lc05p - monetisation for weighting and aggregation in life...

84
46 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting The most impacting life cycle stage regarding all the impacts is the mosquito net production The sensitivity analyses also show that the physical resistance and the end user acceptability are parameters that could strongly influence the overall results Under the limitation that calculation of averted DALYs thanks to the mosquito net protection is based on rough assumptions, the results reveal that the benefits of using the nets are about five orders of magnitude (factor 10’000) higher than the potential impacts generated on human health due to their production, use and disposal, meaning that the benefits of distributing the mosquito nets exceed the environmental burdens WE 454 Sustainability Life Cycle Analysis of best available techniques applied to the ceramic industry V Ibáñez Forés 1 , MD Bovea 1 , A Azapagic 2 1 Universitat Jaume I Castellón, Spain 2 University of Manchester, Manchester, United Kingdom The aim of this work is the development of a methodology for assessing from an environmental, economic and social perspective, different Best Available Techniques (BATs) proposed for the ceramic sector in the framework of the Directive on Industrial Emissions Taking as a starting point a baseline scenario whose life cycle inventory data have been collected directly from 20 Spanish ceramic tile facilities, thirteen alternative scenarios have been proposed by incorporating to the baseline scenario different BATs related to energy efficiency, dust emissions removal, abatement of the gaseous compounds and noise reduction The proposed methodology is based on a combination of methods to assess the effect that each BAT (or combination of BATs) produces on the baseline scenario: 1)Life Cycle Assessment methodology allows the analysis of the environmental improvement by means of indicators for different impact categories; 2)Eco-efficiency allows to estimate the relationship between economic aspects and environmental impacts and 3) Survey to different stakeholders involved in the ceramic sector allows to consider their degree of knowledge and preferences for each BAT LC05P - Monetisation for weighting and aggregation in Life Cycle Impact Assessment and Cost-Benefit- Assessment WE 457 Methods for monetisation in LCA and their impacts on the value of characterisation factors FE Kiss University of Novi Sad, Novi sad, Serbia There are currently several methods in use for monetisation of environmental and health impacts within the framework of Life Cycle Assessment In case studies they often produce different results The aim of this paper is to demonstrate on the example of several elementary flows the extent to which the results of the characterisations are influenced by the monetisation method applied Some underlying differences between the currently available monetisation methods will be discussed as well Among the monetisation methods that are compared is the EPS 2000 method, the Stepwise 2006 method, the Ecotax method, the ReCiPe method and the EcoSense method The results have shown that the characterisation results for a single pollutant or resource (expressed as EUR/tonne) vary considerably depending on the monetisation method applied For some pollutants the obtained characterisation factors are within a narrow range of values (eg CO 2 ) but for others the difference can be up to several orders of magnitude (eg Cd and PM 25 ) Despite their use for the same purposes, the five methods covered by this analysis differ in what they try to achieve, in the effects they consider, in the depth of analysis, in the choice of the characterisation models and in the way economic values are derived All these characteristics of the method will determine the calculation procedure and the monetary value which the monetisation method assigns to various emissions and interventions WE 458 Comparison of external costs of impacts on human health with and without equity weighting for selected source regions in the Southern Hemisphere P Preiss 1 , R van Dingenen 2 , F Dentener 2 , W Müller 1 , R Friedrich 1 1 Universität Stuttgart, Stuttgart, Germany 2 Joint Research Centre, Institute for Environment and Sustainability, CCU, Ispra, Italy Within the life cycle assessment characterisation factors have often been provided for unspecified regions or rather, as global average The ExternE project series www ExternEinfo suggested that human health damages need to be assessed in a spatially resolved context in order to increase the accuracy of impact assessment results The assessment of impacts to human health due to air pollution has several spatial and temporal aspects The spatial aspects include the dispersion and chemical transformation modelling, which is dedicated to derive spatially resolved ambient concentrations of pollutants for individual source regions This enables the use of spatially resolved information on receptor areas in order to calculate impacts, and it enables to weight these impacts appropriately to area-specific details like population density, age distribution or income Hence, the actual impact and damage per unit of emission depends on the location and time of the corresponding emission Within the TM5-FASST dispersion modelling framework, the world is divided into 56 regions and grid cell with a resolution of 1°x1° Each region serves as a source region and each grid cell serves as a receptor region Population data and concentration response functions are applied in order to calculate the relevant diseases This paper presents new and spatially explicit characterization factors (CF) in terms of human health impacts and damage cost factors per unit of emission for various air pollutants in selected source regions in the Southern Hemisphere The considered air pollutants are ammonia (NH3), oxides of nitrogen (NOx), sulphur dioxide (SO2), and primary particulate matter (PPM) in form of primary particulate matter The impact assessment is also accounting for secondary inorganic aerosols (SIA) consisting mainly of ammonium nitrate, ammonium sulphate and other nitrates and sulphates Finally, the application of monetary valuation is used to derive specific damage cost estimates per unit of emission Monetary valuation of the corresponding impacts is done in two ways, namely a) including equity weighting by using European average monetary values and b) without equity weighting by purchasing power parity adjusted monetary values The results are compared in order to emphasis the importance of spatially resolved dispersion modelling, and in order to demonstrate the effect of different value systems with regard to the welfare loss WE 459 Aggregation of multiple environmental benefits O Kuik 1 , TJ Taylor 2 1 VU University Amsterdam, Amsterdam, Nederland 2 European Centre for the Environment and Human Health, PCMD, University of Exeter, Truro, United Kingdom Environmental programs and projects often have a range of environmental benefits, be it in terms of improving water and air pollution or multiple attributes of the same impact receptor The valuation of the benefits of such programmes requires one to aggregate these benefits Difficulties arise when the environmental benefits are complements or substitutes Simple summation of benefits would underestimate the true aggregated benefits if the benefits would be complements, while the reverse would be true if the benefits would be substitutes The small literature that addresses this issue includes examples of both types of relationships In this paper we develop a tool for aggregating environmental benefits that takes account of potential substitution and complementary effects among environmental domains The basic idea underlying this tool is that the social value of an environmental improvement in one domain may not be independent of the size of the improvement and of the size of changes in other environmental domains To account for these possible interdependencies, a simple utility function is developed that describes social utility or welfare as a function of the changes in the three environmental end-points: climate change, human health and ecosystem quality We want to determine the value of the complete bundle of environmental end-points The question is: is the value of this bundle equal to the sum of its individual components or is it smaller or larger? We argue that this depends on the composition of the bundle; ie, on the relative shares of the end-points in the bundle More specifically, we argue that a “balanced”bundle (“a bit of everything”) is likely to be preferred over an “extreme”bundle (“all of one component; nothing of the others”) A Constant Elasticity of Substitution (CES) utility function is calibrated on marginal value estimates from the EU FP6 NEEDS research project and on observable “political”preferences on climate change, air pollution-related human health problems, and ecosystem quality WE 460 Integrating life cycle environmental costs in decision making, applied to Belgian residential buildings K Allacker, F de Troyer KULeuven, Leuven, Belgium The external environmental cost of residential buildings in Belgium was estimated during a four year project - SuFiQuaD (Sustainability, Financial and Quality evaluation of Dwelling types) The aim was to formulate recommendations to move towards a more sustainable building stock It was investigated if current decisions based on financial investment costs are in line with decisions based on life cycle environmental costs Policy recommendations were formulated by identifying the measures in order of priority to reduce the environmental impact of our building stock and by investigating if internalisation of the external environmental cost could enhance sustainable building The research methodology consisted of several steps In a first step existing methods of monetary valuation were compared Based on this comparison, a hybrid approach was proposed combining the Clean Air for Europe (CAFE) method with several other literature sources The methodology proposed was then implemented - in combination with a life cycle costing analysis - in three types of case studies: optimisation of building elements, optimisation of 16 representative dwellings and evaluation of current policy incentives (subsidies and tax reduction) related to sustainable building It could be concluded that assessing the impacts included in the CAFE method is insufficient because it leads to an unfair comparison of building alternatives Impacts as ecotoxicity, land use and respiratory effects due to inorganic substances should be considered too The analysis revealed that (current) decisions based on initial financial cost differ substantially from the ones based on life cycle environmental costs The latter moreover proved to be relatively small compared to the life cycle financial costs of common standard and low-energy buildings The effect of internalisation of these costs in decision taking would thus be rather small The measures in order of priority to move towards a more sustainable building stock consist of building location (minimise transport of inhabitants during the use phase), reduction of the heating demand, choice of building materials (production phase), reduction of the impact of electricity use and finally freshwater use The analysis of current energy related subsidies from both an environmental and financial perspective clarified that these are often too high (eg photovoltaic solar panels), but on the other hand some should be increased (eg floor insulation) WE 461 Monetizing environmental impacts through integrated assessment H Krieg 1 , M Jäger 1 , S Albrecht 1 , JP Lindner 2

Upload: others

Post on 11-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

46�SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

The most impacting life cycle stage regarding all the impacts is the mosquito net production . The sensitivity analyses also show that the physical resistance and the end user acceptability are parameters that could strongly influence the overall results . Under the limitation that calculation of averted DALYs thanks to the mosquito net protection is based on rough assumptions, the results reveal that the benefits of using the nets are about five orders of magnitude (factor 10’000) higher than the potential impacts generated on human health due to their production, use and disposal, meaning that the benefits of distributing the mosquito nets exceed the environmental burdens . WE 454Sustainability Life Cycle Analysis of best available techniques applied to the ceramic industryV . Ibáñez Forés1, M .D . Bovea1, A . Azapagic2

1Universitat Jaume I . Castellón, Spain2University of Manchester, Manchester, United KingdomThe aim of this work is the development of a methodology for assessing from an environmental, economic and social perspective, different Best Available Techniques (BATs) proposed for the ceramic sector in the framework of the Directive on Industrial Emissions . Taking as a starting point a baseline scenario whose life cycle inventory data have been collected directly from 20 Spanish ceramic tile facilities, thirteen alternative scenarios have been proposed by incorporating to the baseline scenario different BATs related to energy efficiency, dust emissions removal, abatement of the gaseous compounds and noise reduction . The proposed methodology is based on a combination of methods to assess the effect that each BAT (or combination of BATs) produces on the baseline scenario: 1)Life Cycle Assessment methodology allows the analysis of the environmental improvement by means of indicators for different impact categories; 2)Eco-efficiency allows to estimate the relationship between economic aspects and environmental impacts and 3) Survey to different stakeholders involved in the ceramic sector allows to consider their degree of knowledge and preferences for each BAT .

LC05P - Monetisation for weighting and aggregation in Life Cycle Impact Assessment and Cost-Benefit- Assessment

WE 457Methods for monetisation in LCA and their impacts on the value of characterisation factorsF .E . KissUniversity of Novi Sad, Novi sad, SerbiaThere are currently several methods in use for monetisation of environmental and health impacts within the framework of Life Cycle Assessment . In case studies they often produce different results . The aim of this paper is to demonstrate on the example of several elementary flows the extent to which the results of the characterisations are influenced by the monetisation method applied . Some underlying differences between the currently available monetisation methods will be discussed as well . Among the monetisation methods that are compared is the EPS 2000 method, the Stepwise 2006 method, the Ecotax method, the ReCiPe method and the EcoSense method . The results have shown that the characterisation results for a single pollutant or resource (expressed as EUR/tonne) vary considerably depending on the monetisation method applied . For some pollutants the obtained characterisation factors are within a narrow range of values (e .g . CO2) but for others the difference can be up to several orders of magnitude (e .g . Cd and PM2 .5) . Despite their use for the same purposes, the five methods covered by this analysis differ in what they try to achieve, in the effects they consider, in the depth of analysis, in the choice of the characterisation models and in the way economic values are derived . All these characteristics of the method will determine the calculation procedure and the monetary value which the monetisation method assigns to various emissions and interventions .

WE 458Comparison of external costs of impacts on human health with and without equity weighting for selected source regions in the Southern HemisphereP . Preiss1, R . van Dingenen2, F . Dentener2, W . Müller1, R . Friedrich1

1Universität Stuttgart, Stuttgart, Germany2Joint Research Centre, Institute for Environment and Sustainability, CCU, Ispra, ItalyWithin the life cycle assessment characterisation factors have often been provided for unspecified regions or rather, as global average . The ExternE project series www .ExternE .info suggested that human health damages need to be assessed in a spatially resolved context in order to increase the accuracy of impact assessment results . The assessment of impacts to human health due to air pollution has several spatial and temporal aspects . The spatial aspects include the dispersion and chemical transformation modelling, which is dedicated to derive spatially resolved ambient concentrations of pollutants for individual source regions . This enables the use of spatially resolved information on receptor areas in order to calculate impacts, and it enables to weight these impacts appropriately to area-specific details like population density, age distribution or income . Hence, the actual impact and damage per unit of emission depends on the location and time of the corresponding emission . Within the TM5-FASST dispersion modelling framework, the world is divided into 56 regions and grid cell with a resolution of 1°x1° . Each region serves as a source region and each grid cell serves as a receptor region . Population data and concentration response functions are applied in order to calculate the relevant diseases . This paper presents new and spatially explicit characterization factors (CF) in terms of human health impacts and damage cost factors per unit of emission for various air pollutants in selected source regions in the Southern Hemisphere . The considered air pollutants are ammonia (NH3), oxides of nitrogen (NOx), sulphur dioxide (SO2), and primary particulate matter (PPM) in form of primary particulate matter . The impact assessment is also accounting for secondary inorganic aerosols (SIA) consisting mainly of ammonium nitrate, ammonium sulphate and other nitrates and sulphates . Finally, the application of monetary valuation is used to derive specific damage cost estimates per unit of emission . Monetary valuation of the corresponding impacts is done in two ways, namely a) including equity weighting by using European average monetary values and b) without equity weighting by purchasing power parity adjusted monetary values . The results are compared in order to emphasis the importance of spatially resolved dispersion modelling, and in order to demonstrate the effect of different value systems with regard to the welfare loss .

WE 459Aggregation of multiple environmental benefitsO . Kuik1, T .J . Taylor2

1VU University Amsterdam, Amsterdam, Nederland2European Centre for the Environment and Human Health, PCMD, University of Exeter, Truro, United KingdomEnvironmental programs and projects often have a range of environmental benefits, be it in terms of improving water and air pollution or multiple attributes of the same impact receptor . The valuation of the benefits of such programmes requires one to aggregate these benefits . Difficulties arise when the environmental benefits are complements or substitutes . Simple summation of benefits would underestimate the true aggregated benefits if the benefits would be complements, while the reverse would be true if the benefits would be substitutes . The small literature that addresses this issue includes examples of both types of relationships . In this paper we develop a tool for aggregating environmental benefits that takes account of potential substitution and complementary effects among environmental domains . The basic idea underlying this tool is that the social value of an environmental improvement in one domain may not be independent of the size of the improvement and of the size of changes in other environmental domains . To account for these possible interdependencies, a simple utility function is developed that describes social utility or welfare as a function of the changes in the three environmental end-points: climate change, human health and ecosystem quality . We want to determine the value of the complete bundle of environmental end-points . The question is: is the value of this bundle equal to the sum of its individual components or is it smaller or larger? We argue that this depends on the composition of the bundle; i .e ., on the relative shares of the end-points in the bundle . More specifically, we argue that a “balanced”bundle (“a bit of everything”) is likely to be preferred over an “extreme”bundle (“all of one component; nothing of the others”) . A Constant Elasticity of Substitution (CES) utility function is calibrated on marginal value estimates from the EU FP6 NEEDS research project and on observable “political”preferences on climate change, air pollution-related human health problems, and ecosystem quality .

WE 460Integrating life cycle environmental costs in decision making, applied to Belgian residential buildingsK . Allacker, F . de TroyerK .U .Leuven, Leuven, BelgiumThe external environmental cost of residential buildings in Belgium was estimated during a four year project - SuFiQuaD (Sustainability, Financial and Quality evaluation of Dwelling types) . The aim was to formulate recommendations to move towards a more sustainable building stock . It was investigated if current decisions based on financial investment costs are in line with decisions based on life cycle environmental costs . Policy recommendations were formulated by identifying the measures in order of priority to reduce the environmental impact of our building stock and by investigating if internalisation of the external environmental cost could enhance sustainable building . The research methodology consisted of several steps . In a first step existing methods of monetary valuation were compared . Based on this comparison, a hybrid approach was proposed combining the Clean Air for Europe (CAFE) method with several other literature sources . The methodology proposed was then implemented - in combination with a life cycle costing analysis - in three types of case studies: optimisation of building elements, optimisation of 16 representative dwellings and evaluation of current policy incentives (subsidies and tax reduction) related to sustainable building . It could be concluded that assessing the impacts included in the CAFE method is insufficient because it leads to an unfair comparison of building alternatives . Impacts as ecotoxicity, land use and respiratory effects due to inorganic substances should be considered too . The analysis revealed that (current) decisions based on initial financial cost differ substantially from the ones based on life cycle environmental costs . The latter moreover proved to be relatively small compared to the life cycle financial costs of common standard and low-energy buildings . The effect of internalisation of these costs in decision taking would thus be rather small . The measures in order of priority to move towards a more sustainable building stock consist of building location (minimise transport of inhabitants during the use phase), reduction of the heating demand, choice of building materials (production phase), reduction of the impact of electricity use and finally freshwater use . The analysis of current energy related subsidies from both an environmental and financial perspective clarified that these are often too high (e .g . photovoltaic solar panels), but on the other hand some should be increased (e .g . floor insulation) .

WE 461Monetizing environmental impacts through integrated assessmentH . Krieg1, M . Jäger1, S . Albrecht1, J .P . Lindner2

Page 2: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4�0 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

1University of Stuttgart, Chair of Building Physics, Echterdingen, Germany2Fraunhofer Institute for Building Physics, Echterdingen, GermanyThis paper describes an approach for an integrated economic and ecological assessment of production processes . It is based on heuristic approaches that are used in classical business theory for e .g . planning of production processes within companies . The result of an LCA provides additional parameters for this heuristic approaches . A measurement of the scarcity of environmental aspects, e .g . an emission cap for CO2 emissions, is required . Through an iterative application of the method, an optimal allocation of resources is achieved, considering economic, ecological and technical parameters . Scarce resources are assigned a shadow price, which can be a basis for internalization of environmental impacts or be used for comparison with external prices, e .g . prices of emission permits .

WE 462LCC evaluation of building components including environmental impactsF . ThiebatPolitecnico di Torino, Torino, ItalyEconomics in sustainable assessment is a very significant topic . Many times, in the building sector, contractors, owners and designers are at issue over the cost of sustainable projects . A variety methods are risen in the two last decades in order to include the social and environmental costs and benefits into economic evaluations . The aim of this paper is to show the results connected to a study for a new assessment model based on the integration of LCA and LCC, called €CO (Politecnico di Torino, Thiebat, 2009) . Different methods, get from published international researches, have been applied to evaluate the same building envelopes in order to validate and verify the outcome of €CO model . Methods here represented and implemented are based either on the monetization of externalities, as the European ExternE Project and the Swedish EPS method, or on scientific studies that take into account environmental and health impacts without weighting them, such as SETAC Environmental LCC and CES Selector, the methodology developed by Prof Mike Ashby (Cambridge University) . Moreover, a further effort to validate the results is the application of the Emission Trading (EU Dir . 2003/87/CE), market-based approach used to control pollution by providing economic incentives for achieving reductions in the emissions of pollutants . In other words, the research tries to shift this approach to the construction market applying the Marginal Abatement Cost Curve (MAC), that is the cost of eliminating an additional unit of pollution . In conclusion, comparing the results obtained through €CO model with the methods above described, it is possible to affirm that the scale of values is substantially unaltered .

WE 463Monetisation of indirect externalities of lead emissions from a waste-to-energy plant with focus on trade-offs related to the time horizon choiceM . Pizzol, F . Møller, M . ThomsenAarhus University, Roskilde, DenmarkIn this study we calculated, via the impact pathway approach (IPA), the indirect external costs of lead emitted from a waste-to-energy facility in Denmark . After emission into atmosphere, lead deposited on topsoil can be uptaken via ingestion . Lead exposure is linked to neurotoxic impacts in children and to reduced lifetime earnings . Indirect costs are expected to be higher than direct ones (via inhalation): lead accumulates in topsoil and ingestion is a major contributor to total daily lead intake . However, indirect impacts occurr in the future; their present value is therefore lower when a positive discount rate is applied . Calculating the indirect externalities poses some challenges: a) increased uncertainties due to the additional air-to-soil dispersion modelling; b) need for a long-term perspective to account for lead accumulation in soil; c) impacts and costs to be integrated over future generations . The choice of the time horizon can potentially influence the final results in terms of total costs [€/kg] . We used different models cross-disciplinarly inside the IPA framework: the Operational Meteorological air-quality model (OML), the Simplified Fate and Speciation Model (SFSM), and the Age Dependent Biokinetic Model (ADBM) were used to determine respectively the metals’ atmospheric transport, its deposition and accumulation in topsoil, and its bio-accumulation in the human body . Neurotoxic impacts were quantified according to different long-term emission and exposure scenarios; concentration-response functions from updated literature were used, linking blood lead and IQ . The economic model to calculate lifetime earnings has been adapted to monetise neurotoxic impacts on future generations of children . Calculated indirect costs are of the same magnitude as direct costs (previously investigated), both in the case of actual emission rates and in the case of future emission scenarios for lead . Among the various modelling parameters, the social discount rate has the most influential effect: discounting of future impacts is levelling off the differences between indirect and direct costs, so that even if lead is accumulating in soil with a consequent increasing exposure, the present monetary value of future impacts doesn’t increase . The use of lead-specific models allows for a detailed quantification of the lead impact pathway and results are in agreement with previous literature .

WE 464Monetisation of environmental impacts from LCA with the Choice Experiment method: an experimental approach for waste management systemsM .E . Mollaret1, M . Baudry2, L .A . Aissani1, A . Le Bozec1, A . Muselet1

1IRSTEA, Rennes, France2Université Paris Ouest Nanterre La Défense, EconomiX, Nanterre, FranceLife Cycle Assessment (LCA) in waste management in one of the most applied method for environmental planning at a local or regional scale . This tool allows comparison of scenarios according to their different impacts . The implementation of a monetisation method on these results can be seen as a possibility to establish a hierarchy of waste management scenarios to help decision-making . Contrary to classical monetisation methods, which are mainly based on damage or on emissions costs, we propose to monetise environmental impacts from a LCA at a midpoint level . The originality of the method relies on a simultaneous monetisation of different impacts with a unique valuation process . At first the unit monetary values provide a weighting system of impacts . Then they are coupled with previous LCA results of waste management scenarios to establish a hierarchy between them . Our explanatory approach begins with a LCA implementation by modelling with GaBi software four waste management scenarios: a benchmark scenario (incineration) and three Mechanical Biological Treatment alternatives . Waste management systems are limited to residual waste and biowaste flows and take into account collection, transport, treatment, refusal management and by-products valorisation . Only three midpoint impact categories, which represent issues in this area, are studied: Global Warming Potential (GWP), Human Toxicity Potential (HTP) and Abiotic Depletion Potential (ADP) . Then, we propose to adapt the Choice Experiment method, derived from marketing research, to obtain monetary values from environmental impacts . Choice Experiment (CE) is a stated preferences method which requires to design a survey and then to submit it to a population sample (a test sample of one hundred persons) . People are asked to choose waste management scenarios but do not have to directly express their Willingness-To-Pay (WTP) . An econometric analysis of the survey results -here a Mixed Logit Model which takes into account individual heterogeneity- provides marginal WTPs for each impact category . CE is generally applied to real issues . That’s why we need to adapt it by bringing additional information about the topic on the one hand and by giving a “pictured description”of the environmental impacts on the other hand . Results stress the existence of an important intra impact dispersion of individual WTPs and important inter impact differences in average WTPs . WE 465Assessing the impacts of abiotic resource use by monetisationV .C .L . de Bruille1, T . Dandres1, M .B . Amor1, C . Bulle1, C . Gaudreault2, R . Samson1

1CIRAIG, Montreal, Canada2National Council for Air and Steam Improvement, Montreal, CanadaIn this study, a new assessment method is proposed to investigate the impacts from resources use, as none of the existing methods is considered mature enough to be recommended in the ILCD handbook . Based on resource functionality, future abundance and the financial consequences of the use of resources, this new approach permits the monetisation of the impacts as a new impact category indicator is expressed with a monetary unit . This allows the consideration that the extraction of a certain amount of abiotic resource forces one of the future users to pay a different amount to extract the same quantity of the same resource as it becomes scarcer . In order to illustrate the approach, it has been applied to metallic resources used in electrical vehicles batteries to compute impacts on natural resources depletion . Results have been compared with the impacts obtained with other LCIA methodologies to put in perspective advantages and drawbacks of each of them and see to what extend results obtained are consistent when applying different approaches showing different degrees of sophistication . Lithium characterisation factors are obtained with the proposed methodology and are around three orders of magnitude greater then the one with ReCiPe, which also models resource depletion by monetisation . Inconsistencies between ReCiPe and other methodologies are then put into light as the main contributors to the impact differ greatly from one methodology to the other .

WEPC1 - Bioavailability and bioaccumulation - impact of environmental, biological and ecological variation

WEPC1-1Uncertainty of bioaccumulation and biomagnification measurements in natural aquatic food webs: a sensitivity analysis approachE . Powell1, F .A .P .C . Gobas2, K .A . Kidd3, D .C .G . Muir4, R .M . Seston1, K .B . Woodburn1

1Dow Corning Corporation, Auburn, michigan, United States of America2Simon Fraser University, Burnaby, bc, Canada3University of New Brunswick, Saint john, nb, Canada4Environment Canada, Burlington, on, CanadaThe potential of a chemical substance to accumulate in aquatic organisms and to increase in concentration with increasing trophic level are criterions that are used to classify substances as being bioaccumulative in the environment . For aquatic organisms, bioaccumulation factors (BAFs) describe the accumulation of contaminants by living organisms relative to the amount stored in the water compartment . Similarly, biota-sediment accumulation factors (BSAFs) describe the accumulation of contaminants by living organisms relative to the amount stored in the sediment compartment . Biomagnification factors (BMFs) describe the increase in concentration of a substance in living organisms that are separated by a single trophic level step on a food chain . Because of biomagnification processes, individual BAF or BSAF values are dependent upon trophic level position of the organism under consideration . Consequently, trophic magnification factors (TMFs), which describe the increase in concentration of a substance in living organisms that occupy successively higher trophic levels within a food web, are used to assess bioaccumulation and biomagnification of chemicals in the environment . This presentation will show how these field metrics for assessment of bioaccumulation and biomagnification (i .e ., BAF, BSAF, BMF, and TMF) are interrelated . We will use field data to evaluate various approaches that may be used to calculate bioaccumulation and biomagnification metrics from measured concentrations, normalized concentrations

Page 3: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4�1SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

(for example, to lipid content), concentration ratios, and benchmark compounds that are known to bioaccumulate and biomagnify (for example, polychlorinated biphenyls) . Several factors may directly affect the relationship between trophic position and the bioaccumulation and biomagnification of contaminants in aquatic ecosystems . Therefore, the evaluation will include an assessment of the sensitivity of the different approaches to parameters such as trophic level, nitrogen-15 enrichment factors (used to estimate relative trophic level position), omnivorous feeding, and lipid content .

WEPC1-2From cameo appearances to leading roles in bioaccumulation risk assessment? Enter new cast member: M(etabolism)H .A . Leslie, P .E .G . LeonardsInstitute for Environmental Studies (IVM), VU University, Amsterdam, NederlandIn our earlier Setac papers, we concluded based on a combination of field and laboratory data that the bioconcentration factor (BCF) can be a useful predictor of the trophic magnification factor (TMF) for a range of chemicals with specific chemicals characteristics and under specific ecological conditions . One of the important “exceptions”where the BCF does not provide accurate information about the bioaccumulative nature of chemicals in the environment is those chemicals that exhibit a high BCF in laboratory tests, but also biotransform in foodwebs, thus not biomagnifying and consequently retaining a low TMF . Biotransformation is a key factor in determining bioaccumulation and further trophic magnification . In the PBT assessment much attention is being paid to the persistence of chemicals which is assessed with biodegradation tests by microorganisms . In spite of this, metabolism (M) of chemicals by higher organisms is not taken into account in the PBT assessment . Various examples have shown that metabolites of chemicals are more toxic than the parent compounds . B-assessment should therefore also include M assessment with a connection to toxicity . Screenplays require you to know your characters very well before introducing them, which is why in the risk assessment (RA) ‘screenplays’ for chemicals, we have not been able to give any leading roles to metabolites, which we would like to call “M”here . They make only cameo appearances in RA . In this presentation we discuss some scenarios where M changes the outcome of the chemical risk story . We do this with examples from field and laboratory data .

WEPC1-3Variation in clearance rates in Japanese mussel populations: bioaccumulation of organic contaminants or natural variability?A .G . Scarlett1, A . Dissanayake2, A . Ishimatsu3, C .E . West1, D . Jones1, S .J . Rowland1

1Plymouth University, Plymouth, United Kingdom2Swansea University, Swansea, United Kingdom3Institute for East China Sea Research, Nagasaki, Japan In order to assess whether an environment is being impacted by anthropogenic contamination, a strategy of measuring the health of a sentinel species coupled with quantifying contaminants accumulated in their tissues, is often applied . There are three main factors that can confound the results: (1) variation in environmental conditions (e .g . salinity, temperature etc .), (2) natural variability between populations and (3) exposure to toxic contaminants that are not bioaccumulated . The coastal waters of Japan, such as the East China Sea, are reported to be among the most impacted by human activities in the world . To assess the effects of organic contaminants on marine communities around the coast of Kyushu Japan, mussels were chosen as sentinel species and their health assessed using the well-accepted clearance rate assay . To account for environmental variability, key parameters were measured . Mussel tissues were extracted and analysed by gas chromatography - mass spectrometry (GC-MS) . In addition, comprehensive two dimensional GC-MS was also employed to examine compounds unresolved by conventional GC . To assess if contaminants that were not amenable to bioaccumulation were present in the water, Polar Organic Chemical Integrative Samplers were deployed for four weeks in Nagasaki harbour and at an offshore island (Goto Island) away from sources of contamination . Large variations were observed in mussel clearance rates between sampling stations . Some mussel populations had clearance rates well below those from Goto Island . Only very minor differences were recorded for environmental parameters . Attributing the apparent poor health of the mussels to contamination by organic compounds was however problematical . The issues raised by this study are discussed .

WEPC1-4Metal bioaccumulation in deposit-feeding polychaete depends on sediment geochemistryZ . Baumann, N .S . FisherStony Brook University, Stony brook, United States of AmericaCurrent understanding of metal bioaccumulation in deposit-feeding animals is still unresolved . Field observations need to be complemented with laboratory based studies and mathematical modeling . Bioaccumulation of arsenic, cadmium and chromium in deposit-feeding polychaetes collected from two different US estuaries, the Chesapeake Bay and San Francisco Bay, was compared to model predictions . A biokinetic model combining aqueous and dietary uptake terms was modified such that the dietary uptake term considered partitioning of the metals in diverse geochemical fractions as determined with a sequential extraction scheme . Kinetic parameters, including metal assimilation efficiencies and efflux rate constants, that were used in the model to quantify metal uptake in the deposit-feeding polychaete Nereis succinea from the aqueous phase and from food were determined experimentally using radiotracer protocols . 73As(+5), 109Cd and 51Cr(+3) were used for sediment and pore water labeling . Sediments used in the experiments and polychaetes that were later analyzed for metal concentrations were collected from the same sites by a box corer . Dietary sources were shown to account for >97% of the metal body burden . By incorporating the geochemical fractionation of metals in the model the correlation between field observations and model predictions improved considerably (r2 = 0 .84 - 0 .87) over a model that considered only the total metal concentrations in sediment (r2 = 0 .11 - 0 .50) . Given the importance of the dietary pathway, we investigated mechanisms of metal assimilation, focusing on As . The percent of As released from particles into gut fluid extracted from N . succinea was directly related to, and greater than or equal to AEs . Bovine serum albumin, a previously used mimic for worm gut fluid, was less effective than natural gut fluid in mobilizing metal from ingested sediment . Arsenic associated with algal cells was assimilated more effectively than As bound to goethite particles (72 vs . 2%) . 15% of As was released from goethite into gut fluid but only 2% was assimilated by N . succinea, suggesting that metal release from particles is necessary but insufficient to explain assimilation . Our results suggest that the likelihood of As assimilation is higher when it is bound to an organic compound potentially of nutritional value in the ingested particles .

WEPC1-5Are transport proteins relevant for the overall uptake of environmental pollutants?I .A . O`Connor, M .A .J . Huijbregts, A . Pirovano, A .M .J . Ragas, A .J . HendriksRadboud University, Nijmegen, NederlandWith the implementation of the REACH legislation in the EU, thousands of compounds need to be tested regarding their potential to damage human health and the environment . However, due to financial, practical and ethical constraints not all of these compounds can be investigated in the laboratory or field, and models are needed to predict the fate and effects of untested compounds . Most bioaccumulation models assume that uptake occurs via passive diffusion through a series of water and lipid layer . However, organisms have developed active transport and facilitated diffusion pathways to increase uptake of nutrients during food digestion . A number of drugs are known to act as substrate for some of these proteins . Attempts have been made to characterize the structural requirements of substrates in order to increase oral availability of drugs . However, even if the drug or other xenobiotic compounds is recognized as a substrate, the overall uptake will still depend on the kinetics of the given substrate-protein combination as well as on the expression level of the protein throughout the GIT . The aim of this study was to evaluate the potential of environmental pollutants to use transport proteins and how this process influences the overall uptake . Therefore, literature was first reviewed to understand how typical nutrients such as glucose, amino acids, peptides and vitamins are taken up by humans and what are the underlying kinetics . In a second step, literature will be searched to evaluate the substrate specificity of these transport proteins . Conclusions will be drawn whether carrier mediated transport might pose an additional uptake pathway for environmental pollutants and whether it should be included into risk assessment .

WEPC1-6Dynamic factors - a practical tool to evaluate transfer of contaminant from abiotic to biotic environmentE . Baltrenaite1, A . Lietuvninkas2, P . Baltrenas1

1Vilnius Gediminas Technical University, Vilnius, Lithuania2Tomsk State University, Tomsk, Russian FederationEnvironmental, biological and ecosystem variables may affect the transfer of contaminants from the abiotic to the biotic compartment including variation in contaminant concentration, type of contaminant, as well as in physiological parameters like biotransformation ability . Since element bioaccumulation depends on physiological sensitivity on the total contamination of soil we use a new biogeochemical parameter - dynamic bioaccumulation factor - to analyze change in bioaccumulation . Dynamic translocation factor can be used to estimate changes of element translocation in plant . Change of element participation in metabolism can be expressed in dynamic factor of biophilicity . Dynamic factors, differently from the factors mentioned in the existing literature, highlight changes in processes rather than changes in element quantities when conditions of the environment change . Equations to calculate factors as well as a case study will be presented and discussed in the presentation .

WEPC1-7Comparison of fish species used for dietary exposure according to the proposed OECD 305 test guidelineA . Lillicrap, K . Bæk, K .A .T .H .E LangfordNIVA, Oslo, NorwayThe proposed revision to the OECD 305 Test Guideline, Bioconcentration: Flow-through Fish Test, includes an approach for exposure via the diet for substances that are highly hydrophobic and not suitable for aqueous exposure . To validate the dietary exposure method, an international ring test was performed to determine the interlaboratory variation and reproducibility of the proposed test guideline . In the ring test, 5 different substances including hexachlorobenzene, musk xylene, ortho-terphenyl, methoxychlor, benzo[a]pyrene were exposed concurrently to juvenile rainbow trout . Due to the fast growing lifestage of the fish used in the study, the concentrations of the different chemicals in the tissues of the fish were affected by growth dilution in addition to other elimination processes . Subsequently, a non-growing fish species, such as adult zebrafish, has been suggested as a potential alternative test organism to avoid this problem . To assess the suitability of adult zebrafish, a similar dietary exposure test was performed using the same 5 substances as that tested previously . The test involved exposing adult female zebrafish to spiked commercial fish food for a period of 13 days, followed by a 2 week depuration period with clean fish food . During the depuration phase, fish were sampled at different time intervals for chemical analysis and from these data a depuration rate constant and biomagnification factor was calculated . These data were then compared with data obtained from the original ring test using rainbow trout . The results from the tests with the two different species of fish will be presented in this poster along with recommendations for the suitability of adult zebra fish as an appropriate alternative test organism for the dietary exposure method .

Page 4: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4�2 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

WEPC1-8A ring test of the draft OECD 305 bioconcentration test guideline dietary exposure methodA . Lampi1, D . Merckel2, M . Crookes3, E . Bleeker4, C .A .R .E .N Rauert5, T . Traas4, A .M .I .L .A de Silva6, R .O .B .E .R Hoke7, Y . Inoue8, N . Hashizume8, D .J . Letinski9, A .D .A .M . Lillicrap10, U . Memmert11, T . Parkerton12, C . Schlechtriem13, M . Vaughan14, K .E .N .T . Woodburn15, T . Yoshida8, S . Zok16

1ExxonMobil Petroleum & Chemical, Machelen, Belgium2Environment Agency, Oxfordshire, United Kingdom3BRE, Hartfordshire, United Kingdom4RIVM - National Institute for Public Health and the Environment, Bilthoven, Nederland5UBA - Umwelbundesamt (Federal Environment Agency), Dessau, Germany6Environment Canada, Burlington, Canada7DuPont, Newark, de, United States of America8CERI, Fukuoka, Japan9ExxonMobil Biomedical Sciences, Inc ., Annandale, nj, United States of America10NIVA, Oslo, Norway11Harlan Laboratories Ltd ., Itingen, Switzerland12ExxonMobil Biomedical Sciences, Inc, Houston, tx, United States of America13Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schmallenberg, Germany14AstraZeneca UK Ltd, Devon, United Kingdom15Dow Corning Corporation, Midland, mi, United States of America16BASF, Ludwigshafen, GermanyThe potential for chemical substances to bioaccumulate in organisms is a key element in chemical environmental risk assessment . A commonly used approach to assess this is the determination of bioaccumulation potential in aquatic species such as fish . One of the most commonly used tests is the OECD 305 Test Guideline, Bioconcentration in Fish . This Test Guideline was last reviewed in 1996; it is currently under revision, with a major update to include a method for dietary exposure, which is suitable for highly hydrophobic substances that are not amenable to aqueous exposure . To validate the dietary exposure method, ring testing has been undertaken to demonstrate reproducibility of results, and provide information on interlaboratory variation . Ten laboratories worldwide conducted dietary bioaccumulation studies, using rainbow trout . Five test substances were chosen to represent a range of potential for biotransformation: hexachlorobenzene, musk xylene, ortho-terphenyl, methoxychlor, benzo[a]pyrene . The substances were spiked to commercial fish food, on which fish were fed daily during a set exposure regime at two different feed rates, followed by depuration on substance-free food . Chemical analysis of fish tissue during depuration, along with basic substance and organism data, allows for calculation of a fish growth rate constant, a substance depuration rate constant, assimilation efficiency, and biomagnification factor . Results from the ring test are described, including information on feeding rate, corrections for fish growth during the test, reproducibility and interlaboratory variation .

WEPC2 - Environmental OMICs: a global answer to environmental questions

WEPC2-1Evaluation of chronic sublethal effects of the pharmaceuticals gemfibrozil and diclofenac on the marine mussel (Mytilus spp.) using a proteomic approachW . Schmidt1, L .C . Rainville2, G . Mceneff3, D . Sheehan2, B . Quinn1

1Galway-Mayo Institute of Technology (GMIT), Galway, Ireland2University College Cork, Cork, Ireland3Dublin City University, Dublin, IrelandOver recent years the presence of human and veterinary pharmaceuticals in the aquatic environment has become an environmental problem . A major source of these novel pollutants is through the release of waste water effluents, both treated and untreated, into the aquatic environment . The lipid regulator gemfibrozil and the non-steroidal anti-inflammatory drug diclofenac are commonly found throughout the western world including in the Irish aquatic environment . Concentrations are ranging from high ng/L to low µg/L . The potential toxicity of these compounds on non-target animals, like shellfish, remains largely unknown . In this study, the marine mussel (Mytilus spp .) was exposed to environmentally relevant and elevated concentrations (1 & 1000µg/L, respectively) for 14 days . Chronic sublethal effects will be investigated by looking at the protein expression signatures using two-dimensional gel electrophoresis (2DE) and a suite of biomarkers comprising glutathione transferase, lipid peroxidation and DNA damage . Additionally it will be examined whether blue mussels have the potential to recover from an exposure . Therefore mussels were left to recover for an additional seven days after the treatment . First results of the 2DE are showing that both drugs have the ability to induce a specific response in blue mussels after 14 days of exposure . This study contributes to the understanding of the biological effects of pharmaceuticals in non-target organisms, such as the widespread blue mussels .

WEPC2-2Protein expression profiles in European eel (Anguilla anguilla) exposed to perfluorooctane sulfonate; combination of in vitro, in vivo and in situ approachesK .R . Roland1, P . Kestemont1, M .A . Pierrard1, M . Raes1, M . Dieu1, R . Loos2, B . Gawlik2, F . Silvestre3

1FUNDP, Namur, Belgium2JRC, Ispra, Italy3University of Namur FUNDP, Namur, BelgiumSince the 1980s, the stocks of European eel have been declining in most of their geographical distribution area and they are now considered below safe limits for population survival . Many factors can be attributed to this decline such as pollution by xenobiotics like PFOS . The aim of this research project was to develop a multi-biomarker approach to set up an evaluation and monitoring tool for assessing the health state of eels . The strategy consists in assessing protein expression profiles (PEPs) in post-nuclear fraction of peripheral blood mononuclear cells (PBMC) exposed in vitro to PFOS, before in vivo and in situ validations of biomarkers . The first step of this approach was to find out PEPs of in vitro PFOS exposure . For that, we used PBMC culture from eel to test the in vitro toxicity of this compound . Exposure time and two sub-lethal concentrations were chosen to avoid cell mortality (48h exposure at 10 µg/l and 1 mg/l) . PBMC were isolated from blood by centrifugation over a Ficoll/Hypaque gradient . After in vitro contaminations, the post-nuclear fraction was isolated . Two-dimensional differential in-gel electrophoresis (2D-DIGE) was performed on 24cm, pH 4-7 IPG strips and the results were analysed with DeCyder software . The identified differentially expressed proteins have been categorized into diverse functional classes, related to cell structure, protein folding (e .g . protein disulfide isomerase) and signal transduction (e .g . 14-3-3 protein epsilon) for instance with some proteins never found in proteomic studies . These results permitted us to define PEP for in vitro PFOS exposure . The second step of the approach was in vivo contaminations of eels in order to validate this profile . For that, yellow eels were exposed to environmental PFOS concentrations (10 and 0 .1 µg/l) during 28 days . As before, PBMC and their post-nuclear fractions were isolated; proteomics analysis were made . Common protein spots that were affected by PFOS exposure as well in the in vitro and the in vivo experiments served to form the PFOS PEP . Finally, eel samplings in 3 Flemish rivers presenting various PFOS pollution degrees were realized in order to validate the previous results .

