ladek zdroj, february 2008 ,

22
Ladek Zdroj, February 2008, Neutrino emission in nonsuperfluid matter The effects of superfluidity COOLING OF N COOLING OF N EUTRON ST EUTRON ST A A R R S S D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia 1. Formulation of the Cooling Problem 2. Superlfuidity and Heat Capacity 3. Neutrino Emission 4. Cooling Theory versus Observations

Upload: stacy

Post on 11-Feb-2016

31 views

Category:

Documents


0 download

DESCRIPTION

COOLING OF N EUTRON ST A R S. D.G. Yakovlev. Ioffe Physical Technical Institute, St.-Petersburg, Russia. 1. Formulation of the Cooling Problem 2. Superlfuidity and Heat Capacity 3. Neutrino Emission 4. Cooling Theory versus Observations. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Ladek Zdroj, February 2008 ,

Ladek Zdroj, February 2008,

• Neutrino emission in nonsuperfluid matter• The effects of superfluidity

COOLING OF NCOOLING OF NEUTRON STEUTRON STAARRSS D.G. Yakovlev

Ioffe Physical Technical Institute, St.-Petersburg, Russia

1. Formulation of the Cooling Problem 2. Superlfuidity and Heat Capacity 3. Neutrino Emission 4. Cooling Theory versus Observations

Page 2: Ladek Zdroj, February 2008 ,

RICHNESS OF PHYSICAL CONDITIONS

Page 3: Ladek Zdroj, February 2008 ,

MAIN NEUTRINO EMISSION MECHANISMS IN NEUTRON STARS

Main features:• unobserved (but governs the cooling)• complete transparency• neutrino energies ~ kT• massless but low-energy neutrinos

QdVL

Q

]c [erg luminosity neutrino and

]scm [erg emissivity neutrino :quantity acticalPr1

13

Page 4: Ladek Zdroj, February 2008 ,

NEUTRINO PROCESSES IN NEUTRON STAR CRUST

Page 5: Ladek Zdroj, February 2008 ,

TEMPERATURE AND DENSITY DEPENDENSE OF NEUTRINO EMISSION

93 10 KT 83 10 KT

Page 6: Ladek Zdroj, February 2008 ,

e

ep

n

, e e e en p e p e n n n

dfffwQ epnfi )1)(1(2

npeepn

A Tcmmm

gGQ

6310

22 )31(10080457

27 6 3 19

46 6 19

~ 3 10

~ 10

Q T erg cm s

L T erg s

FeFpFn ppp 02 ~

n

Direct Urca ProcessLattimer, Pethick, Prakash, Haensel (1991)

Threshold:In inner cores of massive stars

Similar processes with muons

Similar processes with hyperons, e.g.

Is forbidden in outer core by momentum conservation:

0 9 330 MeV/c, 120 MeV/c, ~ / ~ 0.1 MeV/cFn Fe Fp Bp p p p k T c T

Page 7: Ladek Zdroj, February 2008 ,

Gamow and Shoenberg: Casino da Urca in Rio de Janeiro

Neutrino theory of stellar collapse, Phys. Rev. 59, 539, 1941:

Unrecordable cooling agent

Photo andStory by R. Ruffini

Welcome to the Urca World - I

Page 8: Ladek Zdroj, February 2008 ,

Welcome to the Urca World - II

Page 9: Ladek Zdroj, February 2008 ,

ENCHANCED NEUTRINO EMISSION PROCESSES IN CORES OF MASSIVE NEUTRON STARS

, e e e en p e p e n n n

, n p p n

, e en e n e

0, =( , ), =( , , )e eB B e B e B B n B p

, =( , ) e eN N e N e N N n p

, e ed u e u e d

Prakash, Prakash, Lattimer, Pethick (1992)

Maxwell et al. (1977)

Brown et al. (1992)

Iwamoto (1980, 1982)

6 6FAST 0F 9 FAST 0F 9 Q Q T L L T

NUCLEON-HYPERON MATTER

PION CONDENSATE

KAON CONDENSATE

QUARK MATTER

Page 10: Ladek Zdroj, February 2008 ,

SLOW NEUTRINO EMISSION PROCESSES EVERYWHERE IN NEUTRON STAR CORES

, e en N p N e p N e n N

8 8SLOW 0S 9 FAST 0S 9 Q Q T L L T

MODIFIED URCA [N=n or p = nucleon-spectator]

NUCLEON-NUCLEON BREMSSTRAHLUNG

N N N N

n n n n

n p n p

p p p p

{

LEPTON MODIFIED URCA, BREMS IN COULOMB COLLISIONS

, [ =any charged fermion]e eC e C e C C C

e C e C

Bahcall and Wolf (1965), Friman and Maxwell (1979), Maxwell (1987),Yakovlev and Levenfish (1995)

