppm= 1mg/L Figure 6.2

1ppm=1000ppb

1ppb=1/1000 ppm

11 | P a g e

Page 12: Lab report icp uitm

0 5 10 15 20 250

2000

4000

6000

8000

10000

12000

f(x) = 504.292 x + 1013.52R² = 0.93314196982426

Average Composition of Zn, Cts/S

Y-ValuesLinear(Average composiion ion ZcCts/S)

Concentration ppm

Aver

age

com

posii

on io

n Zc

Cts/

S

Figure 6.3:- A graph of average composition of Zn against concentration of solution

Water sample Average zinc

composition, ppm

WHO and

USEPA

guidelines for

level of heavy

metals allowed in

drinking water

Conclusion

A -0.0241907

5 mg/L @ 5ppm

Safe

B 121.583 Not safe

Figure 6.4

12 | P a g e

Page 13: Lab report icp uitm

7.0 DISCUSSIONS

The objective of this experiment was to determine the amount of metal in the waste water

sample A and sample B. The inductively Coupled Plasma (ICP) was chosen as a method of this

experiment. Manufacturing activities in industrial areas can introduce dangerous pollutants into

waste water system. At the end of this experiment, the result of waste water can conclude

whether the water sample is safe to drink or not.

There were several advantages that supports the using of ICP which were ICP has a low

limit of detection, high stability leading to excellent accuracy and precision, high electron

density, high temperature ( 7000 K – 8000 K ), easy to use, fully automated, uses small amount

sample volumes and applicable to the refractory elements. The powder cannot be used as a

sample. This is due to the ICP instrument want to detect the ions in the samples because the

metals are soluble in water as ions.

Zinc is used as reference metal in this experiment. If water sample containing higher

concentration of zinc, it is not safe to drink. The example of water sample is water river, sea

water and other water. Water has a simple molecular structure which composed of one oxygen

atom and two hydrogen atoms. Each hydrogen atom is covalently bonded to the oxygen via a

shared pair of electrons while oxygen has two unshared pairs of electrons. So that, there are four

pairs of electrons surrounding the oxygen atom, two pairs involved in covalent bonds with

hydrogen and two unshared pairs on the opposite side of the oxygen atom. The water become

acidic when the water sample contain zinc atom. This is due to zinc atom are attached at oxygen

and hydrogen atoms. The water becomes unsafe to be consumed or to drink.

First of all, the stock solutions must be prepared. There are five solutions needed to test in

the ICP-AES method in order to achieve calibration curves. In order to prepare zinc chloride

(ZnCl2) solution, 0.0021 g of Zinc Chloride is used to dilute with 100 mL until the concentration

reach 100 ppm. By using the same solution, the other solutions needed to prepare such as 10 mL

is taken from the 100 ppm solution to prepared 20 ppm solution. For second solution,7.5 mL is

taken from the 100 ppm solution to prepared 15 ppm solution. Then, 5 mL is taken from the 100

13 | P a g e

Page 14: Lab report icp uitm

ppm solution to prepared 10 ppm solution. And lastly 2.5 mL is taken from the 100 ppm

solution to prepared 5 ppm solution.

From a graph in Figure 6.3, sample B contain an extremely high in average of zinc

component which is 121.583 ppm. This is exceeding the WHO and USEPA guidelines for level

of heavy metals allowed in drinking water. The average composition of zinc component in

sample A is lower than sample B with -0.0741907 ppm. Thus the sample A is drinkable. This is

due to sample A containing no zinc element or presence in small quantity. The contamination in

the sample cell affected the reading amount of metal present in water. Regarding to the result, the

sample B is not safe to drink but for a sample A considered as a safe drinking water.

This experiment was succeed when the main objective was fulfilled. But during

conducting this experiment, there were several mistakes done regarding to unability to get

correlation as 1. The correlation that we got was 0.9992. This is totally due to human error such

as the beaker is not fully clean. The value of zinc chloride (ZnCl2) must be accurate such as

0.021 g when weigh that solution. When measure the stock solution in flask, the reading must

meniscus.

One way to discharge unsafe wastewater is to treat the wastewater. Modern technologies

have done wonders in terms of treating unsafe drinking water by producing a method that is used

to remove heavy metals, in this case zinc, by hydroxide precipitation. This method applies the

concept of adjusting the pH of the water so that the metals will form an insoluble precipitate.

Once the solid is formed, it can be removed by filter process and the water can be discharged.