WEPC2-3Response of the European flounder Platichthys flesus to experimental and in situ contaminations: a proteomic approachC . Galland1, C . Dupuy1, I . Calves1, V . Loizeau2, L . Quiniou1, M . Auffret1, J . Laroche1, V . Pichereau1

1University of Brest-IUEM-LEMAR, Plouzané, France2Département d’Ecologie Côtière, IFREMER, Centre de Brest,, Brest, FranceEstuaries are important areas highly susceptible to anthropogenic degradation such as pollution . Estuarine species have then to cope not only with environmental constraints inherent to estuaries habitats, but also with the presence of contaminants, the occurrence of hypoxic events or with waters warming . The European flounder Platichthys flesus is considered as a sentinel species in estuarine water quality monitoring . This study aims at identifying potential biomarkers of the response to contamination by understanding the molecular mechanisms allowing the European flounder to cope with these different stress factors, both in environmental and experimental conditions . A proteomics approach using 2-dimensional electrophoresis followed by MALDI TOF-TOF mass spectrometry allowed us to identify differentially expressed proteins in flounder livers, and then to understand the mechanisms and the pathways implied in flounder response to its environment constraint . First, farm flounders were experimentally contaminated during 30 days with a PAH/PCB cocktail designed to be 10-times more concentrated than Seine sediments, which allowed us to characterize the response of P . flesus to this specific type of contaminants and especially the detoxification mechanisms implying BHMT . Then, Flounders were fished in contrasted estuaries along the European Atlantic cost . The liver proteomic patterns of Flounders from the Seine (France), the Canche (France) and the Tamar (UK) were compared to characterize the differential protein expression between these sites, in relation to the contamination patterns of each estuary . The Seine and the Tamar are indeed highly contaminated estuaries, by contrast with the Canche . Finally, fishes from the Mondego (Portugal-at the southern limit of the repartition area), the Vilaine (France-known to exhibit severe hypoxic events in summer) and from The Seine (France-known to be highly polluted) were gathered in common garden experiments . They were subjected to the same PAH/PCB cocktail already used on the farm fishes . These experiments allowed us better understanding the acclimatation mechanisms of these fishes to a new contamination, in function of their origin and the environmental constraints they were used to encounter .

WEPC2-4Constructing estrogen-sensitive gene networks in the liver of Fundulus heteroclitus for characterizing adverse effects of estrogenic pollutantsM . Doyle1, K .E .L .L .Y Munkittrick1, C .H .R .I .S Martyniuk1, T .H .I .J .S Bosker2

1UNBSJ/CRI, Saint john, Canada2University of Connecticut, Storrs, United States of AmericaStudies using freshwater fish models have shown that exposure to low concentrations (<20 ng/L) of 17 α-ethinylestradiol (EE2) result in a reduction or shutdown of egg production . Remarkably, the mummichog (Fundulus heteroclitus) is able to produce eggs at >3000 ng/L EE2 . Although individual level effects in mummichog are not pronounced, there are physiological and molecular responses . The objective of this study was to characterize genomic responses and gene networks in mummichog after EE2

Page 5: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4��SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

exposure to gain mechanistic insight into how mummichog are able to produce eggs normally during high EE2 exposures . Mummichog were exposed to 50 or 250 ng/L EE2 and female endpoints were assessed at different levels of biological organization . There were no differences in gonad morphology, development, GSI or LSI, but condition factor was significantly higher in fish exposed to 250 ng/L EE2 . There were no differences in estradiol levels, although testosterone decreased with increasing exposure concentrations . Gene expression (real-time PCR) focused on genes involved in lipid mobilization/transport and steroidogenesis, two pathways important for egg production that are regulated by EE2 . No target genes in the steroidogenic pathway significantly differed with treatment, however vtg1 and vtg2 mRNA levels significantly increased, which suggests a physiological response to the estrogenic exposure . Microarray expression profiling in the liver identified 305 differentially expressed genes in both treatments after FDR correction (5%) . Gene set enrichment analysis (GSEA) revealed genes involved in processes such as steroid biosynthesis and fatty acid binding were significantly affected by EE2 . Sub-network enrichment analysis (SNEA) identified proteins of 21 genes post-translationally modified by Cdc2 (component of maturation-promoting factor), a protein found in all stages of oocyte development, triggers oocyte maturation, and plays a role in liver regeneration . There was evidence to suggest that the mummichog liver is under generalized stress from EE2 exposure . For example, genes for monooxygenase activity and inflammatory response were significantly altered and pathways to protect or repair tissue were activated . These data are comparable to other freshwater species and suggest that there are conserved E2-mediated pathways in mummichog liver . This study identifies novel gene networks for cell pathways underlying the mechanisms of action of EE2 for egg production .

WEPC2-5Transcriptional screening of effects of mixtures of POPs in burbot (Lota lota) from two Norwegian lakes, using suppression subtractive hybridization and 454 FLX pyrosequencingP .A . Olsvik1, J .L . Lyche2

1NIFES, Bergen, Norway2Norwegian School of Veterinary Science, Oslo, NorwayLake Mjøsa is the largest freshwater repository in Norway, receiving runoff from a wide surrounding region of urban country . As a result of industrial activity, large quantities of persistent organic pollutants (POPs) have been discharged into Lake Mjøsa during the last century . Because of this, organisms in this lake contain high levels of toxic chemicals, i .e . polychlorinated biphenyls (PCB’s), brominated flame retardants (BFR), dichlorodiphenyltrichloroethane (DDT) and its metabolites, and mercury (Hg) . Very high levels of BRFs have been found in top predators such as brown trout (Salmo trutta) and burbot (Lota lota) from this lake . The levels of PCBs, DDTs and PBDEs in burbot from Lake Mjøsa (study population) exceed the corresponding levels in burbot from Lake Losna (reference) by a factor of approximately 10, 15 and 300, respectively . Transcriptomic profiling is widely used as a toxicogenomic discovery tool for identifying the molecular basis of biological functions underlying responses to toxicants, revealing potential mechanisms of toxicity . Even though microarrays remain the primary technology for transcriptomic profiling, an emerging alternative is to use next-generation sequencing to directly sequence and quantify transcripts from experimental samples . Compared to microarrays, next-generation sequencing technologies offer several advantages in functional genomics research, including a much wider dynamic range of detection . We used shotgun and suppression subtraction hybridization (SSH) cDNA libraries followed by 454 FLX sequencing (957 303 reads sequenced in total) and RT-qPCR to study the effects of POPs in burbot from Lake Mjøsa . The gene list of putatively higher or lower expressed genes in liver of burbot from lake Mjøsa compared to liver of burbot from Lake Losna, generated from the SSH cDNA libraries, suggest that mechanisms associated with cancer, lipid metabolism and vitamin and mineral metabolism are differentially regulated in the two populations (Ingenuity Pathway Analysis (IPA) top networks) . According to the IPA analyses, the top toxicity list ranking was “Negative/Positive acute phase response proteins”, “FXR/RXR activation”, “NRF2-mediated oxidative stress response”and “Glutathione depletion - CYP induction and reactive metabolites” . Overall, the study shows that next-generation sequencing may be a valuable supplement or alternative to microarray technology in toxicogenomic discovery of environmental samples .

WEPC2-6Expanding the SWIFT periphyton community test towards metagenomic endpointsK .M . Eriksson, M . Ebenizer, H . Johansson, Å .C .C . ArrheniusUniversity of Gothenburg, Göteborg, SwedenThe SWIFT periphyton test is a simple, high-capacity test for assessing effects of toxicants on natural communities . Periphyton (i .e . attached microbial communities) was developed over 7 to 9 days on glass substratum submerged at sea and then transferred to a controlled indoor environment for 96 hours incubation with toxicants . The SWIFT methodology normally employs analysis of photosynthetic pigment profiles as a measure of changes of community structure and physiology . In addition to this endpoint, we here present methodology to expand the SWIFT test to metagenomic or community genetic endpoints . In two SWIFT experiments periphyton communities were exposed to the antimicrobials triclosan and ciprofloxacin respectively . The toxic effect of these compounds on pigment profiles were compared to their effect on genetic structure of the communities, using Temperature Gradient Gel Electrophoresis (TGGE) methodology . The communities in the SWIFT tests are also compared to communities sampled at several sites and on several occasions in the nearby coastal marine environment . Thus, this study also compares the typical genetic and pigment diversity in SWIFT tests to that of environmental samples . Moreover, it shows that it is possible to expand high-capacity toxicity testing on periphyton communities to include also effects on the genetic structure or metagenomic composition of communities .

WEPC2-7Metagenomics in ecotoxicology - a new ecologically relevant research field that integrates high-throughput sequencing techniques with community ecotoxicologyK . Sanli1, K .M . Eriksson1, M .A . Rosenblad1, E . Kristiansson2, H . Blanck1

1University of Gothenburg, Gothenburg, Sweden2Chalmers University of Technology, Gothenburg, SwedenThe development of high-throughput sequencing technologies has revolutionized biology and especially the field of microbial ecology, since it has enabled scientists to study the whole genetic composition of natural microbial communities . This research area, named metagenomics, is of utmost importance for community ecotoxicology . Among other things, it might enable the simultaneous study of how toxicants affect community structure and community functions . It has been estimated that only 1% of the microbial species could be studied before the DNA sequencing era, using culturing techniques . It is thus obvious that metagenomics dramatically can increase our ability to detect ecologically important effects of toxicants . Metagenomic approaches can, for example, identify sensitive and tolerant taxa, help in linking specific toxicant exposures to specific biological effects and aid in the determination of mechanism of action of toxicants . However, sequencing platforms like 454 and Illumina produce enormous amounts of sequence data and therefore there is a need for high-throughput, efficient bioinformatic approaches in this field . Here, we present a framework for the use of metagenomics and bioinformatic analyses in ecotoxicology . We provide conceptual ideas on how to exploit the full potential of DNA/RNA sequencing platforms and bioinformatic pipelines that take advantage of different software, databases and the newest online server services . We also exemplify these ideas with analyses of ecotoxicologically relevant sequence datasets .

WEPC2-8Large scale gene expression profiling on female eelpout (Zoarces viviparous) and developing larvae capture around the Baltic Sea areaN .A . Asker1, E . Kristiansson2, E . Albertsson3, D .G .J . Larsson4, L . Förlin5

1Zoophysiology, Göteborg, Sweden2Department of Mathematical Statistics, Göteborg, Sweden3Department of Zoology, Göteborg, Sweden4Institute of Neuroscience and Physiology, Göteborg, Sweden5University of Gothenburg, Göteborg, SwedenThe eelpout (Zoarces viviparus) inhabits the coastal waters of Northern Europe and has been part of the environmental monitoring of the Swedish coastal areas for several years . In the search for new biomarkers and understanding the molecular mechanism behind physiological changes we now combine classical biomonitoring of the eelpout with large scale gene expression profiling . As the eelpout lives relatively stationary we can link gene expression data and observed physiological responses to the environmental situation where the fish was caught . Furthermore, the viviparity of the eelpout gives the unique opportunity to associate the effects of pollutants to individual reproductive performance, including the development of embryos and fry . We have earlier sequenced the eelpout liver transcriptome and the sequence data has been used to design and construct an oligonucleotide microarray . This eelpout microarray contains several categories of genes that are of particular interest for ecotoxicological research, including different cytochrome P450 variants, heat shock proteins and genes related to oxidative stress, as well as several known biomarkers . The eelpout microarray platform has been successfully used in our monitoring study performed on eelpout captured in Göteborg harbour, a large port situated at Swedish west coast . Among the up-regulated gene in the harbor, we found genes involved in apoptosis and among the down regulated genes we found genes part of the innate immune system .

We will here present results from a much large gene expression study including 16 sites around the Baltic Sea area involving 160 individual eelpout samples . Results will also include gene expression analysis on developing larvae from 50 individual larvae . Gene expression oligonucleotide microarray is an important tool in the search for new biomarkers and for the understanding of molecular mechanisms resulting from exposures to toxicants . It is therefore an important compliment to traditional environmental monitoring . These results are part of an EU-financed project (www .science .balcofish .gu .se) .

WEPC3 - Pesticide fate and ecotoxicology

WEPC3-1The impact of pesticides on the benthic macroinvertebrates in a rural lakeC .R . Kellar1, S .M . Long1, M .L . Ballesteros2, L .A . Golding1, B .S . Gagliardi1, V .J . Pettigrove1

1CAPIM, Bio21 Institute, The University of Melbourne, Melbourne, Australia2Universidad Nacional de Mar del Plata, Mar del plata, ArgentinaHuman activities at the landscape scale are a threat to the ecological integrity of many aquatic ecosystems . It is often difficult to isolate the effects of pollutants from other causative factors, and to identify the primary pollutants causing ecosystem stress . Additionally, pollutants may not be homogenously dispersed, with potentially varying effects on biota living within the same water body; therefore there is a need to have appropriate strategies for management in order to maintain the ecological integrity of the whole

Page 6: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4�4 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

ecosystem . The study was undertaken at Lake Hawthorn in northwestern Victoria, Australia . Results from previous surveys of the lake showed that sediments were impacted by a number of pesticides which were also toxic to macroinvertebrates . Pesticides were not dispersed homogeneously throughout the lake . The aims of the study were to a) determine the number of samples that should be collected to ensure that there is an adequate assessment of contaminants present in sediment and water and b) determine if the composition and health of benthic macroinvertebrates are affected by the presence of pesticides . The lake was divided into six sampling locations and between three and five sites selected at each location, where sediment and surface water was collected and a range of chemicals were measured (including metals, a range of pesticides and nutrients) . Benthic macroinvertebrates were sampled in a subset of sites at each location for species abundance and diversity and also for changes at the sub-organism level on a number of biochemical biomarkers . Sediments were also assessed for toxic effects on survival, growth and emergence of Chironomus tepperi using a laboratory-based bioassay and impacts on indigenous macroinvertebrates using field-based microcosms . There were elevated concentrations of copper and total petroleum hydrocarbons in sediment at one location within the lake, an urban inlet drain . There were also effects on C. tepperi survival at this location . Furthermore, there were no in situ chironomids collected at this location . Biomarker analyses on the chironomid Tanytarsus semibarbitarsus collected in situ showed that chironomids are responding differently within the lake . Our results show that the pollutants present in Lake Hawthorn vary spatially and that they are toxic to aquatic life . Results on sampling strategically and the usefulness of a multiple lines of evidence approach for aquatic biomonitoring will be discussed .

WEPC3-2Understanding the legacy of aged p,p´-DDT and p,p´-DDE residues in New Zealand horticultural soilsK . Gaw1, G .L . Northcott2, L . Ying2

1University of Canterbury, Christchurch, New Zealand2Plant and Food Research, Hamilton, New ZealandThe long-term use of p,p´-DDT to control insect pests on crops in New Zealand has resulted in elevated concentrations of p,p´-DDT and p,p´-DDE in some horticultural soils . Concentrations of residual p,p´-DDT and its degradation product p,p´-DDE in New Zealand orchard soils can exceed 10 mg kg-1 . Previous studies have shown that p,p´-DDT and p,p´-DDE residues in New Zealand orchard soils remain available for uptake by edible plants and earthworms despite four decades of aging . Desorption using Tenax has been proposed as a surrogate measure of the bioavailability of hydrophobic organic contaminants (HOCs) in lieu of time consuming and expensive bioassays . There has been limited assessment of Tenax as a surrogate measure of the bioavailability of aged p,p´-DDT and p,p´-DDE residues in soils . We have previously reported significant correlations between earthworm tissue concentrations and the concentrations of p,p´-DDT and p,p´-DDE desorbed from orchard soils in a 24 hour extraction with Tenax . A long-term tenax desorption experiment with five orchard soils was undertaken to determine the kinetics of p,p´-DDT and p,p´-DDE release from the soils and to estimate the bioavailable fraction . The results were modelled using a three compartment kinetic model that describes rapid, slow and very slow desorbing fractions of hydrophobic organic contaminants . Over 162 days up to 53% of p,p´-DDT and 43% of p,p´-DDE were released from the soils . There was a significant correlation for p,p´-DDT between the total amount desorbed by Tenax over the duration of the desorption experiment and the amount oxidised by persulphate oxidation, a surrogate measure of the bioavailability of HOCs for microbial degradation . Values for the rapidly released fraction, Fr represented 8 to 19% and 10 to 21% of the total p,p´-DDT and p,p´-DDE residues respectively . The rapidly desorbing fractions of p,p´-DDT and p,p´-DDE were significantly correlated with the fraction desorbed over 24 hours indicating that 24 hours may be a suitable extraction period for estimating the bioavailability of aged p,p´-DDT and p,p´-DDE residues in these soils .

WEPC3-3Impacts of sediment-bound synthetic pyrethroids on non-target aquatic macroinvertebratesR .L . Boyle1, S . Long1, S . Marshall1, V .J . Pettigrove1, M .L . Ballesteros2, A .A . Hoffmann1

1CAPIM (University of Melbourne), Melbourne, Australia2Universidad Nacional de Mar del Plata, Mar del plata, ArgentinaWhen in the water column, synthetic pyrethroids have a high acute toxicity to many aquatic macroinvertebrates . However, they rapidly bind to sediment, where they potentially threaten macroinvertebrates through chronic exposure . The effects of such exposure, which may include impacts on life cycle parameters, are less well understood . In addition, there is a need for biomonitoring tools to identify synthetic pyrethroid contamination, in particular subcellular biomarkers that can be linked to organism and community level effects . We aimed to identify and link the effects of two synthetic pyrethroids at these three levels of organization . Laboratory toxicity tests and field microcosms were used to examine the effects of sediment-bound bifenthrin and permethrin on survival and life cycle parameters of aquatic macroinvertebrates . This dual-pronged approach benefits from both the highly controlled approach of lab exposures, and the more environmentally relevant approach of the microcosms, which includes natural environmental conditions and community interaction . This work also incorporates the identification of biochemical biomarkers produced by exposed macroinvertebrates, in order to develop biomarkers that indicate effects at the whole organism and community levels . In the laboratory toxicity tests, clean field-collected sediment was spiked with either bifenthrin or permethrin at concentrations of 12 .5, 25 and 50 μg/kg . Second instar Chironomus tepperi larvae were placed in beakers containing spiked sediment . At 50 μg/kg of bifenthrin, the number of larvae surviving after five days was lower than that of the controls, however the body length of surviving larvae was not affected . Two weeks of exposure to bifenthrin did not affect the total number or sex ratio of emerged adults . Results for permethrin will be discussed . In the microcosm experiments, clean field-collected sediment was spiked with a range of concentrations of either permethrin bifenthrin from 8 .9 μg/kg to 500 μg/kg . This sediment was placed in wetland microcosms, where colonization by macroinvertebrates was permitted . Emerged adults were collected over several weeks and identified to species level . The chironomid Paratanytarsus grimmii showed significantly reduced emergence at concentrations of permethrin above 35 .5 μg/kg . Results for bifenthrin will be discussed, as will the links between subcellular biomarkers and effects on whole organism parameters and community composition .

WEPC3-4Biochemical effects of bifenthrin on chironomids larvae under field and laboratory conditionsM .L . Ballesteros1, S . Long2, C . Kellar2, K .S .B . Miglioranza3, M .A . Bistoni4, V . Pettigrove2

1Universidad Nacional de Mar del Plata, Mar del plata, Argentina2Victorian Centre for Aquatic Pollution Identification and Management (CAPIM), Parkville, melbourne, Australia3Laboratorio de Ecotoxicología, FCEyN, Univ . Nac . Mar del Plata, Mar del plata, Argentina4Cátedra de Diversidad Animal II, FCEFyN, Univ . Nac . Cordoba, Córdoba, ArgentinaBifenthrin is a third generation synthetic pyrethroid pesticide that is widely used in Australia and is frequently found in freshwater sediments in relatively low concentrations . However, it is highly toxic to non-target species such as native chironomid larvae . Our main goal was to compare the effects of bifenthrin on chironomid larvae under different exposure conditions . Chironomus tepperi larvae (5 days old) were exposed to sub-lethal sediment concentrations of bifenthrin for 5 days . A field microcosms exposure with bifenthrin-spiked sediments (using the same concentrations as the laboratory exposure) was carried out for 50 days to allow for colonization and development of chironomid larvae . At the end of both experiments, larvae were collected and glutathione-s-transferase, glutathione reductase and glutathione peroxidase were measured . Field based microcosms were also conducted to evaluate the impact of sediments spiked with bifenthrin on macroinvertebrate assemblages . No significant effects were detected on survival or enzyme activity in C. tepperi larvae following laboratory exposure . Results provide evidence that short-term exposures to sublethal concentrations of bifenthrin did not cause significant effects of C .tepperi larvae . The microcosm method showed also to be a valuable tool in the risk assessment of contaminants and effects of pollutants on aquatic invertebrates .

WEPC3-5What is persistence? Seeking for a practical interpretation for regulatory practiceK . Szegedi, B . GottesbürenBASF SE, Limburgerhof, GermanyHazard based POP , PBT and vPvB cut-off criteria have been introduced in the regulation 1107/2009 for plant protection products . The persistence of a given substance is defined in this regulation via the comparison of its half-lives in different environmental compartments to specific triggers for those compartments . This definition is rather simple . However, considerable challenges are associated with the practical interpretation of persistence (P) as a hazard based cut-off criterion for the data rich cases of pesticides which may result in unjustified P classifications . Using a low level of information is not appropriate to establish a scientifically justified conclusion on the long-term behaviour of substances in the environment if higher tier data exist that allow a weight of evidence assessment . A reductionistic and rigid interpretation of persistence neglects a huge amount of data which is available on the partitioning and fate of substances in the environment . A practical interpretation of persistence will be presented, in which the definition of persistence will be examined with respect to the interactions in the environment as well as within the context of agricultural practice . It is common interest of regulators and notifiers to perform the classification of substances in a manner that reflects latest scientific achievements .

WEPC3-6Occurrence of pesticide associated non-extractable 14C-residues in physical and chemical fractions in soilsK .A . Kostas1, K .C . Kevin2, K .T . Semple3

1CYPRUS UNIVERSITY OF TECHNOLOGY, Lemesos, Cyprus2LANCASTER UNIVERSITY, Lancaster, United Kingdom3Lancaster University, Lancaster, United KingdomThis study aimed to investigate the fate and behaviour of non-extractable 14C-residues from three commonly used pesticides (isoproturon, diazinon and cypermethrin) in soil, with particular focus on fractionation of the soil using physical and chemical techniques . Non-extractable 14C-residues were formed following the incubation of the 14C-pesticide in two soils over a period of 24 months . A significant amount of 14C-activity was lost during the incubation period . Soils containing the remaining non-extractable 14C-residues were separated into three physical fractions: sediment (SED, >20 μm), microaggregate (MA, 20-2 μm) and colloid (COL, 2-0 .05 μm) phases . The non extractable 14C-fractions were also separated chemically according to their association with soil organic carbon: fulvic acid (FA), humic acid (HA) and humin (HM) . Enrichment factors for the organic carbon and the 14C- residues were higher in the MA and COL fractions than that of the SED fraction . Greater association and enrichment of the fulvic acid fraction of the organic carbon in the soil was observed . Non-extractable 14C-residues at the FA fraction diminished, while in the HA fraction increased with decreasing the soil solid fraction size . An appreciable amount of non extractable 14C-residues was located in the HM fraction, but this was less than the amount recovered in the humic substances . Knowledge of the long term fate of non extractable 14C-residues on the soil fractions is important in order to assess any risk associated with them . Combination of chemical and physical fractionation schemes like the ones practiced in this study could help towards better understanding of the fate and behaviour of pesticide non extractable residues .

Page 7: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4��SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

WEPC4 - Tropical ecotoxicology

WEPC4-1Combining natural competitors and larvicides to improve mosquito control in Cameroon and KenyaS . Knillmann1, A .L . Meyabeme Elono2, R .W . Mukabana3, S .S . Imbahale3, M . Kattwinkel1, M . Liess1

1UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany2Hydrobiology and Environment Unit, Faculty of Science, Université de Yaoundé I, Yaoundé, Cameroon3International Centre of Insect Physiology and Ecology, P .O . Box 30772 - 00100 GP, Nairobi, Kenya Currently a tremendous number of infections and deaths in Africa are caused by malaria and other mosquito-borne diseases . Since 2005 the potential of using larvicides and natural competitors to reduce mosquito larvae, as well as the amount of chemicals applied has been successfully demonstrated in the floodplains of river Elbe in Germany and in outdoor ponds in Cameroon . To test the feasibility of this strategy on a larger scale, extended field trials are currently conducted in different habitat types and regions (Nyabondo plateau in western Kenya and the surrounding area of Yaoundé in Cameroon) . Preliminary results indicate that the success of the use of natural competitors and larvicides is dependent on the mosquito species targeted and the density of mosquitoes present in the aquatic habitats . Combining traditional measures and those suggested by the novel approach promises to enhance the capability of African communities and their national programs to improve the sustainable control of malaria and other mosquito-borne diseases .

WEPC4-2Fate of polychlorinated biphenyls (PCBs) in the surface soil of a subtropical forestL .L . Ming1, X . Liu1, G . Zhang1, L . Nizzetto2

1Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China2Norwegian Institute for Water Research, Oslo, NorwayForest is regarded as a global sink of semi-volatile organic compounds (SOCs) because of its large organic surface area and high organic matter content . Many researches had focused on the atmospheric deposition and air-vegetation exchange processes of SOCs to the forest canopy . However, behaviours of these SOCs in the forest ecosystem were less studied . Therefore, a new Exchange Meter (EM) has been developed to measure the air-surface exchange, leaching and other loss fluxes of polychlorinated biphenyls (PCBs) in the litter that covers the surface layer of the forest soil . The experiment was conducted in a typical subtropical forest-Chinese Dinghu Mountain Biosphere Reserve for every 2 month from June 2010 to June 2011 .This study developed a new method for directly measuring the exchange fluxes of SOCs in the interface of soil and air, which led to a better understand the environmental fate of PCBs in the surface soil of subtropical forest . The flux estimates indicated that lighter PCB congeners had a stronger tendency to move from soil to air than heavier congeners . Low molecular weight PCB comounds were easy to release from superficial soil via leaching . High molecular weight PCB compounds were more stable in the litter in winter .This study provided evidence that the soil may now be a source of some lighter weight PCBs to the atmosphere .

WEPC4-3Weed invasion at the rehabilitated Mary Kathleen uranium mine site, northern Australia: toxicity risk to grazing animalsG . LottermoserUniversity of Tasmania, Hobart, AustraliaCaliotropis procera (also known as Sodom apple) is a xerophytic shrub or small tree species, which is native to tropical and subtropical Africa, Asia and the Middle East . C. procera is now naturalized in Australia, Central and South America, the Caribbean islands, Indonesia, and many Pacific islands . The plant is alleged to be toxic to humans, cattle, sheep, rabbits and rats . The purpose of this study was to appraise the uptake of elements by C. procera at the rehabilitated Mary Kathleen uranium mine site, northern Australia . Since rehabilitation in the 1980s, C. procera has colonized all rehabilitated mine site domains and the plant now represents a widespread and abundant pest . Biogeochemical analyses indicate that C. procera acquires natural enrichments of Ca, K, Mg and S in its tissue on mine as well as background soils . The concentrations of these elements exceed their maximum tolerable concentrations in the diet of cattle . Considering the chemical toxicity threat to grazing animals due to the presence of steroidal heart poisons and the elevated Ca, K, Mg and S contents in the plant’s biomass, control of the weed will be required using appropriate management techniques . At Mary Kathleen, neglect of rehabilitated mined lands by statutory authorities has led to the development of unsustainable vegetation covers over disturbed ground and mine waste repositories in the long term .

WEPC4-4Effect of Tributyltin (TBT) on testosterone metabolism and imposex expression in Tympanotonus fuscatus var radula in Warri Harbour, Nigeria.T . Ogbomida1, L . Ezemonye2, I .N .E . Onwurah3, I . Tongo2

1National Centre for Energy and Environment, Benin city, Nigeria2University of Benin, Benin city, Nigeria3University of Nigeria, Nsukka, Nsukka, NigeriaTributyltin (TBT) is a biocide that has been widely used in anti-fouling paints for ships . In order to assess the status of TBT pollution in Warri Harbours, imposex was studied in the Nigerian periwinkle, Tympanotonus fuscatus var . radula an important shellfish in the Niger Delta . The survey results showed that TBT concentration and imposex development were generally low in areas with high intensity of boat and vessel traffic . T . fuscatus var radula was then exposed to sublethal concentrations (0 .1, 1 .0, 10 and 20μg/L) of TBT to determine the effect on testosterone levels . Bioassay test was conducted using OECD Guideline 218 direct sediment toxicity protocol with particular reference to steroid hormones quantification . Serum analysis of the Periwinkles after 30days exposed to varying TBT concentrations showed increased free testosterone levels with increasing concentration and exposure duration . The result indicated that TBT concentrations elevated free testosterone levels in T . fuscatus var radula and may lead to imposex expressions . Therefore constant monitoring and assessment of TBT is necessary for protecting sensitive benthic invertebrates representing major proportion of the diet of many species in the Niger Delta ecological zone . WEPC4-5Direct and indirect effects of pesticides on aquatic communities: an experimental bioassay in tropical systems (São Paulo, Brazil)E . Espindola1, A . Novelli2, H . Vieira2, M . Vasconcelos2

1University of São Paulo, São Carlos, Brazil2Universidade de São Paulo, São carlos, BrazilIn recent decades there has been an expansion of agriculture to support the increase in demand for food in Brazil . On the other hand, pesticides are being used for farmers and as a consequence, ecosystems have been changing rapidly, resulting in reduced biodiversity and functional processes in terrestrial ecosystems . However, pesticides may also directly or indirectly affect the aquatic ecosystems, producing undesirable effects on their biological and functional properties . To evaluate these effects, experimental bioassays were conducted with Vertimec®18EC during 10 days, in different treatments (Control: C; direct application of Vertimec: V; uncontaminated runoff: UnC and contaminated runoff: CR) . The results indicated the increase of the turbidity (physical effect), nitrogen and phosphorus (chemical effect) in CR and UnC after runoff addition; with reduction in dissolved oxygen after 3 h . In relation to phytoplankton, density reduction was observed in C (65%), UnC (90 .6%) and CR (92 .0%), but less effect was observed in V (3 .7%) . The diversity was smaller in V (0 .7 bits/ind) in relation to C, UnC e CR treatments (above 1 .7bits/ind) after T240h . Chlorophyceae was more representative in V and UnC (75%), besides Bacillariophyceae in C and CR (40%) . The chlorophyll concentrations were similar in T0 (bellow 10 µg/L) but were highest in C (32 µg/L) and UnC (15µg/L) in T240h, with considerable differences in phaeophytin concentrations (C>UnC>V>CR) . Rotifera was important in T0h and T240h (65%) . Density reduction (from 58 to 100%) was observed in Protozoa (C,V), Rotifera (C, UnC, RC, V) and Copepoda (RC, V); nevertheless, the densities of Protozoa (RC), Copepoda and Cladocera (C, UnC) increased in T240h . Different effects were observed in the periphytic community . The highest density occurred in V (303 ind/cm2) in contrast to C (110 ind/cm2); however, the results weren´t the same in relation to biomass (C>UnC>RC>C) . The diversity values were highest in C and UnC (2 .32 and 2 .99 bit/ind, respectively), and the major contribution was related to Bacillariophyceae in C, UnC, CR and V . Also, some differences in numbers and dominant species were observed between the treatments (C>UnC>V>CR) . The results indicate that Vertimec®18EC and the runoff were responsible for the modification in the communities’ structure . Besides, direct and indirect effects were observed, which are associated with biological processes (competition, predation and grazing) and abiotic alterations .

WEPC4-6The impact of of multiple contaminants on the gills of two ecologically distinct fish living in tropical polluted watersM .N . Fernandes1, M .G . Paulino1, M .M . Sakuragui1, C .A . Ramos1, H . Sadauskas-Henrique1, C .D . Pereira2

1Universidade federal de São Carlos, São carlos, sp, Brazil2Universidade Santa Cecilia, Santos,sp, BrazilThe contamination of aquatic systems by inputs from agricultural, industrial and domestic residues in tropical and subtropical environments is increasing in the last years . The gills of fish are multifunctional organs involved in gas exchange, ion- and osmoregulation, acid-base balance and nitrogen excretion . The gill cells respond rapidly to various chemicals in order to overcome physiological impairment or tissue damage and, it may have a negative effect on the overall gill function, enhancing fish susceptibility and potentially causing fish mortality . This study investigated the gill mitochondria-rich cells (MRCs) variables and the Na+/K+-ATPase (NKA) activity in two fish species, Astyanax fasciatus and Pimelodus maculatus collected in 5 sites (FU10, FU20, FU30, FU40, FU50) of the reservoir of Furnas Hydroelectric Power Station in order to evaluate their potential as biomarkers of water quality by integrating chemical, biochemical and morphological analyses . Water analyses reveled aluminum, iron and zinc as well as organochlorine (aldrin/dieldrin, endosulfan, heptachlor/heptachlor epoxide and metolachlor) contamination,excepting in FU10) . Copper, chrome, iron and zinc were detected in the gills of both species and aldrin/dieldrin, endosulfan and heptachlor/heptachlor epoxide were detected in the gill of fish from all sites, except from FU10 . P . maculatus exhibited greater MRC density than A . fasciatus . Fish collected in FU20, FU30 and FU50 showed numerous alterations in the surface architecture of PVCs cells . The emerged MRC density and the MRC fractional area of fish from FU20, FU30, FU40 and FU50 were lower than the reference site (FU10) in the winter and exhibit some variability between sites in the summer . The NKA specific activity was lower in P. maculatus than in A. fasciatus in most sites . Organochlorine contamination in FU20 and FU50 showed inhibitory effects on MRCs variables and NKA activity especially for P. maculatus and in FU30 the signs of physiological alterations were associated to the contaminants, especially metals . Multivariate analysis demonstrated good association between the biological responses of both species and the environmental contamination indicating that MRCs variables and NKA activity could be useful biomarker to indicate warning changes in the environment .

Financial support: Furnas Centrais Elétricas S .A ., CNPq/INCT-Aquatic Toxicology, FAPESP, CAPES

Page 8: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4�6 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

WEPC4-7The ecotoxicology of agroindustrial farming in Southern AmazonL . Schiesari1, B . Grillitsch2

1University of Sao Paulo, Sao paulo, Brazil2University of Veterinary Medicine of Vienna, Vienna, AustriaThe pressing demands for food, fiber and biofuels that are imposed by a precipitously growing human population turn industrial agriculture into an essential productive activity . These demands will only be met by expansion and intensification of agriculture in the tropics, threatening a very significant fraction of global biodiversity . One important driver of environmental degradation in agricultural landscapes is contamination by plant protection and soil ammendment products . We herein provide a quantitative analysis of agrochemical use and freshwater biodiversity pattterns along a gradient of environmental degradation (rainforest < pasture < plantation) in the frontier of soybean expansion in southern Amazon . Forty-one active ingredients were applied over a 4 month soy cycle at our study site . Focusing in 3400 ha of soybean fields, over 10 tons of 13 herbicidal AIs, 4,5 tons of 7 fungicidal AIs, and 1 ton of 6 insecticidal AIs were applied . Two fungicides (carbendazim and thiophanate-methyl), 6 herbicides (glyphosate, 2,4-D, clomazone, paraquat dichloride, diquat dibromide, imazethapyr ammonium salt) and 0 insecticides were applied at doses > 100 g/ha . Among them, 4 are moderately hazardous, 3 slightly hazardous and 2 unlikely to be hazardous to human health . One is probable (thiophanate-methyl) and 2 possible carcinogens (carbendazim, 2,4-D); one is toxic to development or reproduction (thiophanate-methyl) and 3 are suspected endocrine disruptors (paraquat dichloride, carbendazim, 2,4-D) . Two are PAN Bad Actors (paraquat dichloride and diquat dibromide) and one is a Dirty Dozen (paraquat dichloride) . Regarding potential for aquatic contamination and hazard, 7 AIs are potential groundwater contaminants, 7 are of known chronic aquatic toxicity, and 3 are of high or very high acute aquatic toxicity . We observed a strong signal of land use on freshwater communities, with a decrease in diversity as one moves from forest to pasture to soybean fields . Biodiversity patterns comparing soybean fields before, during and after sowing are consistent with negative effects of land management, possibly pesticide application . To understand the relative contribution of pesticides (among other management practices) to biodiversity loss, further experimental studies exposing a subset of these communities to realistic combinations of agrochemicals and physico-chemical modulating factors are underway .

WEPC4-8Aquatic ecotoxicology of pesticides in the tropics: status and research needsM .A . Daam1, P .J . Van den Brink2

1Technical University of Lisbon, Lisbon, Portugal2WUR, Alterra, Wageningen, NederlandThe modernization of agricultural practices in developing countries located in the tropical zone has led to an increasing use of pesticides over the past decades . Subsequently, pesticides have been detected in water, sediment and biota of edge-of-field waterways in many tropical agroecosystems . However, ecotoxicological research into the fate and side-effects of agrochemicals in aquatic ecosystems surrounding agricultural fields has often been discussed to be focused almost exclusively on temperate countries . In 1997, Lacher and Goldstein published a review in Environmental Toxicology and Chemistry concerning the status and research needs related with tropical ecotoxicology . The present study presents a brief overview of what progress has been made since then and discusses priority research needs that still need to be tackled . For instance, field studies in tropical farms on pesticide fate in the enclosed and surrounding waterways are recommended . Future tropical effect assessment studies should evaluate whether specific tropical taxa, not represented by the current standard test species in use, are at risk . If so, tropical model ecosystem studies evaluating pesticide concentration ranges need to be conducted to validate whether selected surrogate indigenous test species are representative for local tropical freshwater ecosystems .

WEPC5 - Environmental characterisation, fate/detection, exposure, effect and risk of nanomaterials

WEPC5-1Adsorption of nanoparticles on to air bubble and soil surfaces in porous mediaS .W . Jeong, J .H . Hur, H .Y . KimKunsan National University, Kunsan, South-Korea (Rep)Nanoparticles released into the environment would accumulate on the soil layers and infiltrate into the subsurface . Soil layers consist of unsaturated soil and saturated groundwater zones . Fate and transport of nanoparticles infiltrating through the subsurface into the groundwater have not sufficiently researched . This study investigated interactions between nanoparticles and air, and nanoparticles and soil particles . This study used a soil column and a 2-dimensional porous medium to elucidate adsorption of nanoparticles to air bubbles and soil surfaces . Each suspended nanoparticles of fullerene and zinc oxide were separately injected into the partially saturated porous mediums and their fate and transport were investigated as time elapsed . Effects of air and organic matter contents in porous media on fate and transport of nanoparticles were investigated . Air bubbles present in the soil pores significantly affected adsorption and transport of nanoparticles . As expected, soils having high organic matter contents showed the high adsorption tendency of nanoparticles to soil . Fullerene nanoparticles of Carbon-based material were more adsorbed to soil than zinc oxide nanoparticles .

WEPC5-2Separation and detection of Silver and Gold nanoparticles via A4F/ICP-MS on line coupledS . Totaro1, L . Manodori1, A . Pigozzo2, E . Sabbioni1

1Veneto Nanotech, Padova, Italy2Civen, Venezia, ItalySince the use of engineered nanomaterial is gaining importance in nowadays market, the need of information on the safety implications arising from the use of nanotechnology-based products has been recognised by many international authorities . The development of an efficient regulation in this field is directly connected with a proper risk assessment . So far, a wide range of analytical approaches (including microscopy, chromatography and spectroscopy) are available to characterise and determine the main nanoparticles (NPs) parameters in real matrices . However, data concerning human and environmental exposure to nanoparticles are still far from being exhaustive . Among all the techniques, Flow Field Flow Fractionation (hereafter A4F) is widely recognised to be a very effective and versatile technique to separate, characterise, and quantify the size distribution of NPs within a wide hydrodynamic range, and it has been successfully applied to separate NPs in complex matrices with different origins (e .g . food, environment, biological matrices) . The coupling between A4F and ICP-MS (Inductively Coupled Plasma Mass Spectrometry), which allows the detection of most of the chemical elements, even at very low concentrations, may allow, on one side, the separation and the detection of lower concentration of NPs in the samples, if compared to the limits achieved with the UV detector A4F is normally equipped with and, on the other one, to simultaneously detect NPs with a different chemical composition . In detail, since Ag and Au NPs find different applications is several fields (e .g . catalysis, biology, pharmaceutical and medical diagnosis) their potential impact on the environment has to be carefully investigated . This work aims to develop a proper analytical method for the separation and chemical characterisation of Au and Ag NPs with different sizes by the on-line coupling of A4F and ICP-MS . Furthermore, some applications will be tested on other kind of matrices and NPs in order to spread the range of nano-doped products of commercial use . The on-line coupling focuses on the optimisation of the most influent instrumental parameters that allow to achieve a good separation . In particular, concerning A4F the cross and membrane flows are subject to investigation, whilst concerning ICP-MS dwell time and the number of reading/replicates .

WEPC5-3Photocatalytic effects of TiO2 nanoparticles - how do they impact the ecotoxicity of PAHs? A model study with Caenorhabditis elegans J .S . AngelstorfHamburg University of applied Sciences, Hamburg, GermanyTitanium dioxide nanoparticles (TiO2 NPs) catalyze the degradation of PAHs under UV irradiation . Because of this TiO2 NPs are under consideration for the use in the remediation of PAH- polluted soils and wastewaters [1] . The intermediate and end products of this degradation process have been identified for certain examples [2], but little is known about ecotoxicological effects of this mixture of photo modified compounds in the aquatic environment . In general, photo oxidation of PAHs increases water solubility, most likely connected to an increased bioavailability of the compounds . At the same time modifications of the chemical structure of contaminants caused by photo oxidation alter their intrinsic toxicity and with it their effects on exposed organisms . For this reason, a shift in ecotoxicological effects of PAHs exposed to TiO2 NPs and UV light is expected . Independent from photomodification processes acting on the chemical properties of co-contaminants, TiO2 NPs can affect irradiated organisms directly by photosensitization . Organisms affected by photosensitization are expected to be more vulnerable to co-contaminants in their environment . This study aims to elucidate the impact of photo catalytic effects of P25, a photocatalytically active TiO2 NP on the toxicity of phenanthrene as a highly relevant environmental toxicant . The ecotoxicological model used for sediment and aquatic phase testing is Caenorhabditis elegans, a soil dwelling nematode . The experimental design was developed to separately evaluate two effects of irradiated TiO2 NPs: 1) photomodification of the co-contaminant phenanthrene 2) photosensitization of the test organism C .elegans . A preliminary study was carried out with this same test system to investigate the direct effects of P25 and the impact of simulated sunlight radiation in combined exposure scenarios . P 25 has been shown to significantly affect the reproduction of C.elegans in darkness with a mean inhibition of 28% and 46% at concentrations of 10 mg/L and 30 mg/L, respectively . Initial results of combined exposure scenario testing indicate a significant increase of TiO2 toxicity under simulated sunlight radiation . [1] Dong D, Li P, Li X, Xu C, Gong D, Zhang Y, Zhao Q, Li P . 2010 . Chemical Engineering Journal 158(3):378-383 . [2] Wen S, Zhao J, Sheng G, Fu J, Peng Pa . 2002 . Chemosphere, 46(6):871-877 .