Friman and Maxwell (1979)

Any neutrino flavor

Page 11: Ladek Zdroj, February 2008 ,

Enhanced emission in inner cores of massive neutron stars

Everywhere in neutron star cores

Neutrino Emission Processes in Neutron Star Cores

6 6FAST 0F 9 FAST 0F 9 Q Q T L L T

Model Process

N/H direct Urca

Pion condensate

Kaon condensate

Quark matter

3 10 [erg cm s ]Q

e eN N e N e N

e eB B e B e B

e ed u e u e d

e eB B e B e B 26 2710 3 10 23 2610 1023 2410 1023 2410 10

8 8SLOW 0S 9 FAST 0S 9 Q Q T L L T

Modified Urca

Bremsstrahlung

nN pNe pNe nN

N N N N

20 2110 3 10

19 2010 10

Page 12: Ladek Zdroj, February 2008 ,

Nucleon Matter with Open Direct Urca Process

Page 13: Ladek Zdroj, February 2008 ,

FAST AND SLOW NEUTRINO COOLING

SUN

Page 14: Ladek Zdroj, February 2008 ,

Direct Urca, N/H

Neutrino Emission Processes in Neutron Star CoresOuter core Inner coreSlow emission Fast emission

}

}

}}

}

e en p e p e n

Pion condensate

Kaon condensation

Or quark matter

e eN N e N e N

e eB B e B e B

e ed u e u e d

Modified Urca nN pNe pNe nN

NN bremsstrahlung N N N N

Enhanced emission in inner cores of massive neutron stars:

Everywhere in neutron star cores:

6 6FAST 0F 9 FAST 0F 9 Q Q T L L T

8 8SLOW 0S 9 FAST 0S 9 Q Q T L L T

STANDARD

Fast erg

cm

-3 s

-1

Page 15: Ladek Zdroj, February 2008 ,

MAIN PHYSICAL MODELS

Problems:To discriminate between neutrino mechanismsTo broaden transition from slow to fast neutrino emission

Page 16: Ladek Zdroj, February 2008 ,

SUPERFLUID SUPPRESSION OF NEUTRINO EMISSION

0( , ) ( , ) = neutrino emissivity depends on / = superfluid reduction factorc

Q T Q T RR T T

is exponentially suppressed by strong superfluidity (at )c

R

T T

A=1S0

B=3P2 (m=0)C=3P2 (m=2)

Page 17: Ladek Zdroj, February 2008 ,

AN EXAMPLE OF SUPERFLUID REDUCTION OF NEUTRINO EMISSION

Two models for proton superfluidity Neutrino emissivity profiles

Superfluidity:• Suppresses modified Urca process in the outer core• Suppresses direct Urca just after its threshold (“broadens the threshold”)

Page 18: Ladek Zdroj, February 2008 ,

Cooper pairing neutrino emission

Flowers, Ruderman and Sutherland (1976) NN ~~

s cmerg )/( 1017.1 3

79

F*

21cN

NN

N TTFaNTcm

pmmQ

Only the standard physics involved

Page 19: Ladek Zdroj, February 2008 ,

Distribution over the stellar core

T=3x108 K

2x108

108 6x107

3x107

VQL d CPCP

Page 20: Ladek Zdroj, February 2008 ,

Neutrino luminosity due to Cooper pairing

8)10010(~ TLL MurcaCooper

Gusakov et al. (2004)

Page 21: Ladek Zdroj, February 2008 ,

Summary of neutrino emission properties

Neutrino emission from neutron star cores is strongly regulated by(1)Temperature(2)Composition of the matter(3)Superfluidity

These regulators may affect the emissivity in a non-trivial way(enhance or suppress)

What is their effect? Next lecture

Page 22: Ladek Zdroj, February 2008 ,

REFERENCES

U. Lombardo, H.-J. Schulze. Superfluidity in neutron star matter. In: Physics of Neutron Star Interiors, edited by D. Blaschke, N. Glendenning, A. Sedrakian, Berlin: Springer, 2001, p. 30.

D.G. Yakovlev, K.P. Levenfish, Yu.A. Shibanov. Cooling of neutron stars and superfluidity in their cores. Physics – Uspekhi 42, 737, 1999.

D.G. Yakovlev, A.D. Kaminker, O.Y. Gnedin, P. Haensel. Neutrino emission from neutron stars. Phys. Rep. 354, Nums. 1,2, 2001.