This method is dependent upon two factors: the concentration of the metal and the pH of the

water. Heavy metals are usually present in dilute quantities i.e. in the range of 1 to 100 mg/L and

its pH values lies at the neutral level or acidic. Both of these are disadvantageous with regard to

metals removal. That is why caustic is added. When caustic is added to the dissolved metals,

metals would react with the hydroxide ions to form metal hydroxide solid

14 | P a g e

Page 15: Lab report icp uitm

8.0 CONCLUSION

From the discussion, it can be concluded that the experiment was successfully conducted

and the purpose of this experiment is to determine whether the water samples are safe to drink

has been achieved. We can determine the presence of metal Zinc in waste water unknown sample

A and B by using Inductively Coupled Plasma (ICP) method. The value of correlation from this

experiment is 0.9992. Thus, this shown that the best correlation is 0.9999 or 1.0 which show the

almost accurate concentration of standard solution. Mainly we are looking at the concentration of

dissolved metal element, zinc in the water samples. ). From the data, graph of Cts/s versus

concentration of Zn (ppm) has been plotted, the concentration of zinc in Sample A and B have

been determined. There are two samples, A and B. The average compositions of zinc, ppm or

mg/L for Sample A and Sample B were -0.0241907ppm and 121.583ppm respectively, Sample B

having the higher composition of Zn than composition in sample A. According to WHO and

USEPA, the allowed composition of zinc in drinking water is 5 mg/L or ppm. From the results

we have concluded that the amount of zinc in sample B was too high and would most probably

kill anyone who would consume them if not seriously harm them or give them diarrhea. So that

would be no, both water samples are not safe to drink. For the sample A, it is safe to be

consumed since it is not exceeding the WHO and USEPA guidelines for level of heavy metals

which 5ppm. Sample B is suitable for drinking purpose where the standard value of Zn content

is allowed by World Health Organization (WHO) drinking water standard. Meanwhile, Sample

A cannot be drink because the Zn value in the sample excess the standard regulation from WHO.

The inaccuracy results occurred in this experiment may cause by some errors like parallax errors,

equipment efficiency or problem and other things. However, we realized that we have faced a lot

of problem and made some errors while we prepared this experiment. Even though the result was

not accurate since some errors had been made during the experiment and different from the

theory as stated in discussion section, we still consider this experiment has been a success since

the objective of this experiment was achieved. After this experiment was carried out, we had

learnt some experiences and new knowledge from it. We had understood the concept of

15 | P a g e

Page 16: Lab report icp uitm

Inductively Coupled Plasma (ICP) which is used to analyse the composition of the sample A and

sample B.

9.0 RECOMMENDATIONS

1. The plasma must be insulated from the rest of the instrument in order to prevent short

circuiting and as well as meltdown.

2. The sample is discouraged for a solid sample as clogging of instrumentation may

occur.

3. Plasma ICP is used because the source is under atmospheric conditions

4. Carefully handle the bottle sample to avoid any accident occur.

5. Labeled the bottle sample according the concentrations to avoid mistake while

conducting the experiments.

6. Carefully pour the chemical and it is very good to wear hand sock to avoid injured.

7.

10.0 REFERENCES

1. http://hiq.linde-gas.com/en/analytical_methods/inductively_coupled_plasma.html

2. http://www-odp.tamu.edu/publications/tnotes/tn29/technot2.htm[Accessed 24 April

2014]

3. (Robert A. Mayers, 2012, Encyclopedia of Analytical Chemistry)

4. http://www.cee.vt.edu/ewr/environmental/teach/smprimer/icpms/icpms.htm [Accessed 23

April 2014]

5. http://minerals.cr.usgs.gov/icpms/intro.html Accessed 22 April 2014]

6. http://cat.inist.fr/?aModele=afficheN&cpsidt=1618127 Accessed 20 April 2014]

7. http://forum.onlineconversion.com/showthread.php?t=943 Accessed 27 April 2014]

8. http://www.mrl.ucsb.edu/mrl/centralfacilities/chemistry/icp.pdf Accessed 21 April 2014]

9. World Health Organization [Online] Available at: http://www.who.int/en Accessed 23

April 2014]

16 | P a g e

Page 17: Lab report icp uitm

11.0 APPENDICES

Figure 11.1:The Inductively Coupled Plasma (ICP) Mass Spectrometry,ICP 600 series

17 | P a g e