WEPC5-4Ecotoxicological effects of nano zinc oxide to aquatic organisms, in relation to their physicochemical characteristicsW .Y . WongThe Swire Institute of Marine Science, The University of Hong Kong, Hong kong, Hongkong Engineered nanomaterials (NMs), defined as manufactured particles possessing at least one dimension within 1-100 nm range, have different physical and biological properties from bulk materials of the same chemistry due to their increased surface areas . Due to their novel properties, the commercial market for NM-incorporating

Page 9: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4��SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

products has experienced a massive increase in recent years . For example, sunscreens employing nanosized titanium dioxide (nTiO2) and zinc oxide (nZnO) as UV-blocking agents are becoming more popular as they are deemed to have enhanced effectiveness and transparency . NMs may be released into the aquatic environment during the product life-cycle, but their ecological impacts on marine ecosystems are presently largely unknown . Therefore, this study primarily aimed to investigate the physicochemical characteristics and in vivo toxicities of nZnO to aquatic organisms under various environmental conditions . nZnO was found to invoke oxidative stress in the rotifer Brachionus sp . via generation of reactive oxygen species (ROS) . It is also demonstrated to be a possible endocrine disruptor as it altered the transcription of retinoid X receptor (RXR) . In a study employing five marine organisms (i .e ., microalgae Thalassiosira pseudonana and Skeletonema costatum, copepod Tigriopus japonicus, amphipod Elasmopus rapax, and medaka Oryzias melastigma), crustaceans exhibited the highest sensitivity towards nZnO, and toxicity of nZnO was attributable to metal ion dissolution as well as nanoparticulate effects such as aggregation and adsorption of nZnO onto cell walls and exoskeletons . Dissolution of nZnO decreased from 16 mg Zn L-1 at 4°C to 1 .4 mg Zn L-1 at 35°C, which probably accounted for the increased growth inhibition for S . costatum at 15°C when compared against 25°C . However, physiology and behaviour of the test organisms, such as metabolic depression and dormancy displayed by the amphipod Melita longidactyla at lower temperatures, could also influence nZnO uptake and toxicity . T . japonicus was exposed to nZnO-incorporated sunscreens to evaluate the effects of commercial forms of nZnO and Zn2+ leached into seawater from epidermal surfaces . Their molecular biomarker responses showed that other sunscreen constituents can alter nZnO toxicity, and such results support the need for further research on combined effects of NMs and other common pollutants to aquatic organisms .

WEPC5-5Do TiO2 nanoparticles alter heavy metal toxicity? - A factorial approach using Daphnia magnaR .R . Rosenfeldt1, M . Bundschuh1, F . Seitz2, R . Schulz2

1University of Koblenz-Landau, Institute for Environmental Sciences, Landau, Germany2University of Koblenz-Landau, Landau, GermanyNowadays the use of titanium dioxide nanoparticles (nTiO2) strongly increases . Moreover, nTiO2 products are widely used outdoors (e .g . paints, sun screens) . Hence, it can be expected that nTiO2 enter surface water bodies via point or non-point sources together with other environmental stressors, e .g . metal ions . This may be of particular importance as nanoparticles can act as carrier for chemical stressors into aquatic organisms, like daphnids . Furthermore, nTiO2 is widely used as a photocatalyst, since it produces - during irradiation with UV-light - reactive oxygen species, which can be enhanced in presence of metal ions . However, ecotoxicological knowledge considering the combined effects of metal ions and nTiO2 is limited . Thus, the present study assessed potential implications of nTiO2 (2 mg/L) on the 96-h acute toxicity of three different elements of the loosely defined subset “heavy metals”for juvenile as well as adult Daphnia magna, by applying a 2[GREEKX]2[GREEKX]7 factorial design . Silver (Ag), arsenic (As) and copper (Cu) were chosen, since the metal ion of each element, which is considered to be toxic, is differently charged i .e . Ag+, HAsO4

2- and Cu2+ . This is assumed to influence the interaction with the negatively charged surfaces of nTiO2 and finally the toxicity of the combined treatments . The presence of nTiO2 increased Ag toxicity after 72 h of exposure for juveniles, indicated by a 33% lower EC50 . In contrast, the toxicity of As as well as Cu was reduced by up to 39% and 85% for juveniles and adults, respectively . These results suggest nTiO2 as a suitable measure to reduce metal toxicity in distinct cases (e .g . Cu) . However, as the underlying processes are not yet fully understood and the detoxifying effects were not apparent for all elements investigated, the application of nTiO2 should carefully be evaluated in future experiments .

WEPC5-6Nano-silver ecotoxicological effects in marine musselsF . Dondero, I .L .E .N .I SaggeseUNIPMN, Alessandria, ItalyThe ecotoxicological effects of two metallic silver nanoparticles (NPs) (8nm, 50 nm size) were evaluated using a battery of acute and chronic tests in marine mussels within a large range of concentrations spanning from 10 mg /L to 0 .001 mg /L . Silver nitrate- which is readible soluble in marine water- was used as reference to compare the effects between colloidal siver and ionic forms . Acute -i .e . mortality, mortality under aerial exposure (stress on stress analysis)- and sub-lethal effects -byssus synthesis- were evaluated in marine mussel (M . galloprovincialis Lam) as a function of time and concentration within four days NP exposure in 35 “ Artificial Sea Water (ASW) at 16°C . Bioaccumulation in tissues and silver speciation in sea water were also evaluated by means of ICP-MS analysis of the total and soluble silver fraction (for media only) . A battery of biomarkers spanning from molecular to eco-physiological data were included in this survey to get insights into mechanisms of toxicity of silver ions and silver NPs .

WEPC5-7Effect of Carbon nanoparticles on Xenopus laevis developmentN . Santo1, U . Fascio1, C . di Benedetto1, N . Guazzoni1, P . Tremolada1, R . Bacchetta1, M . Camatini2, P . Mantecca2

1Università degli Studi di Milano, Milan, Italy2Università degli Studi di Milano-Bicocca, Milan, ItalyThe present knowledge about the risk of Carbon nanomaterials (CNMs) requires the developing of new testing methodologies and interpretative tools to gain a more comprehensive picture of their nanotoxicology . Aquatic ecosystems are considered the terminal receptors of nanocontaminants and their realistic accumulation sites . Lethal and teratogenic potentials of commercially available Carbon nanoparticles (CNPs) were investigated by standardized FETAX procedure, and Xenopus laevis embryos were screened by advanced confocal and electron microscopy techniques . Morphometric CNP properties were characterized by scanning and transmission electron microscopy, and their hydrodinamic behaviour monitored by dynamic light scattering techniques . PAHs content was evaluated by Soxhlet extraction for 48h using toluene . Embryos were acutely exposed to increasing CNP suspensions (1, 10, 100 and 500mg/L) and after 96h, lethality, malformation rate and growth inhibition were measured . Embryos were then processed for histological and ultrastructural analyses to detect the main affected organs, and to look for specific lesions at the subcellular level . Laser Scanning Microscopy in the reflection mode and EFTEM techniques were used to image and track CNPs into embryo tissues . Only the highest CNP suspension resulted embryolethal for X. laevis larvae, while a dose-response was observed in malformed larva percentages with the 100 and 500mg/L groups significantly different from controls (p<0 .01 and p<0 .001, χ2 test, respectively) . Stomach and mainly gut were the preferential CNP accumulation sites, however, the digestive epithelium remained integer . At this level, the columnar cells forming the absorptive epithelium showed CNP aggregates (200-300nm) into their cytoplasms, but regularly shaped microvilli organized in a well defined brush border . Results have been discussed considering the very little information available on the toxic effects of CNMs in in vivo studies in X. laevis . Embryotoxic and histological results, combined with reflection and ultrastructural analyses, demonstrated that CNPs are weakly embryotoxic for X. laevis larvae, but the presence of CNP aggregates beyond the intestinal lumen, suggested that the effect of these nanoparticles can be transferred to other organs determining possible long-term health consequences later during the development .

WEPC6 - Linking exposure to effects in environmental risk assessment

WEPC6-1Effect modelling of intermittent discharge of herbicides in watercoursesP .J . Copin, N . ChèvreUniversity of Lausanne, Lausanne, SwitzerlandIn ecotoxicology, effects of agricultural herbicides on non-target organisms, like algae, are often simulated referring to a continuous exposure . But this kind of exposure is very far from the reality . Indeed, exposure models of pesticides in aquatic systems after agricultural applications and after rain events are generally irregular i .e . characterized by short pulses exposure and recovery periods . These pulses exposure, even if they are short, can impair the growth of algae or modify their chlorophyll content . Very little is known about the effects on primary producers of short but high peaks of herbicides fluxes, and on how the algae respond during the recovery period between pulses . The main goal of this study is to develop a model for estimating the effects, and even the risk, on algae population to a repeated herbicide stress . This model will be validated by laboratory experiments applying three typical scenarios of pulses exposure . The scenarios differ from each other by the concentration of the different peaks, the exposure duration and, finally, the recovery period between the pulses . The first one corresponds to three pulses of high herbicides concentrations (EC80) and long recovery periods (around 2/3 of the pulse duration) . The second scenario corresponds to three pulses of low herbicides concentrations (EC20) and short recovery periods (around 1/3 of the pulse duration) . And the last one is a mix of the 2 previous scenarios . These scenarios are tested on the green algae Scenedesmus vacuolatus, which is characteristic of primary producers found in rivers . Two photosynthetic inhibitors herbicides, isoproturon and therbuthylazine, are used as test compounds . As endpoint, the growth of algae will be regularly measured during pulses exposure and recovery periods . The model as well as its validation will be discussed .

WEPC6-2Can time-weighted average concentrations be used to assess the risks of asulam to Myriophyllum spicatum and Elodea canadensis under different time-variable exposure regimes?J .D .M . Belgers, M .C . Boerwinkel, L .L . Buijse-Bogdan, T .C .M . BrockAlterra, Wageningen, NederlandWe tested the effects of the herbicide asulam on growth of the submerged macrophytes Myriophyllum spicatum and Elodea canadensis under laboratory conditions using different exposure scenarios . Asulam is a selective postemergent systemic carbamate herbicide which inhibits folate synthesis by inhibiting dihydropteroate synthase . The exposures of each scenario were comparable in the concentration x time factor, viz ., the same 21-d time-weighted average (TWA) concentrations but variable in peak exposure concentrations (ranging from 0 .1 to 21000 µg ai/L) and exposure periods (1, 3, 7, 14 or 21 days . Endpoints, dry-weight of main shoots, new shoots and new roots and length of new shoots and roots were measured at the end of the experiment (t = 21 days) . It appeared that different exposure regimes resulted in similar EC50 values when M . spicatum was exposed to similar 21-d TWA concentrations of asulam . Effects on newly formed tissue, especially roots and new shoots, based on short peak were in the same range (EC50: 6-32 µg/L) compared to the effects resulting from relatively longer lasting lower chronic concentrations . For E . canadensis the effects were not as clear as for M . spicatum due to the high variability in shoot endpoints (length and biomass) . The most sensitive measurement endpoints for asulam and E . canadensis concerned root formation . In particular the endpoint root length showed little variability so that treatment scenarios could be compared . For E . canadensis the EC50 values between exposure scenarios were similar (EC50: 59-80 µg/L) .

In conclusion, the data suggest that for asulam and macrophytes the TWA approach can be used in the risk assessment .

WEPC6-3Lemna TKTD-Model for pesticide risk-assessment

Page 10: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4�� SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

W . Schmitt, E . Bruns, M . Dollinger, P . SowigBayer CropScience AG, Monheim, GermanyThe first tier pesticide risk assessment for aquatic macrophytes is to date mainly based on endpoints from standard laboritory tests with a Lemna species . To detect even slight effects and to make these tests repeatable, they are conducted under optimum growth conditions and static exposure . Both might significantly deviate from the environmental conditions for which the risk assessment is to be performed . Particularly in the case of “non-lethal”endpoints as e .g . reversable growth inhibition it is often an open question in how far effects of an active substance would be different under different conditions with temporaly varying exposure and/or slower growth . We developed a simple growth model simulating the development of dry biomass in dependence of environmental factors as temperature, irradiation and nutrition as well as internal concentration of a growth inhibitor . The internal concentration of the toxicant is calculated from the external exposure with a toxicokinetic (TK) sub-model consisting of a one compartment TK model that includes a mechanistic description of uptake kinetics and partitioning between plant tissue and water . The functional relations between growth rate and environmental factors were taken from the published literature . Toxicological parameters for the toxicodynamic model can be derived from standard test results . The rates of uptake into Lemna, however, need to be determined in a specifically designed test . For this purpose the uptake of radio-labeled substance into <span id=’1322657786895S’ style=’display: none’> </span>Lemna under static exposure as well as the release from loaded plants into uncontaminated water have been investigated in dependence of time . From the resulting concentration time curves permeability values were derived which make up the essential input parameters for the toxicokinetic sub-model . It is demonstrated how the the model can be applied to assess the risk of pesticide applications considering realistic surface-water exposure patterns . WEPC6-4A time-dependent effect model for ecotoxicological effects in Lemna speciesJ . RankeHarlan Laboratories, Itingen, SwitzerlandThe available models for time-dependent effects on aquatic organisms have been recently reviewed and a unified scheme for describing survival has been proposed . However, less recent work has been published on time-dependent effects on gradual endpoints such as growth inhibition of aquatic macrophytes .

The presentation shows a model suitable to describe the time dependence of growth inhibition of Lemna gibba . The model allows for the evaluation of the applicability of time-weighted average concentrations in risk assessments as well as for a prediction of the effects of time-variable exposure patterns, within certain limits that are derived from the the exposure conditions present in the available experimental data .

WEPC6-5TKTD modelling of interactions between toxicants and food - a case study for diquat in the pond snail Lymnaea stagnalisE .I . Zimmer1, V . Ducrot2, L . Lagadic2, T . Jager1

1Vrije Universiteit Amsterdam, Amsterdam, Nederland2French National Institute for Agricultural Research, INRA, Rennes, FranceToxicokinetic-toxicodynamic (TKTD) models are essential in the interpretation of toxicity tests with time-varying exposure . Furthermore, these models are the only possibility to extrapolate between different exposure scenarios . For effects on survival, the recently published General Unified Threshold model for Survival (GUTS) can be applied . For sub-lethal endpoints such as growth and reproduction, other approaches are needed . At this moment, the only mechanism-based TKTD approaches for these endpoints are derived from the Dynamic Energy Budget (DEB) theory . DEB theory provides a framework that explains how the energy taken up from food is allocated to the major physiological functions at the individual level . Internal concentrations from a TK model can be linked to changes in DEB parameters . Since food can be considered explicitly in a DEB framework, effects of food quality or quantity and potential interactions with toxicants can be considered . Although effects of food level and food source on toxicity have been discussed at length in the literature, their impacts are hardly quantitatively assessed . Food limitation often leads to higher apparent sensitivity (e .g ., focusing on the ECx), which is not necessarily connected to an increased intrinsic sensitivity (i .e ., the relationship between the internal concentration and the value of a DEB parameter) . Recently, it has been found that the pond snail Lymnaea stagnalis is food limited in a part of the life-cycle under standardized test conditions, with severe consequences for the interpretation of toxicity test results . In this study, we use a model based on DEB theory to explain the response of two genetically different populations of the pond snail to pulsed exposure to the herbicide diquat, at four different concentrations . We discuss the interactions between the direct effects of the herbicide on the snails and indirect effects through the food used in the experiments .

WEPC6-6Applying the general unified threshold model of survival (GUTS) to describe toxic effects of Triphenyltin Hydroxide on the cyclopoid copepod Mesocyclops leuckarti B . Daniels, D . Kulkarni, H .T . Ratte, T .G . PreussRWTH Aachen University, Aachen, GermanyThere is a growing interest towards the testing of non-standard species in the ecological risk assessment (ERA) of pesticides . Mesocyclops leuckarti is a good representative species for freshwater cyclopoid copepods, owing to its abundance in European freshwaters, potential sensitivity and ease of laboratory culturing . Being a planktonic species, M. leuckarti is susceptible to typical exposure scenarios of pesticides, such as run-off and spray-drift . We exposed the different life stages of M. leuckarti to the organotin compound Triphenyltin Hydroxide (TPT), a non-systemic fungicide, to simulate and interpret its toxic impacts . In this study, nauplii, copepodites and adults (including males and females, 40 individuals per concentration) were exposed to six different concentrations (12 .5, 25, 50, 100, 200 µg/l) of TPT for 96 hours . At nine different time points, the mobility of the copepods was checked . The toxicant exposure concentrations in the test medium were quantified by HPLC . Our results show that a majority of individuals die at exposure concentration higher than 100 µg/l . The LC50 of adult copepods and copepodites were calculated to be between 50 and 60 µg/l . There were no significant differences found between the response of males, females and copepodites to TPT . The generated survival data were analyzed with the “General Unified Threshold Model of Survival”(GUTS), which integrates several toxicokinetic-toxicodynamic models with different assumptions and hypotheses for endpoint survival in one mathematical approach . The model was calibrated with the data set and simulations with several different assumptions (e .g . death mechanism: the concept of individual tolerance versus stochastic death) were run . The simulation with the best fit to measured survival was identified . Also, differences between the simulations were interpreted and predictions for the toxicity of TPT on M. leuckarti over longer time periods and with miscellaneous exposure patterns were made . The effect-levels (ECX) of TPT were calculated with different assumptions (Logit, Probit, Weibull) of the concentration-response relationship and compared to the outcome of the GUTS-model .

WEPC6-7Integration and calibration of a biodynamic toxicity module for metals in the ecological model AQUATOXS . Massarin, R . Carafa, T . GalléCRP Henri Tudor, Esch-sur-alzette, LuxembourgIn their ambition to establish good ecological status in all water bodies in the European Union by 2015, the regulators and water managers are currently facing serious problems in identifying the probable causes of surface water impairment and are consequently limited in their ability to predict the impact of their programs of measures in a quantitative way . In this context, numerous ecological models with different specialization exist and can theoretically be used to support questions concerning watershed management . Among these models, AQUATOX may simulate the combined environmental fate and effects of anthropogenic organic compounds or the impact of nutrients and suspended materials in aquatic ecosystems . AQUATOX is by far the most complete model described in the literature . However, although the model combines aquatic ecosystem, chemical fate and ecotoxicological submodel, it doesn’t model metal fate and effects . Nevertheless, metals originating from urban surface runoff and sewer overflows are a common pressure to surface water ecosystems . To overcome this deficit, the objective of this project is to integrate and calibrate a metal module in the AQUATOX model taking into account bioaccumulation as described with DYMBAM concept and toxic effects of trace metals on food webs . As aquatic insects are often the dominant macro-invertebrate fauna in freshwater ecosystems, a set of species collected in field with different metal sensitivities have been selected to calibrate the DYMBAM model . Toxicity on the macro-invertebrate consortia in the field will be evaluated with tissue residues of metal-tolerant species that correlate with the absence of sensitive species (calibrated monitor approach) . The project foresees laboratory investigations on toxicokinetics and lethal and sublethal toxicity on the accumulating biomonitors and selected sensitive species . Validation will be achieved in the field via water and food analysis, tissue residues of biomonitors Hydropsyche and Baetis as well as macro-invertebrate inventories . The conceptual model combining bioaccumulation and toxic effects and including parameters defined with laboratory tests and field will be implemented in AQUATOX providing an evaluation tool available that deals with metal pressures in rivers and supporting decisions of water stakeholders .

WEPC6-8Influence of a variable exposure on Daphnia magna, StrauβK . Hoffmann1, G .P . Dohmen2, H .T . Ratte3

1IBACON GmbH, Rossdorf, Germany2BASF SE, Limburgerhof, Germany3RWTH Aachen University, Aachen, Germany Standard laboratory are generally performed under ‘worst-case’ conditions using most sensitive live stages and maximizing the exposure, e .g . via maintaining constant exposure throughout the entire test duration . Under realistic conditions, however, exposure situations normally differ from those in standard ecotoxicological testing systems since the exposure of water bodies with plant protection products is highly variable due to e .g . different entry routes, uses of the plant protection products and nature of the receiving water bodies . Therefore variable exposure is frequently the more realistic scenario . Also, tests are done with specific - generally most sensitive - life stages; effects on other life stages and thus on the population may differ considerably . In this investigation the effects of a fungicide and the frequently investigated chemical 3,4-dichloroaniline to Daphnia magna are examined in different pulsed exposure scenarios, varying in duration and concentration of pulses . The results of population test and Daphnia reproduction tests with pulsed exposure scenarios (referring to OECD guideline 211) including the investigation of the fitness of the F1 generation are compared . The results of these pulsed exposure scenarios are in a marked contrast to the standard test using a constant exposure scenario . They demonstrate that the impact of a more realistic variable exposure can differ significantly from standard constant exposure studies, particularly for fast acting and rapidly dissipating substances . Additionally, following an initial impact at higher concentrations, a recovery of the populations could be detected after the exposure period .

Page 11: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

Keyword Index

Page 12: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences
Page 13: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4�1SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

?-cyhalothrin, TUPC6-5 14C phenanthrene, EC06A-4 16S PCR-DGGE, WE 131 17-alpha-ethinylestradiol, ET06B-3 17-alpha-methyltestosterone, MO 414 17-ß estradiol, MO 166 17 a-ethinylestradiol, WEPC2-4, MO 16717a trenbolone, MO 164 17ß-oestradiol, MO 460 2-dimension electrophoresis- silver stain-

ing, WE 318 2-dimensional electrophoresis, WEPC2-32-hydroxyquinoxaline, TH 0952-Mercaptoethanol, TH 1082,4-D, TU 212 2D-DIGE, WEPC2-2 2D-DIGE Proteomics, ET07A-22D-E, TU 400 3Rs, SS11-6 3T3-L1, EP02A-4, TH 014, WE 0964-NP toxicity, MO 171 454, TH 263 454 pyrosequencing, WE 3345alpha-reductase, EP08A-3 67ZnO nanoparticles, WE 200

A abamectin, MO 288 Abandoned mine, TH 110, WE 373, WE

411abiotic, TU 468abiotic factors, WE 221abiotic stressors, ET10B-4abiotic transformation, MO 199Aboriginal, TU 122Abramis brama, TUPC5-1, WE 139abrasion, RA05-2ABSOLV, MO 049absorption efficiency, WE 245academic-industry cooperation, WE 030accessible, EC01B-5Accident, LC01A-4Accidents, MO 115acclimation, ET07A-1, MO 116acclimatization, TU 358Accounting for appropriateness errors,

LC04B-1Accumulation, EP06-3accurate mass, WE 192, EP08C-6, TH 268,

TU 191, TU 382, WE 400acetaminophen, TU 433acetylcholinesterase, MO 342acid mine drainage, TH 101, TU 416 Acid mine drainage (AMD), TU 189acid sulfate soils, ET05-4Acidification, TU 142Acinetobacter, TH 127, TUPC2-6Acipiter gentilis, WE 264acridine, TU 061Activated carbon, EC06A-2Activated carbon filter, TH 353, EC06A-5,

TUPC4-1, TUPC4-4, TUPC4-8Activated sludge, MO 456Activated sludges, TH 318active monitoring, ET15A-3 Active pharmaceutical ingredient, MO 361acute, WE 403acute & chronic toxicity, TU 224Acute aquatic toxicity, TH 014acute test, WE 225acute toxicity, ET03A-4adaptation, ET10A-4, ET18-1, MO 170,

MO 350, TH 162, TH 212, WE 160, WE 360, WE 399, WE 406

adaptive immune system, MO 166, ET12B-3, TU 355, TU 358, TU 359

additional factor, MO 471additive toxicity, TH 276additivity, RA20-5 Adjuvant, WE 357ADME, ET04C-5Adriatic Sea, MO 351, SS11-5Adsorbent, MO 032Adsorption, EC06B-2advance oxidation, RA23A-6, TH 176, TH

304, THPC1-3, TU 038, TU 301, TU 302, WE 185

advanced biofuel, LC03-4Advanced biofuels , TH 341adverse outcome pathway, WE 336adverse outcome pathways, MOPC2-8aerobic batch assay, TU 006, MOPC3-5,

SS11-4Aerobiology, TU 269Aeromonas population structure, TH 125afforestation, TH 056AFLP, ET10B-1Ag Nanoparticles, EC04-6ageing, EP03C-3ageing suspensions, EP03B-6, MO 117,

TU 284agent-based, WE 445Agent-based models, SS07-5agglomeration, WE 232agglomeration state, EP03B-6aggregate exposure, TH 248aggregation, MO 429aggregation kinetics, WE 198, WE 441aggregation of benefits, WE 459aggregation rate, EP03A-2AGNES, EC04-2Agri-food supply chain, TH 355, EP03B-5,

WE 189agricultural, ET06B-4agricultural adjuvants, MO 213Agricultural chemicals, ET06B-2agricultural fields, ET12A-4agricultural land use, TU 120agricultural lands, TH 052agricultural landscape, RA09-6Agricultural soils, EM01B-1, RA15-5agriculture, EP01A-4, MO 277agrocenosis, TU 187, ET06A-6, MO 100,

MO 320, TH 201, TU 257, WE 240agrochemical, ET06B-5agrochemicals, MO 246agrosystems, MOPC1-6, WE 111, WE 382AhR, TU 244air, TU 253air analysis, TU 250, WE 099Air concentration, TU 249air concentrations, TH 073Air Pollutants, LC05-2air pollution, EP02C-2, WE 458Air sampling, TH 079, TUPC3-1, TUPC3-

3, WE 140air toxics, WE 431air/water partition coefficient, MO 050Airborne Pollutants, EC05B-5Airshed, TU 246airway, EP06-6Akaki River, MO 080Alga, TH 319Algae, EP08B-6 TU 210

algae bioassay, RA15-1, MO 327, TH 112, TH 179, TH 265, TH 293, TU 183, TU 381, WE 074, WE 203, WE 208, WEPC6-1

algal growth inhibition test, TH 323alginate, WE 187alginate beads, TH 336alkyl polycyclic aromatic hydrocarbons,

WE 137Alkylated PAHs, TU 404allergens, TU 093, TU 449Allocation, LC01A-1Allocation methods, TH 339, MO 098,

MO 100allozyme, TU 350allyl isothiocyanate, WE 324ALMaSS, SS07-5Alpine environment, TUPC1-8alpine region, MO 091Alqueva reservoir, WE 095Alternative, ET03A-1alternative BFRs, TU 242, TH 006alternative flame retardants, EC05A-3Alternative fuel, TU 266Alternative methods, MO 368, TU 267alternative screening assay, EP02A-1,

SS11-3Alternative testing strategies, SS11-6Alternative Tests, MO 022Alternatives to animal testing, TH 012aluminium, MOPC4-1Aluminum, MO 078, TU 455AMAP, TH 086Amazon, ET18-5AMAZONIA, MO 331, TU 422, WE 092,

WE 310, WEPC4-7ambient air, WE 137Ambient Concentrations, TU 263amendment, MO 319Ames fluctuation assay, MO 212amines, TU 373amino acids, EC06B-6amitrole, MO 007 Amniotic fluid, WE 260Amphibian, EP02A-2Amphibian Development, ET06B-2,

ET06A-1, ET06A-3, ET06B-1, ET06B-5, TH 056

Amphibian metamorphosis, MO 175amphibians, ET06A-4Amphibians decline, TH 066, ET13B-5,

TH 054, TH 061, WE 394amphipod, RA15-3amphipod survival, TU 434Amphipods, TU 355anaerobic, TH 335anaerobic biodegradation, TU 298anaerobic digestate, MO 298analgesics, EP08B-3Analysis, SS03-3analytical chemistry, MO 197analytical methods, EM01A-3, MO 408

WE 070, WE 194Analytical Microscopy, MO 043, WE 174Analytical tools, MOPC3-1Analytics, ET12A-6anatoxin-a(s), MO 357Androgen, MO 132androgen biomarker, MOPC2-4, MOPC2-

7androgenicity, TU 244androgens, EP02A-3, TUPC3-4

Page 14: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4�2 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

angling stress, ET05-5, MO 126, TU 072animal-alternative, MO 133Animal alternative, TH 020 animal alternatives, ET03B-1Animal Feeding Operations, TU 257, TH

003, TH 011animal health, RA03-6Animal manure, MO 191annual cycle, ET01-5Antagonism, TH 276Antarctica, TH 083, TU 212ANTARES, MO 363, TH 087, TH 090,

TU 435anthelmintics, TU 055anthropogenic pollutants, TH 324Anthropogenic toxicants, TU 394anti- diabetic drugs, TU 054Anti-androgen, EP02B-2anti-cancer drugs, TU 052, EP08A-3anti-fouling paint, TU 365antiandrogens, MO 181Antibiotic, EP01A-6antibiotic activity, MO 216, ET19A-2,

ET19A-5, ET19A-6, MO 406, TH 122, TH 138, TH 148, TH 307, TU 056, WE 392

antibiotic pollution, EP01B-2antibiotic resistance, EP01A-3antibiotic resistance gene, TH 126,

EP01B-1, EP01B-2, EP01B-4, EP01B-5, ET19A-3, TH 121, TH 123, TH 127, TH 129, TH 130, TH 135, TH 140, TH 141, TH 142, TH 146, TH 148

antibiotic resistance genes, TH 144antibiotic resistant bacteria, EP01B-6antibiotics, EP01B-6anticoagulant, ET08-5, EP08B-3, EP08B-

4, ET19B-1, ET19B-2, MO 401, MO 415, MO 417, TH 133, TH 147, TH 330, TU 059, TU 063, WEPC2-6

Anticoagulant rodenticide, ET08-6, RA22-5, WE 173

Anticoagulant rodenticides, RA22-1, WE 168, WE 169

anticoccidials, TU 060, RA22-6, WE 167, WE 170, WE 175

antidepressants, EP08C-6antiestrogen, MOPC2-1antifouling, TU 363Antifouling paint, ET11B-5Antifouling paints, MO 454Antimalarials, TU 039antimicrobial, EC06B-3antimicrobial agent, WE 368Antimicrobial resistance, EP01A-5antimicrobials, EP01B-3, TH 131, TH 134,

TH 137, TH 145antimony, RA05-1, TU 041Antineoplastics, TU 063Antioxidant-enzymes, WE 342antioxidant, TH 185antioxidant enzymatic systems, TH 168,

TU 401Antioxidant enzymes, MO 346Antioxidative defence, WE 257antropogenous factors, MO 317apical endpoints, TU 345Apis melliflera, RA16-3Apodemus sylvaticus, RA15-5Apoptosis, MO 389application methodology, TH 298, WE 304Apportionment, MO 085

aquaculture, EP01A-3aquaecosystem, WE 299, ET19B-3,

LC04B-6, MO 411, MO 415, TH 126, TH 130, TU 059

aquatic, EP03A-5aquatic biodiversity, WEPC4-5, ET15A-5

RA21-6, WE 222aquatic biotest, TUPC6-2aquatic communities, RA17A-6aquatic compartment, TU 064, WE 093,

WE 146Aquatic Ecosystems, MO 415Aquatic ecotoxicology, RA15-3, WE 004aquatic environment, EP03C-1, WE 094,

WEPC4-8aquatic environments, MO 009, TU 138,

TU 476, WE 184aquatic fate, EP08B-2aquatic freshwater ecotoxicity, MO 081Aquatic hyphomycetes, WE 014Aquatic invertebrates, WE 147aquatic life protection, TU 033Aquatic macrophyte, TU 197aquatic macrophytes, TU 186aquatic microbial communities, WE 216,

TUPC6-5aquatic micropollutants, ET13A-3aquatic organisms, MO 147, MO 332,

MO 333, MO 334aquatic plants, SS09-8, SS11-4, TH 182Aquatic pollution, WE 404Aquatic risk assessment, MO 472aquatic systems, TH 165, WE 123aquatic tests, MO 278, TUPC6-1Aquatic toxicity, RA04B-1aquatic toxicity testing, WE 355, TH 033,

TH 042, TU 016aquatic toxicology, MOPC2-4AQUATOX, WE 002Aqueous environment, MO 032, WE 258,

WEPC6-7aqueous phase, TU 061AR-Lux, EP02B-2Arabian Gulf, TH 017Arabian killifish, TH 020, TU 390Arabidopsis thaliana, SS09-11arable crops, WE 054, TU 194Archachatina papyracea, WE 400archetypes, MO 081Arctic, EC02A-4, TU 115, TU 234Arctic char, TH 085, EC02B-1, EC02B-5,

EM01A-6, TH 078, TH 082, TH 085, TH 089, WE 151

Arctic environment, SS08-1, TH 092Arctic Ocean, EC02B-4, TH 077Arenicola marina, EP07B-4 areobic scope, RA17A-1Argentina, TH 318Argentinean Patagonia, TU 307Argopecten ventricosus, TU 319aromatase, MO 146Arsenic, ET07B-6, MO 150arsenic trioxide, RA02-5, ET08-3, TH 103,

TH 111, TH 114, TU 135, TU 368, TU 374, TU 410, WE 012

art, RA08-6Artemia, TH 267Artemia franciscana, MO 034Artemisinin, ET13A-2arthropod sampling, MO 296arthropoda, MO 293arthropods, WE 115

artificial groundwater recharge, TU 300artificial streams, TU 469aryl hydrocarbon receptor, MO 033Asellus aquaticus, TU 473, TUPC3-4, WEasessment, TU 208, WE 105Asia, MO 068assay, WE 191assessment, MO 461assessment criteria, RA16-6, RA19-4, TU

155, TUPC5-1, WE 045 Assessment Factor, MO 472Association, MOPC4-8, TH 264Association in resistance to chemicals, TU

349, WE 360Astyanax altiparanae, MO 414atenolol, TU 075Atlantic cod, ET07A-3Atlantic Ocean, MO 326Atlantic salmon, WE 322, TU 247atmosphere, MO 052Atmospheric, TH 076, TU 242, TU 247,

TU 257, TU 263, TU 265atmospheric contamination, TUPC3-7atmospheric deposition, EC05A-2Atmospheric fate, EM03-2, WE 079atmospheric pollution, EC05A-4atom-centred fragment, EM02A-4ATP, MO 300atrazine, MO 014Au nanoparticles, TH 175, TH 055, TU

185, TU 212, WE 387Australia, TU 034Australian, ET05-3automated, TU 092automotive fuels, MO 093autophagy, TU 354Availability, MO 314Avian, WE 377, TH 110avian focal species, RA09-4 avoidance, RA01-2avoidance behaviour, MO 403axenic cultures, TUPC6-1, MO 407, TU

472azo dyes, TU 228azole fungicides, EC05A-5Azores, WE 281Azoxystrobin, EC06A-6

B B-assessment, WE 252, TU 188, WE 385B-esterase, WE 372Bacillus thuringiensis israelensis, MO 140Back-trajectory, TH 079background, EM0B1-6, TU 246bacteria, MOPC3-3Bacterial communities, TH 137, TH 183,

WE 078, WE 084, WE 131, WE 208bacterial community, WE 207 Bacterial degradation, TU 285bacterial luminescence, TH 034bacterial structure, TU 436BAF, ET04A-1bait lamina, MO 286Baja California, TU 436, MO 305ballast water, TU 391, TU 442Baltic Sea, ET11C-5Baltic Sea sediment, EC01A-2, TU 081, TU

149, TU 159, TUPC1-6Bank, TUPC5-6bank filtration, MO 096 bankground exposure, TH 248Barents Sea, TH 086

Page 15: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4��SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

barium, MO 273baseline, EM01A-5Baseline defense systems, TH 262bats, WE 058 Battery of assays, TU 474bayesian, RA05-5Bayesian networks, RA17A-2Bayesian probability network, WE 150,

TH 259BCF, ET04A-1BCR, MO 047, TU 047, WE 249, WE 253BDE209, TU 226Beaches, EP01A-1 beclomethasone, TU 048bee health, RA16-3beer, MOPC5-7Bees, MOPC6-3behavior, EP03A-2, MOPC6-6behaviour, MO 215, MO 158, MO 384,

TH 038, TU 017, WE 337behavioural toxicity, WE 349, MO 381,

TU 291, TU 387, WE 125, WE 178Belgium, WE 433benchmarking, WE 245benefits, LC06-6benefits vs . risks, WE 083benthic, ET13A-5benthic communities, TU 436, MO 471Benthic diatoms, ET15B-1 benthic invertebrate, EP07B-3, TU 211Benthic macroinvertebrates, TH 271, WE

368bentonite, TU 299benzene, TH 038benzo(a)pyrene, MO 302benzo[a]pyrene, TH 023, TU 216, TU 283benzophenone derivatives, MO 160 Benzoylecgonine, EP08A-4 Berlin, WE 418, WE 319Beta-lactams, TH 134BFR, MO 188BFRs, MO 125Biaccumulation, WE 263, MO 183, TH

075Bidens laevis, WE 329bifenthrin, TU 176Bile, TU 421, WEPC3-4Bile acids, ET07B-5 binary mixtures, MO 299 binding, WE 197, TH 209, TU 229binding affinity, WE 250binding constants, ET04C-4binomial versus gaussian error model,

ET02-4Bio-ethanol, MO 439 Bio-polymer, MO 101Bio-TEQs, RA06-4Bioaccessibility, EC04-1bioaccumulation, EM02A-5, EC06A-6,

EM01B-2, MO 044, MO 092, TU 222, TU 281, TU 282, TU 284, TUPC4-7

bioaccumulation and depuration kinet-ics, MO 066, EP03B-3, ET04A-2, ET04A-6, ET04B-1, ET04B-4, ET04B-6, ET04C-2, ET04C-3, ET04C-5, ET08-3, ET11A-4, ET11B-4, MO 022, MO 062, MO 187, MO 358, RA14-4, RA17B-1, SS11-5, TH 083, TH 092, TH 178, TH 289, TU 028, TU 048, TU 146, TU 197, TU 200, TU 280, TU 400, TU 402, TU 412, TU 423, TU 445, TUPC4-8, WE 009, WE

127, WE 173, WE 213, WE 230, WE 241, WE 243, WE 252, WE 254, WE 259, WE 265, WE 269, WE 276, WE 277, WE 281, WE 283, WE 284, WE 285, WE 288, WE 289, WE 293, WE 295, WEPC1-1, WEPC1-2, WEPC1-4, WEPC1-5, WEPC1-6, WEPC1-8

bioaccumulation assessment, RA02-3Bioaccumulation detoxi, WE 256Bioaccumulation dynamics, WE 275Bioaccumulation modeling, ET15B-6 bioaccumulation modelling, TH 086bioanalytical tools, MO 159bioassay-directed analysis, EP02B-4,

MOPC3-5bioassay, ET12C-4bioassay waiving, ET16-6, MO 014, MO

277, MO 281, TH 034, TH 104, TH 284, TU 077, TU 196, TU 309, TU 396, WE 432

bioassays, EP02C-4bioassessment, RA17A-5, ET01-2, ET15B-

6, RA20-4, TH 036, TH 313, TH 326, TH 331, TU 155, WE 117, WE 429

bioavailability, EC04-4Bioavailable, WE015, EC04-5, EC04-

6, EC06A-1, EC06B-1, EC06B-5, EM01B-2, EP03C-1, EP07B-3, EP08C-2, ET04A-3, ET09-1, MO 045, MO 046, MO 092, MO 244, MO 309, MO 406, RA06-1, SS06-3, TH 022, TH 023, TH 175, TH 181, TH 190, TU 029, TU 124, TU 173, TU 223, TU 278, TU 279, TU 283, TU 286, TU 287, TU 293, TU 298, TU 304, TU 350, TU 381, TU 431, TUPC4-4, TUPC4-7, WE 017, WE 023, WE 033, WE 128, WE 247, WE 251, WE 255, WE 267, WE 269, WE 271, WE 273, WE 278, WE 279, WE 291, WEPC1-4, WEPC3-2

biochar, EC06A-6Biochemical-treated Textile Wastewater

Effluent, TH 309, MO 320, TUPC4-5, TUPC4-7

Biochemical, WE 414Biocide, TU 206biocide leaching, WE 091Biocides, MO 453 bioconcentration, TH 021, MO 454,

RA12-1, RA12-2, RA12-3, WE 086, WE 087, WE 097, WE 163, WE 175

bioconcentration factor, EM02A-4, TUPC2-4, WE 096, WE 206, WE 287, WE 296, WEPC1-7

bioconcentration factor (BCF), ET04C-1, TH 010

biodegradability, MO 432, WE 246biodegradation, EC06A-2Biodiagnosis, MO 193, EC06B-6, ET19A-

5, MO 064, MO 086, MO 302, MO 455, RA04A-4, TH 134, TH 304, TU 006, TU 051, TU 286, TU 287, TU 289, TU 290, TU 294

biodiesel, MO 302Biodilution, ET04B-6, MOPC4-6, TH 345,

TU 296biodiversity, ET12A-3biodiversity footprint, RA04B-2, ET12B-

1, ET18-5, MO 253, MO 292, MO 385, MO 438, MOPC1-2, MOPC5-8, RA04B-2, TU 466, TUPC4-1, WE 104,

WEPC4-7Biodynamic modelling, WEPC6-7biodynamics, WE 206bioenergetics, RA17B-1bioenergy, MO 109Bioenergy systems, WE 449, MO 252,

MOPC4-2Bioespecimen Bank, TU 134Biofilm, MO 097biofilm formation, TH 132, WE 311biofilm/microbial communities, WE 208biofilms, ET04A-3biofluids, WE 190, WE 301, WE 302, WE

347biofouling, MO 017Biofuels, LC01A-2biogas, MO 107, MO 098, MO 252,

RA04A-3, TH 347Biogenic CO2, LC01B-3, MOPC4-3biogenic hydraulic fluids, MO 117biogenic municipal waste, MO 107Biogeochemistry, EP08C-1Bioimarker, TH 320, WE 283Bioindicating, WE 283bioindicator, TU 392bioindicator organisms, MOPC2-4, WE

396bioindicators, ET12B-1bioinformatics, WEPC2-7, MO 293biokinetics, TH 031Biolog, WE 131biological, WE 315biological activity, MO 286biological assessment, MO 211biological behaviour, TU 146biological communities, TU 476Biological effects, TU 409Biological effects techniques, ET11A-1biological extracts, MO 135biological indices, WE 405biological models, MOPC1-6Biological Pump, TH 090biological variability, WE 009bioluminescence, TH 316biomagnfication, WE 401, TU 434Biomagnification, ET04A-4Biomarker, EP08A-5, ET04B-4, ET04B-6,

MO 022, WE 258, WE 309, WEPC1-8biomarker of exposure, TH 005, ET06B-4

MO 172, RA06-5, TH 023, TH 105, TH 160, TH 171, TU 075, TU 345, TU 377, TU 413, TU 423, TU 430, TU 478, WE 129, WE 352, WE 356, WEPC3-3

Biomarker response index, TU 319biomarkers, EM02A-1Biomass-based synthetic diesel (BTL),

LC01A-2, EP02A-3, EP08A-4, ET05-2, ET06A-1, ET11A-1, ET18-1, MO 255, TH 018, TH 173, TH 192, TH 269, TU 084, TU 086, TU 087, TU 170, TU 178, TU 229, TU 314, TU 318, TU 320, TU 338, TU 366, TU 369, TU 371, TU 375, TU 383, TU 384, TU 396, TU 405, TU 424, TU 464, TUPC2-7, WE 029, WE 136, WE 200, WE 393, WE 397, WE 399, WEPC2-2, WEPC3-4, WEPC5-4

Biomass, MO 108Biomedicine, ET13A-2, RA04A-3Biomonitor, TU 172Biomonitoring, ET11A-1, TU 477

Page 16: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4�4 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Biomonitorization, TU 375, MO 243, TU 252, TU 376, TU 389, TUPC5-1, WE 167, WE 196, WE 289, WE 293, WE 367, WEPC2-8, WEPC3-1

Biorefinery, MO 098 bioremediation, EC06A-1, MO 423, WE

445Biorepository, TUPC5-8, TH 100, TH 315,

TU 362, WE 375Biosensor, MO 042Biosensors, MO 131, MOPC3-3biosentinel, ET04B-3, TH 323biosolid, ET12C-6biosolids, MO 279, MO 278biosorbent, TH 101, MO 280, MOPC1-2,

TU 041Biosorption, TU 197biosurfactants, TH 100biota, EC02B-6, TU 289biotest, WE 343, ET11A-4, MO 024, MO

184, TU 254, WE 300biotest battery, WE 335biotic, TU 468biotic index, WE 314Biotic Ligand Model, WE 016Biotic Ligand Models, EM01A-4biotransformation, ET04B-5biotransformation product, EP05-4, MO

059, TU 417, WE 201, WE 247, WE 248, WE 249, WE 250, WE 365

Biotransformation product identification, TU 449

Biotransformation product toxicity, TU 404

Bird, RA09-3bird avoidance, WE 063, WE 061bird eggs, TU 448bird focal species, WE 056bird of prey, WE 172, WE 059 birds, EC02B-5birds & mammals, RA09-2, ET18-3,

RA09-5, RA22-3, TH 039, TH 250, TU 312, WE 049, WE 050, WE 055, WE 062

Bisphenol A, MO 029 bivalve, MO 172, MO 131, TH 296, WE

034Bivalve toxicology, ET11B-5, TH 174, WE

288bivalves, TU 423Bizerte Lagoon, TU 406, WE 265black carbon, EC06B-3, TU 413blaCTX-M, TH 124BLM, RA05-5blood, MO 243, RA05-6, TH 332, WE

018, WE 033blood coagulation, TH 212, RA03-5, TU

021, WE 264Blood lead, TH 063bloom, ET13B-4 blue-green algae Anabaena flos-aquae, TU

088Blue mussels, MO 335boat yards, TU 365body burden modelling, SS07-3body cells, MO 272, WE 134Body mass index (BMI), WE 142body residues, WE 122Bohai, TU 367Bohai Bay, TU 059Bohai Sea, WE 384Boiling green tea, MO 330

bolographic maps, EC01B-1Bombyx mori, WE 308bone metabolism, TH 211bone mineralization, MO 247boosted regression trees, RA17A-6boreal, ET12C-1Boreal forest, ET12C-2Boron bioavailability, TU 203bottom-up, TH 354Bound residues, MO 457BPA, EP02A-5 BPD, MO 454, TH 301brain aromatase, ET03A-5Brassica juncea, TH 195Brassica rapa, WE 375Brazil, MO 273Brazilian strains, MO 352, MO 282, TU

152, TU 445, WE 161, WE 262bream, TU 133Breast milk, RA12-4broad screening, MO 206, TU 015Brominated diphenyl ethers, MO 177Brominated Flame Retardants, ET04B-5bromination, TU 453, MO 207, TU 116,

TU 460, WE 004, WE 248Bromine, TH 115Bt maize, ET12B-6 BTBPE, TU 241BTEXs, TUPC3-8Bti, WE 041BTX, EC02A-4Bubo bubo, WE 280buffer, WE 244building, TU 237building design, WE 462bullfrog tadpoles, ET06B-3Burbot, WEPC2-5, TH 060Butachlor, WE 378

C C . dubia, WE 358C . elegans, ET10A-4C . riparius, WE 333, MOPC1-4, TU 359C .elegans, TU 317, WE 334caddis fly, WE 348Cadmium, ET04B-1Cadmium bioavailability, MO 322, MO

256, TH 060, TH 185, TH 268, TH 291

Cadmium uptake, TH 035Caenorhabditis elegans, ET12C-6Caenorhabditis elegans and human cell,

TH 197, MO 257, MO 322, TH 036, TH 038, TH 191, TU 354, WEPC5-3

Caffeine, TU 096cage aquaculture, WE 392Calibrated monitor, TH 252calibrating ERA tiers, SS02-5calibration, EC01C-3calmodulin, TU 080, EC01C-4, MO 011Calotropis procera, WEPC4-3Canada, MO 469Canadian Arctic, TH 081, TH 277Canadian soils, EM01B-2Canopy, TU 248Cantareus aspersus, MOPC1-1capacity building, WE 032capacity development, LC07-3Cape Town, TU 389captan, EC05A-5Car cabin air filters, MO 039Carabidae, MO 244

carbamazepine, TU 061carbaryl, TH 272Carbo-Iron, WE 204, TH 273carbofuran, ET12B-5carbohydrate metabolism, MO 144Carbon-based nanomaterials, TH 165carbon amendment, EC06A-3Carbon capture, TU 373, TUPC4-3Carbon Capture and Recycling, MO 111Carbon Capture and Utilization, MO 111carbon dioxide, TU 142Carbon dioxide capture and storage,

LC03-2Carbon footprint, LC04B-4 Carbon isotope, WE 309, MO 421,

MOPC5-4, RA04A-4, TH 356carbon nanoparticle, TH 172Carbon nanoparticles, WEPC5-7Carbon nanotube, TH 159carbon nanotubes, EP03C-1 carbon pools, MO 438, WE 179, WE 185,

WE 201, WE 233carbonaceous soil amendments, TUPC4-6carboxilic acids, TU 303carboxylesterase, MO 342carcinogenicity, TH 281Carcinus maenas, TH 166Cardboard, MO 120, TU 400, TU 400,

TU 401cardiac function, ET06B-3Caretta caretta, ET06B-6carrier function, WEPC5-5, ET11C-3, TH

062, TU 032carry-over, TUPC1-2carry over, EP06-2cartilage, TH 001CAS 2872-52-8, TU 228cascade impactor, TU 250catalase, TU 094Catchment, WE 107Categorical data analysis, MOPC2-2categorization, SS12-6Category, ET16-3caterpillar, TH 249catfish, ET05-3cationic exchange, EP08C-3, TU 405cationic surfactant, EC06B-4 caustic, MO 285, TH 304Cavalo Mine, WE 283Cd, TU 226Cd adaptation, ET10B-2 Ceanorhabditis elegans, WE 335, MO 250Cefotaxime resistance, TH 128cell-based assay, MO 133 cell, TH 208cell cycle, WE 295cell internal concentrations, WE 247cell line, ET03B-5Cell model, ET16-2, TH 029Cell viability, WE 129Cement plant, TU 267cement plants, TU 266central Europe, RA09-6ceramic dosimeter, EC01A-4Ceramium tenuicorne, TU 036Ceratophyllum demersum, TU 195cereal, RA09-4, TU 200Cereal residues, TH 347cereals, WE 054Ceria nanoparticles, EP03B-6Ceriodaphnia dubia, WE 407, WE 219Ceriodaphnia silvestrii, WE 407

,

Page 17: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4��SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

cerium dioxide nanoparticles (nCeO2), TH 173

cerium oxide, RA02-5cetaceans, EP02A-5 CFIS, EC01B-4, EP07B-2, TH 158, TU 440chain architecture, MO 365, MO 016chain length, TUPC1-2challenges, LC02A-2Chalmydomonas reinhardtii, EP03B-4,

LC06-6, SS05-5chameleons, TH 052Change Mangement, RA08-5Changjiang Estuary, TU 441Chapala Lake, WE 073Chara, RA19-5characterisation, LC04A-1characterisation factors, WE 457, MO 426Characterization, EP03B-3 Characterization and Treatment, TH 309,

SS03-3, WE 176charged compounds, EC01A-6CHC, TU 137Cheese, MO 442Chelnia mydas, TU 445Chem-TEQs, RA06-4Chemcatcher, MO 012Chemcatcher®, MO 013, RA14-3Chemical, MO 063 Chemical activity, MO 034chemical analyses, ET01-2chemical analysis, MO 191Chemical and ecotoxicity tests, MO 280,

TH 022, WE 432chemical biofouling control, WE 088chemical composition, TU 272chemical compounds, WE 423chemical concentration, MO 090chemical concentrations, EM01A-3chemical contaminants, MO 249chemical control, TU 229Chemical dispersants, RA18-4Chemical elements, WE 284Chemical emissions, MO 068Chemical extraction, TU 431Chemical extraction methods, WE 269,

TU 455chemical fate, MO 069chemical fingerprint, MO 211, MO 391chemical footprint , MOPC5-1Chemical list, MO 127, RA04A-6, SS12-1chemical mixture, TU 224chemical mixtures, SS12-5Chemical Oxygen Demand, TH 306chemical pollution, SS12-2Chemical precipitation, EP01A-5, SS12-4,

SS12-6, SS12-7chemical probe, MO 037chemical products, RA21-5chemical regulation, MO 466chemical risk assessment, MO 053chemical space, TH 077chemical stress, RA19-3Chemical stress ecology, ET14-3, WE 257Chemical substances, MO 433Chemical treatment, WE 153chemicals, MO 436chemicals assessment, WE 038, RA04A-6,

TU 234, WE 037 chemicals management, SS12-9chemicals risk assessment, WE 032chemoassay, TH 042Chemosensitization, MO 322

chemotaxis, EC06B-5 chemotherapy agents, EP08B-2, TU 290chemotoxicity, SS09-3Chile, EP02C-1 China, MO 207, TU 477, WE 261chironomid, ET13A-4, RA10-6, TU 067Chironomus, TU 478Chironomus riparius, TU 348, WE 344Chironomus bioassay, TU 160Chironomus riparius, ET07B-2 Chironomus tepperi, WEPC3-4chitin inhibitors, MO 411 chitin synthesis inhibitor, WE 350chitobiase activity, MO 142Chitosan, MO 119 Chlamydomonas reinhardtii, WE 203Chlorella vulgaris, TU 199, WE 295chlorinated pollution, RA06-2, WE 345Chlorine Toxicity, TH 017chlorophyll-a fluorescence, TU 191chlorpromazine, TH 031Chlorpyrifos, ET05-3, WE 210Cholinesterases, TU 387, TH 250, TU 121,

WE 116, WE 344chromium, EM01A-2chromium (VI), MO 274, TH 117Chromium VI, WE 404chromosomal aberrations, SS09-8Chromotography, WE 162 chronic, TU 090chronic effects, MO 367 chronic exposure, SS09-5Chronic test, MO 287, TU 370, WE 093,

WE 348chronic toxicity, MO 330, TU 079Chronical lead toxicity, TU 475, RA04B-1,

TH 044, TH 170, WE 407chronosequence, MO 303CI Disperse Red 1, TU 228Cianotoxins, WE 256Cichlid, WE 413Cimate change, MO 091cimetadine, TU 433ciprofloxacin, EP08B-6 CIRef, TU 124, TH 139, TU 091citric acid, WE 277citrus, TH 250cladocera, MO 350cladocerans, WE 349, WE 221, WE 404claim, MO 432Clam, EC01B-4 Clam biomonitor, TU 368, WE 356Clams, TU 084Classification, MO 364 clay minerals, TU 304, RA05-4, WE 012,

WE 020, WE 021, WE 253Clay2, TH 207Clean Air for Europe (CAFE), WE 460cleaning products, MO 435climate-change, ET09-6Climate, EC02B-5 climate change, EC02A-2, TH 088Climate change effects, EC02A-1, EC02B-

2, EM02B-2, EM02B-3 ET05-4, ET09-1, ET09-2, ET11A-6, MO 254, MO 422, RA06-3, RA17B-1, RA17B-3, SS08-1, TH 078, TH 091, TH 269, TU 141, WE 307

Climate impacts, LC01B-3 Climate warming, EC02A-5climatic changes, TH 272climbazole, TH 329, TH 273

clonal variation, ET10B-4closed aquatic microcosm, WE 243Clothianidin, RA16-4CLP, TU 224CNT, WE 201co-contamination, TU 095Co-operation, TUPC5-4co-tolerance, ET10B-2 CO2 capture and storage, MO 271coal, EC06B-1 coastal environment, EP01A-2, LC04B-5coastal lagoon, TU 177Coastal lagoons, TU 375, TU 251, WE 265Coastal seawater, TH 308coastal wetlands, TU 202Coated glass, EC01A-2Coated seeds, MO 246cobalt, WE 229Cocaine, TU 086Coconut charcoal, MO 031Coculture, TH 100coelomocites, MO 272coelomocyte, ET03B-2coelomocytes, MO 274cold condenser effect, TUPC1-8cold trapping, MO 037 Collaborative, LC06-4Collembola, ET10B-3 collembolans, SS07-6, TH 274, WE 272colloid, EM02D-3colloid facilitated transport, TU 293, MO

329Colonization, TU 472colorimeter, TU 392combinatory effects, WE 227combined effect, ET06A-2combined effects, ET14-1, TU 465Combined effects of chemicals, MO 251,

RA17B-2, SS08-1Combined Sewer Overflow, TH 306Comet assay, ET10A-5commercialization, EP04-1, MO 268,

TH 006, TH 026, TH 273, WE 140, WE 378

Common carp, MO 389COMMPS, TH 303communication, MO 440 Communities, TU 091, RA08-3, WE 026,

WE 029, WE 046Community-level approach, TU 470Community-level toxicity testing, ET12B-3Community, EP01A-1 Community approach, TU 184, MO 295,

MO 376, RA22-5, TU 468community composition, SS06-2community context, TU 463community ecotoxicology, ET09-3community function, WEPC2-7, ET12B-5,

RA19-3community response, WE 395community responses, RA23B-3community structure, ET12B-4Community studies, MO 462, MO 294,

WEPC2-7community testing, EP08B-4 compaction, MOPC1-7companies, LC06-6comparability, WE 071Comparative hazard assessment, RA02-6comparative risk assessment, RA02-5Comparative study, LC02A-6comparative toxicity, TH 197, TH 331

Page 18: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4�6 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

compared ecotoxicity, TH 198comparing case studies, TU 239competition, TU 463competitors, WEPC4-1complex media, SS03-3complex model, LC04A-6Complexation, WE 185complexity, WE 443Compost , EM02C-3composting, MO 298Computational Fluid Dynamics modelling,

EC01C-4, MO 311computers, LC03-5concentration-response, EM03-3Concentration-Response Concept, ET07A-

2concentration-response curve, TU 334concentration-time-effect modeling, WE

229concentration addition, RA20-1concentration additivity, TU 217, RA20-3,

TU 080, TU 214, TU 329concentration factors, SS09-8concentration independence, ET12B-4condensates, MO 126conduction velocity, TH 205congener composition, ET13A-6Congo River Basin, ET18-2conjoint analysis, LC05-1conjugative plasmids, TH 143consensus, MO 099Consequential, LC01B-2Consequential LCA, LC01A-2consequential LCI, LC01A-3conservation, WE 315constructed wetland, RA19-6constructed wetlands, TH 313Construction, LC02B-5 consumer demand, WE 028Consumer exposure, EM02C-1consumer goods, SS12-3Consumer products, EM02C-1consumer stakeholders, WE 447Contact-Hazard, MO 063Contact-Transfer, MO 063contact assay, MO 281contaminant, EM03-6contaminant source characteristic,

EM01A-2, ET11C-1, WE 040contaminant trap, TU 284contaminants, ET05-4Contaminants of emerging concern, TU

045, RA03-6, SS08-1, TH 110, TH 263, TU 172

contaminated sediments, TU 149contaminated sites regeneration frame-

work, WE 036contaminated soil, ET12C-3contamination, WE 410contamination of human bio-samples, TU

123, WE 429, WEPC4-6Context, WE 062continental river, TU 010control condition, MO 241controlled release systems, WE 236controlling factors, TH 099copepod, ET14-6copepods, WE 152, RA18-4, WEPC6-6Copper, EC04-4, WE 349Copper alloys, RA05-2, ET04B-2, ET12B-

3, MO 257, MO 262, MO 268, MO 343, MO 382, MO 428, RA17B-3,

TH 145, TH 266, TH 270, TH 274, THPC1-5, TU 192, TU 314, TU 320, TU 358, TU 378, TU 450, TU 472, WE 015, WE 018, WE 130, WE 272, WE 274, WE 275

Copper concentrates, RA05-3Copper minerals, RA05-3copper mining, MO 253copper oxide, TH 170Copper oxide nanoparticle, TH 178, WE

210Copper sulfate, MO 389Copper sulphate, WE 366coral, TU 390coral reef, MO 010, TU 444coral tumor, WE 305Corbicula fluminea, MO 255CORMIX, MO 082, TH 315, TU 178, TU

229, TU 464, WE 088, WE 270corresponding bulk/total material flows,

WE 180, MO 084 cortisol, MO 169Cosmetic products, WE 044, TU 446cosmetics, TH 184cost-benefit analysis, WE 008, TH 300Cost-effective assay, TU 403, WE 459, WE

464cost-effectiveness analysis, TU 128cost-of-tolerance, MO 250cost of tolerance, ET09-3Cotton nanofibers, TH 186, TU 343Cottonseed, MO 336countermeasures, SS09-13coupled fate and effect model, ET19B-2covariance matrix, LC04A-3Cows, TU 100cradle-to-cradle, EP04-6Crassostrea gigas, TU 372Crassostrea virginica, WE 393crayfish, TH 106creativity, WE 029Criteria, TH 295critical body residue, RA18-5critical load, SS12-1, WE 274critical loads, WE 079, SS12-7critical residues, WE 172critical surface area, WE 020critical threshold, SS06-2Crop, EP06-3crop plants, MO 020Cross-talk, MO 158 Crustacean, MO 215crustaceans, WEPC5-5cryptic lineage, TU 321CSCL, MO 464 Cu, TU 398Cu toxicity, MO 378 Cultural Heritage, TU 269cultural value, ET05-3culture media, WE 181cultures, MO 347Cumulative Availability Curve, WE 465Cumulative Energy Demand, MO 426cumulative exposure, WE 086cumulative risks, RA20-1current-use pesticides, WE 384Customized microarray, ET07B-1, CWQG,

MO 473 cyanobacteria, ET13B-5 cyanobacterial extract, MO 337, MO 036,

MO 250, MO 339, MO 343, MO 344, MO 348, MO 354, TU 351, WE 209

cyanobacterial exudate, MO 337, MO 338cyanobacterial stress, ET10B-2 Cyanotoxin, MO 348Cyanotoxins, MO 350cyclic volatile methyl siloxanes, TH 073,

MO 357cyclic volatile methylsiloxanes, EM02A-6Cycling, TH 090Cyclo-oxygenase (COX), TU 097cyclodextrin extraction, TU 281Cylindrospermopsin, MO 340 CYP1A ET03A-3, MO 346, MO 347cypermethrin, WEPC3-6, TH 027, TH 062cytochrome, TU 075cytochrome, P450, WE 248cytotoxicity, EP03B-3

D D . magna, TU 357, TH 024, TH 031, TH

203, TH 207, TU 271, WE 193, WE 233

D . rerio, WE 358D4, EC05B-2D5, EC05B-2D6, EC05B-2, ET04A-5, MO 076, TU

050, TU 262Daily deposition flux, EC05A-2Dairy farm, LC02B-6dairy industry, MO 443 DALY, MO 116Danio rerio, MO 157 Danish criteria proposal, MO 192, MO

251, MO 328, TH 018, TH 019, TH 159, TH 162, TH 180, TU 094, WE 212, WE 220, WE 397, WE 411

Danube River, TU 096Daphnia, ET01-1Daphnia immobility, TU 020, MO 144,

MO 344, RA17B-6, RA21-5, TH 285, TH 286, TU 221, TU 463, WE 206

Daphnia longispina, TU 349Daphnia magna, EP03B-4 Daphnia pulex, ET10B-2, ET10A-2, MO

343, RA20-5, TH 245, TH 278, TU 016, TU 078, TU 082, TU 083, TU 344, TU 346, TU 347, WE 090, WE 125, WE 202, WE 217, WE 220, WE 224, WE 225, WE 227, WE 230, WE 231, WE 244, WE 360, WEPC6-8

Daphnia sp ., WE 016, TU 079daphnids, RA21-6dark and light scenarios, TH 174, WE 219data analysis, WE 423data bases, MO 474Data evaluation, RA21-4data integration, TU 338data mining, TU 130data quality of LCI studies, TH 342Data representation, LC04B-2data requirements, RA15-2data validation, WE 003, SS06-2data/databases, LC07-1database, MO 051dataset quality, EM01A-3, MO 427,

MOPC3-7Daye smelter, WE 100DBDPE, TU 241DDT, ET05-5DDTs, MO 318, MO 259, TU 436,

WEPC3-2DDTs lixiviation, TU 303de-husking, MO 458

Page 19: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4��SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

DEB theory, WE 006debris, TU 022Debtox, TU 330Decamethylcyclopentasiloxane, MO 057Dechlorane Plus, MO 187, MO 077Decision-making, RA04A-1, TU 242, TU

460decision, LC07-2, TH 241, TH 352, WE

101decision frameworks, MO 387, TU 237Decision making, LC04B-4decision rule uncertainty, LC04A-4, RA08-

4Decision Support Framework, MO 388decision support system, ET11B-3Decomposition, WE 014, MO 028deep subalpine lakes, WE 080defensive mechanisms, TH 174definition, MOPC5-2degradability, TU 004degradation, MO 311degradation products, TH 095, MO 396,

TH 335, TU 143, TUPC2-5degranulation, TH 208DEHP, TU 030DEL PLATA BASIN, TU 204Delayed effects, WE 152Delayed fluorescence, TH 319, WE 337Delphi, MO 099, TU 210“demographic stochasticity”, WE 007dense water, TH 089density dependence, RA01-4DEP, WE 133 Deposit feeder, TH 176Deposition, MO 073, TH 076derivatives, WE 192Dermochelys coriacea, TU 032Descriptor 10 Marine Strategy Framework

Directive, EP07A-2 design, WE 452design of experiments, MO 198Desorption, EP07A-5desorption experiment, TU 027Detailed Quantitative Risk Assessment,

MO 092detection, MO 028Detergents, LC06-3Determination, MO 336determination accurate mass, WE 188detoxication, MO 356, TH 195, WE 256detoxification, MO 335, RA21-5, TH 285,

TH 286Detritus processing, MO 378developing countries, LC07-3developing country, LC02A-5, MO 056,

WE 312development, MO 173, TH 009developmental abnormalities, MO 328developmental effects, MO 411developmental risk, SS07-4Developmental stability, MO 171developmental stages, MO 264DGGE analysis, TH 137DGT, MO 017, TU 167, WE 189diagnosis, WE 409diatom, MO 143diatoms, TU 467Diazinon, ET06A-1, WEPC3-6dicamba (3, 6-dichloro-2-methoxybenzoic-

acid), WE 351Dicentrarchus labrax (L .), MO 166, MO

167

diclofenac, EP08A-5, TUPC2-6, WEPC2-1die-offs, MO 255 diesel, WE 159, WE 160diesel engine emission, TUPC3-3Diet, EM02A-5, ET04B-1, TUPC1-3, WE

139, WE 170Diet Intake, WE 092dietary accumulation, ET04B-5dietary exposure, TUPC1-4, WEPC1-7,

WEPC1-8Dietary toxicity, WE 127differences between species, RA15-2Difficult substances, MO 455Diffuse, MO 085diffusion, MO 023, MO 041diffusion coefficients, MO 003diffusive emission strength, EP06-1Diffusive gradient in thin films, EC04-1Diffusive gradients in thin films (DGT),

ET11B-5difloxacin, ET19A-1Digestate, MOPC4-3digestion, TH 335Digestive fluids, EC04-1Dimethoate, WE 327dimetylxantine, TU 433dioxin-like activity, RA06-4, TU 149dioxin, EC05B-3, MO 079, TU 297, TU

308dioxins, RA03-4, TH 027, WE 437DiPAP, RA03-5direct and indirect photolysis, TU 057direct and inverse modelling, MO 069direct injection, TH 324Directive 2009/28/EC, MO 118discards, TU 408Discharge Test, MO 082discriminated analysis, TU 333disease vector control, WE 350Dishwasher detergents, TH 331disinfectants, WE 087dispersant, WE 154Dispersed oil, RA18-4, WE 152disposasable cups, TU 239dissipation, TU 107, WE 381, WE 383dissolution, EP03C-3, TH 179, TH 191Dissolved organic carbon, TU 295, WE

207Dissolved organic matter, ET04B-2, TH

309, TU 292Distribution, EP07A-2, RA09-5Distribution coefficient (Kd), TU 003disturbances, TH 080diurnal pattern, EP06-1diuron, TH 181Diversity, ET12B-5diversity loss, TU 347dl-PCB, ET11C-6, TU 133DMT, EC04-2DNA-Array, WE 323DNA damage, ET11A-3, WE 362, WE

363, WE 378, WE 413DNA double Strand Break Repair, ET03B-

3DNA methylation, TH 029, TU 353DNA repair, TH 026, TU 354DOC, TH 332, TU 300DOM, ET04A-3Dormant egg banks, TU 346dose-response analysis, ET18-1dose-response curve, ET02-4dose-response model, WE 145

Dose-response modelling, ET02-3Dose-response profiles, TU 378dose-response relationships, TH 187dose response, ET02-2Dosimetry, EP03D-2dossier requirements, ET15A-1DPD+, TU 207DPG, WE 154DR-CALUX, MO 209Drains, EM02D-2dredged sediment, TU 431Dredged sediments, ET12C-4, MO 277Dreissena polymorpha, MO 390, TH 173,

TU 220, WE 214, WE 270, WE 319drift, TU 256drinking water, EP05-2, MO 348,

MOPC2-6, TH 127, TH 141, TH 142, TH 353, TU 008

drinking water reservoirs, MO 206drinking water treatment plant, MO 036Drop-in biofuel, WE 448Drosophila melanogaster and Caenorhab-

ditis elegans, WE 326Drug-target, TU 071drug target, EP08A-3 drugs, TU 209drugs in the environment, MO 412DT50, TU 109DTA, RA23B-4duckweed, MO 412dumping site, ET03B-2dung degradation, ET19B-4 dung fauna, ET19B-4 Dust, WE 089dust drift, ET15B-3, RA16-4Dynamic Energy Budget, RA01-1, TU 359Dynamic Energy Budget (DEB) Theory,

WE 121, WEPC6-5dynamic energy budget model, WE 111Dynamic energy budgets, MOPC2-8dynamic factor, WEPC1-6dynamic modelling, ET01-5dynamic multicrop model, RA12-6Dynamic Plant Uptake Model, WE 098

E e-waste, TU 116E . coli, MOPC1-4, TH 124E .coli, TH 146Eagle owl, WE 167, WE 280Early life stages, TH 019Early warning system, TU 368Earthworm, EC04-6, ET19A-6, MO 045,

MO 269, MO 272, TH 272, TU 065, TU 350, WE 387

Earthworm reproduction test, MO 275Earthworms, MO 044, MO 268, MO 313,

MO 403, MO 407, TU 278, WE 267, WE 388

earwig, WE 372EC50, TUPC2-5ECETOC, MO 459, RA11-3ECETOC TRA, MO 052 Echinogamarus meridionalis, TH 266eco-costs, LC05-3Eco-Design, LC06-4Eco-restoration, ET12C-5eco-toxicological effects, TU 088eco-toxicological risk assessments, WE 052Eco-toxicology, RA18-6Eco toxicity, MO 433 ecodesign, MO 446

, ,

Page 20: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4�� SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

ecoefficiency, MO 437ecoethic, MO 315EcoFinders, ET12B-1 Ecoinvent, MOPC4-1Ecological, WE 062ecological assessment, MO 316Ecological footprint, MO 446, MOPC5-5Ecological health assessment, TH 320ecological indices, TU 334Ecological modelling, ET14-3, ET14-5,

RA17A-6, SS02-3, WE 123ecological realism, ET14-5ecological refinement, RA09-1ecological response, TUPC4-3ecological responses, EC06A-3ecological risk, TU 367, WE 368ecological risk assessment, ET06A-4,

ET06B-1, ET09-5, ET12A-2, MO 283, MO 373, MO 386, MOPC5-1, RA01-3, RA04B-1, RA15-5, SS02-3, SS02-6, SS02-9, SS06-4, SS09-1, TH 188, TH 261, TH 264, TU 115, TU 160, TU 476, WEPC1-1

Ecological toxicity, TU 441Ecology, ET14-3, TH 049, TH 050, TH

051, TH 053, TU 174, TU 471Economic assessment, WE 449economic evaluation, TU 128Economic modeling, LC01A-2economic valuation, LC05-4economics, WE 028economy, WE 442ECOSAR, MO 366ecosystem, MO 079, RA01-5, TU 322, WE

001Ecosystem approach, SS09-1Ecosystem functioning, TU 403ecosystem functions, ET15B-4, MO 382,

MO 383, TU 474Ecosystem Goods and Services, RA04B-3Ecosystem health, ET05-5, TU 169ecosystem lake modelling, TU 462ecosystem model, RA01-6, WE 150ecosystem processes, RA17A-4ecosystem service, WE 109, WE 113ecosystem services, ET05-1, ET09-5,

ET12A-1, ET12B-1, LC05-4, MO 383, MO 385, MO 386, MO 387, MO 388, RA14-1, RA18-3, SS07-6, TH 246, TU 120, WE 101, WE 307, WE 312, WE 315

ecosystems, MO 316, WE 165Ecosystemservices, WE 306ecotoxicity, EP08B-3, ET12C-4, ET15B-5,

MO 044, MO 262, MO 270, MO 277, MO 430, MO 462, RA18-4, RA21-4, RA21-6, TH 017, TH 020, TH 300, TH 316, TU 219, TUPC3-3, WE 013, WE 039, WE 128, WE 153, WE 211, WE 213, WE 333, WE 348, WE 369

Ecotoxicity effects, WE 095ecotoxicity prediction, MO 365 Ecotoxicity test media, WE 178ecotoxicological bioassays, ET02-6, TU

089ecotoxicological biomarker, MO 306Ecotoxicological biossays, TU 189ecotoxicological characterisation, TH 329Ecotoxicological characterization, MO

276ecotoxicological effects, TU 150, TU 152ecotoxicological field study, MO 290, MO

291ecotoxicological modelling, ET02-4Ecotoxicological risk assessment, TU 335ecotoxicological test battery, TU 156ecotoxicological testing, ET12B-4ecotoxicologically relevant concentrations,

SS02-5Ecotoxicology, EP02A-3, ET01-1, ET01-5,

ET02-1, ET09-6, ET12A-5, ET12C-2, ET12C-3, ET19A-5, MO 185, MO 267, MO 293, MO 299, MOPC1-5, SS06-5, TH 036, TH 054, TH 205, TH 214, TH 247, TH 253, TU 313, TU 326, TU 361, TU 373, TU 444, TUPC4-8, TUPC6-6, WE 005, WE 026, WE 056, WE 143, WE 145, WE 184, WE 204, WE 222, WE 223, WE 350, WE 410

ecotoxicology protocols, TH 213ecotoxiocology, WE 006ecotoxisity, TU 309ecotoxology, MO 174ectomycorrhiza, MO 301ECx, MO 189 TU 332EDA, EP08A-2, MO 127, MO 159, MO

200EDC, MO 151, MO 169, MO 188EDCs, MO 159, MO 182, MO 203 Edible tissue, WE 066EDTA, TH 109Education, WE 025effect-directed analysis, MO 193, TH 003effect, EM03-2, EP03C-1Effect assessment, EP03D-2 Effect directed analysis, MO 122, MO

212, TU 456effect modelling, TH 187, WEPC6-3effect patterns, WE 121effect study, TU 090effectiveness assessment, RA03-2Effectiveness Evaluation, EM01A-1effectiveness of emission control, MO 072Effects, ET08-3, SS12-2, TH 289effects assessment, MO 279Effects of antibiotics on non-target organ-

isms, EP08B-5effetcs, RA22-2effluent, EP08C-5, TH 319, TH 332,

THPC1-5, TU 048, TU 090effluent discharges, TH 314effluent limitation, TH 241effluent testing, MO 216effluents, RA23A-1, RA23B-4EFSA, TU 109Eggs, TUPC1-5Egypt, TH 052EIQ, WE 374Eisenia andrei, TU 472, WE 324Eisenia fetida, EP08C-4, ET03B-2, RA11-

5, TH 199Elasticity, LC01A-1Elbe, TU 140Elbe River, RA06-3Electric Vehicle, LC06-4electricity, MO 421electricity mix, LC01B-1Electro-recovering, TUPC6-7electrolyte concentration, TU 301Electronic wastes, TH 351electronical waste, WE 435electronics, LC03-5electrospray ionisation, MO 195

ELS, ET11A-5Eluate, MO 165elutriates, WE 429EM Algorithm, EM02B-6EMAG-PEST, RA16-1Embryo, ET03A-1, TH 009, TU 018embryo toxicity, TH 056Embryology, TH 020embryos, MO 328Embryotoxicity, EP04-4, ET11C-2,

ET15B-2, MO 258, TH 057, TH 058, TU 019, TU 372, WEPC5-7

emergence, ET15A-5emergent pollutants, TU 424Emerging, TH 076emerging compounds, MOPC3-7emerging contaminant, EP07A-1, ET04A-

5, MO 271Emerging contaminants, EC01C-6, MO

002, MO 396, MOPC3-6, TH 265, TU 436

emerging pollutants, EP08A-2, MO 196, MO 198, MO 279, MO 280, MO 368

emerging substances, TH 310, TH 312Emergy, MO 445, RA04B-3Emission, WE 196emission estimation, TH 334Emission quantification, MOPC4-5emission scenario document, MO 453emission sources, TH 349, TU 263Emissions, EC05B-4, EM02A-6, RA10-6,

SS12-3, TH 346Emissions Timing, MO 111Empore® disk, MO 007Emvironmental Specimen Bank, TU 137Emys orbicularis, TH 063Enchytraeidae, EP03C-5 Enchytraeids, TH 196endangered species, TU 099endocrine, EP02B-3, MO 162, MO 185

MOPC2-7, TH 043, TH 301, TU 176endocrine disrupter, TH 059endocrine disrupters, MO 192, RA11-2,

TH 003Endocrine disrupting chemicals, MO 134Endocrine disrupting compounds, EP02B-

6, MO 452 endocrine disrupting properties, MOPC2-5endocrine disruption, EP02A-4, EP02B-1,

EP02B-2, EP02C-4, EP08A-1, ET03B-1, ET06B-4, ET11A-5, MO 126, MO 133, MO 138, MO 140, MO 146, MO 148, MO 155, MO 156, MO 157, MO 160, MO 161, MO 164, MO 175, MO 176, MO 190, MO 338, MO 354, MOPC2-2, MOPC2-3, RA01-6, TH 305, WE 034, WE 331, WE 338, WE 351

Endocrine disruption chemicals, WE 325endocrine disruptor, WE 313, WE 352endocrine disruptors, EP02A-1, EP02A-6,

MO 012, MO 122, MO 130, MO 137, MO 459, RA11-3, TU 043, TU 428

endocrine effects, TH 203endophytic/rhizosphere bacteria, TU 193endosulfan, ET05-2, TU 256, WE 349endpoint, RA04A-1endpoints, ET18-1energy, MO 107, RA04B-5Energy allocation, ET01-4Energy Budget, MO 269 energy carriers, MO 426

Page 21: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4��SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Energy consumption, TH 339energy conversion processes, MO 102Energy crops, MOPC4-3Energy Management Systems, WE 451Energy Reserves, TU 387energy sector, LC02B-3 energy systems, LC01B-5 TH 340engineered nanomaterials, EP03D-4,

EP03D-6, TH 206Engineered Nanomaterials (ENMs), MO

088, MO 434, WE 180Engineered Nanomterials, TH 188Engineered nanoparticles, TH 162, TH

293enhanced capacity, TU 293Enhanced Coagulation, TH 309Enhanced diffusion, TU 295enhanced geothermal system, WE 452Enhanced Pressurized Liquid Extraction,

TU 308enrichment factor, TU 144, TU 431ensemble models, ET16-6Enterococci, TH 139Entrepreneurship, WE 031Envirnonmental protection, TU 111enviromental samples, WE 188environment, SS05-1, SS05-5, TU 066, TU

123, TU 207, WE 086, WE 176, WE 177, WE 430

Environmental, TUPC2-2, TUPC5-8environmental bacteria, TH 130Environmental chemistry, WE 382Environmental concentration, WE 180environmental exposure, MO 072environmental exposure assessment, SS02-

6environmental external cost, WE 460environmental fate, MO 079, MO 319,

RA04A-4, TH 213, TU 054, TU 107, TU 116

Environmental fate model, RA14-2environmental fate modelling, EP03D-6,

MO 097 Environmental Footprint, LC06-4, RA04B-

6Environmental hazard and risk assessment,

MO 452Environmental impact, MO 117, MO 119,

TH 349, WE 028environmental impacts, LC03-2, WE 042environmental management, LC06-1, TH

258, THPC1-2Environmental monitoring, EC05A-3, MO

405, RA03-2, RA12-3, TUPC5-4environmental politics, WE 038Environmental pollution, TU 267environmental profil, MO 470Environmental Quality Standard, RA21-3,

TH 297environmental quality standards, RA03-1Environmental quality standards (EQS),

MO 474, RA11-4, TU 126environmental risk, ET18-5, TH 330, TU

151environmental risk assesment, WE 003environmental risk assessment, EP08B-1,

ET14-1, MO 096, MO 309, MO 361, MO 395, MO 446, MO 453, MO 465, RA02-2, RA11-5, RA15-3, RA20-2, SS02-9, TU 064, TU 067, TU 130, TU 331, WE 034, WE 086, WE 097, WE 106

Environmental risk assessment (ERA), TU 126

environmental risk assessment and man-agement, WE 036

Environmental risks, TU 154environmental safety, EP08B-1Environmental samples, WEPC2-5Environmental Science, WE 031Environmental sensitivity, SS09-12Environmental specimen bank, TU 133,

TU 135Environmental stochasticity, RA01-3environmental stochasticty, RA01-4Environmental Sustainability, RA04B-4Environmentally Extended Input-Output

(EEIO), LC02A-3, MOPC5-3Enzymes, TU 230EPAT, WE 094EPD immunological product, TH 357Ephippia, WE 263EPIC, TU 120Epigenetics, ET10B-1, ET10B-4 epigentic, TU 352Epinephelus merra, WE 405EPM, MO 471 EQS, MO 024, MO 473, MO 475, RA05-

6, TU 125, TU 214, WE 271equatorial regions, WE 402equilibrium partitioning, TU 028Equilibrium passive samplers, MO 043Equity Weighting, WE 458ER antagonist, MOPC2-1ER assay, EP02B-6ER/AR-Calux®-Test, MOPC2-6ERA, RA12-1, SS02-1ERITME, TU 124EROD, ET03A-3, MO 165 erosion, MO 315, MO 317, MOPC1-7,

WE 386Erythrocytes, TH 039, WE 359erythromycin, MO 406Escherichia coli, EP01A-5, TH 034, TH

136, TH 323esterase, WE 299estradiol, MO 029Estrogen, EP02A-2, MO 132, MOPC2-7,

RA23B-1estrogen mimics, ET03A-5estrogen receptor, MO 338estrogen receptor antagonist, MO 154estrogenic, RA18-2, WE 162estrogenic disruption, TUPC3-7estrogenic effects, EP02C-3 estrogenicity, MO 128, MO 182, MO 354,

TU 244, TU 271, TUPC3-4, WE 137estrogenity, MO 128estrogens, MO 182, TH 008Estuaries, TU 173, TU 477estuarine, TU 422estuarine sediment, TH 263estuary, TU 167, TU 168, TU 172, TU 175,

TU 403, WEPC2-3ethers, MO 201ethics, WE 026ethylene oxide, MO 147ethynylestradiol, ET03B-4EU, MO 473, WE 422EU legislation, EM02B-1EU regulation 1107/2009, ET06A-5,

ET06A-6, TH 049, TH 050, TH 051, TH 053

Eucalypt leachates, TH 266

EURL ECVAM, SS11-3Europe, EM0B1-6, TU 064European data, EM01B-1European eel, WE 433European Eels, TU 460European Rabbit, WE 280European regulation, WE 063EUSES, MO 453eutrophication, MO 087, WE 002EUTV, WE 025evaluation, WE 437Everglades, TU 256, WE 072Evolution, EP01B-1, ET07A-1, ET10B-1,

ET10B-5, TU 343Evolutionary ecotoxicology, TU 346evolutionary impact, ET10A-3Exergoenvironmental Analysis, MO 102Exergy, RA04B-4, RA04B-5Exergy Analysis, MO 102Existing dwellings, LC01B-4 exogenous plasmid isolation, TH 143experiment-wise error, ET02-5experimental design, ET02-6, TH 021, TU

215experimental lake, RA01-6experimental treatments, TH 062expert system, LC04B-3Explosives, MO 294Exposure-effect relationship, WE 147exposure, EM02C-5, EP03D-2, EP03D-3,

EP08C-2, ET12A-6, ET15B-3, ET18-6, RA14-4, RA22-2, SS02-1, TH 201, TU 121, TU 125, TU 312, TUPC3-6, WE 063, WE 108, WE 126, WE 132, WE 144, WE 166, WE 194, WE 254

exposure analysis, WE 209exposure assessment, EC04-5, EC05B-5,

EP03A-5, MO 055, MO 061, TH 298, TU 104, WE 139, WE 141

exposure hazard, RA02-3Exposure mode, WE 202Exposure modeling, WE 180Exposure modelling, WE 147exposure of soil organisms, EM02C-6exposure pathways, WE 130Exposure ranking, EP03D-4exposure route, TH 204exposure scenario, TH 248Exposure scenarios, EP03D-4 Exposure science, EM02A-1exposure to PAHs, MO 039expressed sequence tags, WE 333external cost, LC05-1external costs, LC05-2, WE 446, WE 458external validation, MO 362Externality, LC05-5extinction probability, RA01-4extinction risk, WE 007extracellular matrix, EP03A-6 extract, MO 281 extraction, MO 309 extraction procedure, TU 278extraction techniques, WE 174extrapolation, SS02-4, TH 244, WE 123extreme events, MO 255exudate, MO 338

F F1 embryo toxicity, TU 353façade coating, WE 091facilitated transport, EM02D-3FAHP, RA02-2

Page 22: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4�0 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

FAME, MO 118farmer behaviour, WE 109farmers, TU 121, WE 042Farmland birds, MO 245, MO 246Fate, EC02A-3, EM02B-2, EP03A-5,

ET15B-6, MO 076, MO 399, TH 289, TU 060, WE 194, WE 380, WE 383, WEPC4-2

Fate & Effects, WE 133fate and bioaccumulation, MO 061fate and effect, MO 308fate and exposure assessment, MO 398Fate and exposure modeling, MO 053fate and transport, ET09-1fate modeling, MO 081fate modelling, EM02B-1, WE 183Fate models, EM02A-1Fathead minnow, MO 161, MO 162, MO

163, MO 185, TH 009, TU 097fatty acids, EC06B-6, MO 135, WE 068feather, TU 012Feathers, TU 013Fecal DNA genotyping, ET08-4fecundity, MO 162feed processing, LC04B-3 feeding, TU 146feeding behaviour, WE 270feeding inhibition, MO 413, WE 231Feeding rate, ET15A-4, ET15A-6feedstock, MO 426feminizing chemicals, MO 184ferrihydrite, EC01A-5fertilisation rate, TU 342fertilization, TU 412fertilizer, MO 266FET, WE 397Fetal exposure, EP06-5Fetus, WE 260FIAM, EC04-2fibroblast cell cultures, EP07B-2, TH 158field-based, WE 267field, WE 381field conditions, ET19A-1field contaminated sediments, WE 255field crops, WE 056field ecotoxicology, ET15A-3, WE 148Field exposure, ET18-4field margin, RA19-1, TH 249field methods, ET18-3field monitoring, TH 253Field Studies, MO 461field study, EP02B-1, MO 015, MO 181field survey, WE 305Field tests, ET12A-3Fieldmonitoring, RA16-1film, RA08-6Filtration capacity, TH 315filtration rate, TU 439fin whale, EP07B-6Fine dust, TU 271fingerprinting, WEPC2-6finished product, MO 432 finite difference, MO 080finite volume, MO 080Fired clay, THPC1-3Fish, EP02A-3, EP08A-3, EP08C-5,

EP08C-6, ET03A-4, ET04B-3, ET04C-5, ET05-2, ET07A-5, ET11A-2, ET11C-5, ET15A-2, MO 060, MO 178, MO 181, MO 340, MO 384, RA17B-5, TH 056, TH 160, TH 261, TH 280, TH 305, TH 320, TU 048,

TU 050, TU 075, TU 147, TU 307, TU 308, TU 341, TU 345, TU 410, TU 417, TU 418, TU 421, WE 070, WE 076, WE 127, WE 151, WE 258, WE 276, WE 296, WE 303, WE 320, WE 330, WE 359, WE 362, WE 363, WE 365, WE 396, WE 414

fish acute toxicity test, TH 002Fish and Wildlife, WE 073fish aquaculture impacts, TU 384fish archive, RA03-1Fish behaviour, EP03B-2 Fish Brain, WE 077fish cell line, TH 025Fish cell lines, TH 026fish consumption, WE 066, WE 083Fish discards, TU 460fish early life, TU 020fish early life stage test, WE 337fish embryo, TH 006, TH 010fish embryo test, TU 149Fish Embryo Toxicity, TH 011Fish embryo toxicity test, TH 015, WE 399fish embryos, MO 148fish embryotoxicity, TH 005fish feed, WE 241fish gills, WEPC4-6fish reproduction, WE 313Fish Toxicity, ET03A-1fishes, TU 010Fishing sector, MOPC5-5fitness and development, EP08B-5 Fl FFF, WE 181flame retardant, EP07B-5, WE 338Flame retardants, EP02B-3, EP07B-1,

RA02-6, RA21-6, TU 260, TU 264, TUPC3-5

flame retardants (FRs), MO 040Flood event, RA06-5flooding event, TU 307floor covering, LC06-5Flow, RA23A-3Flow Field Fractionation, WEPC5-2flowing waters, TU 104Fluctuating Asymmetry, MO 171 fluctuating temperature, MO 257Flufenacet, RA14-1, TU 113fluid milk, MO 443FLUOMETURON, TUPC4-5fluoranthene, TU 400fluorescence, ET03A-3Fluorescence polarization, MO 136fluorescent marker, TH 016fluoroquinolole, TU 076fluoroquinolones, MO 416Fluorotelomer alcohols (FTOHs), EP06-1fluoxetine, EP08C-6 flux-gradient, TUPC3-2Flux, MOPC1-1, WEPC4-2fly ash, TUPC6-8focal bird species, WE 052, WE 053focal species, ET06A-6, ET15A-2, RA09-3,

RA09-5, TH 052, WE 049, WE 050, WE 055, WE 057, WE 064

FOCUS PELMO, MO 094, TU 108foliar uptake mechanisms, WE 268follicle stimulating hormone, ET19B-5Folsomia candida, WE 006, WE 324Fontinalis antipyretica, TU 201food, EP03A-3, EP06-4, SS05-1, SS05-5,

TH 358, WE 070Food chain, TU 177, WEPC1-2

Food contamination, TU 458food crops, EM02D-1food effects, WEPC6-5food exposure, RA12-6Food packaging, MO 119food products, LC06-1Food stuffs, TU 014food web, EC02A-1, WE 287food web bioaccumulation, RA14-6food web modelling, MO 382food web structure, ET04A-5foodwebs, EC02A-3Footprint, MO 436, RA04B-4Footprint Family, MOPC5-2footprints, MO 440footwear, MO 446foraging ecology, RA14-6foraminifera, TU 397Forest, TU 248, WEPC4-2forestry, MO 438Formulation inerts, MO 275fox, WE 170fracking, MO 436fractional factorial design, TU 274fractionation, MOPC3-2, WE 162fragrance, TU 129Fragrance Material, WE 133fragrance materials, WE 008Fragrances, WE 044France, TU 112Fraxinus angustifolia, TU 193freight transportation, MO 115French national modelling tool, TU 103French West Indies, ET18-4fresh water sediments, TU 152freshwater, EC01C-3, MO 434, WE 183,

WE 213freshwater and marine organisms, WE 215freshwater biofilms, EP03A-6 freshwater crustacean, EP05-4freshwater ecoregion, EM03-3freshwater eutrophication, EM03-3freshwater fish reproduction, EP02C-1Freshwater fishes, WE 361freshwater mussel, ET13B-2 Freshwater Mussel Watch, TU 138freshwater snails, TU 353Freshwater tidal area of estuaries, TU 178freshwater trophic relations, WE 364freshwaters, TU 274Freundlich, MO 008Frog-tadpoles, ET06A-2frog, MO 174 frozen total blood, ET11C-3fruits, EP06-4FSDT, MO 189FTOH, EP06-6Fugacity, EM02A-1, ET04B-6, MO 057Fugacity model, MO 073 Fukushima, MO 009, SS09-13fullerene, TH 172, TH 210, WE 182, WE

192, WEPC5-1fullerene derivatives, WE 182Fullerenes, EP03A-4, EP03C-4, WE 201fulvestrant, MO 154, MO 155Fulvic acids, WE 198Functioanl analysis, TU 317functional diagnostic tool, MO 373functional diversity, EP03C-2 Functional genomics, WE 325, WE 328Functional indicator, WE 014functional patterns, ET12B-4

Page 23: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4�1SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

functional quality criteria, MO 378functional response, MO 384 Functional stability, TU 356functional traits, RA17A-4Functional Unit, LC02A-4functionalization, WE 192functionalized engineered carbon nanopar-

ticles, WE 188Fundulus heteroclitus, WEPC2-4fungal degradation, TU 305fungal isolates, WE 216Fungal networks, TU 285fungi, THPC1-1fungicide, EP02B-2, ET14-1, ET14-2, MO

254, MO 301, MO 379, TH 251, WE 093

fungicides, MO 262fungitoxicity, MO 299furans RA03-4, WE 437Fuzzy Logic, TH 303, WE 004fuzzy rules, LC04B-3Fuzzy sets, LC04B-2

G gametogenesis, TU 412gamma-H2AX, ET03B-3 Gammarus, ET15A-3, MO 139, TH 321,

TH 322Gammarus fossarum, TU 321Gammarus roeseli, TH 173Gap stream, TH 320gas chromatography-mass spectrometry,

TH 010gas development, TH 080gasoline, MO 113, WE 159, WE 161Gasterosteus aculeatus, MO 168, MO 241Gasterosteus aculeatus L ., ET10A-5Gastropods, EP08A-6, MO 326, MO 356GC, MO 200GC/MS, MO 201GCxGC-ToF-MS, WEPC1-3gel electrophoresis, WE 317GEMAS, EM01B-3gemfibrozil, MO 145, TU 095, WEPC2-1gene cassettes, TH 121Gene expression, ET01-4, ET03A-6, MO

141, MO 149, MO 152, TH 007, TH 057, TH 058, TH 132, TH 164, TH 193, TU 071, TU 097, WE 322, WE 324, WE 330, WE 337, WEPC2-4, WEPC2-8

Gene expression analysis, ET03B-1gene expression biomarkers, EP02A-5gene expression study, ET07B-2gene transcription, TU 417gene transfer, EP01A-6, EP01B-1general equilibrium, LC01A-3general equilibrium model, LC04A-6generalised additive model, TU 334generation, TU 344Generational acclimation, TU 349generations, EP02C-5 GENETIC BIOMARKER, TU 204genetic diversity, WEPC2-6genetic erosion, TU 348Genetic Responses, WE 327genetic variability, ET10A-2, TH 061, TU

347Genetical variation, TU 475genistein, MO 148genitalia, MO 173Genotoxic, WE 359

Genotoxic compounds, TU 153genotoxic effects of sediments, TU 171genotoxicity, ET10A-6, ET11C-2,

MOPC3-3, RA23B-6, TH 004, TH 018, TH 024, TH 178, TH 184, TH 186, TH 207, TH 273, TU 076, TU 353, TU 383, TUPC3-3, WE 236, WE 346, WE 378

genotoxicity biomarkers, ET11C-3genotype, RA21-1geo-referenced model, EM02B-4geo-referenced modeling, EM02D-4geochemical availability, TH 247Geochemical Mapping, EM01B-1,

EM01B-3, WE 418geochemistry, EM01A-5geographic trend, TUPC5-7geographical representativeness, LC04B-1Geometric Morphometrics, MO 171German national authorization procedure,

TU 106Germany, MO 207GES-5, TH 140Ghana, TU 270GHG-Emissions, MO 109GHG, LC03-1GHG emissions, MO 118, MOPC4-3, TH

339GHG performances, LC03-3GHS, WE 021gill morphometrical indices, TU 316Gills, WE 359Gis-analysis, TU 312GIS, MO 067, MO 110, WE 082, WE 114,

WE 118GIS model, WE 113GJIC, EP02C-2glacier forefield, MO 303glaciers, EC02A-6, TH 075global background, EC05A-1Global C cycle, LC01B-3Global Change, TH 087global climate change, ET09-3, ET09-4,

ET09-5, MO 249, TH 077Global contaminant fate modelGlobal contamination, TH 066Global Model, WE 458global monitoring, TU 027, TU 448global scale, MO 070 global warming, ET07A-1, LC01B-3,

RA17A-1, TH 066, TH 267global warming metrics, MOPC5-4Global warming potential, MO 424 Global Warming Potentials, RA04A-4Globally Applicable, Spatially Explicit, TU

118glutathione-S-tranferase, TU 094glutathione-S-Transferases (GST), TU 316Glutathione, TH 111glutathione chemoassay, TH 040glutathione S-transferase, RA10-3, TU

351, TU 379, TU 416Glyceria maxima, TUPC6-4glycogen, ET13B-2 glycol dibenzoates, MO 218glymes, MO 201glyphosate, ET13B-1, MO 007, MO 286,

WE 328, WE 398glyphosate and ametryn, WE 360GnRH receptor, MO 138gold mining, ET05-6Gold nanoparticle, EP03B-4, MOPC1-4,

WE 178, WE 217gold nanoparticles, TH 158, WE 203gold nanorods, WE 221Golf courses, WE 052gonad, ET06B-5, TH 055, TH 059gonadosomatic index, MO 151Good Modelling practice, SS02-3goodness-of-fit indicator, MO 095Gossypol, MO 336government, LC07-2Gracilariales, MO 371granivorous birds, MO 458granulated activated carbon, TUPC4-2grapevine, TU 192Grassland, WE 052grazing, TU 461GREAT-ER model, MO 083green algae, TH 035, TU 315green algae Desmodesmus subspicatus, TU

088Green Chemistry, EP04-6green economy, SS12-9green fluorescent protein, TH 144green plasticizer, MO 218greener nanotechnology, EP04-1greenhouse, EM02C-4Greenhouse gas emissions, MO 442greenhouse gas reduction, LC02B-2Greenhouse Gases, LC05-2greenhouse gases emissions, MO 121Greenland, TH 088Grey seal, ET11C-5ground-level ozone, TU 261ground surface, TU 265Groundwater, MO 078, MO 094, MO

096, RA16-6, TU 008, TU 110, WE 135

groundwater risk assessment, TU 108growth, ET15A-4, TH 055, TU 461Growth dilution, TU 418growth inhibition, WE 366, WEPC6-4GST, TU 195, WE 394Guarantee of Origin, MO 421Guatemala, WE 413guidance, MO 459, MO 461, MO 462,

RA09-1, RA11-2, WE 061Guidance development, MO 463Guideline, TH 295Guidelines, RA04B-6Gulf of Mexico, TU 169GUMBO, RA04B-3GUTS, WEPC6-6Guttation, TH 257, WE 376

H H295r-Assay, MOPC2-6H2O2-assisted TiO2 photocatalytic degra-

dation, THPC1-4H4IIE-luc assay, TU 218habitat, WE 270habitat choice, RA15-5habitat equivalency analysis, RA18-3habitat loss, RA17A-5Habitat quality, MO 178habitat types, WE 115Haemocytes, TUPC2-6haemolymph, TU 084Half lives, RA10-5Halogen free flame retardants, RA02-6Halogenated phenolic compounds (HPCs),

TU 458halophyte, RA19-6

Page 24: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4�2 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

hand dishwashing product, MO 431Haraz River, WE 303Harmful algae bloom, MO 351harmonization, TH 358hazard, TU 125, TU 129hazard assessment, RA05-4hazard based assessment, MOPC2-3hazard classification, WE 022Hazard Identification, WE 202Hazard Quiotient, MOPC6-6Hazard Quotient, TH 243hazardous chemicals, WE 421Hazardous Concentration, TU 335HBB, TU 241HBCDD, MO 188HBCDs, WE 433HCHs, EC02B-6 head morphology, MO 168Health Effects, EC05B-5Health impact, TUPC3-1Health Impacts, TU 118Health risk, MO 348, TU 015, TU 123, TU

270, WE 092Health risk assessment, WE 098, WE 100heatwaves, TH 265Heavy and precious metals, WE 293Heavy Metal, EP01A-5, MO 319, TH 123,

TH 192, TU 158, TU 412, WE 276, WE 291, WE 292

heavy metal resistance, TH 123Heavy metals, MO 243, MO 245, MO

287, MO 313, MO 375, TH 109, TU 144, TU 170, TU 382, TU 447, WE 100, WE 288, WE 300, WE 303, WE 403, WE 419, WE 432

heavy metals and biomonotoring, MO 306heavy oil, RA17B-5Hediste diversicolor, WE 068Helianthus tuberosus, TH 097Helical Rosette Nanotubes, WE 233hemoglobin, WE 333Henry’s law constant, MO 050hepatocyte, ET07A-4Hepatocytes, TH 030hepatotoxicity, TU 226Herbicide, EM02D-2, ET06B-4, TU 183,

TU 467, WE 143, WE 353, WE 398, WEPC6-1

Herbicide fate, TU 429Herbicide mixtures, TU 212herbicides, ET15B-1, MO 007, MO 381,

RA14-2, RA19-4, TU 184, TU 211, TU 372, WE 003, WE 236, WE 358, WE 370

heritability, ET10A-2herring, RA03-4heteroaggregation, SS03-4heterocycle, TH 015hexachlorobenzene, RA06-3, RA19-5hexavalent chromium, TH 117Hg EC02A-1, WE 073, WE 075Hg background levels, WE 080Hg geochronology, WE 080Hg soil-air exchange, RA10-1high-content pre-screen, MO 133High-Throughput, TH 043High altitude Andean streams, TH 271high discharge, TU 140high gradient extractor, MO 297high Kow, TH 299high mountain ranges, MO 037high resolution mass spectrometry, MO

195High resolution melt analysis, TH 029High speed mass spectrometer, MO 124high throughput, EP04-2high throughput analysis, TU 326higher-tier, MO 402, RA14-5higher-tier testing systems, TH 287higher tier, MO 461, WE 108higher tier assessment, WE 094higher tier studies, MO 472higher tiers, SS02-3histology, MO 150, MO 414, WE 219histopathology, EP02C-5, MO 389, WE

353, WE 396Historical contamination, TU 362HOCs, TU 447holistic approach, WE 030honey bee, TH 254honey bee poisoning, RA16-4Honey bees, MOPC6-5, RA16-3, TH 257Hong Kong, TU 447Hopanes, WE 157Horizontal gene transfer, TH 144hormesis, WE 328hormon, TH 307hormonal drugs, TUPC2-1horse chestnut leafminer, WE 373hospital, TH 129Hospital effluent, TH 135, TH 139hospital sewage water, EC01C-2hospital wastewater, RA23B-5host-symbiont interactions, EP08B-5housedust, TU 259household consumption, MO 104Housekeeping genes, TH 141HPG axis, MO 138HPLC-ESI-MS, TH 111HPLC-ICP-MS, TU 201HPLC-ICPMS, TH 107, TH 108, TH 111HPLC-MS/MS, MO 213, RA23A-5HPLC-UV/LTQ-ORBITRAP MS, WE 188HPLC, MO 029, TH 115, TU 096HPLC method, TH 299HR-MS/MS, MO 210HRMS, TH 324Human, TUPC3-6Human blood, EP06-5Human breast milk, MO 183human dimensions, WE 165human exposure, EM02A-5, TU 262, TU

270, TU 282, TUPC1-4, TUPC3-5, WE 435

human health, ET09-4, MO 093, MO 433, TU 269, WE 066, WE 453

Human health risk, TU 225human health risks, TU 268human immune system parameters, MO

130human intake fraction, RA12-6Human Labour, LC02A-3human liver microsomes, MO 177human pharmaceuticals, EP08B-1, MO

096human risk assessment, TU 130Human waste indicator, TU 096humic acid, TH 165, TU 299, WE 199humic substances, TH 104, TU 288, WE

239humus substances, TH 195HVO, MO 118 Hyalella azteca, WE 212Hybrid analysis, MO 103

hybrid life-cycle assessment, LC01B-5hybrid nanocomposites, WE 239hydra, MO 170 hydrazide, TH 001hydrazine, TH 001hydrocarbon, WE 195hydrocarbons, ET12C-1, MO 086, MO

367, TH 325hydrodynamic and pop modelling,

EM02B-3hydrodynamics, TU 175hydrogen energy, MO 113hydrologic transport, MO 089hydrology, TU 175hydrolysis, TU 051hydrophobic compounds, MO 023hydrophobic organic chemicals, EC01B-3,

TU 291hydrophobic organic contaminants, TU

280hydrophobicity, MO 196Hydroxylated polybrominated diphenyl

ethers (OH-PB, TU 458HYPERTENSION, MO 331hyphenated techniques, TU 377Hypothesis test, TU 332hypoxia, MO 138, MO 250, TU 414, WE

302, WE 311, WE 313

I IADN, EC05A-3IAM Chromatography, ET16-4Iberian Peninsula, TU 424, WE 075IBM, WE 006Ibuprofen, TU 097, WE 318ICAMA, WE 308ice core, EC02A-6, TH 075ICP-AES, WE 181ICP-MS, TH 115, TH 116ICP-OES, TU 410ICPBR, MOPC6-4ICT, LC03-5IDA, TH 116identification, MOPC3-7, WE 428illicit drugs, EP08A-4, RA23A-4, RA23A-

5, TH 328, THPC1-2, TU 086Imidacloprid, WE 361immobilization, TU 056Immune, EP08A-6immune parameters, ET13B-4immune system, MO 341, TH 270, WE

214immunity, TH 171immunoassay, MOPC3-2immunohistochemistry, WE 353immunotoxicity, MO 242 immunotoxicology, MO 245impact, MO 058, MO 430, WE 442, WE

453Impact assessment, LC04A-2, LC07-1,

LC07-4, MO 422, MO 439, MOPC5-8impactor, TU 001Imposex, EP02B-5, ET11B-6, TU 363, TU

367, WEPC4-4in-situ capping, TH 102in-vitro SS11-5, WE 338in-vitro digestion model, TU 281in-vitro test, EP07B-2, TH 025, TH 158in-vivo test, WE 245in silico, MO 370in silico methods, TH 281in situ, EP02B-4, ET11B-4, TH 103, WE

Page 25: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4��SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

411in situ exposure, TU 369in situ microcosms, ET13A-4in situ sampling device, EC01B-6“in vitro” simulation, MO 047 in vitro, ET03B-4, ET03B-5, MO 128,

MOPC2-1, SS11-6, TH 022, TH 023, TH 030, TH 041, WE 247

in vitro and in vivo, EP02B-4 in vitro assay, MO 137, MO 190in vitro bioanalytical tools, EP08A-2 in vitro bioassay, TU 428in vitro bioassays, EP02C-3, TU 089in vitro ER-LUC assay, EP02B-1 in vitro exposure, ET03B-2 in vitro method, WE 249in vitro methods, TH 281in vitro models, SS11-4 TH 193in vitro test, MO 252in vitro toxicity test, TH 021in vitro/in vivo assay, MO 160in vivo, ET03B-4, TH 095in vivo assay, ET03A-5in vivo test, MO 190inbreeding, RA21-1incident, MO 206 IncP-1e, TH 143Index proposition, TU 435Indian Ocean, TU 247, TU 448indicator, MOPC5-2, RA04B-5indicators, MO 440, MOPC5-7indirect effects, WE 064Individual-based model, RA01-1, RA15-4individual-based population model, TU

462Individual based model, ET14-5, MO 269individual level, TH 190indoor air, TU 262, TU 269indoor air and dust, MO 040Indoor environment, WE 089Inductively Coupled Plasma Mass Spec-

trometry, WEPC5-2industrial effluents, TH 318industrial pollutants, TU 306Industrial wastewater, THPC1-4industries, MO 437 Industry Sustainability Scheme, LC06-3infectious disease, RA17B-5nfinite silicone sink, EC06A-4inflammation, TH 157, TU 272Influenza, WE 142influenza pandemic, EP08B-3informal recycling, TU 116Information-Gap, TH 241Information, WE 037Information Requirements, RA12-1Ingenuity Pathway Anaysis, TU 317Ingestion, EP07B-5, TU 031inhalation exposure, EC05A-6inhibition, EC06B-5 Initial Training Network, MO 193inland waters, RA20-4innate immune system, MO 167innovation, EP04-1, LC06-1Innovations, WE 031inorganic and organic pollutants, TU 408Inorganic Hg, TU 177inorganic nanoparticles, WE 232Input-Output Analysis, WE 449Input-Output Analysis (IOA), MO 103input-output table, MO 427 inputs into the soil, MOPC1-8

insect, ET15A-5insecticide, ET15A-1, RA15-3, TU 471,

WE 381insecticides, ET04A-3, ET15A-5, MO 140,

MO 308, MO 344, RA17B-6, TU 082, TUPC6-6, WEPC4-1

Intake fraction, MO 078Integrated addition model, TU 231integrated indicator, LC05-4Integrated Management Systems, TH 355integrated modelling, WE 005Integrated monitoring, EP02B-6, TU 409integrated risk values, MO 284integrated testing strategies, TU 130integrated testing strategy, EP02B-4,

MOPC2-2integrated vector management, WE 041Integration, RA08-5Integrative biological index, TU 376integrative monitoring, ET01-2integrative sampler, MO 016integron, EP01A-6, TH 129integrons, TH 121intelligent testing strategy, MO 361interaction, ET14-4, MO 344, RA17B-6,

RA20-6, WE 398, WEPC5-5Interactions, SS06-4intercellular communication, MO 337Intercomparison, MO 001interdisciplinary, TH 214interference, WE 191interindividual variability, TU 330interlaboratory study, MO 002intermittent power generation, LC01A-5internal concentration, ET03A-2, ET03B-5internal dose, RA12-5internal residues, TU 217internalization, WE 461International, LC04B-4Interpretation phase, MOPC4-6intersex, MO 14, RA23B-1, RA23B-3intersex condition, ET07B-1 interspecies correlation estimations, ET08-

1interspecific competition, TH 278interspecific interaction, TH 274Intertidal community, WE 311intracellular distribution, WE 067invasive species, TH 267, TU 185Inventory, LC07-4, TH 314inventory modelling, LC01B-1, MOPC4-5Inverse Modelling, TU 110invertebrate, MO 046, TU 420invertebrate shredder, WE 216invertebrate toxicity, TU 222invertebrates, ET12C-1, MO 263, MO

377, RA10-5, TU 385, WE 285investigation of cause, MO 126iodinated X-ray contrast media, TU 300ion, TUPC2-5Ion exchange chromatography, TH 114ionic compounds, MO 008ionic organics, MO 061ionisation, EP03B-5, ET16-4ionization, WE 252ionized contaminants, TU 292Ionizing compounds, ET04C-2Ionophores, MO 197, TU 051iron nanoparticles, TH 192iron oxide nanoparticle, WE 225, WE 227Iron oxide Nanoparticles, WE 198iron oxides nanoperticles, WE 239

irrigated rice, WE 412Irrigation, TU 066ISO, MO 427, TH 359ISO 14040, LC02A-1ISO 26000, LC02A-1ISO standard, TU 181isocyanates, MO 030Isognomon alatu, WE 393Isopods, WE 327isoproturon, WEPC3-6isotope, EC04-3, ET04B-3 isotope fractionation, RA03-3isotopic tracers, WE 084ivermectin, ET19B-4, MO 402ivory tower, WE 038

J Japan, MO 464, WE 431, WEPC1-3Japanese medaka, ET07A-6 , MO 145, TU

411Japanese paper, MO 032 Jersey, WE 422 Johannesburg, TU 322 Juvenile fish, WE 341 juvenile frogs, TH 054 Juvenile trout, MO 381

K kairomone, TU 465kaolinite, WE 398Kazakhstan, TH 280Kd, TH 279key characteristics, TH 044key message, WE 027Killifish, TH 017kinetic, TU 101kinetic model, MO 398kinetics, EP03A-2, MO 041, MO 054,

SS07-3, WE 134, WE 254kinetics of toxicity, WE 160, WE 161Klimisch evaluation, TU 126knowledge base, TH 214knowledge transfer, WE 039Kow, ET04A-1, RA18-5Krill, TH 087Ksa, EM02B-6Kuwait, TUPC3-5

L Labelling, WE 044, WE 163laboratory, WE 381Laboratory Bioassays, MOPC1-5laboratory test, MO 402laboratory testing, TH 037lactate dehydrogenase, TU 094lagoon, RA10-4, TU 144lagoons, TH 311lake, ET15B-1, RA19-5Lake Baikal, WE 284Lakes, EC02A-5, ET13A-6Land occupation, MO 439land use, ET12C-6, LC05-4, MO 438,

MOPC5-7, WE 112land use change, LC01A-3, MO 109Landfill, TH 310Landscape, WE 118landscape complex, MO 317Landscape ecotoxicology, RA14-6, WE

110landscape level, WE 104Landscape scale, WE 106landsnail, ET15B-2

,

,

Page 26: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4�4 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

landuse, WE 419Langmuir-Hinshelwood mechanism, TU

258large spatial scale, WE 104Larus audouinii, WE 075Larus michaellis, WE 075arvae, TH 004, WE 302larvae development, WEPC2-8Larval settlement, WE 301, WE 311laundry product, MO 430 LC-ICP-MS, TH 112LC-MS, WE 382LC-MS/MS, EP05-6, MO 006, MO

195, MO 347, MO 408, MOPC3-6, RA23A-2, TU 043

LC-ToF-MS, TU 037LC IMPACT, TU 118LC/MS/MS, MO 205, TU 446LC50, RA18-5, TH 290LCA, EM03-1, LC01A-4, LC02A-1,

LC02A-6, LC02B-3, LC02B-4, LC03-4 LC03-5, LC06-5, LC07-5, MO 093, MO 098, MO 099, MO 100, MO 102, MO 108, MO 112, MO 116, MO 117, MO 119, MO 428, MO 431, MOPC4-5, RA04A-3, RA04A-5, TH 345, TH 359, TU 117, TU 232, TU 238, WE 452, WE 453, WE 461, WE 462

LCA tool, TH 352LCA uncertainty, TU 236LCA veterinary product, TH 357LCA, LCM,LCC,S-LCA, WE 451LCC, LC02A-4, LC02A-6, WE 462LCI, LC04B-6, MO 107, MOPC4-1,

MOPC4-5, MOPC4-7LCI modelling, MOPC4-4LCIA, LC04A-1, MO 429, MOPC5-7,

RA04B-2, RA04B-6, TU 119, TU 233, WE 442, WE 465

LCIA characterization factors, TU 120LCIA methodology, RA04A-2LCIA(life cycle impact assessment), MO

433LCM, LC06-5, TH 355LCMSMS, EP02B-6 LCSA, LC02A-2, LC02A-5, WE 441, WE

443, WE 451Leachate, TH 310leachate toxicity, WE 090leaching, EM02D-5, EM02D-6, EP06-2,

EP07B-1, TU 102, TU 111, TUPC6-7, WE 186, WE 241

leaching behaviour of pesticides, TU 108eaching study, EP08C-3Lead, EM0B1-6, MO 045, MO 046, MO

244, MO 247, TH 103, TH 104, TH 194, TU 199, TUPC6-7, WE 016, WE 021, WE 128, WE 394, WE 430, WE 463

lead isotopes, EM0B1-6lead shot, MO 047lead shots, MO 245Lead toxicity, WE 295Leaf-cutting ants, WE 371leaf litter, EP03C-2 Leaf litter breakdown, ET14-1, TH 322learning curves, MOPC4-2left-censoring, TU 013 thresholds, WE 423lemna, SS09-9, TH 292, WEPC6-3,

WEPC6-4Lemna growth inhibition test, WE 278

Lemna minor, WE 366Lemnaceae, TU 191Lepidoptera, TH 249Lepomis gibbosus, TU 316less-toxic, EP04-5lethal concentration, WE 353lethal toxicity, WE 221Leucoagaricos gongylophorus, WE 371level of protection, MO 472Levonorgestrel, TU 072life-cycle, ET10A-6life-cycle endpoints, ET07B-2life-cycle test, MO 254Life-cycle toxicity test, MO 452 life-traits, ET12B-5 life cycle, EP03D-3, EP03D-5, LC07-2,

SS12-9Life Cycle Analysis, EP04-6, LC06-3, TH

348Life cycle assessment, LC02B-1, LC04A-6,

LC04B-5, MO 101, MO 104, MO 106, MO 113, MO 114, MO 120, MO 423, MO 442, MO 443, MO 445, MOPC4-6, MOPC5-1, TH 340, TH 341, TH 344, TH 350, TH 351, TH 354, TH 356, TU 115, WE 183, WE 446, WE 449, WE 457, WE 464

Life Cycle Assessment (LCA), EM02C-2, MO 088, MO 103 MOPC5-6

Life cycle assessment impact categories, MO 424

Life Cycle Costing, LC02B-6life cycle costing (LCC), WE 460life cycle exposure, ET15B-2 life cycle impact assessment, EM03-4, MO

443, MO 444, RA04A-6, RA04B-3Life Cycle Impact Assessment (LCIA), MO

434, MO 441, MOPC5-3life cycle inventory, MO 445, MOPC4-2,

MOPC4-4Life Cycle Management, LC06-2, LC06-6Life Cycle Sustainability Assessment,

LC02A-4, WE 448Life Cycle Sustainability Assessment

(LCSA), LC02A-3Life history, MO 380, TU 471lifecycle, TU 342lifecycle assessment, LC07-1lifecycle management, LC07-1ligand, THPC1-5Light condition, WE 237 Line of evidence, MO 386 linear alkylbenzene, WE 266linear discriminant analysis, MO 168linked data, TH 344linking, TU 324linking effects, EP03C-5 linuron, TU 466lipid-water partitioning, MO 033 Lipid content, ET15A-6Lipid normalization, MO 060Lipid peroxidation, WE 394 Lipid soluble conjugates, MO 335lipid:water partition coefficient, WE 251Lipidomics, ET07A-4lipids, ET13B-2 lipophilicity, TU 105, WE 250 Liquid chromatography/tandem mass

spectrometry, TU 039Lithobates catesbeianus, ET06B-3, WE

412litter, WE 081

litter breakdown, MO 379Littoral community, TU 081liver, MO 174, WE 172Local contamination, EC02A-4local sources, EM01A-6locomotion activity, TU 341locust control, WE 367LOEL, ET02-2Log P, ET16-4LogPow, TU 020London, EM01A-5long-distance transport, EC05A-6, TUPC5-

5long-range transport, EM02A-3, TH 077long-term effects, WE 223Long-term exposure, MO 145, TH 061Long-term monitoring, EC06A-5, TUPC5-

5long-time effect, WE 373Long Range Atmospheric Transport,

EM01A-1Long Range Atmospheric Transport

(LRAT), TUPC1-8long term biomonitoring, TU 136long term effects, MOPC1-2, TU 358long term monitoring, EP02C-1 Lontra canadensis , ET08-4Loss of Life Expectancy, TUPC3-1Lotic system, TH 128low-dose studies, TH 296low-waste, EP04-5low drift, WE 116Low level analysis, MO 065, TU 273LowGC plasmids, TH 143lowland catchment, RA14-1LSER, MO 200 Lumbriculus, TH 177Lumbriculus variegatus, WE 355Luminescence, MOPC3-3luminescent bacteria, TH 032, TH 033Lung function, WE 142luteinizing hormone, ET19B-5Lymantria dispar, WE 257Lymnaea stagnalis, MO 449, MO 452, TU

475lymphocytes, WEPC2-2Lyngbya wollei, MO 341Lysimeter, EP06-2, ET19A-4, TU 110lysosomal membrane stability, ET11C-1,

TU 084Lysosomes, ET16-2

M mackinawite, TH 102Macro-invertebrates, WEPC6-7macro-scale, EM03-6MACRO, EM02D-2macrobenthic fauna, TU 384macroecology, WE 104macroinvertebrate, WEPC3-3macroinvertebrate assemblages, WE 002macroinvertebrate biotraits, MO 373macroinvertebrate community structure,

MO 379macroinvertebrates, MO 375, MO 378,

RA14-3, TU 469, WEPC3-1macrolid antibiotic clarithromycin, TU 088macrolide, TU 058Macrophyte, RA19-5, TUPC6-2, WE 143macrophyte toxicity, WEPC6-2macrophytes, RA19-4, TU 183, TU 185,

TU 189, TU 202, TUPC6-6, WE 067

Page 27: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4��SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

magnesium, TU 192maintenance, TH 354malaria, WE 041Malathion, ET06A-2Malaysia, LC07-3male fertility, EP02C-2 Malformations, MO 460Mammal, WE 061Mammalian Plasma Model, TUPC2-3mammals, TH 251, WE 058management, MO 329, TU 174manganese, WE 012manure, ET19A-3, MO 404, MO 405,

MO 410Mar Menor, EC01B-4, WE 356Margin of Safety, WE 135Marginal, LC01B-2 marine, EP07A-3, EP08B-6, ET11B-1, MO

345, RA17B-3, TU 022, WE 072, WE 153, WE 401, WE 425

Marine algae, TU 398Marine algal bioassay, TU 394marine aquaculture, RA19-6Marine bacteria, TU 361Marine Biological Reserve of Atol das

Rocas, TU 243marine contamination, TU 428marine debris, EP07A-1, EP07A-6, TU 029marine deposit feeders, TH 190marine ecosystem, TU 456marine ecosystem damage, ET11A-6marine ecotox, TU 392marine ecotoxicology, TU 386, TU 387,

WE 187Marine eutrophication, RA04A-2marine invertebrate, TH 178marine invertebrates, WE 301, WE 302Marine Litter, TU 024marine mammals, RA03-6, TUPC5-2marine medaka, MO 134, MO 259, TH

167, TU 414marine models, EP04-3marine plastics, EP07B-5, TU 027marine pollution monitoring, TU 379Marine sediment, WE 426Marine sediments, TU 442Marine Strategy Framework Directive,

ET11A-1marine turtle eggshell, TH 064MarineLitter, EP07A-2 mark-release-recapture, WE 267Market, LC01B-2 market authorization, MOPC1-6Marrakech Process, LC07-2mass balance, EC02B-4, MO 327, RA10-2

TH 189, TUPC1-6mass balance tracer, TU 122Mass flow, TU 035mass flow modelling, MO 106Mass Loading, TU 005mass spectrometry, EP05-6, MOPC3-7,

RA23A-2, TU 035, WE 317mass transfer, EC01B-3 massive, RA05-2material flow, WE 450maternal transfer, ET04B-5, MO 242Mathematical Approach, MO 371mathematical model, MO 066Mathematical modelling, TU 111Matrix models, RA01-3matrix of relative sensitivities, LC04A-3matrix population model, RA01-4

Mauremys leprosa, TH 063Maximum concentrations, RA14-2mayfly, WE 348MCA, LC02A-2, WE 441MCPA, TUPC4-5MCR, TU 214measurements, EC02B-4, TH 082Measurements and models, EC05B-5 mechanical-biological treatment plant, TU

268mechanism of toxicity, TU 385mechanisms, WEPC5-6mechanisms of action, EP03C-5 mechanistic model, SS07-4mechanistic modelling, ET04C-3Mechanistic toxicology, ET09-2medaka, TH 161, TH 163, TH 164, WE

331medaka larva, MO 256media, WE 226media coverage, WE 083median hazardous dose, ET08-1Mediterranean, ET06B-6Mediterranean agronomy, WE 059Mediterranean basin, WE 307Mediterranean conditions, ET15B-5Mediterranean River, RA23A-3Mediterranean Sea, ET11C-4, MO 070,

TU 032Mediterranena, RA10-2mefenamic acid, MO 146MeHg, RA10-2MeHg, PCB 153, ET07A-3meiofauna, TU 438Melanin, TH 271melanin pigment, MO 306 Melting temperature, WE 346MeO-PBDEs, MO 327, TU 406Mercury, EC02A-3, EC02A-5, EC02B-3,

EP01A-3, ET04B-3, ET04B-4, RA03-1, RA03-3, RA10-2, RA10-4, RA10-6, RA17A-2, TH 091, TH 092, TH 102, TU 402, TU 464, WE 066, WE 068, WE 069, WE 070, WE 071, WE 072, WE 074, WE 077, WE 078, WE 081, WE 082, WE 084, WE 280, WE 281, WE 310, WE 401

mercury exposure, RA10-3mercury speciation, ET05-6mesocosm, TH 325, TU 183, TU 470, WE

143, WE 395, WE 408, WEPC4-5mesocosms, MO 241, MO 377, TU 468,

WE 410Mesocosms studies, TH 066meta-analysis, LC03-1, LC03-3, LC03-4,

TH 341, TH 344, TH 348, TU 321, WE 448

meta, TH 346meta analytic, TH 345Metabolic activation, MO 212metabolism, EP02C-3, ET16-5, MO 149,

SS11-5, TU 101, TUPC2-4, WE 241, WE 249, WEPC1-2

Metabolite, MO 410Metabolites, MO 125, MOPC3-4, TU 057,

TU 079, WE 136Metabolomic, ET07B-5metabolomics, ET01-5, ET07B-4, ET07B-

6, WE 148Metabolomics analysis, TU 315metagenomics, WEPC2-6Metal-bridging, WE 185

metal-rich granules, MO 045metal-speciation, WE 019metal, EC04-3, EM02C-3, ET10A-2,

ET10B-3, RA05-4, TH 019, TU 356, TU 385, WE 014, WE 017, WE 442

Metal adaptation, ET10B-1Metal buffering, TH 035metal contamination, TU 156, TU 160, TU

420Metal exposure, TU 377, WE 129metal isotopes, WE 242metal mixture toxicity, TH 276metal nanoparticles, WE 197metal oxide nanoparticle, EP04-5Metal Oxide Nanoparticles, WE 202metal oxides, WE 193metal pollution, TH 269, TU 348Metal selective-resin, TH 035metal speciation, EM03-4Metal Trace Elements, WE 013metallic contaminants, MO 299metalloid, EC04-3Metallothionein, ET10A-1, TU 170, WE

127metallothioneins, TH 157Metalochlor, TU 429metals, EC04-1, EM01A-4, EM01B-2,

EM01B-5, ET11C-1, ET12C-5, MO 017, MO 092, MO 251, MO 283, MO 284, MO 305, MO 466, RA20-5, SS06-3, TH 061, TH 098, TH 099, TH 100, TH 105, TH 247, TH 252, TH 332, TU 142, TU 146, TU 148, TU 151, TU 173, TU 193, TU 200, TU 223, TU 225, TU 266, TU 366, TU 442, TU 443, TU 458, TUPC6-5, WE 015, WE 020, WE 033, WE 268, WE 273, WE 400, WE 420, WE 436, WEPC1-4, WEPC4-6

metals contaminated soils, WE 117metamodel, EM02D-5metamorphosis, ET11A-5, TU 372Metazachlor, TU 113, WE 343methane, TU 265Methemoglobin, TU 478method, MO 297method development, TUPC6-4method validation, MO 347methodological developments, TH 343methodological differences, LC03-2Methodology, LC01A-4, MO 099, MO

100, MOPC4-7, MOPC4-8, TH 251, TU 238

methods, SS06-5methods for environmental risk assessment

(ERA), RA11-4Methyl mercury, RA10-5, TH 108methylation, WE 078, WE 084methylmercury, WE 076methylome sequencing, TU 352methyltestosterone, MO 157, TH 018, WE

397metolachlor, TUPC3-2metrics, TU 469Metrology, WE 176Mexico, TU 442, WE 073, WE 437MIC, TH 146Michael-acceptor addition, TH 041Michael acceptor, MO 370, TH 040micro-/mesocosms, ET15A-1micro-arthropods, MO 297 micro-evolutionary potential, TU 347

, ,

,

Page 28: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4�6 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

micro-organisms, MO 203micro pollutants, TH 314microalgae, RA17B-2, TU 456Microarray, TH 164, TU 325, TU 357, WE

325, WEPC2-4Microarthropod, MO 295microarthropods, MO 292microbial, WE 195microbial activity, MO 304Microbial availability, TU 288microbial communities, ET19B-1, TH 263microbial community, EP03C-2, ET12C-2,

WE 305Microbial community structure, ET12B-3microbial degradation, ET19A-4, MOPC1-

3microbial diversity, ET19A-6, MO 410,

WE 354microbial growth, MO 064 Microbial test battery, TU 271microbiological indicators, MO 298 microbiological pollutants, TU 268microcontaminants, MO 199 microcosm, ET12A-4, MO 406, TH 284,

TH 291, TU 467, WE 093, WE 146, WE 370

microcosm studies, MO 391microcosms, ET12B-6, MO 279 microcosms experiments, WEPC3-4microcystin-LR, ET13B-5 microcystin, ET13B-2, MO 036, MO 339,

MO 342, MO 354 microcystin production, ET13B-1 Microcystins, ET13A-6, MO 349, MO

350, MO 352, MO 353, MO 356, WE 256

Microcystis, MO 352, RA17B-6Microcystis aeruginosa, ET13B-4, MO

341, MO 342Microevolution, TU 348microfluidics, EC01B-1microginins, MO 352Micronuclei, WE 322Micronucleus, WE 361micronucleus assay, TH 004Micronucleus test, TH 039microorganisms, TH 202Microparasites, MO 390 microplastic, EP07A-3, EP07B-2, EP07B-3,

EP07B-6Microplastics, EP07A-1, EP07A-2, EP07A-

4, EP07A-5, EP07A-6, EP07B-4, TU 024, TU 026, TU 031

Micropollutant, TH 322, TU 040micropollutants, ET10B-5, MO 028, MO

122, MO 139, RA23A-6, TH 317, TH 321

MicroResp™, MO 305Microscopy, WEPC5-7Microtox, MO 218, TH 328, WE 140microwave, WE 012Microwave digestion, TH 108Mid-Atlantic Ridge, WE 281mid-infrared, TH 279Middle reaches of Yangtze River, TU 166midpoint, RA04A-1Midpoint indicator, RA04A-2migration, TU 420Milk LCA, LC02B-6Milkfish, TU 225Mine contaminated soils, WE 269mineral hydrocarbons, TU 278

mineral water, TH 142mineralization, ET19A-4Minerals, MOPC5-6Minimized Test Design, TU 047minimum inhibitory concentration distri-

butions, EP01B-2Mining, MO 428, RA05-6, WE 117,

WEPC4-3mining activities, TU 156Mining contaminated sites, WE 069Mining of Knowledge, LC07-5mining waste, MO 285Miscanthus x giganteus, MO 312, TUPC6-

8mitigation, TUPC6-6, WE 116, WE 315Mitigation measures, MO 470, WE 113,

WE 114mitigation strategies, EM02B-4Mitochondria, ET16-2mitochondrial DNA, TU 354Mitochondrial oxidative phosphorylation

(OXPHOS), TU 458Mixing zone, MO 082, MO 084 MixTox model, TU 083mixture, EP08A-6, MO 381, TH 319, TU

207, TU 208, TU 209, TU 210, TU 211, TU 329, WE 074

mixture assessment, RA12-2mixture effects, TUPC2-7mixture models, WE 085mixture occurrence, WE 085Mixture risk assessment, TU 206Mixture toxicitiy, TH 199Mixture toxicity, EC01B-1, ET06B-2,

ET07A-6, MO 158, RA18-2, RA20-1, RA20-6, TH 007, TH 327, TU 082, TU 083, TU 117, TU 218, TU 223, TU 225, TU 231, TU 394, TU 398, TU 450, WE 085, WE 276

Mixture toxicity of PAHs, MO 034mixtures, ET01-3, ET12A-4, MO 287,

MOPC3-5, RA20-2, RA20-5, TH 275, TU 213, TU 215, TU 216, TU 226, TU 386

mixtures toxicity, TU 221, WE 159MLST, TH 136mobilisation, TU 141mobility, WE 081mode-of-action, TU 315mode of action, EP08C-5, ET03A-6,

ET07A-2, TH 007, TH 193, TU 210Mode of sorption, MO 043Model, EM02A-5, EM02D-2, EM03-6,

MO 056, MO 062, MO 085, MO 397, RA01-5, TH 148, TH 290, TU 209, WE 001, WE 151, WE 441, WEPC1-5, WEPC6-4

model development, RA01-6Model fitting, ET02-3Model system, RA18-6model uncertainty, LC04A-4model validation, TH 334modeling, MO 052, MO 076, SS09-12, TU

107, TU 452, TU 466, TUPC4-8, WE 082

Modelling, EC01C-5, EC05B-1, EC05B-4, EM02C-5, EM02D-6, ET05-6, ET14-6 ET15A-2, ET16-5, ET19B-3, MO 054, MO 064, MO 079, RA14-5, RA19-2, TH 078, TH 082, TU 099, TU 215, TU 294, WE 121, WE 445, WE 463

modelling endpoints, MO 094

models, ET09-1, SS02-1, SS02-4, SS12-3Modular Impact, TU 236Moina macrocopa, WE 217molecular diagnostic ratios, MO 039 molecular effects, SS09-3Molecular mechanism, WE 325molecular mechanisms, TH 209Molgora river, TU 069Mollusca, MO 173molluscs, MO 451, TU 366monetary valuation, WE 459Monetisation, LC05-5, WE 464, WE 465monetisation methods, WE 457Monetization, WE 461Monitor, TU 138monitoring, EC01C-6, EM01A-1, EM01B-

5, EM02D-4, EP01B-3, EP07A-1, EP07B-4, ET04A-6, ET11A-2, ET11B-1, ET11B-6, ET12B-2, MO 002, MO 316, RA16-2, RA16-6, RA23A-1, TH 250, TH 326, TU 014, TU 147, TU 169, TU 213, TU 427, WE 040, WE 194, WE 376, WE 420, WE 422, WE 425, WE 430, WE 431, WEPC1-1

Monitoring campaigns, TH 317Monitoring data, EM01A-4monitoring strategy, EM01A-2monodisperse, EP04-5Monte carlo, LC04B-6 Monte Carlo Method, TU 238montecarlo, TU 235Morbillivirus, ET11C-4moribund “fish”, TH 002mortality, TU 080, WEPC5-6mortality survey, WE 005mosquito control, WE 097mosquito larvae, WE 041Mosquito net, WE 453mosquitoes, WEPC4-1Motility, TU 290Mountain, TU 248movement behaviour, TU 473, WE 105MRP, TU 220MRSA, EP01A-1MS library, EP05-5MS/MS, TU 030, TU 259MSFD, ET11B-3 MSFD Marine Strategy Framework Direc-

tive, TU 024MSWM, LC02A-5MTT Assay, WE 140Müllerian duct, MO 176 Mullus barbatus, EP02B-1, TU 409multi-component method, MO 123Multi-contamination, TH 262multi-criteria analysis, LC02B-1 multi-criteria decision analysis, WE 446Multi-Criteria Decision Analysis (MCDA),

LC02B-2multi-demand, MO 104 Multi-functionality, MO 111multi-generation, TU 357multi-pathway, MO 058multi-reference approach, MO 284multi-regional input-output, LC01B-5Multi-residue method, TU 039multi-resistant, TH 330multi-scale, MO 058Multi-scale modeling, MO 087 Multi-species experiment, ET12A-5multi-species testing, ET02-5multi-walled carbon nanotubes, TH 203

Page 29: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4��SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Multi Criteria Decision Analysis, TH 206Multi resistant Pseudomonas aeruginosa,

TH 132Multi stress, TH 271Multicompartimental Model, TU 100multicompartmental modelling, MO 072multicriteria, TH 044multigenerational, ET10B-3 multigenerational protocol, MO 142multilayer fractionation, RA06-4multimedia, MO 058multimedia chemical fate model, MO 070multimedia fate model, SS12-6Multimedia mass-balance fate Modelingmultimedia model, EM02A-3, MO 057,

MO 321, WE 111multimedia modelling, MO 059multimedia models, MO 055, MO 061,

MO 091multiple exposure, TH 278multiple impacts assessment, RA17A-6multiple stress, RA17A-3multiple stressor, ET09-5, RA17B-5multiple stressors, MO 373, RA17A-1,

RA17A-2, RA17B-3, SS02-4, TH 259, TU 174

multipolluted, TH 097multistressors effects, TH 267Multivariate analysis, ET12C-4multivariate regression, MO 211Multivariate statistical analysis, WE 131multivariate statistics, TU 438Multixenobiotic resistance, TU 221municipal effluents, TH 318municipal solid waste incinerator (MSWI),

MO 038munitions, WE 251murine, EP06-6Murray River rainbowfish, MO 164muscle, TU 415Muscular tissue, TU 421musks, EP02A-4mussel,ET13B-4, MO 066, MO 341,

TH 171, TU 382, TU 389, TU 439, TUPC2-6, TUPC2-7, WE 266

mussels, TH 175, TU 320, TU 377, TU 383, WE 317, WE 318

mutagenicity, EP05-3, MO 212, TH 024mutant, TH 038MXR, ET11A-5mycotoxin emission, ET13A-3, MO 332,

MO 333, MO 334 Myriophyllum, TUPC6-1, TUPC6-2Myriophyllum quitense, TU 188Myriophyllum spicatum, RA19-2Mysidopsis juniae, TH 170, WE 159, WE

160, WE 161Mytilus, WEPC1-3Mytilus edulis, EP07B-4, MO 345, TH

270, TU 031, TU 374, TU 450Mytilus galloprovincialis, TH 269, TU

134, TU 376, TU 379, TU 416Mytilus spp, EP08A-5 Mytilus spp, TU 369, WEPC2-1

N N-Acetylcysteine, MO 340N-emissions, RA04A-2N-Ethyl-N-(2-hydroxyethyl)-4-(4-nitro-

phenylazo) an, TU 228nano-LC-MS/MS, MO 203nano-objects, TH 187

Nano-QSAR, WE 193Nano-silver, TH 157nano-SiO2, WE 186nano-TiO2, TH 160, TH 195, TH 199,

WE 186Nano, MO 466, TH 213, WE 222Nano CuO, WE 216nano silver, WE 184nano zinc oxide, EP04-4nanoecotoxicology, TH 160, TH 172nanofabrics, MO 353Nanomaterial, TH 189, WE 182nanomaterials, EP03A-5, EP03B-2,

EP03D-3, MO 465, SS03-3, TH 208, TH 210, TH 211, TH 212, TH 214, WE 043, WE 215, WE 233, WE 240

Nanoparticle, ET07A-4, SS03-4, TH 201, TH 207, WE 191, WEPC5-6

Nanoparticle characterization, EP03A-3, EP03A-6

Nanoparticle exposure chamber, TH 162nanoparticle uptake, TH 193nanoparticles, EM02D-3, EP03B-3,

EP03D-2, EP04-3, MO 264, RA08-1, TH 169, TH 170, TH 176, TH 177, TH 184, TH 202, TH 204, TH 209, TU 196, TU 414, WE 177, WE 189, WE 190, WE 193, WE 204, WE 211, WE 213, WE 218, WE 238, WEPC5-1

Nanoparticles (NPs), WE 183nanoparticles characterisation, WEPC5-2nanosilver, WE 195, WE 196, WE 223nanotechnology, EP03D-5, EP04-2, EP04-

6, WE 176, WE 238nanotoxicology, EP04-4, MOPC2-8, TH

186, TU 196nanotubes, TH 181, WE 199 naphthenic, RA18-2naphthenic acids, TH 277Naphthnenic acids, MO 161NAPLs, TU 295naproxen, TU 095narcosis, TH 294, WE 122natural background, TH 131natural bioremediation capability, MO 391Natural factors, SS06-4Natural gas, MO 422Natural Organic Matter, TU 297, WE 224Natural Pesticide, WE 371natural processess, RA06-2natural product, ET13A-4Natural reference soil ., MO 283natural remediation, TH 313natural resource damage, ET09-6natural toxins, ET13A-2, ET13A-3, MO

332, MO 333, MO 334, TU 394natural water, WE 178natural waters, SS03-4nature, RA08-6naupliar growth, MO 142nd-SPME, TH 031Near field exposure, EM02C-1Negative chemical ionization, TU 259nematode, MO 329nematode communities, ET12B-6 Nemrut Bay, TU 158neonicotinoids, RA16-4neostigmine, TU 078neotropics, ET18-3Nereididae, TU 477Nereis diversicolor, TU 404, TU 449, WE

200

net ecosystem service analysis, MO 387net environmental benefit analysis, MO

387, TH 246network ET01-1, WE 040Network modeling, WE 107Network of Excellence, RA08-5neuro-transmitters, ET07B-4 neurotoxicity, ET03A-4, TH 016neutral red, TU 439Neutron activation, EC04-5New born pesticides, WE 371new brominated flame retardants, EC01A-

4new method and tool, TUPC4-6new subclass of ampC FOX genes, TH 125Next-generation sequencing, WEPC2-5Nickel, TU 383, WE 018, WE 022, WE

327Night markets, WE 141Nitocra spinipes, TU 036nitramine, MO 271nitramines, TU 373Nitrate, ET06A-2, TU 185, TU 478nitric oxide, TU 080nitrification, WE 195Nitrifying Sand Filters, RA23B-2nitroaromatics, WE 336Nitrogen-containing analogues, MO 270nitrogen cycle, MO 401Nitrogen isotope, WE 309nitrogen transformation, ET19B-1nitrophenol, MO 199Nitrosodimethylamine, MO 031NMR metabolomics, TU 325NMR spectroscopy, TU 402NOEC, MO 189, TU 332NOEL, ET02-2noise impacts, TU 232non-animal method, TH 042Non-chemical stressors, SS06-4non-culturable bacteria, EP01A-2 non-detects, RA05-5Non-extractable residues, EC06B-6, MO

399, MO 457, MOPC1-3non-linear regression, TU 334non-mammalian model species, WE 326non-saturated soil, TH 098Non-standard methods, SS11-1Non-standard test, RA21-4non-stationarity, MO 089 non-target, RA22-3non-target analysis, MO 196, MO 200,

MO 209, MOPC3-2Non-Target Arthropods, RA11-1, TH 243non-target organism, WE 370non-target screening, EP05-2, EP05-6, MO

202, RA23A-2non-target species, WE 088Non-Testing Methods (NTM), MO 363non-toxic stress, TH 261non invasive biomarkers, ET06B-6non target arthropod, MO 376non target screening, EP05-4Nonaqueous-phase liquids, TU 286Noninvasive sampling, ET08-4Nonylphenol, MO 147, WE 357Nonylphenol ethoxylates, MO 147 North Iberian Peninsula, TU 134, TU 376North Sea, EM02B-3, EP07A-3Northeastern Brazil, TU 426Northern Contaminants Program, TH 081northern Italy, TU 069

Page 30: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4�� SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Not acute toxic, MO 215Novaluron, WE 350novel endpoint, TH 301Novel on-board technologies, TU 460NRRT assay, TH 105NSAIDs, MO 146nTiO2, TH 174Nucella lapillus, ET11B-6, TU 364Nuclear abnormalities, TH 039nuclear receptor, WE 336nuclear receptors, MO 153 numerical model, MO 090 numerical modeling, TH 098NUSAP, LC04B-6nutrient removal, TH 336nutrients, MO 087, TU 296, TU 467nutritional quality, WE 364NW Britain, TU 264NZVI, TU 196, WE 222

O O:N index, TU 319obesity, EP02A-4Occupational exposure, TU 260occupational exposure limits, TH 242occupational exposure model, RA02-5Occupational Risk Assessment, TH 206occurence, TU 060Occurrence, RA23A-3Ocean acidification, ET11A-6, WE 320Ocean warming, WE 320OCP, MO 018octanol:water partition coefficient, WE

251Odours, EM02C-2OECD, MOPC6-2, TH 012OECD 105, TH 288OECD 209, MO 456OECD 305, WE 245, WEPC1-7OECD Conceptual Framework, MO 192OECD Guideline 203, TH 002OECD QSAR toolbox, MO 366OECD Test Guidelines, MO 449OECD TG 303, TH 304OECD29, WE 019Oestrogens, RA23B-2, TH 305off-crop field study, MO 296ofloxacin, TU 076OH-PBDE, MO 335OH-PBDEs, MO 125 MO 327 OH radical, TU 258oil-spill impacts, WE 150Oil-spills, WE 426oil WE 151, WE 156Oil field, WE 413Oil pollution, MO 169, MO 300 sands, RA18-2Oil sands process-affected water, MO 161oil sands tailings, RA23B-6Oil spill, MO 027, RA18-3, RA18-6, WE

153, WE 154, WE 157, WE 158oil spills, RA18-1oil & gas production, TU 391oilfield chemical, ET11A-3oilsands, TH 277Okadaic Acid, ET13A-5, MO 345, MO

351 Oligochaetes, MOPC1-5, WE 274olive gardens, WE 099omics, RA20-6, WEPC2-7on-line monitoring, TH 033On-site wastewater treatment systems, TU

045Oncorhynchus mykiss, EP08A-5Onhsore wind power electricity, LC03-3online-SPE, MO 124, MO 417 online monitoring, MO 139, TH 321online SPE, MO 349oocytes, TH 059oogenesis, EP08A-1, MO 176Oomycete, TU 286open literature, TH 283Open Source, MO 083, MO 445Open source statistical software, TU 335open source tool, MOPC4-2operationalization and quantification,

LC04A-4OPFR, MO 004 Oppia nitens, ET12C-5opportunities, ET02-1OPS, MO 052Optimal management protocols, TU 460Optimisation, MO 101, MO 106 oral administration, TH 210oral uptake, TU 279Ore grade, MOPC5-6Oreochromis mossambicus, WE 341Oreochromis niloticus, MO 346ores and concentrates, WE 023Organic acids, TU 427organic aerosol, EC05B-6 organic cations, TU 304Organic contaminants, EC02A-1, EC02A-

2, MO 025, TU 026, TU 285organic farming, WE 099Organic Hg, TU 177organic matter, MOPC1-7, TH 091organic matter source, TU 202Organic micropollutants, TH 308Organic pollutants, EP05-2, MO 210, TU

251, WE 420Organic residues, MO 276organic toxicants, ET15B-4, TH 287organic UV filters, MO 010Organics, TU 282organiphosphorous insecticides, WE 218organism level risk assessment, TH 244organochlorine, ET18-4 WEPC4-6Organochlorine compounds, WE 264organochlorine contaminants, ET11C-4Organochlorine pesticides, MO 318, TU

243, WE 100, WE 260Organochlorines, MO 060organohalogenated compounds, TH 089Organophosphate, WE 414Organophosphate insecticide, WE 101Organophosphate pesticides, MO 042Organophosphates, MO 357, WE 341organophosphorus flame retardants,

EC01A-4organophosphorus pesticides, EC05A-5Organotin, EP02B-5, TH 114Organotins, TU 363, TU 364, WE 089organotins (OTs), TU 367Organotropism, WE 275origanum oil, WE 369Origins, EP07A-4 Orographic cold trapping, TU 245Oryza sativa, WE 323Oryzias latipes, TH 004OSPAR EcoQO, TU 364osteoclast, TH 211otter, TUPC5-7outdoor lysimeter studies, TU 108

ovarian follicular culture, TH 167overwintering, TH 257oviposition, WE 344Owls, RA22-4oxidative-stress, WE 342oxidative stress, ET01-4, MO 274, MO

340, MO 346, MO 357, RA23B-6, SS09-11, TH 060, TH 157, TH 191, TH 203, TU 188, TU 194, TU 272, TU 318, TU 400, TU 402, WE 077, WE 319, WE 361

Oxidative stress assays, ET11A-3oxidative stress biomarkers, WE 405Oxy-PAHs, WE 377Oxygen uptake rate, MO 456Oxytetracycline, MO 410Oyster, TH 105, TU 170, TU 371oysters, ET11C-1Ozone, RA23A-6, RA23B-5, TU 118

P P-glycoprotein, ET04C-5P-gp, TU 220P-gp transporters, TH 205P . acuta, MO 254P . subcapitata, WE 358p38 MAPK, TH 197, WE 334PAC, RA23B-5Pacific Islands, TUPC5-8Pacific oyster, ET11C-2, TU 370Packaging, MO 120PACs, WE 377Paddy fields ,RA14-2PAH EC02A-4, ET11A-2, MO 018, MO

021, MO 029, MO 065, TU 137, TU 216, TU 283, TU 284, TU 294, TU 295, TU 341, TU 411, WE 199

PAH derivatives, MO 314, TU 218PAH/PCB, WEPC2-3PAHs, MO 019, MO 027, MO 073, TH

277, TU 217, TU 247, TU 248, TU 249, TU 252, TU 263, TU 322, TU 381, TU 422, TU 440, TU 441, TU 461, TUPC3-6, WE 141, WE 421, WEPC5-3

paint, WE 186Pakistan, TU 260, TUPC3-5paleoecology, MO 253 palm oil, TH 345palm oil methyl ester, TH 340Palmitoylcarnitine, ET07B-5 PAM Fluorometry, TU 390pandemic, WE 039Paracentrotus lividus, TU 019paracetamol, TH 307parameter, TU 235parameter estimation, MO 054, TU 337parameter precision, ET02-6partial equilibrium, LC01A-3Partial least squares, TU 231particle-gas partitioning, TU 250particle size distribution, TU 001Particle/gas distribution, TU 249particles, MO 030particulate matter, MO 073, TU 272,

TUPC3-1, TUPC3-4Partimulate Matter, TU 257partioning, TU 452Partition coefficient, TH 299partition coefficients, MO 003, TU 161partitioning, MO 023, MO 025, SS06-3,

TH 279, WE 218

Page 31: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

4��SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

partitioning ratio, MO 035Pasig River, Philippines, TU 167Passion Fruit, WE 098passive accumulation device, ET06B-5Passive air sample, TU 246passive air samplers, MO 038passive air sampling, EC05A-1, MO 041Passive and active samplers, TU 251Passive dosing, EC01B-3, MO 034, MO

035, MO 086, TH 300, TU 288, TU 291, TU 293, TU 294

Passive equilibrium sampling, EC01A-2passive sampler, MO 009, MO 010, MO

024, TU 027Passive sampler performance, MO 015passive samplers, EC01A-1, EC05A-4, MO

001, MO 020, TU 292, WE 347passive sampling, EC01A-3, EC01A-6,

EC01B-5, EC01C-2, EC01C-6, MO 002, MO 003, MO 004, MO 008, MO 011, MO 013, MO 014, MO 021, MO 022, MO 025, MO 031, MO 036, MO 040, MO 209, TH 312, TU 280, TU 429, TU 430

passive sampling devices, ET11B-4Patagonia, WE 261pathogen, MO 463pathogens, TH 133pathways, EC02A-3pattern-oriented, RA01-2pattern, MOPC5-2Pb, MO 295PBDE, MO 163, TH 083, TU 259PBDE metabolism, MO 177 PBDEs, EC02B-6, EC05A-3, EC05B-4,

EP07B-5, ET07B-4, MO 187, TH 116, TH 280, TU 242, TU 264, TU 406, TU 415, TU 460, WE 136, WE 301

PBET-model, TU 279PBPK, TU 015PBPK model, TH 187PBT, SS02-6, TU 241, WEPC3-5PBT assessment, ET16-6, MO 467, RA02-

4PBT criteria, RA02-4PCB, EC02B-4, MO 001, MO 018, TH

083, TH 335, TU 273, TU 342, TU 355, WE 259

PCBs, EC05B-4, EM01A-6, MO 183, TH 280, TU 166, TU 168, TU 243, TU 445, WE 260, WE 428, WE 433, WEPC4-2

PCC7806, ET13B-1 PCDD/F, ET11C-6, TU 133PCDD/Fs, ET11A-4, TU 168, TU 266PCI, TU 030PDMS, EC01A-2peak and time-weighted average, WE 124PEARL, MO 095pearl oyster, TU 318Pectenotoxin, MO 351PECtwa, EM02B-5pellston, MOPC6-1pen study, MO 458Pendimethalin, WE 364Pendimethaline, WE 366Penicillium simplicissimum, TH 101pepper extract, WE 369Perception of risk, WE 042perchlorate, SS07-4Perdicted environmental concentrations,

TU 336

Peregrine falcon, TU 011Perflourinated chemicals, TU 019Perflourinated surfactants, TU 002Perfluorinated, TU 021Perfluorinated alkyl acids, TUPC5-2perfluorinated alkyl substances, EC02B-1perfluorinated compounds, EC01A-3, TH

281, TU 003, TU 004, TU 005, TU 010, TU 014, TU 017, TU 018, TU 447, TUPC1-2, TUPC1-4, TUPC1-7, WE 074

perfluoroalkyl acids, EP06-5, RA03-5, TUPC1-6

perfluorooctane sulfonamides (FOSAs), EP06-1

Perfluororinated Compounds, EP06-2periphyton, TU 091, WE 287periphyton community, RA17A-3Permafrost, EC02A-5PERPEST database, WE 124persistence, EP08C-2, MO 059, MO 071,

MO 086, MO 467 WEPC3-5persistence assessment, RA02-3Persistency, MO 455Persistent and organic pollutants, EM02B-

3Persistent organic pollutants, EC01B-

6, EC05B-1, EC05B-3, EM01A-1, EP07A-5, ET04A-2, ET18-2, MO 033, MO 037, MO 071, MO 135, MO 280, SS12-2, TH 081, TH 087, TH 088, TU 270, TU 307, TU 393, TU 420, WE 262, WE 265

persistent organic pollutants (POP), TU 161 MO 038

Persistent Organic Pollutants (POPs), MO 321

Personal care products, RA23A-4, TH 329, TU 034, TU 069, TU 093, TU 393

pesiticide, WE 105Pest Management, WE 374pesticide, EC01C-5, EM02D-3, EM02D-5,

ET03A-6, ET06A-3, ET06B-1, ET12A-4, ET15B-3, RA01-5, RA12-5, RA16-1, RA16-2, SS07-3, TH 292, TH 293, TU 107, TU 112, TU 301, TU 302, TU 463, WE 001, WE 002, WE 042, WE 058, WE 107, WE 134, WE 357, WE 365, WE 374, WEPC3-5, WEPC4-5

Pesticide contaminated ground water, TH 353

Pesticide effects, MO 269pesticide exposure, WE 053pesticide mixture, RA19-3pesticide residues, LC04A-3pesticide risk assessment, RA15-2, RA15-4pesticides, EC05A-5, EM02C-4, EM02C-

5, EM02D-1, EM02D-4, EM02D-6, ET10A-3, ET15A-3, ET15B-2, ET15B-4, ET18-6, MO 006, MO 013, MO 015, MO 056, MO 178, MO 267, MO 288, MO 293, MO 374, MO 377, MO 383, MOPC1-3, MOPC4-4, MOPC6-1, MOPC6-2, MOPC6-3, MOPC6-4, MOPC6-5, MOPC6-6, RA02-1, RA11-1, RA12-6, RA14-3, RA17A-5, RA19-1, SS12-5, TH 054, TH 275, TU 099, TU 103, TU 104, TU 106, TU 157, TU 213, TU 274, TU 312, TU 346, TU 393, TU 438, TU 469, TU 473, WE 049, WE 050, WE 092, WE 095, WE 098, WE 099, WE 114, WE 115, WE

119, WE 124, WE 132, WE 146, WE 174, WE 240, WE 342, WE 346, WE 347, WE 352, WE 356, WE 362, WE 363, WE 367, WE 372, WE 388, WE 412, WE 424, WEPC3-1, WEPC4-7, WEPC4-8

pesticides fate and exposure, ET15B-5petrodiesel, TU 296petroleum hydrocarbons, ET12C-3, TU

222petroleum refinery, TU 152PFAA, TU 008PFAAs, EP06-3PFAS, EP06-4, TU 012PFC, TU 006, TU 011, TU 015, TU 016,

TUPC5-7PFCAs, TUPC1-1PFCs, EC02A-6, TU 013, TUPC1-1,

TUPC1-5PFHxA, TU 020PFOA, EP02A-5, TU 001, TU 007, TU

011, TUPC1-3PFOS, RA03-5, TH 057, TU 001, TU 011,

TU 012, TUPC1-3PFSAs, TUPC1-1pH, ET04C-2, TH 200, TH 292, TU 301,

TUPC2-5, WE 016, WE 244pH value, TU 105, TUPC1-2PhACs, TU 195Phaeodactylum tricornutum, TH 168, TH

336phagocytosis, MO 167 pharmaceutical, EP08C-4, MO 156, MO

216, MO 310, MO 384, MO 469, TU 044, TU 057, TU 066

Pharmaceutical and Personal Care Prod-ucts, (PPCPs), TU 087

pharmaceutical biodegradation, TU 095Pharmaceutical occurrence, THPC1-1Pharmaceutical removal, THPC1-1Pharmaceutical risk assesmentpharmaceuticals, EC01C-2, EC01C-4,

EM02B-4, EP08A-6, EP08B-4, EP08C-1, EP08C-3, EP08C-5, MO 004, MO 012, MO 202, MO 203, MO 205, MO 311, MOPC3-1, MOPC3-2, RA02-2, RA23A-3, RA23A-4, RA23B-5, TH 285, TH 311, TH 327, THPC1-2, TU 035, TU 036, TU 038, TU 043, TU 045, TU 046, TU 047, TU 049, TU 052, TU 071, TU 074, TU 077, TU 083, TU 090, TUPC2-3, TUPC2-4, TUPC2-7, WE 039

pharmaceuticals and personal care prod-ucts (PPCPs), TU 089

pharmaceuticals and steroids, TU 037phenanthrene, MO 270, MO 312, WE 197Phenolic compounds, TU 166phenotype, RA21-1phenotype anchoring, TU 324Phenotypic anchoring, TU 323phenotypic trait, ET10B-5 Phosphate and arsenate, WE 282Phosphogypsum, MO 266 Phospholipidicity, ET16-4Phosphorus, MO 087Photo-degradation, TU 297photo-transformation product, TU 076photocatalysis, TU 056photocatalytic methanol production, MO

112Photochemistry, TU 453

Page 32: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�00 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

photodegradation, MO 353, MOPC3-4photolysis, TU 051photosynthesis, MO 143, RA17B-2Phototoxicity, WE 237, WEPC5-3phtalates, MO 218 phthalate, EP07B-6 Phthalate esters, MO 124phthalates, TU 030, TU 306, WE 421Physa acuta, TH 169, TU 314Physical-chemical, MO 371physico-chemical properties, TH 022physicochemical property, TH 161, TU

302physiological responses, WE 388Physiological Species Sensitivity, MO 375physiology-based pharmacokinetic model,

RA12-5physiology, TU 374phytochelatins, TH 168phytohormones, TU 187phytoplankton, ET10B-5, TU 461, TU

466, WE 410phytoremediation, RA19-6, TH 097,

TH 098, TU 193, TU 197, TU 199, TUPC6-5

phytotoxicity, MO 412, TU 065, TU 181phytotoxicity effect, TU 203phytotoxins, MO 358PICT, RA17A-3piggery sewage, MO 409Pigments, TU 188pilot-scale, TUPC4-4pine needles, EC05A-4, TU 252Pipistrelle bats, TU 264pirimiphos methyl , WE 299pituitary gland, ET19B-5 planetary boundaries, SS12-2, SS12-4,

SS12-5, SS12-6planetary boundary, SS12-3, SS12-7plankton, EP07B-6, TU 462plant-derived products, MO 328plant-soil system, TU 187plant bioassay, TU 203PLANT BIOASSAYS, TU 204plant growth, MO 266Plant populations, SS09-5plant protection, WE 240plant protection product, TU 206, WE 379Plant Protection Products, ET06A-5, MO

275, MO 476, MO 477, RA21-3, TH 014, TH 049, TH 050, TH 051, TH 053, TH 283, WE 096

plant uptake, EM02C-3, ET12A-2, ET19A-2, MO 310

Plant Uptake Factor, TU 102, TU 105plants, ET12C-1, MO 263, MO 313, MO

358 PLANTS MEDICINAL, MO 331 Plasma, TUPC1-5Plasma steroids, TH 084plastic, TU 029plastic additives, TU 028Plastic debris, TU 032plasticity, RA21-1plastics, EP07B-1, TU 022Platichthys flesus, WEPC2-3PLHC-1, TH 027plumbism, MO 242PM10, WE 427PNEC, MO 473, TU 033, TU 331POCIS, EC01C-3, EC01C-4, EP08A-2,

MO 014, TU 427, WEPC1-3

POEMS, TH 355Poisoning, ET08-6, WE 169poisoning incidents, TH 254Polar bear, TH 084polar compounds, EC01A-6, MO 062Polar Organic Chemical Integrative Sam-

pler, EC01C-2, MO 011 polar organic chemicals, ET04C-4polar organic compounds, MO 016polar regions, TU 255policy, EP04-1, ET12A-1, RA10-6, WE

435policy making, WE 460Pollinators, MOPC6-1, MOPC6-2,

MOPC6-3, MOPC6-4, RA16-3, WE 132

pollutant monitoring, TU 408Pollutants, ET11C-2, TU 187polluted river, TU 151Polluted soils, MO 044 Polluted/Unpolluted, TH 128Pollution-induced community tolerance

(PICT), TH 145pollution, EC02B-1, ET06B-6, ET11B-1,

ET11C-5, MO 390, RA10-4, TU 322, TU 397, TU 413, TUPC5-5, WE 266

pollution assessment, ET05-6, TU 144pollution control, WE 314pollution marker, TH 109Poly- and perfluorinated compounds, TU

016poly-parameter linear free energy relation-

ship, RA12-5polyaromatic hydrocarbons, MO 066,

RA23B-6Polybrominated diphenyl ehters (PBDEs),

TU 163Polybrominated diphenyl ethers, WE 435polychaetes, WE 291polychlorinated biphenyls, EM01A-6,

EP07B-3, TU 028, TU 245, TUPC4-4Polychlorinated biphenyls (PCBs), TU 163Polychlorinated naphthalenes, EC05A-2Polychlorobiphenyls, EC02B-6 polycyclic aromatic compounds, EC06B-1polycyclic aromatic hydrocarbons, EC05B-

3, ET07A-6, MO 020, TU 245, TU 279, TU 289, TU 323, TU 421, WE 156

polycyclic aromatic hydrocarbons (PAHs), MO 320

polyelectrolytes, MO 365 polyfluorinated compounds, TU 007Polyhalogenated aromatic hydrocarbons,

ET08-4Polyhydroxyalcanoates, TH 348Polyhydroxyl fullerene, TH 185Polylactide, TH 348polymer additives, EP07A-6 polymer composites, WE 179polymeric nanoparticles, WE 236polyphenols, TUPC6-1polyurethane foam, TU 251polyurethane foam (PUF), MO 038Polyurethanes, MO 030pome fruit, RA09-4poorly soluble liquids, TH 288poorly soluble substances, TH 300POP, EC01A-1, MO 188, TH 076, TU

159, WEPC3-5POPS, EC02B-2, EC02B-3, EC05A-4,

EM02B-2, EM02B-6, ET04A-4, ET08-

2, ET11C-6, MO 075, MO 091, SS12-4, TH 078, TH 082, TH 084, TH 085, TH 090, THPC1-4, TU 022, TU 100, TU 250, TU 255, TU 426, TU 435, TU 448, WE 261, WEPC2-5

population-level, RA01-2population-level ecological risk assessment,

WE 111population-level effect, TU 343population-relevant endpoints, MO 155population, ET10A-1, TH 262, TU 344population demography, TU 465population dynamics, ET14-6, RA01-1,

SS07-6Population effect models, WE 106Population exposure, WE 136population growth rate, MO 152, RA01-3population level risk assessment, TH 244Population model, EP03C-4 population modeling, MO 380, WE 008population modelling, TH 245, WE 007,

WE 108population recovery, RA15-4, WE 105population relevant endpoint, MO 154Porcellionides pruinosus, TH 200, TH 275,

WE 375pore water, EC01B-5, TU 143porous media, WEPC5-1porous sampling medium, MO 041 Port activities, MOPC5-5, WE 402Portimão Harbor, TU 425PORTONOVO Project, TU 425Portugal, TH 140, WE 436Post-authorisation, RA16-2post-authorisation monitoring, WE 169post-registration monitoring, TH 251potable water, LC05-3Potamogeton pusillus, WE 289Potamopyrgus antipodarum, MO 449,

MOPC2-6potency, RA11-3power, LC03-1, TH 346Power Plant, MO 108power plants, MO 112power production, TU 119pp-LFER, MO 049 PPAR, WE 336PPCPs, MO 219, TU 055PPP, MO 470practicability, TH 343Prawn, WE 292PRC, EC01C-3, MO 012 Pre-treatment, MO 032precursors, TU 006predation, ET10B-4Predation risk, TU 386predatory activity, WE 372predatory birds, ET04A-2, TU 013predicted environmental concentration,

TU 104Predicted No-Effect Concentration

(PNEC), TH 188prediction, MOPC1-1, TU 213, WE 331prediction methods, MO 049Predictive Modelling, TH 305predictive toxicology, WE 144preference, WE 344Preservatives, MO 204, TU 034press, RA08-1pressurized liquid extraction, MO 408Primary cell culture, MO 134Primary producers, WE 357

Page 33: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�01SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Principal Component Analysis, TH 308Printing developer, THPC1-3prioritisation, RA12-3, TU 125prioritization, MO 198, MO 437, RA02-4priority substances, RA03-1, RA23A-1Priorization method, TU 063Probabilistic, RA05-5, RA14-4Probabilistic approach, TH 242probabilistic health risk assessment, TU

121Probabilistic/stochastic modeling, TU 336Procellariiformes, TU 420Process, MO 101, RA04B-4Process modelling, TH 352Produced water, ET11A-2, ET11A-3, TU

381, TU 427Product and Services, WE 451product authorisation, RA12-2, WE 175Product criteria, LC06-3Product environmental footprint, TH 358product identification, MOPC3-4Product intake fraction, EM02C-1production, MO 382production functions, MO 385proficiency test, EM01B-3progeny survival, ET10A-5progestagens, EP08A-1 progesterone, TU 446Progestogen, MO 132prometryn, RA17A-3prosobranch gastropods, MO 173 prospective risk assessment, RA21-2, TH

287protection goal, SS06-8, TH 249Protection Goals, MO 468, MOPC6-5,

RA11-1, RA19-4, SS06-1Protein, MO 060protein binding, EP02C-3, ET04C-3, MO

033protein biomarker, WE 317protein profile, WE 318proteolytic digestion, TH 107proteome, TU 324proteomic, TU 369, TU 411, TU 424,

WEPC2-1Proteomics, ET07A-1, ET07A-3, ET07A-4,

ET07A-5, MO 143, MO 256, WE 338, WEPC2-2

protist, WE 209Protozoa, TU 396Prozac, MO 144PRTR, WE 431PRZM, MO 056, MO 397Pseudokirchneriella subcapitata, EP03B-6,

TH 323, WE 203, WE 205, WE 230, WE 343, WE 364

Pseudomonas, TH 141PSP, ET13A-5Psychiatric drugs, TU 082Pteria sterna, TU 318Public, RA08-3public concern, RA08-1public impact, WE 027publication, WE 026Publication formats, WE 025Pulmonate Snail, ET10A-1pulp mill effluents, EP02C-1 pulse-chase feeding, WE 242Pulse exposure, WEPC6-1pulsed exposure, WE 145, WE 275pyrene, MO 312, TU 288Pyrethroids, RA12-4

pyridostigmine, TU 078pyro-TiO2P25-70, WE 237pyrogenic PAHs, WE 255pyrolysis-GC, EP07A-6

Q Q-TOF-MS, EP05-qnrS, TH 124qPCR, TH 131, TH 138qRT-PCR, EP01A-4(Q)SAR, MO 369QSAR, ET03A-1, ET16-1, ET16-2, MO

050, MO 051, MO 059, MO 198, MO 361, MO 362, MO 363, MO 364, MO 368

QSAR modelling, WE 238QSARs, MO 367 TU 077QSPR, TUPC2-1Qst-Fst comparison, ET10A-3quality, TH 294quality assurance, EM01B-3, TH 032, TH

037Quality Criteria (QC), MO 474quality data, MOPC4-7quality standards, TH 283quantal data, ET02-4quantitative ecotoxicology, TU 338quantitative real-time PCR, EP01B-4,

EP01B-5quantum dots, TH 168, TH 183QuEChERS, MOPC3-6, TU 043quercetin, WE 257Quinalphos, TH 095quinolone resistance, TH 136QWASI model, MO 077

R Radiation, SS09-1Radiative forcing, MO 422Radio-adaptation, SS09-5radio labelling, WE 179Radioactive balance, ET19A-2radioactive caesium, MO 009Radioactive contamination, SS09-5radiocaesium, SS09-13Radioecology, SS09-1radiolabelled, TH 159radionuclide contamination, SS09-8Radionuclides, SS09-12radiotoxicity, SS09-3Radiotracer, ET04B-1RADseq, ET07B-6 rail transportation, MO 115rainbow darter, ET07B-1Rainbow trout, EP03B-2, ET04C-1, TH

030Rainfall, TU 109rainforest, WE 310Raman Spectromicroscopy, MO 043Ramsar site, TU 157Random forests, TU 333ranking, EP05-2Ranunculus acris, RA19-1RAPD-PCR, WE 346rapid analysis, MO 027rapid testing, TU 391raptors, MO 243rare minnow (Gobiocypris rarus), WE 351rats, MO 339Razor clam, TU 375REACH EM02A-3, ET04A-1, ET16-1,

ET16-3, MO 053, MO 192, MO 363,

MO 366, MO 368, MO 369, MO 465, MOPC2-5, RA03-2, RA08-3, RA11-4 RA20-1, RA20-3, RA21-3, SS02-6, TH 248, TH 297, TH 327, TU 128, TU 207, TU 224, TU 230, WE 034, WE 035, WE 037, WE 045, WE 253

REACH & CLP, SS11-1REACH & ITS, TH 040reactive oxygen species, MO 274, TU 195,

WEPC5-4, WEPC5-5Reactive toxicity, MO 370, TH 040reactivity concept, TU 261read-across, EM02A-4, ET16-3, WE 022read across, ET16-1realistic mixtures, EP08B-4reciprocity, WEPC6-2reconstituted-water, WE 019Recovery, TH 278, TU 471, TU 473,

WEPC6-1RECS certificates, LC01B-1recycle tire playground, WE 421recycled waste paper, MO 121recycling, MO 120, WE 450red kite, WE 166redox chemistry, EC01A-5Redox proteomic, WE 319reduced bioaccessibility, EC06A-4,

TUPC4-6reduced freely dissolved concentration,

TUPC4-6reduction, RA23B-4Reference genes, WE 329reference level, TU 123Reference System, ET12B-2, MO 108reference values, TUPC5-1, WE 436Refined Risk Assessment, SS02-9Refinement, WE 061Refineries, TH 339regional networks, LC06-2regional scale, RA17A-2regionalisation, LC04A-2regionalization, EM03-1, MO 081, MO

429, MO 444, TU 119, TU 233Regione Lombardia, TH 350Registration of PPP in China, WE 308Regression, TU 332Regulation, MO 457, MO 469, MOPC2-3,

RA12-1, SS06-1, WE 164Regulatory, TU 206regulatory compliance, WE 425regulatory needs, WE 032regulatory options, WE 085Regulatory risk assessment, RA21-4regulatory scheme, MO 464Regulatory science, SS11-1regulatory studies, EM02D-6relativ risks, WE 046relative scores, RA02-1release scenarios, WE 179relevance, TU 101Reliability, TH 295Remediation, EC06A-3, EC06A-5, EP04-3,

MO 314, TH 103, TH 104, TH 246, TU 305, TU 474, TUPC4-2, TUPC4-3, WE 225, WE 227

removal, TH 307removal half-life, EM02D-1Removal rate, TUPC2-2removals, TH 311renewable electricity, LC01B-1 renewable energy, MO 423, RA08-4, TH

097

,

Page 34: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�02 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Renewable Energy Certificate, MO 421Renewable Energy Directive, TH 347reproducibility, TH 032reproducible test results, WE 243reproduction, ET01-4, ET10A-6, ET15A-

4, MO 144, MO 145, MO 163, MO 172, MO 451, TU 176, TU 314, TU 345, TU 355, WE 152, WE 219, WE 231, WE 232

reproduction assays, MO 266reproduction rate, ET12C-6Reproductive and metabolic disruption,

WE 148reproductive endpoints, MO 142reproductive impairment, ET10A-5,

RA23B-3reproductive parasites, EP08B-5reproductive toxicity, EP03B-5, MO 176,

MO 322Reprotoxicity, MO 449 Reptile conservation, TH 063reptiles, ET06A-5, TH 049, TH 050, TH

051, TH 053reptiles and amphibia, ET06A-6Research, MOPC4-8research thrusts, TH 343reservoir, TH 122, WE 396reshwater lake and river bacteria, TH 125Residence Time Distribution, TU 040residue, TH 294, TU 313residues, ET08-5, WE 387resilience, SS06-2resistance, EP01B-3, RA22-1, RA22-2, TH

138, TH 147, WE 173, WE 374resistance costs, ET10A-4resistance gene, EP01A-6 resistance gene abundance, EP01A-4resistance genes, TH 121, TH 122, TH

130, TH 133resistant bacteria, TH 126Resource, RA04B-5Resource consumption, LC05-5Resources, MOPC5-6, MOPC5-8, WE 465Resources sustainability, TU 460respiration, TU 092respiration rate, WE 395respirometer, TU 092response addition, TU 329restoration, TUPC6-8Resuspension, RA06-5Retrofit options, LC01B-4 retrospective risk assessment, MO 374revegetation, TUPC6-8Rhine, TU 300Rhizobium, TH 201Rhizofiltration, TUPC6-7rhizoremediation, MO 312Rhizosfere, TU 287Rhizosphere, ET19A-2, ET19A-3, ET19A-

6, WE 277rhizotoxicity, TU 192ringed seals, EC02B-3 Rinse aid, TH 331riparian zone, WE 118Risk, EP03D-3, ET05-1, ET09-2, MO 397,

RA01-5, RA09-5, RA18-6, TH 258, TU 129, TUPC3-6, WE 001, WE 017, WE 033, WE 164, WE 167, WE 427, WEPC4-3

risk analysis, MO 113risk assesment, WE 335risk assessment, EM01A-3, EM01A-

4, EM01B-5, EM02C-4, EP01B-1, EP01B-2, EP02B-5, EP03D-6, ET05-4, ET06A-5, ET09-4, ET11B-3, ET15A-2, ET18-3, ET18-6, ET19B-2, ET19B-3, LC01A-4, MO 069, MO 155, MO 190, MO 196, MO 214, MO 246, MO 249, MO 276, MO 380, MO 415, MO 437, MO 457, MO 464, MO 466, MO 468, MO 470, MO 476, MO 477, MOPC6-1, MOPC6-2, MOPC6-3, MOPC6-4, MOPC6-6, RA02-1, RA02-6, RA09-1, RA09-2, RA09-3, RA09-4, RA10-1, RA11-1, RA14-5, RA19-1, RA19-2, RA22-1, RA22-3, RA22-6, SS06-8, SS07-5, SS07-6, SS09-12, TH 005, TH 021, TH 037, TH 213, TH 243, TH 245, TH 246, TH 253, TH 259, TH 289, TH 296, TH 301, TH 303, TU 038, TU 093, TU 099, TU 103, TU 106, TU 111, TU 112, TU 148, TU 157, TU 181, TU 186, TU 216, TU 219, TU 230, TU 267, TU 282, TU 283, TU 336, TU 338, TU 443, TU 458, WE 004, WE 008, WE 013, WE 037, WE 053, WE 055, WE 057, WE 058, WE 062, WE 082, WE 096, WE 114, WE 117, WE 119, WE 122, WE 132, WE 133, WE 139, WE 409, WEPC6-2, WEPC6-6

risk assessment for plant protection prod-ucts, WE 056, WE 059, WE 063

risk assessment of pesticides, WE 145risk characterisation, TU 069risk communication, RA08-2, WE 036Risk management, EP01B-3, MO 468,

RA08-2, WE 035, WE 044, WE 101, WE 107

risk mitigation, WE 115, WE 163risk mitigation measures, RA22-6, WE

087, WE 175risk perception, RA08-2Risk quotient, TH 308risk reduction, EC06A-1, WE 164risk regulation, WE 043river, MO 090, MO 209, TU 044, TU 058River discharge, TU 059river water, EC01A-4, MO 204, MO 409river water quality, WE 112rivers, MO 083, WE 424RNA, TU 071RNAseq, WE 330road transportation, MO 115rodent, RA22-5rodenticide, ET08-5, RA22-3, WE 166,

WE 172, WE 173rodenticides, RA22-4, WE 163, WE 164,

WE 165, WE 174Root growth test, WE 282rotifer, MO 152RT-qPCR, WE 329Rules, WE 253run-off, EC02A-2run off, MO 035runoff, EM03-6, WE 408Russia, WE 031

S S-LCA, LC02A-4SACACA, MO 331sacrificial anode, TU 371sacrificial anodes, TU 455safety assessment, TH 210

safety factors, TH 242Saharan dust, EC05A-6salinity, MO 383, TH 270, TU 176, TU

385salinization, MO 251, MO 267, TH 019,

TU 349salinization/alcaliation, MO 315Salmon, WE 261salmonella, TH 147salmonids, WE 126Salt, MO 287salt marshes, WE 068salting out, TU 452salycilic acid, TU 453Sample storage, TUPC5-4sampling, MO 026sampling rate, MO 004Sampling rates, EC01A-3sampling scheme, MO 290, MO 291Sampling Strategy, TU 040Sand filter, TH 353sand filtration, TUPC1-1savannah fires, EC05B-3SBSE, TU 393scale, RA04A-3, RA14-1scalp hair, MO 183, WE 436scenario of use, TU 454scenarios, EM02B-1Scheldt estuary, ET04A-4, TU 374SCHER, TU 208Science-policy interface, WE 038science communication, WE 027science through media, WE 083screening, EM02A-3, EP05-5, MO 132,

MO 210, TH 324, TU 037, TU 046screening classifier, ET16-6screening LCA, LC06-1Scrobicularia plana, TU 384, WE 200Sea bass, TU 406, TU 413sea ice, MO 071Sea of Cortez, TU 440Sea snails, TU 386Sea Turtles, TU 447sea urchin, MO 258, TU 019, TU 434sea water, WE 187, WEPC5-6Seabird, ET08-2, TUPC1-5seabird egg, RA03-3seabird eggs, TU 135Seabird population, TU 243seagrass, TU 390seagull eggs, ET11C-6sealing, TH 204seasonal pattern, WE 305seasonal variation, MO 204, TU 244, TU

249Seasonality, WE 077seawater, TU 453SEC-ICP MS, TH 106second generation anticoagulant rodenti-

cide, RA22-2secondary-school education, WE 030secondary emissions, MO 072secondary exposure, RA22-1, WE 169secondary poisoning, RA22-4, RA22-6Secondary salinization, TU 470secondary sources, EC02B-2sector approach, LC06-2Sediment-associated CuO, TH 176sediment, EC01A-1, EC01A-5, EC01B-

5, EC01B-6, EC06A-3, EC06A-5, ET11B-3, MO 127, MO 202, MO 207, MO 281, MO 416, RA06-2, RA06-5,

Page 35: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�0�SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

RA21-2, TH 006, TH 024, TH 089, TH 102, TU 044, TU 046, TU 141, TU 145, TU 147, TU 155, TU 157, TU 159, TU 163, TU 168, TU 280, TU 423, TU 438, TU 455, TUPC4-2, TUPC4-3, WE 076, WE 130, WE 271, WE 273, WE 279, WE 300, WE 354, WE 386, WE 427, WE 428, WEPC1-4, WEPC3-1, WEPC3-3

Sediment and freshwater crabs, WE 293Sediment contact, TU 411sediment contact test, TU 181, WE 323Sediment copper flux, ET11B-5 sediment dwelling organism, WE 355sediment quality, TU 140, WE 402Sediment Quality Triad, TU 154sediment remediation, TUPC4-1Sediment toxicity, TU 153, TU 154, TU

403, TU 434, TU 474sediment transport, RA06-3sediment traps, MO 019sediments, EP08C-1, MO 083, MO 210,

TH 287, TU 142, TU 143, TU 148, TU 150, TU 158, TU 172, TU 366, TU 396, TU 436, TU 443, WE 263, WE 285, WE 384, WE 429

seed treatment, ET15B-3 segmented flow technique, EC01B-1seismicity, WE 452Selective chemical extraction, TH 110selective predation, TU 465Selenium, RA10-3, RA10-5, TH 112, TU

135, TU 201, WE 126, WE 287, WE 309

Selenoaminoacids, TH 107Self-assembing, MO 042 SEM, TH 064, TH 065semi-arid soil, MO 298 semi-filed methodology, ET15B-5semi-static, TH 015Semi-volatile organic compound, TH 079,

TU 246semi-volatile organic compounds, EC05A-

6semi-volatile organic contaminants,

EC05A-1semivolatile compounds, TU 258sensitive lakes, WE 079 sensitivity, MO 451, MOPC1-6, TU 321,

TU 464sensitivity analysis, TU 113, TU 232, TU

234, WE 007SENTINEL PLANTS, TU 204Separation technologies, MO 191sepiolite, EC06B-2 septic tank, TH 316Serotonine, TU 077service flows, RA18-3SETAC Role, TH 359SETAC workshop, MO 249severe accidents, RA18-1severity, EP02C-5sewaga sludge, MO 310Sewage, RA23B-1, RA23B-3, TU 058, TU

066, WE 266sewage effluents, ET07B-1 sewage sludge, MO 307, MO 311, MO

321, TH 099, TH 202, TU 003, TU 005, TU 305

sewage sludge amendments, ET12A-2sewage treatment, MO 137 sewage treatment plant, TH 180, TH 189

sewage treatment plant model, TH 334sewage treatment plants, MO 067sex ratio, MO 184sexual development, EP02A-2 sexual differentiation, EP02A-2 sexual dimorphism, MO 168shadow pricing, WE 461shale oil, TU 219shampoo, TH 286shark, TU 447shell, TU 382, WE 288Shorelines, EP07A-4short term exposure, ET15A-4Short term test, TH 293signaling, WE 304silica, TH 211, TH 212silicone rod, TU 281silicone surfactants, MO 213Siloxane, TU 050, WE 259siloxanes, EC05B-2, RA02-3, TU 253, TU

254, TU 262, TU 418, TUPC3-8silver- salt, TH 196silver-nanoparticles, TH 196silver, TH 169, TH 204, TH 297, WE 177,

WE 190silver ion, TH 163Silver nanocolloids, TH 161, TH 163, TH

164Silver nanoparticle, EP03C-2, TH 179, TH

180, WE 209silver nanoparticles, EP03A-6, ET07A-5,

TH 167, TH 190, TH 191, TH 205, WE 181, WE 184, WE 205, WE 208, WE 224, WE 226, WE 230

silver naoparticles, TH 197silver nitrate, WE 205SimaPro, MO 442Simocephalus mixtus, WE 217Simpletreat, TH 334simulation, EM02B-5, ET16-5, RA08-6,

SS07-5, TU 462Simulation model, TU 285Simulator, WE 386single-species test, TH 291, WE 370Single-species tests, ET12A-3, ET12C-3single strand conformation polymorphism

(SSCP), MO 304Site Dependent approach, EM02C-2site management, EC06A-1Site restoration, TU 362skin, TH 060skin biopsy slices, TH 062skin cleansers, TU 026skylark WE 054 WE 108SLCA, LC02A-2slip ways, TU 365sludge, EP03A-3, TH 138, TH 316, TU

004, TU 037, TU 038, TU 049, TU 092sludge WTP, TU 313small mammals, ET08-3, RA09-6, WE 110small scale farming, WE 312small stream, TU 145SME, LC06-2Smelter, WE 142Snail, WE 400Snails, WE 299, WE 342snow, EC02A-2, EC02B-1, MO 071,

TUPC1-8snow cover, WE 432Social LCA, LC02B-5social life cycle assessment, WE 447Socio-economic, WE 045

SOD, WE 334sodium, MO 285Sodium valproate, TU 325soft water, WE 403Software, LC06-5, TU 110software program evaluation, MOPC4-6software system, MO 051soil-air exchange, EC05B-1 soil, EC04-3, EM01A-5, EM01B-4,

EM01B-5, EP01B-5, EP03A-3, ET12A-1, ET18-6, ET19A-5, ET19B-1, MO 046, MO 063, MO 262, MO 295, MO 300, MO 305, MO 315, MO 317, MO 396, MO 399, MOPC1-2, MOPC3-6, SS06-5, SS06-8, TH 192, TH 194, TH 200, TH 202, TU 002, TU 004, TU 054, TU 101, TU 223, TU 356, TUPC4-5, WE 128, WE 385, WE 409, WE 463, WEPC3-6, WEPC5-1

Soil Screening Levels, MO 283Soil Ageing, EC04-6Soil amendments, MO 276Soil analysis, MO 065, TU 273Soil Aquifer Treatment, EP01B-4soil archetypes, EM03-4Soil bacterial communities, TH 145soil biodiversity, ET12B-2soil characteristics, MOPC1-1soil chemistry, TH 080soil conditioner, MO 273soil contamination, LC02B-4, MOPC1-8,

TU 203Soil ecotoxicity tests, ET12A-3soil ecotoxicological tests, MO 284Soil ecotoxicology, MO 282, TH 037soil extraction, TH 117soil fauna, MO 267, MO 273, MO 288soil fugacity, EC05B-1 Soil function, ET12A-5soil geochemistry, EM01B-1, WE 418soil heterogeneity, MO 097soil hydraulic pedotransfer functions, MO

095soil hydrophobicity, MO 303soil ingestion, TU 122Soil invertebrates, MO 294, RA11-5, WE

129Soil kinetics, TU 109soil layers, MO 308soil mesofauna, MO 285soil micro-arthropods, MO 290, MO 291soil microbial biomass, MO 401Soil microbiology, ET12C-2soil microfung, MO 306Soil microorganisms, MO 300soil monitoring, MOPC1-8Soil Organic Matter, MO 303, MOPC1-3soil organism, EM02C-5Soil organisms, EP03C-4, ET12A-6, MO

286, MO 297soil parameters, TU 124soil physical-chemical properties, MO 292soil pollution, EC06A-2, MO 292, TU 219,

TU 309, WE 013soil property, TU 302soil quality, MOPC1-8, TU 333soil quality assessment, SS06-1soil receptors, TH 198soil remediation, MO 313soil residues, MO 309Soil sample, TU 245soil screening values, TH 247

Page 36: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�04 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

soil sensitivity, EM03-2soil strategy, MOPC1-7soil texture, WE 419soils, EC04-4, EP03A-4, MO 316, MO

318, SS03-4, WEPC3-2soils bioindicators, TU 333solar photolysis, EP01B-6solid-phase extraction, MO 408, MO 409solid-phase microextraction (SPME),

ET04C-1, TU 161, WE 246solid phase extraction, MO 201, MO 307,

TH 073, TU 039solid phase microextraction, EC01B-6, TU

274solubility, TH 288solubilization, TU 296Sorption, EC06A-2, EC06B-4, EP07A-5,

MO 035, MO 064, TU 002, TU 003, TU 029, TU 054, TU 161, TU 292, TU 298, TU 299, TU 304, TUPC4-2, WE 199, WE 218, WE 246

sorption capacity, TH 099Sorption Mechanism, MO 307sorption/desorption, EP08C-3 SOS-Chromotest, TU 153, TU 171SOS chromotest, TH 184Source, MO 085, WE 428Source identifcation, EC01C-5Source identification, TH 079source water, WE 135sources, TU 008, TU 363sources of aquatic pollution, TU 026South Africa, TU 397South America, WE 382South Atlantic, TU 420South China, EC05A-2Souther Alberta Rivers, WE 148Southern Spain, WE 264soybean, MO 264, WEPC4-7Spain, WE 055Sparus aurata, TU 074spatial, RA14-4spatial differentatiation, TU 115spatial differentiation, TU 234Spatial distribution, TU 418spatial economics, MO 110Spatial extrapolations, WEPC4-8Spatial mapping, EM02B-6spatial model, WE 109spatial scale, EM03-1spatial trends, TUPC5-2spatial variability, LC04A-2, MO 444Spatially explicit, WE 106spatially explicit land use modelling, MO

109spatiotemporal, EM02B-5SPE- LC-MS/MS, MO 197SPE, EC01A-6, MO 008 SPEAR, ET14-4, RA14-3, RA17A-5SPEAR index, MO 374 Speciation, MO 371, RA05-1, RA05-4,

SS06-3, TH 112, TH 114, TH 115, TH 179, TU 201, WE 268, WE 278

species comparison, WE 121species distribution, RA09-6Species Identification, MOPC1-5species interaction, ET14-5species richness, EM03-3Species sensitivity, MO 268 Species Sensitivity Distribution, MO 374,

TU 186, TU 331, TU 336, WE 003species sensitivity distributions, ET06A-4,

RA18-5, TU 329species sensitivy distributions, ET11A-6Species Sensivitity Distribution, TU 335species traits, RA14-6Specific Pollutants, MO 475Specific protection goals, SS02-5, TH 243specificity, RA11-3Specimen, TUPC5-6specimen banking, RA03-3, RA03-6, TU

136, TUPC5-4, TUPC5-8specimen security, TU 136Spectrophotometric, MO 336spectroscopy, TH 279Spermatogenesis, TU 414Spheniscus magellanicus, WE 262Spheroids, TH 030Spiggin, TU 072spiked-sediment, WE 274Spill, WE 156Spirolides, ET13A-5Spirostomum ambiguum, WE 210SPMD, EC01B-4, MO 018, MO 021SPME, EC06B-4, TU 159Spraying programs, WE 341springtail, EP03C-3 springtails, RA01-2ß-oxidation, WE 377SSD, ET15B-1, TU 211, TU 217, TU 331SSH, MO 141, TU 417, WE 365stability, EP03A-2, WE 198, WE 226Stable isotope, ET04B-2, TU 202Stable Isotopes, ET04A-2, ET08-2, ET14-

2, ET18-2, TU 435stable isotpoes, WE 170stakeholder engagement, MO 385stakeholder involvement, WE 036stakeholder preferences, LC02B-2 stakeholders, MO 468, RA08-2, RA08-3standard deviation, TU 237standard methods, RA21-2, TH 172standard soil, MO 264standard test, MO 451standardization, TH 358standardized studies, TH 296standardized test conditions, WE 243Standards, MO 282Starvation, ET15A-6State of the art, MO 282state space models , MOPC2-8static, TH 015statistical criteria, MO 362Statistical dependence, MOPC2-2statistical evaluation / normalisation, MO

094statistical modelling, MO 253 statistical power, ET02-5statistical uncertainty, LC04A-4Statistics, EP02C-5, ET02-1, ET02-3, MO

189, MO 462Stenella clymene, TU 426Stenella coeruleoalba, ET11C-4stepwise, LC05-3Steranes, WE 157steroid hormones, MO 123, MO 191steroidogenesis, MO 140, MO 156, MO

163, MO 181, TH 167, TU 414stewardship, WE 116stickleback, ET01-3Sticklebacks, TH 313stochastic model, SS07-4Stochastic modelling, LC04B-2 storm water, WE 091

Stormwater, TH 317STP, TH 312, TUPC2-2Stranded cetaceans, TU 447strategy, WE 027strategy assessment, WE 005Strcuture-function relationship, WE 147Stream and pond mesocosms, MO 379Stream mesocosms, ET14-2Streptomycin, EP01A-4stress, MO 169, WE 330stress on stress, TU 401stress response, MO 376stressors, ET14-4stressors to aquatic systems, WE 046Striped Marsh Frog, TH 055structural proteins, ET04C-4structure-activity relationship, TU 018Structure elucidation, EP05-4, MO 193students, WE 029sturgeon, TU 148, WE 248Sub-chronic Toxicity, MO 219sub-lethal and lethal effects, WE 215Sub-lethal responses, EP03C-4 sub-samples, MO 296sub-tropical, WE 401subcategory assessment method, WE 447subcellular fractionation, TH 106subcellular partitioning, WE 130subcutaneous biopsy, TU 440sublethal effect, RA15-1sublethal effects, TU 078sublethal endpoint, ET03A-4Sublethal exposure, TH 166Submarine canyon, ET11A-4substance-oriented regulations, RA20-2substance regulations, MO 467 substitution, LC01A-5subtropical forest, WE 081success control, RA03-2Sucralose, MO 217, TU 045suffering of fish, TH 002Sugarcane, ET18-5, WE 406 sul genes, EP01A-2 sulfadiazine, ET19A-1, ET19A-3, ET19A-

4, MO 401sulfamethoxazole, MOPC3-4, TU 057, TU

091sulfonamide, EP01A-2, TU 058sulfonamides, MO 398sulfonylurea herbicide, TU 186Sunflower root exudates, TU 287Sunscreen, TU 034Superficial water, WE 426Superfund, TU 308superspreaders, MO 213Supply-demand curves, LC01A-1Suquía River, TH 109surface, WE 177Surface aquatic ecosystem, TH 258surface sediments, TU 441surface water, EM02B-4, EM02C-4, EP05-

5, MO 067, MO 211, TU 007, WE 118, WE 135

Surface water media, MOPC3-1surface water risk-assessment, WEPC6-3surface waters, RA12-3, TH 131, TH 314,

TU 106, WE 017Surfactant, ET07B-5 Surfactant toxicity, WE 345surfactants, EP08C-1, ET04C-3, TH 285,

TU 143, TU 298, TU 299, TU 303surrogate, MO 026

Page 37: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�0�SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

surrogate species, MO 380Surveillance, RA16-2Survival, TU 330Survival model, ET02-6, TU 337survival through time, TU 420suspect analysis, EP05-3suspended matter, MO 019suspended particulate matter, MO 025, TU

137Suspended Solids, TH 306sustainability, ET09-6, LC02A-1, LC02B-

1, LC02B-2, LC02B-3, MO 388, MO 435, MOPC5-5, SS05-1, SS05-5, SS12-7, TH 341, WE 445, WE 448, WE 462

Sustainability assessment, LC02B-5, MOPC5-1, RA08-4

Sustainable consumption, MOPC5-3Sustainable Design, WE 443sustainable forestry, MO 440 sustainable land use, ET12A-1sustainable management, RA06-2sustainable soil management, ET12A-2Svalbard, EC02A-6, TH 075SVHC, MO 364SWAT, TU 113Sweden, TUPC2-2sweetner, MO 217 swimming activity, TU 342Swiss albino mice, MO 330Switzerland, WE 049 WE 050symbiosis, RA17B-2synchronized Scenedesmus vacuolatus cell

populatio, RA15-1synergies, RA04A-5synergism, TH 276synergistic and antagonistic interactions,

TH 265synergistic effects, MO 343, MO 423synergy, RA20-6synthetic musks, MO 067synthetic pyrethroid, WEPC3-3System Analysis Design Technix, MO 114system biology, TU 326system boundaries , TH 340system boundary, TH 349Systemic Design, WE 443systemic ecotoxicity, MOPC2-5systemic LCA, LC01A-5Systems biology, TU 323, TU 325

T t-test, LC05-3Tagushi, WE 156Tailings, WE 282Tamoxifen, TU 079tar, MO 302target lipid model, MO 367 targeted chemicals analysis, EP02C-4TBT, ET11B-6, TU 365TBT global ban, TU 364TBT resistance, TU 361TCDD, TU 297teaching, WE 030teaching material, MO 053tebuconazole, WE 354technological representativeness, LC04B-1technology ranking, WE 446TEFs, WE 141TEM EDX, TH 183temperate regions, TU 255temperature-dependent toxicity, MO 259temperature, ET12A-5, MO 258, TH 264,

TH 266, TH 268, TH 272, TH 274, TH 275, WEPC5-4

temperature extremes, MO 256temperature variation, MO 413temporal and spatial variability, SS02-1temporal issues, MOPC5-4Temporal patterns, TUPC1-4temporal trend, EC02B-3, TH 085, TH

092temporal trends, TUPC5-2temporary carbon storage, MOPC5-4Tenax, WEPC3-2Tender, MOPC4-8TEQ, TH 027terbutryn, WE 091Terminos Lagoon, TU 169Terrestrial, EP08C-4, ET06A-3, TU 065Terrestrial acidification characterization

factors, EM03-2, RA04A-1terrestrial ecosystem, WE 182terrestrial ecotoxicity, EM03-4Terrestrial ecotoxicology, RA11-5Terrestrial food chains, TU 100Terrestrial Model Ecosystems, ET12A-6terrestrial tests, MO 278Terrestrial Toxicity, MO 364 terrestrial toxicology, MO 271test battery, MO 278 Test conditions, TH 292test design, MO 290, MO 291 test method, MO 404Test type, MO 455testing, RA11-2, SS06-5Testosterone, WEPC4-4Tetrabromobisphenol-A, MO 136tetrachloroethene, EC01C-1tetrachloroethylen, WE 204tetracycline, TH 147, TH 148, TU 357Tetracyclines, EP01A-3, MO 416Tetrahymena pyriformis, TH 041tetraphenylporphyrine, MO 353Tetrodotoxin, MO 326text mining, LC02A-5Textile, MO 165Thailand, TH 064, TH 065the Arctic, TH 073thermal emissions, TU 119Thermal extremes, MO 259Thermal stress, ET06B-1, RA17A-1Thin layer chromatography, MO 122thiol reactivity, TH 042THP-1 cells, MO 130threats, ET02-1, SS06-1three-gorges reservoir, WE 112Three-spined stickleback, TU 072Three Gorges Reservoir, WE 380threshold, ET15B-4 Threshold approach, TH 014threshold damage model, RA15-4Threshold model, TU 337threshold of toxicological concern, RA20-

3thresholds, MO 362, WE 126thymus, MO 166Thyroid disruption, MO 135, MOPC2-3,

TUPC3-7thyroid gland disruptin chemicals, EP02A-

1thyroid hormone receptor, MO 136, TU

428thyroid hormones (THs), WE 351Tier-1 calibration, ET15A-1

Tiered Approach, MO 084, SS06-8tiered soil risk assessment, EM02C-6tiered testing strategy, MO 154Tietê River, TU 150tigerfish, ET05-5tight junctions, TH 025tilapia, ET04B-4, WE 392time-dependent effects, WEPC6-4time-dose relationship, WE 144time-related representativeness, LC04B-1time-variable exposure, WE 123, WE 146,

WEPC6-2time-varying exposure, WEPC6-5Time to recovery, TU 184time trend, EP06-5, TH 088, TU 050,

TUPC5-7time trend modelling, TH 086TiO2 nanoparticles, EP03D-6, WE 207,

WEPC5-3TiO2P25-70, WE 237Tipping points, MO 424 Tire, WE 427Tisbe battalgiai, MO 411 Tissue burden, EP02B-5 tissue paper, MO 121Tissue residues, TH 252tissue/water distribution, ET04C-4Titanium dioxide, EC01A-5, EP03B-2,

EP03D-5, TH 171, TH 189, TU 056, WE 187, WE 210

Titanium dioxide nanoparticles, TH 166Titanium dioxyde nanoparticles, WE 214TK-TD, TU 330TKTD-model, WEPC6-3TKTD modelling, ET02-3, WEPC6-5TKTD models, RA15-2TMF, WE 259TMT sixplex, ET07A-5TOC, TU 117tolerance, TU 343, TU 350, TU 356, WE

347, WE 388tolerance enhancement, TU 351tolerance to pollution, TU 178tool development, TH 354Top predator, EC02B-5 total concentration, MO 320total gaseous mercury (TGM), RA10-1total mercury, WE 076total organic carbon (TOC), WE 246toxaphene, MO 318ToxCast, TH 043toxic compound, MO 349toxic cyanobacteria, MO 356, MO 358Toxic effects, WE 110Toxic metals, WE 404toxic pressure, RA20-4toxic stress, TH 261toxic unit, WE 124toxicant, ET14-4toxicity, EC06B-1, EM02C-2, EP04-3,

EP08B-6, ET02-2, ET04C-2, ET06A-1, ET11B-4, ET12B-6, MO 257, MO 263, MO 294, MO 314, MO 339, RA04A-6, RA06-1, RA08-1, RA21-2, RA23B-4, TH 165, TH 169, TH 181, TH 182, TH 208, TH 245, TH 264, TH 290, TH 294, THPC1-4, TU 017, TU 060, TU 141, TU 145, TU 151, TU 173, TU 209, TU 320, TUPC4-1, WE 015, WE 088, WE 154, WE 162, WE 191, WE 403

Toxicity assays, TH 032

Page 38: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�06 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

toxicity enhancement, TH 041toxicity test, TUPC6-4, WE 244toxicity testing, RA21-5, TH 286, TU 128,

TU 476, WE 238oxicity unit, MO 219 Toxicogenomics, TU 317, WE 323, WE

326toxicokinetic, ET03A-2toxicokinetic model, ET03B-5 toxicokinetic models, WE 122toxicokinetic toxicodynamic, RA19-2toxicokinetic/toxicodynamic model, RA15-

1toxicokinetics-toxicodynamics, TU 337Toxicokinetics, WE 272Toxicology, EP04-2, ET06A-3, TU 323Toxicovigilance, ET08-6toxin, MO 345toxisity, TH 034TPT, MO 143trace elements, TU 189, TU 447, WE 271,

WE 289Trace metals, MO 304, TH 306, TU 389,

TU 397, WE 158, WEPC6-7traceability, WE 071tracer, MO 089tracer compounds, EC05B-6 tradeoff, ET13B-1 tradeoffs, LC02B-1 traditional and alternative piling materials,

TU 454trait-based ecological risk assessment,

ET09-3Traits, ET14-3, MO 376trametes versicolor, THPC1-1Trancriptomics, ET07A-3transactivation assay, TUPC3-7transboundary basin, WE 300Transcriptional coregulators, MO 136transcriptome, TU 324transcriptomic, TH 196transcriptomic profile, MO 170 transcriptomics, ET01-2, ET01-3, ET03B-

4, ET07A-6, ET07B-2, ET07B-6, ET10A-3, MO 148, TH 209, TU 074, WE 331

transfer, MO 396, WEPC1-6Transfer of contaminants, WE 110transformation-dissolution, WE 020transformation, MO 404, TU 044Transformation dissolution, WE 023transformation products, MO 197, MO

202, TU 046, TU 052Transformation/dissolution, RA05-1,

RA05-2, RA05-3, WE 019, WE 021, WE 022

transgenerational effects, TU 351transgenic fish, TH 016transgenic zebrafish, TH 003Transition metals, TH 064transition state, MO 370Translocation, TU 031transplanted mussels, EC01A-1, TU 430transplants, WE 393Transport, MO 076, MO 090, MO 114,

MO 116, WE 386, WE 426Transport , Heat & Electricity Generation,

LC05-2Transport modelling, MO 078 transport proteins, WEPC1-5transportation fuels, LC04A-5trays, MO 162

treated wastewater, EP01B-5trees, TUPC5-5Trematodes, MO 390trenbolone, ET19B-5 trend, WE 430trends, RA20-4Triad, TU 160TRIAD approach, MO 386 Tributyltin, MO 003, MO 263, TU 361,

WE 089, WE 375, WEPC4-4Tributyltin resistant bacteria, TU 362Trichlorfon, WE 414trichloroethene, EC01C-1Trichogramma evanescens, WE 308triclocarban, TH 199, TU 041, WE 368Triclosan, TU 033, TU 041, TU 065, TU

315, TU 344, TU 436, WE 383Tridacna maxima, WE 405trigger, MO 471Trimethoprim, TU 064triphenyltin, ET14-6, WEPC6-6trophic chain, RA10-4, WE 067trophic dilution/magnification, WEPC1-2trophic index, MO 272trophic magnification factors, ET04A-5trophic niche metrics, ET14-2trophic state, ET13A-6trophic transfer, EP03B-4, ET04A-6,

ET18-2, MOPC1-4trophic transfer efficiency RA17A-4tropical, TU 112, TU 444Tropical agriculture, WE 409tropical ecotoxiciology, WE 392tropical ecotoxicology, WEPC4-5Tropical shrimp, ET18-4tropical soils, MO 288tropical system, WE 411tropical waters, MO 021Tropics, WEPC4-8trunk injection, WE 373TTC, TU 208TTR, MO 127Tubifex, ET10A-1tumor promotion, MO 337tungsten, RA05-1Tunnel test, MOPC6-5Turbo flow, TU 021Turkey, TU 158turtle eggshell, TH 065two compartment model, TH 025Tympanotonus fuscatus var radula,

WEPC4-4Tyrosinase, MO 131

U UAE, TU 410ubiquitine, TU 400, TU 401UHPLC-fluorescence-QToF-MS, TU 404,

TU 449UHPLC-MS/MS, MO 409UHPLC/MS/MS, MO 184ultra performance liquid chromatography

fractionat, TU 456ultrafiltration, EP03B-5 Ulva lactuca, TU 392Umberto software, TH 351Umvoti Catchment, TH 258Uncertainties, MO 444uncertainty, ET04A-6, ET08-1, LC04A-1,

LC04A-2, LC04A-5, LC04B-3, LC04B-4, LC04B-5, MO 075, SS02-4, TH 241, TU 232, TU 233, TU 235, TU 238, WE

150, WEPC1-1uncertainty analysis, ET19B-2, LC04A-6,

MO 057, MO 077uncertainty and sensitivity analysis, MO

055Uncertainty propagation, LC04A-3,

LC04B-2uncertainty types, TU 239undisturbed soil columns, TU 303UNEP/SETAC, TH 359United Arab Emirates, TU 458United Kingdom, TUPC5-6University, EP01A-1unsustainable agricultural practices, ET05-

2UPLC-MS/MS, MO 123UPLC, MO 006upscaling, EM02D-4Uptake-elimination, WE 272Uptake, EP06-3, EP08C-4, ET04B-2, MO

020, MO 062, TH 183, WE 067, WE 254, WEPC1-5

uptake rate, MO 011Uptake rates, EC01C-6Uptake route, TH 252Uranium, ET03B-3, ET10A-4, SS09-11,

SS09-3, TH 106, TU 194, TU 359, WE 009, WE 277, WE 279, WE 322, WE 424, WEPC4-3

Uranium speciation, SS09-9Uranium toxicity, SS09-9, WE 278Uranium uptake, SS09-9Urban, RA22-4urban air quality, EC05B-6urban areas, WE 418Urban geochemistry, WE 420Urban mobility, MO 114 urban pollution, EP02A-6, MO 093urban source strength, EM02A-6urban streams, WE 395urbanization, WE 112users’ needs, TH 343USEtox, TU 235USEtox (tm), MO 088 utilization of captured CO2, MO 112UV filter, MO 149UV filters, MO 204, MO 214, TU 305UV light stabilizers, MO 010UV radiation, WE 220UVCB, TU 230

V Vaal River, ET05-1Vale das Gatas mine, WE 282validation, MOPC4-7, RA02-1, SS11-3,

SS11-6, TH 012Validity, TH 290, TH 295Validity criteria, MO 456valorisation, TU 408valuation, WE 310value judgements, RA04B-2Valve movement, TU 378Valve rhythm behavior, TU 368Valvometry apparatus, TU 378van Genuchten parameters, MO 095vancomycin, TH 139vapour phase PAH, EC06B-5 variability, ET02-5, LC04A-1, LC04B-5,

LC05-1, MO 075, MO 241, MO 475, TH 284

Variability assessment, LC03-3variable exposure, WEPC6-8

,

Page 39: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�0�SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

variance, TU 237variegatus, TH 177vasotoxicity, TH 016vector control, WEPC4-1Vectors, MO 326vegetables, EP06-4, WE 268vegetation-air partition coefficient, TU 255verifying computer models, SS02-5Vertebrate pesticide, WE 168vertebrates, RA14-5Vertical distribution, MO 275vertical variability, EC05A-1Vertimec® 18EC, WE 408Veterinary, MO 469Veterinary antibiotic, MO 413veterinary antibiotics, MO 405veterinary ionophores, MO 403veterinary medicinal products, MO 395Veterinary Medicine, MO 397veterinary medicines, ET19B-3, ET19B-4veterinary pharmaceutical, MO 399 veterinary pharmaceuticals, MO 398, MO

402, MO 407, MO 412 Vibrio fischeri, TU 145, WE 205Victoria Australia, MO 015 Vietnam, LC07-3, TU 163vinasse, WE 406, WE 407virgin pulp, MO 121vitamins, MO 247Vitellin, MO 172vitellogenin, EP08A-1, MO 150, MO 151,

MO 157, MO 165, MO 185, MOPC2-1, RA23B-1, WE 352

Vitellogenin Gene Expression, TU 405VMP, MO 404VOC, TU 261VOCs, TUPC3-8volatile organic compounds , WE 326volatile organic compounds (VOCs), TU

268volatilization, TU 256, TUPC3-2Vortis suction sampling, MO 296vulnerability, MO 377vulnerability assessment, EM02D-5vulnerability index, WE 064

W WAF, MO 252warm-blooded species, ET08-1waste-water, ET01-3, TH 330waste, WE 463waste management, MO 106, MO 110,

WE 464waste management plan, TH 350waste materials, TU 309waste water, MO 139, TH 321waste water effluent, MO 128waste water treatment plant, EP05-3wastewater, EP02C-4, EP05-6, EP08B-

2, MO 199, RA23A-1, RA23A-2, RA23A-4, RA23A-5, RA23A-6, RA23B-2, TH 129, TH 132, TH 137, TH 140, TH 146, TH 311, TH 322, TH 326, TH 328, TH 329, THPC1-2, TU 005, TU 036, WE 078

wastewater disinfection, EP01B-6Wastewater effluent, MO 205, TUPC1-7Wastewater effluents, TH 315wastewater irrigation, TH 133, TH 144wastewater treatment, TU 049wastewater treatment plant, TU 433wastewater treatment plant effluent, TH

008Wastewater treatment ., TH 135wastewaters, TH 101water, LC01B-2, MO 006, MO 026, MO

028, MO 178, MO 349, TU 254, WE 285

Water analysis, MO 065, TH 117, TU 273Water and sediment analysis, WE 095Water balance, EM02C-3Water basin catchment, TU 035water conservation, MO 431Water consumption, LC07-4, MO 439, TU

233water cycle, TU 052Water Effluents, TH 303Water footprint, LC07-4, MO 428, MO

429, MO 430, RA04A-5Water Framework Directive, MO 024,

MO 082, MO 084, MO 475, MO 476, MO 477, RA21-3, RA23B-2, TH 297, TH 317, TU 103, TU 155

Water framework directive (WFD), MO 474

water monitoring, TU 033water plant, TUPC6-2water plant assemblages, RA19-3water quality, MOPC3-5, TH 124, TU

425, WE 312, WE 314water quality control, WE 125water quality guideline, TU 420water quality model, MO 080Water resource management, TU 167water reuse, EP01B-4, EP08C-2water scarcity, MO 431Water shortage, WE 306water treatment, EC06B-2 waterfootprint, MO 427waterfowl, MO 047, MO 242Watershed, TU 175WC-Co, WE 229WC, WE 229WEA, TU 117weathering, TU 265web-based, TH 344web tool, WE 119weed seeds, MO 458Weight of Evidence, EP03D-4, MOPC2-7,

TH 188, TH 206weighting, LC05-1WET, MO 219wetland, TH 312Wetland and terrestrial plants, TU 184wetland soils at the Elbe River, RA10-1wetlands, WE 314WFD, TH 116, TH 326, WE 422whale blow, TU 446White tailes sea eagle, TU 012Whitemouth croaker, TU 415whole effluent assessment, TH 325Whole Effluent Toxicity, TH 011whole formulation, MO 432whole life cycle, LC02A-6wild mammals, WE 057Wildlife, ET08-5, ET08-6, MO 244, MO

247, RA16-1, WE 040, WE 165Wildlife casualty, WE 168Wildlife Incident Investigation Scheme, WE

168Wind, TH 346wind energy, WE 450wind power, LC01A-5winery, WE 447

Wintering area, ET08-2WOE approach, WE 402wood borer, TU 454Wood burning, RA08-4Wood preservants, WE 345wood preservatives, WE 090wood smoke particles, WE 335woodlice, MO 403, MO 407WWTP, EC01C-5, TU 040WWTP effluent, TH 327WWTP effluents, TH 058WWTPs, TU 055

X x-ray microanalysis, TH 175xenobiotic, MO 174xenobiotics, TU 316, WE 263, WE 329,

WE 380Xenopus laevis, EP04-4, ET13B-5, TH

057, TH 058, WEPC5-7Xiphias gladius, ET11C-3XRF, TU 450

Y Yamal peninsula, TH 080Yangtze, TU 147Yangtze Three Gorges Dam reservoir ,

ET15B-6Yangtze Three Gorges reservoir, WE 258yeast, TH 185Yeast androgen screen, EP02A-6Yeast estrogen screen, EP02A-6Yellow Sea, WE 384yellow wagtail, WE 054Yellowfish, ET05-1Yucatan Peninsula, WE 158Yucatan shelf, WE 157

Z Z . mays, WE 328zanthoxylum, WE 369Zearalenone, WE 304Zebra mussel, EP08A-4, TH 262, TU 086,

TU 087, TU 136zebra mussels, WE 242zebrafish, EP04-2, ET03A-3, ET03A-5,

ET03A-6, ET03B-3, ET07A-2, ET10A-6, MO 150, MO 151, MO 153, MO 156, MO 159, MO 160, TH 029, TH 159, TH 268, TU 017, TU 018, WE 009, WEPC1-7

Zebrafish (Danio Rerio), TU 458zebrafish (Danio rerio) embryo, ET03A-2zebrafish Danio rerio, TH 010zebrafish eleutheroembryo, EP02A-1zebrafish embryo, TH 001, TH 007zebrafish embryo test, TH 008Zebrafish embryo toxicity, TH 012zeolite, EC06B-2 zero valent iron, WE 212zero valent iron nanoparticles, TH 194zinc, EC04-4, ET12C-5, RA05-6, TH 194,

THPC1-5, TU 191, TU 370, TU , WE 018

zinc nanoparticle, TH 182zinc oxide, WEPC5-4zinc oxide nanoparticles, EP03C-3, WE

231zinc pyrithione, MO 258Zn EC04-2, TU 398Zn forms, TH 198Zn(II) ion, THPC1-3

Page 40: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�0� SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

ZnO, TH 177, TU 414, WE 189ZnO nanomaterial, TH 198ZnO Nanoparticles, MO 170, TH 200,

WE 220Zoarces, MO 460Zoarces viviparus, WEPC2-8Zona Radiata Gene Expression, TU 405zonal authorization, WE 379zonal evaluation, WE 059zooplankton, WE 408

Page 41: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

Author Index

Page 42: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences
Page 43: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�11SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

A Aagaard A .,RA09-2, RA09 Aallonen A .,MO 013, EC01P Aars J .,TH 084, EC02P Aasen T .,TH 075, EC02P Abad E .,TH 087, EC02P, ET11C-6,

ET11A-4Abalos M .,ET11A-4, ET11A, ET11C-6 Abalos M .J .,TH 087, EC02P Abballe F .A .,TH 117, EC03P Abbas A .A .,MO 322, ET12P Abbasi G .,EC05B-4, EC05B Abbasi K .,TU 410, ET11P, TU 458 Abdalla C .,MO 174, EP02P Abdalla F .C .,ET06B-3, ET06B Abe R .,MO 147, EP02P, WE 358 Abel S .,TUPC4-3, TUPC4, EC06A-3 Abessa D .M .S .,WE 402, ET18P Abrantes A .N .,MO 266, ET12P Abrantes K .,ET18-2, ET18 Abrantes N .,TU 156, RA06P, WE 364, WE

366Abreu M .M .,MO 331, ET13P Abreu S .N .,WE 281, ET04P Acevedo-Merino A .,THPC1-4, THPC1 Achten C .,TU 279, EC06P, EC06B-1,

EC06B Ács A .,TUPC3-3, TUPC3 Action M .E .M .B .E,EP01B-1, EP01B Acuña V .,WE 307, ET05P, TH 265 Adam-Guillermin C .,ET03B-3, ET03B,

WE 009 Adam I .,MO 064, EM02P1 Adam N .C .,EP03B-5, EP03B Adamovic D .A .,TH 310, RA23P Adamovic S .Z .,THPC1-3, THPC1 Adamovsky O .,MO 339, ET13P Adamovský O .,MO 353, ET13P Adams D .H .,WE 072, RA10P Adams L .,RA16-3, RA16 Adams W .J .,RA20-5, RA20, RA05-4,

RA05 Adedeji B .,WE 292, ET04P Adenekan A .E .,TU 390, ET11P Adeyemo A .,WE 400, ET18P Adibi N .,LC04B-4, LC04B Adimado A .A .,WE 076, RA10P Adler N .,MO 402, ET19P Adler N .,EP08B-1, EP08B Admiraal W .,MO 378, ET17P, TH 271,

ET07B-2, RA21-6, TU 394 Adolfsson-Erici K .,WE 245, ET04P, MO

215 Adomas B .,MO 412, ET19P Adrian P .,TH 295, RA21P, TU 107, MO

052, TU 101 Adu-Kumi S .O .,TU 270, EC05P Afonso E .,WE 110, RA14P Aga D .S .,MO 177, EP02P Agatz A .,ET15A-4, ET15A Agerstrand M .,TU 126, RA02P Ågerstrand M .,RA21-4, RA21 Aggeri F .,LC06-4, LC06 Agha Moosavi A .A .,WE 303, ET05P Agra A .R .,TU 358, ET10P Agramunt S .,TU 021, EP06P Àgueda A .,WE 004, RA01P Aguerre-Chariol O .,EP03B-6, EP03B Aguirre-Martínez G .V .,TU 084, EP08P, TU

384, ET11P Aguirre-Rubi J .,TU 376, ET11P Agusti S,TU 461, ET14P

Ahehehinnou D .A .,TU 112, EM02P2 Ahel M .,MO 193, EP05P Ahkola S .J .,MO 013, EC01P Ahlf W .,RA06-1, RA06, TU 271, WE 335,

MO 322 Ahmad I .,WE 362, ET15P, WE 363,

ET15P Ahn J .M .,TU 317, ET01P, TH 197,

EP03P2 Ahrens J .,WE 395, ET18P Aicher L .,TU 130, RA02P Airaksinen R .,ET11C-5, ET11C Aissani L .A .,MO 113, LC01P, EM02C-2,

WE 464, Aït-Aïssa S .,MO 159, EP02P, MO 160,

EP08A, MO 193, EP08A-2 Ajana O .,WE 400, ET18P Akachat A .,MO 030, EC01P Akase T .,TH 211, EP03P2, TH 212 Åkerblom N .,RA09-2, RA09 Åkerman G .,WE 245, ET04P Akkanen J .,TH 172, EP03P2, WE 213,

TUPC4-3, Akkanen J .,WE 255, ET04P Akkanen J .T .,EC06A-3, EC06A al-Bairuty G .,EP03B-2, EP03B Al-Harb N .,SS05-4, SS05 al-Khedhairy A .A .,WE 378, ET15P al-Naema A .N .,TH 017, ET03P al-Naema N .M .,TH 020, ET03P al-Soud W .A .,ET12B-3, ET12B Al Kaddissi S,SS09-3, SS09 Al Kedhairy A .A .,ET13A-1, ET13A Alaphilippe A .,TU 124, RA02P Alarifi S .A .,WE 378, ET15P Albanese K .,MO 046, EC04P Albentosa M .,WE 356, ET15P Alberdi J .L .,WE 357, ET15P, TH 318 Albertsson E .,WEPC2-8, WEPC2 Albrecht S .,WE 461, LC05P Aldenberg T .,RA20-4, RA20 Aldenberg T .,MOPC2-2, MOPC2 Aldershof S .A .,MO 376, ET17P Aldridge D .C .,WE 270, ET04P Alewell C .,TU 300, EC06P Alexandre C .,LC01A-1, LC01A Alfieri J .G .,TUPC3-2, TUPC3 Alfonso A .,MO 326, ET13P, ET13A-5,

ET13A Alharbi M .,ET11A-3, ET11A Ali L .,TUPC3-5, TUPC3 Ali N .A .,TUPC3-5, TUPC3, TU 260,

EC05P Alier M .,EC05B-6, EC05B Alikadic A .,MO 103, LC01P Alix A .,WE 132, RA15P, MOPC6-5,

MOPC6, MOPC6-6, MOPC6 Alix A .,RA16-3, RA16, RA11-1 Alix A .O .,MOPC6-2, MOPC6, MOPC6-1,

MOPC6, MOPC6-4, MOPC6 Allacker K .,WE 460, LC05P Allan I .,TH 023, ET03P Allan I .J .,EC01C-6, EC01C, TU 280,

EC06P, MO 025, EC01P, MO 209, ET11B-1

Allen D .,MO 015, EC01P Allen R .M .,ET04B-3, ET04B Allinson G .,TU 034, EP08P, MO 015 Allinson M .,TU 034, EP08P, MO 015 Alliot F .,TH 280, RA17P, TUPC3-7 Allison J .,TH 357, LC06P Almeida V .D .F .,TH 267, RA17P

Alonso A .,TU 460, ET11P, MOPC5-5, MOPC5, TU 408,

Alonso J .,TH 194, EP03P2 Alpar B .,RA15-4, RA15 Alpuche-Gual L .S .,TU 169, RA07P Alquezar R .,TH 055, ET06P Alscher A .,ET06A-3, ET06A Alscher A .,TH 054, ET06P Altenburger R .,TH 007, ET03P, TU 221,

RA20-6, RA20, WE 085 Altenburger R .,RA12-2, RA12, RA17A-3,

RA17B-2, RA15-1 Altenburger R .,TU 315, ET01P, ET07A-2,

TU 220, Althalb H .A .,WE 155, RA18P Altin D .,WE 152, RA18P, RA18-4, RA18 Altinok I .,TH 162, EP03P2 Alvarenga P .,MO 276, ET12P, WE 269,

ET04P, TU 189, RA19P, WE 095 Álvarez-Lloret P .,MO 247, ET08P Alvarez-Muñoz D .,ET07B-5, ET07B Alvarez A .,MO 446, RA04P Alvarez D .,WE 073, RA10P Alvarez J .M .,TH 198, EP03P2, TH 182 Álvarez P .D .,TU 447, ET11P Alvarez T .,MO 269, ET12P Alvarsson A .,SS12-5, SS12 Alver M .,RA18-6, RA18 Alves A .,TU 252, EC05P Alves A .,TU 362, ET11P Alves M .G .,TU 402, ET11P Alves P .,WE 360, ET15P Alvila L .,WE 213, EP03P1 Amaral Sobrinho M .B .,MO 273, ET12P Ambec S .,LC05-3, LC05 Amé M .V .,WE 256, ET04P, WE 329, TU

274, Amechmachi N .,SS09P-4, SS09P Amelung W .,TU 002, EP06P, EP08C-2,

ET19A-1, ET19A-3 Amerighi O .,LC02A-4, LC02A Amiard-Triquet C .,WE 200, EP03P1 Amigo J .M .,TU 252, EC05P Amin S .,TUPC3-6, TUPC3 Amor M .B .,WE 465, LC05P Amores Barrero M .J .,MO 121, LC01P Amorim F .,MO 336, ET13P, WE 398 Amorim F .,, ET18P Amorim M .J .B .,ET01-4, ET01, ET12A-5,

EP03C-5, TH 196 Amos J .J .,MO 397, ET19P Amouroux D .,WE 084, RA10P, RA10-4 Amzal B .,TH 242, RA13P An L .,TU 367, ET11P An Y .J .,TH 184, EP03P2, WE 217,

EP03P1, MO 264, ET12P, MOPC1-4, MOPC1, WE 203, EP03P1, EP03B-4,

An Y .Y .,WE 112, RA14P Ana A .L .,MO 266, ET12P Ana C .,TU 361, ET11P, TU 362, ET11P Anastas P .,RA04B-1, RA04B Ancora S .,ET06B-6, ET06B, MO 047 Ander E .L .,EM01A-5, EM01A Andersen Z .J .,EC05B-5, EC05B Anderson C .,ET10B-1, ET10B, ET07B-6,

TUPC3-6, Anderson K .,MOPC2-4, MOPC2 Andersson-Sköld Y .,ET12A-2, ET12A Andersson A .,MO 192, EP02P Andrade C .,RA09-3, RA09 Andrade T .S .,MO 251, ET09P, TH 019 André C .A .,RA23B-6, RA23B, TH 157,

Page 44: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�12 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

EP03P2 André S .,TH 137, EP01P Andrés P .,ET12B-5, ET12B Andreu A .,MO 187, EP02P Andriès E .,MO 090, EM02P1 Ang C .Y .,WE 190, EP03P1, WE 336,

ET07P, WE 251, ET04P Ang P .O .,WE 311, ET05P Angeles F .A .,WE 437, EM01P Angelis D .F .,TU 152, RA06P Angell A .,ET12C-3, ET12C Angelstorf J .,TU 140, RA06P, WEPC5-3 Anglès d’Auriac M .,TH 029, ET03P Angot H .P .,EM01A-3, EM01A, MO 090 Anink D .A .F .,TH 354, LC06P Ankley G .,RA11-2, RA11, SS11-2, SS11 Ankley G .T .,ET09-2, ET09 Ansaldo M .,TU 204, RA19P Ansanay-Alex S .M .,EC06B-2, EC06B Anselmo A .,EP01B-6, EP01B Anselmo H .M .R .,ET11A-5, ET11A Ansley M .,MO 045, EC04P Antczak P .,ET01-1, ET01 Antelo T .,TU 460, ET11P, MOPC5-5,

MOPC5, TU 408, Anthonio P .,TU 227, RA20P Antikainen K .,MOPC5-7, MOPC5, MO

440, RA04P, LC06-6, Antón A .,RA12-6, RA12 Antonijevic B .,TU 226, RA20P Antoniou M .,WE 304, ET05P Antunes S .C .,WE 436, EM01P, TU 316 Anyanwu I .N .,MO 270, ET12P Aoustin E .,MOPC5-8, MOPC5, LC07-4 Aparicio N .,TU 353, ET10P Apitz S .E .,MO 387, ET17P Appel K .,TU 146, RA06P Appels J .,TH 033, ET03P Appels J .,TU 391, ET11P Appleton J .D .,EM01A-5, EM01A Apsmo Pfaffhuber K .,SS08-1, SS08 Arai S .A .,MO 433, RA04P Arambourou H .,MO 171, EP02P Arana G .,TU 170, RA07P Arana G .,ET03B-2, ET03B Araujo L .F .M .,MO 021, EC01P Araujo L .P .,TU 421, ET11P, MO 021 Araujo M .M .D .E .,WE 396, ET18P Arbault D .,RA04B-3, RA04B Arbildua J .J .,RA05-2, RA05, RA05-3 Arce Funck J .A .,WE 014, RA05P Archer M .J .G .,TU 174, RA07P Arcieri C .,TH 311, RA23P Ardestani M .,WE 272, ET04P Areekijseree M .,TH 064, ET06P, TH 065,

ET06P Arenz M .,LC01A-3, LC01A Argese E .,TU 423, ET11P Ariyoshi T .,TH 161, EP03P2, TH 163, TH

164, Armitage J .M .,TH 021, ET03P, TH 077,

EC02P, EM02A-5, ET09-1, MO 061 Arndt D .,WE 227, EP03P1, WE 225,

EP03P1 Arnot J .A .,TH 021, ET03P, TH 294, MO

059, Arnot J .A .,WE 122, RA15P, MO 061,

EM02P1, MO 055, EM02P1 Arnoux P .,TU 056, EP08P Arpin-Pont L .,TU 053, EP08P Arrate J .A .,WE 274, ET04P Arrhenius Å .C .C .,WEPC2-6, WEPC1,

EP08B-4 Arrouays D .,ET12B-1, ET12B Arruda J .R .F .,TU 238, LC04P Arslan O .C .,TU 019, EP06P Arthur C .D .,EP07A-1, EP07A Arts G .H .P .,MO 476, RA11P, MO 477,

RA11P, WE 093, TUPC6-5, RA21-2 Arushanyan Y .,RA04A-6, RA04A Arvaniti O .,TU 003, EP06P, TU 005,

EP06P Arvesen A .,LCO1B-4, LC01B Arvidsson R .,TH 340, LC03P Arzoumanidis I .,TH 355, LC06P Asante K .A .,TU 270, EC05P Ashauer R .,ET03B-5, ET03B, WE 145 Ashauer R .,RA15-2, RA15, ET15A-6,

ET15A, RA15-4, Ashikhmina T .Y .,WE 432, EM01P Ashley T .F .,TUPC3-6, TUPC3 Ashton D .K .,MO 024, EC01P Askem C .,EP08B-6, EP08B Asker N .A .,WEPC2-8, WEPC2 Askham C .,MO 426, RA04P, MO 421,

RA04P Aspichueta P .,ET07A-4, ET07A Asplund L .T .,MO 335, ET13P Asplund L .T .,TU 458, ET11P Asselin-Balencon C .,LC02B-6, LC02B Asselman J .,TU 352, ET10P, MO 343,

ET10B-4, Asselman J .,MO 344, ET13P, RA17B-6,

RA17B, TU 215, RA20P, MO 250, ET09P, ET10B-2

Asselman M .,TH 271, RA17P Atatanir L .,WE 099, RA12P Ates D .,WE 099, RA12P Atorf A .,WE 241, ET04P Auber A .,MO 377, ET17P, WE 147 Aubry P .,WE 005, RA01P Aucejo S .,TH 207, EP03P2 Auclair J .A .,TH 157, EP03P2 Auffret M .,WEPC2-3, WEPC2 Augusiak J .A .,TU 473, ET14P, WE 105,

RA14P Augustin J .,MOPC4-3, MOPC4 Augustine S .,WE 009, RA01P, WE 121 Aune M .,EP06-5, EP06 Ausili A .,TU 144, RA06P Aust N .,TU 207, RA20P, WE 034, RA08P,

RA20-2, Austin B .,EP01B-2, EP01B Auteri D .,RA09-1, RA09, MOPC6-3 Autrup H .,TH 193, EP03P2 Awodiran M .O .,WE 400, ET18P Axelrad D .,WE 072, RA10P Axelsson M .,EP08C-5, EP08C Aydin E .A .,RA02-2, RA02 Ayed A .C .,LC06-5, LC06 Ayers S .M .,ET04B-3, ET04B Ayrault S .,WE 242, ET04P Ayre K .,RA17A-2, RA17A, TH 259,

RA17P Aytkuliev M .,TH 034, ET03P Azam D .,WE 147, RA15P, MO 449 Azapagic A .,WE 454, LC02P Azevedo C .,MO 358, ET13P Azevedo C .S .L .,WE 220, EP03P1 Azevedo J .,TH 136, EP01P Azevedo J .,MO 326, ET13P Azevedo J .,MO 358, ET13P Azevedo L .B .,EM03-3, EM03, EM03-2,

RA04A-1,

Azimonti G .A .,TU 312, ET01P, WE 114

B Babaluk J .,TH 093, EC02P Babica P .,MO 036, EC01P Babin M .,TH 182, EP03P2 Babín M .,TH 198, EP03P2 Babin P .J .,EP02A-1, EP02A Babu Vangala A .,TH 132, EP01P Babut M .,TU 010, EP06P Baccarani G .,TU 423, ET11P Bacchetta R .,WEPC5-7, WEPC5, EP04-4 Bach M .,EM02B-5, EM02B, TU 104, TU

106, Bachmann J .,TU 126, RA02P, MO 395 Bachmann T .M .,WE 446, LC02P, LC01A-

5, LC01A Backhaus T .,RA12-2, RA12, RA20-3,

RA20, SS12-5, WE 208, EC01B-3, RA20-1, TU 291, TU 213, TU 091, EP08B-4,

Backhaus T .B .,WE 085, RA12P Backman U .,EP03D-3, EP03D Baderna D .,TH 281, RA21P, MO 437 Badia-Fabregat M .,TU 305, EC06P Bado-Nilles A .,EP03B-6, EP03B Bæk K .,WEPC1-7, WEPC1 Baena-Nogueras R .M .,TU 298, EC06P Baeta Neves M .H .C .,MO 342, ET13P Baginska E .,TU 052, EP08P Bagnati R .,TU 035, EP08P Baguley J .,TU 436, ET11P Bah B .,EM02D-6, EM02D Bahamonde A .,ET07B-1, ET07B Bahlmann A .,MOPC3-2, MOPC3 Bailey H .,ET11B-4, ET11B Bailey M .J .,ET12B-1, ET12B Bailly E .,EC01C-2, EC01C Baini B .,TU 032, EP07P Baini M .,ET11C-4, ET11C, EP07B-2,

EP07B Bainy A .C .D .,TU 417, ET11P, WE 365,

ET15P Bak S .A .,MO 197, EP05P, TU 051, TU

060, Bakatula E .N .,TH 101, EC03P Baker J .E .,EP07A-1, EP07A Bakir A .A .,EP07A-5, EP07A Bakke T .,TU 280, EC06P Bakken V .,WE 051, RA09P Bakker F .M .,TU 471, ET14P, MO 376,

ET17P, RA11-1, Bakker I .,TH 113, EC03P Bakker R .,EP03C-4, EP03C Balaam J .,MO 024, EC01P, MO 003,

EP08B-6, MO 004 Balaguer P .,MO 160, EP02P Balbus J .,MO 249, ET09P Balbus J .,ET09-4, ET09 Balcázar J .L .B .,TH 122, EP01P Baldassin P .B .,WE 262, ET04P Baldi C .,WE 412, ET18P Baldi G .,TH 158, EP03P2 Baldo G .L .,TH 357, LC06P Baldoni-Andrey ,TH 325, RA23P Baldwin W .S .,EP03B-3, EP03B Balk L .,ET11A-2, ET11A Ballabio C .,EM02B-6, EM02B Ballesteros M .L .,WEPC3-1, WEPC3,

WEPC3-3, WEPC3-4, WEPC3, ET05-2 Balode M .,WE 090, RA12P Baltrenaite E .,WEPC1-6, WEPC1

Page 45: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�1�SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Baltrenas P .,WEPC1-6, WEPC1 Bandow C .,MO 287, ET12P Bandow N .,RA15-1, RA15 Bangash R .F .,WE 306, ET05P Banitz T .,TU 285, EC06P Banks J .E .,MO 380, ET17P Bannink A .,EP05-2, EP05 Banta G .,MO 466, RA11P Banta G .T .,TH 176, EP03P2, TH 178, TH

190, Barabash S .,SS09-12, SS09 Baraldi F .G .,WE 353, ET15P Barata C .,EP02A-1, EP02A, MO 153, MO

144, EP02P, TU 358, TU 082, TU 220, TU 221,

Baraud B .F .,TU 455, ET11P, TU 431, ET11P

Barbafieri M .,TU 203, RA19P Barber D .S .,MOPC2-4, MOPC2 Barber J .L .,MO 004, EC01P Barbero S .B .,WE 443, LC02P Barbone F .,RA10-3, RA10 Barbosa I .R .,WE 095, RA12P Barceló D .,MO 182, EP02P, MO 187, MO

177, TH 303, RA23P, SS05-4, WE 004, THPC1-1, RA23A-3, TU 305, TH 122, EP03A-4, EC05B-1, WE 095, TH 265, TU 254, RA12-4, TU 252, TU 130, TU 255, TU 021

Bardos P .,ET12A-2, ET12A Bareille G .,TH 306, RA23P Baretta D .,MO 284, ET12P Barfknecht R .,WE 057, RA09P, TH 251,

TH 253, Barga M .,TH 186, EP03P2 Bargelloni L .,TU 074, EP08P Barigozzi M .,TU 236, LC04P Barillier D .,TU 371, ET11P Barillon B .,MO 001, EC01P Barletta-Bergan A .,RA16-1, RA16 Barmo C .,TH 171, EP03P2 Barnes J .,EC05A-1, EC05A Barnett E .A .,WE 169, RA22P, RA16-2,

RA16 Baron E .,MO 187, EP02P Barón E .,WE 004, RA01P Baron G .J .,TH 030, ET03P Barra R .O .,EP02C-1, EP02C, EC05A-4,

WE 261, WE 004, RA01P, TU 477 Barra Caracciolo A .,MO 391, ET17P, MO

298, ET12P, TU 095, ET19A-5 Barraud O .,EP01A-6, EP01A, TH 129 Barreiros L .,TH 137, EP01P Barresi E .,TH 085, EC02P, EC02B-3,

EC02B Barrett K .,RA11-1, RA11 Barron L .,MO 205, EP05P Barros L .P .M .,MO 331, ET13P Barroso C .,TU 364, ET11P Barsi A .E .,MO 452, RA11P Barszczewski J .,MO 412, ET19P Bartel-Steinbach M .,TUPC5-5, TUPC5 Bartel-Steinbach T .,TU 136, RA03P Barth J .,TU 004, EP06P Barthel A .K .,WE 179, EP03P1 Bartkow M .,EP02B-4, EP02B Bartlett P .W .,MO 079, EM02P1, TH 082,

EC02P Bartram A .,TU 066, EP08P Basaldud R .B .,WE 437, EM01P Basallote-Sánchez M .D .,TU 142, RA06P Baseldud R .,MO 079, EM02P1

Basopo N .,WE 299, ET05P, WE 342, ET15P

Bassères A .,MO 379, ET17P, ET14-2, ET14, TH 325,

Basset B .B .,TU 455, ET11P, TU 431, ET11P

Bastos E .,MO 371, ET16P, MO 299 Bastos P .C .,MO 342, ET13P Basu S .,EP06-6, EP06 Basumalik L .B .,TH 117, EC03P Batalla R .,SS05-3, SS05 Bateman E .,TU 183, RA19P Batley G .,TU 443, ET11P, SS03-4 Batra A .,RA02-1, RA02 Batt A .,TUPC1-7, TUPC1 Bauda P .,ET12C-6, ET12C, MO 278,

ET12P Baudiffier D .,MO 156, EP02P Baudin I .,TH 352, LC06P, LC05-3 Baudot R .,TU 043, EP08P, MOPC3-1,

MOPC3, MO 203, MO 396, ET19P, MOPC3-6

Baudry M .,WE 464, LC05P Bauer C .,MO 116, LC01P Bauer C .,RA14-3, RA14 Bauer C .,LC02B-2, LC02B Bauer J .,EP01A-5, EP01A Bauer S .,RA03-2, RA03 Bauerfeind J .,ET04C-4, ET04C Bäuerlein P .S .,EC01A-6, EC01A, MO 008,

EC01P Baumann H,SS09-7, SS09 Baumann J .B .,WE 225, EP03P1, WE 227,

EP03P1, WE 202, Baumann L .B .,MO 150, EP02P Baumann M .,TU 088, EP08P Baumann Z .,WEPC1-4, WEPC1, SS09-7,

SS09 Baumgartner W .,TH 159, EP03P2, EP03C-

1 Baun A .,TH 292, RA21P, TH 293, RA21P,

WE 218, Baures E .,MO 028, EC01P Baveco J .M .,EP03C-4, EP03C, RA14-6,

RA15-4, WE 105, WE 109 Bay K .,MO 192, EP02P Bayart J .B .,MOPC5-8, MOPC5 Bayat N .,ET07A-4, ET07A Bayerle M .,TU 040, EP08P, EC01C-5 Bayliss C .M .,MOPC4-1, MOPC4 Baynes A .,ET06B-4, ET06B, RA23B-1 Bayona Y .B .,MO 379, ET17P, ET14-2,

ET14 Bazbauers G .,WE 090, RA12P Bean T .,MO 132, EP02P Bean T .P .,TU 383, ET11P Bearhop S .,WE 170, RA22P Beaudette L .A .,ET12C-2, ET12C Beaudoin R .,RA05-1, RA05 Beaudouin R .,MO 168, EP02P, MO 241,

ET08P Beaudouin R .,TU 359, ET10P Beaudouin R .B .,TU 330, ET02P Beaugelin-Seiller K,SS09-3, SS09 Bebianno M .J .,TU 425, ET11P, TU 424,

ET11P, WE 318, WE 429 Becanová J .,TU 250, EC05P Becher MA,SS07-1, SS07 Beck A .,MO 469, RA11P Becker A .,EP06-6, EP06 Becker J .,TU 445, ET11P Becker P .,RA03-6, RA03

Becker P .R .,TUPC5-2, TUPC5, TUPC5-8, TU 135, RA03-3

Becker R .A .,MOPC2-7, MOPC2 Becker T .B .,EC05B-5, EC05B Beckingham B .,EC06A-5, EC06A Beckingham B .A .,TUPC4-4, TUPC4,

EP07B-3, EP07B Bednar A .J .,WE 190, EP03P1, WE 251,

ET04P, WE 176, EP03D-5 Bednarska A .J .,WE 134, RA15P, SS07-3,

SS07 Bedo I .,RA04B-6, RA04B Beeltje H .,MO 003, EC01P, MO 023, TH

312, Beer I .,WE 086, RA12P Beger G .,ET06A-3, ET06A Bégout M .L .,TU 341, ET10P, TU 342 Beguiristain T .,TU 124, RA02P Behr M .,WE 338, ET07P Behra R .,TH 179, EP03P2, EP03C-2, TU

324, EP03A-6, WE 295 Beingessner R .,WE 233, EP03P1 Beiras R .,TU 398, ET11P, TU 379, ET11P,

TU 416, ET11B-2 Beisel J .N .,MO 171, EP02P Beitel S .C .,TU 148, RA06P Beketov M .A .,TH 287, RA21P, WE 104,

RA14P, TU 468, ET14P, RA14-3, ET14-4, TU 463, ET15B-4, MO 374

Belanger S,ET03A-1, ET03A, SS11-2, SS11, TH 012,

Belgers J .D .M .,WE 093, RA12P, WE 146, WEPC6-2, TU 090

Beline F .B .,EM02C-2, EM02C Bellanger X .,EP01A-6, EP01A Bellas J .B .,TU 379, ET11P, TU 416, ET11P Belles A .,ET11C-2, ET11C Belpaire C .,WE 433, EM01P Beltman W .H .J .,TUPC6-5, TUPC6 Beltran E .,TU 107, EM02P2, TU 101 Beltran E .M .,MO 279, ET12P, MO 280 Ben-Bolie G .H .,SS09P-4, SS09P Ben Ameur W .,TU 406, ET11P, TU 413 Benbrook C .,RA02-1, RA02 Benbrook K .,RA02-1, RA02 Bender K .,MO 450, RA11P Benedicto J .M .,TU 409, ET11P, EP02B-1,

EP02B Benetello G .,TUPC2-6, TUPC2 Benetto E .,TH 352, LC06P, LC02A-3,

LC02A, MOPC5-3, MO 445, RA04P, TH 344, RA04B-3, LC06-5, LC01A-3, LC05-3,

Benfenati E .,TH 281, RA21P, MO 363, EM02A-4, ET16-1, MO 437

Bengtson Nash S .,SS08-3, SS08 Bengtsson G .,ET13B-1, ET13B Benisek M .,TH 024, ET03P Benitez S .B .,WE 437, EM01P Bennasroune A .,WE 214, EP03P1, TUPC6-

8, TUPC6, MO 312, MO 130 Bennett K .,TU 210, RA20P Bennett T .,TU 183, RA19P Bentley K .S .,MOPC2-7, MOPC2 Berail S .,RA03-3, RA03 Berendonk T .U .,TH 007, ET03P, TH 123,

TH 124, EP01B-1 Beresford N .,MO 132, EP02P, RA23B-1 Berg C .,EP08A-1, EP08A, MO 176, EP02P Berg J .,ET12B-3, ET12B, TH 145 Berg K .,ET07A-3, ET07A Berg N .W .,TU 230, RA20P

Page 46: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�14 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Bergamin L .,TU 144, RA06P Berger C .,TU 029, EP07P Berger J .,MO 303, ET12P Berger U .,TUPC1-3, TUPC1, TUPC1-4,

TUPC5-7, EP06-5, TUPC1-6 Bergesen J .D .,LCO1B-4, LC01B Berghahn R .,RA08-6, RA08, WE 383 Berglund O .,TUPC2-5, TUPC2, MO 384 Bergman A .,MO 188, EP02P, TU 458 Bergman A .L .,WE 038, RA08P Bergmann A .,TU 147, RA06P, MO 208 Bergtold M .,MO 275, ET12P Berhanu D .,TH 176, EP03P2 Berho C .,MO 001, EC01P Berkner S .,MO 404, ET19P Berkovskyy V .,SS09-12, SS09 Berlekamp J .K .,EM02B-4, EM02B Bermúdez J .M .,TH 207, EP03P2 Bernal M .P .,MO 298, ET12P Bernhoeft S .,TH 028, ET03P Berntssen M .H .,ET11A-2, ET11A Berny P .J .,WE 173, RA22P, RA22-5 Beronius A .,TH 296, RA21P Berrada S .,TH 004, ET03P Berrojálbiz N .,TH 090, EC02P, TH 087,

EC02P Bersinger T .,TH 306, RA23P Berthod L .M .C .,MO 307, ET12P Berthomieu C,SS09-6, SS09 Bertilsson S .,ET04A-3, ET04A Bertolero A .,ET11C-6, ET11C, WE 075 Bertrand C .,WE 227, EP03P1 Bertrand O .R .A .,EC02B-1, EC02B Bertrou J .,TU 056, EP08P Bervoets L .,EP06-4, EP06, RA14-6, ET18-

2, MO 305 Besnard A .,ET10A-5, ET10A Besnard A .L .,ET10A-3, ET10A Bessa M .B .,WE 364, ET15P Bester K .,WE 091, RA12P Betrò S .,WE 004, RA01P Bettinetti R .,WE 083, RA10P, WE 080,

RA10P Beulke S .,EM02D-3, EM02D Beutin C .,LC06-2, LC06 Bezati F .,LC06-5, LC06 Bezdenezhnykh M .A .,WE 432, EM01P Bezuidenhout C .C .,MOPC1-5, MOPC1 Bhatia B .S .,TU 247, EC05P Bhhatarai B .,MO 198, EP05P Bianchi M .O .,MO 285, ET12P, MO 273,

ET12P Bianchi N .,ET06B-6, ET06B, MO 047 Bianchini A .,TU 320, ET01P, TU 417,

ET11P, TU 385, ET11P, WE 365 Bicego M .C .,WE 266, ET04P, TU 422,

MO 019, WE 402 Bichraoui N .,WE 445, LC02P Bickham J .W .,WE 413, ET18P Bickley L .K .,RA21-1, RA21 Bidleman T .F .,TH 076, EC02P Bidoglio G .,EM02B-1, EM02B, MO 069,

EM02P1, MO 070, EM02P1 Bidwell J .R .,MO 406, ET19P Bieberstein R,WE 025, RA08P Bielasik-Rosinska M .D .,WE 379, ET15P Biemann W .I .E .B .K,TH 342, LC03P,

MOPC4-2, MOPC4 Biermans G,SS09-11, SS09, TU 194 Bierz T .,TU 339, ET02P Biester A .,WE 348, ET15P Biever R .C .,MO 185, EP02P, WE 348

Biffignandi M .,TU 204, RA19P Bignert A .F .,TUPC5-7, TUPC5, TUPC1-4,

RA03-4, TU 050, EP06-5 Bik H .M .,TU 436, ET11P Bilanicova D .,MO 351, ET13P, WE 187 Billoir E .,ET02-1, ET02, TU 337, TU 335,

ET02-6, ET02-4 Bimbot M .,TU 428, ET11P, TUPC3-7, MO

136, Bindler R .,MO 253, ET09P Binelli A .,THPC1-2, THPC1, EP08A-4,

EP08A, TU 086, EP08P, TU 087, WE 319

Binet F .,WE 388, ET15P Binet M .T .,ET05-4, ET05 Binh C .T .,TH 143, EP01P Birch A .,TH 353, LC06P Birch H .,MO 035, EC01P, TH 317 Birgul A .,MO 039, EC01P, TUPC3-8,

TUPC3, RA03-1, Birke M .,WE 418, EM01P, EM01B-1,

EM01B, EM01B-3, EM0B1-6, EM01B-4

Birkholzer J .T .,MO 110, LC01P Birkved F .,TU 230, RA20P Birkved M .,MOPC4-5, MOPC4, MOPC4-

4, MO 088, Bispo A .,ET12B-1, ET12B, TU 333 Bistoni M .A .,WEPC3-4, WEPC3, ET05-2,

ET05, TH 109, Bitsch A .,MO 471, RA11P Bittner M .,TU 297, EC06P Biuki N .B .,RA10-5, RA10 Bjerregaard P .,MO 460, RA11P, MO 172,

MO 192, ET19B-5, RA10-5 Bjorkblom C .,TU 381, ET11P Björklund E .,MO 191, EP02P, MO 408,

ET19P, MO 197, TU 051, TU 060 Bjorndal B .,TU 391, ET11P Bjørneklett S .,ET07A-3, ET07A Blaauboer B .J .,TH 031, ET03P Black K .,MO 388, ET17P Blaha L,SS11-6, SS11, TH 024, MO 337,

MO 354 Bláha L .,MO 353, ET13P, MO 374,

ET17P, WE 003, RA01P, MO 128, TU 145, TU 297, TH 008, WE 344

Blais J .,ET13A-6, ET13A Blais J .M .,EC02A-5, EC02A, TU 122,

RA02P, WE 139, Blanc I .,WE 452, LC02P, TUPC3-1, LC03-

3, Blanchard C .,EP02A-3, EP02A Blanchfield P .,RA01-6, RA01 Blanchoud H .B .,TH 280, RA17P Blanck H .,WEPC2-7, WEPC2 Blanckenhorn W .U .,ET19B-4, ET19B Blanco-Rayón E .,TU 376, ET11P Blasco J .,TU 454, ET11P, TU 085, TU 074,

TU 424, WE 130, RA15P, SS05-3, Bleeker E .,WEPC1-8, WEPC1 Bleicher S .,TU 258, EC05P Blinova I .,TU 219, RA20P Bloch R .,MO 211, EP05P Blockwell S .,EP02B-4, EP02B Blondeau J .P .,MO 136, EP02P Bluhm K .,MO 252, ET09P Blum F .,MO 320, ET12P Blum J .D .,ET04B-3, ET04B Blust J .P .,TU 173, RA07P Blust R .,EP03B-5, EP03B, TU 374, EP02A-

4, WE 338, TH 268, ET18-2, MO 305,

Blüthgen N .,MO 149, EP02P Boatti L .,TU 326, ET01P Boberg J .,MO 192, EP02P Bobtcheff C .,LC05-3, LC05 Boch V .B .,MO 093, EM02P1 Bodar C .W .M .,RA21-3, RA21 Boedicker C .,WE 223, EP03P1 Boeri F .,TH 357, LC06P Boeri M .,MO 274, ET12P Boerwinkel M .C .,WEPC6-2, WEPC6 Boesten J .J .T .I .,EM02C-5, EM02C Bogdal C .,EP06-1, EP06, EM02A-6 Böhler S .,TH 009, ET03P Böhm L .,WE 246, ET04P, TU 161, RA06P,

TU 299, ET04C-1 Böhm R .F .S .,WE 159, RA18P, TH 044,

ET03P, TH 170, EP03P2, WE 160, RA18P, WE 161, RA18P

Böhme A .,TH 040, ET03P Böhme W .,TH 052, ET06P Böhmer W .,ET04C-1, ET04C Bohn P .,TU 051, EP08P Bohrmann J .,WE 030, RA08P Boillot C .,TU 053, EP08P Boireau V .,TU 052, EP08P Boireau V .,TH 307, RA23P Boireau V .B .,RA23A-5, RA23A, TH 328,

RA23P Boivin A .B .,TU 112, EM02P2 Boivin A .F .,MO 470, RA11P Bolam T .,MO 003, EC01P Boll K .B .,TH 286, RA21P Bollmann U .E .,WE 091, RA12P Bollmohr S .,WE 312, ET05P, TU 438,

ET11P Boloori T .,MO 165, EP02P, MO 158,

EP02P Bolsunovsky A .,SS09-8, SS09 Bonansea R .I .,TU 274, EC05P Bonath I .,MO 094, EM02P1 Bondoux G .,MO 027, EC01P, MO 006,

EC01P Bønløkke J .B .,EC05B-5, EC05B Bonneris E .,RA16-1, RA16, TH 251, TH

253, Bonomi A .,WE 449, LC02P Bonot S .,EP01A-6, EP01A Bonou A .,WE 444, LC02P Bonvin F .,TU 057, EP08P, MOPC3-4,

MOPC3 Bony S .,ET10A-5, ET10A, TH 026 Bonzom J .M .,ET10A-4, ET10A, TU 359 Booij K .,EC01A-3, EC01A, MO 031,

EC01P, EC01B-5, Booij P .,TU 456, ET11P, TU 394 Booker V .L .,EP08B-2, EP08B Booth L .H .,ET08-5, ET08 Booth N .,MO 385, ET17P Bopp S .,RA09-1, RA09 Bopp S .K .,TH 243, RA13P Boran H .,TH 162, EP03P2 Borg H .,TU 036, EP08P Borga K .,ET04A-5, ET04A Borgå K .,TU 280, EC06P, SS08-1, SS08,

EC02A-1, WE 294 Borgatta M .B .,TU 079, EP08P Borgert C .J .,TU 209, RA20P Borgert C .J .,TH 043, ET03P, MOPC2-7,

MOPC2 Borges A .C .,MO 414, ET19P Borgia A .,MO 110, LC01P Boria I .,TU 326, ET01P

Page 47: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�1�SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Boriani E .,TH 281, RA21P, MO 437 Borla P .,TH 357, LC06P Bormans M .,MO 356, ET13P Bornman M .S .,MO 178, EP02P Borràs M .B .,TU 413, ET11P Bortsie Aryee N .,WE 448, LC02P, TH 341,

LC03P Boshoff M .C .,MO 305, ET12P Bosker T .,WEPC2-4, WEPC2 Boström M .L .,TUPC2-5, TUPC2 Botana L .M .,MO 326, ET13P, ET13A-5,

ET13A Botelho R .G .,WE 407, ET18P, WE 406,

WE 360, Botta F .B .,TH 280, RA17P Bottoms M .,WE 308, ET05P Bouchez A .,ET15B-1, ET15B, TU 211,

RA20P Bouétard A .,ET10A-3, ET10A Bouguerra S .,WE 131, RA15P, MO 266 Bouhouch L .,RA08-5, RA08 Bouillon S .,ET18-2, ET18 Boulangé-Lecomte C .,ET18-4, ET18, MO

142 Boulay A .M .,LC04A-2, LC04A, LC01B-1,

LC07-4, RA04A-5 Boulet B .,SS09P-3, SS09P Bourgault G .,LC04A-2, LC04A Bourgeault A .,WE 242, ET04P Bourgois J .B .,MO 113, LC01P Bouter A .,MOPC5-8, MOPC5 Boutin C .,MO 014, EC01P, TU 185,

RA19P, TU 184, Bouvart F .,LC01A-2, LC01A, LC03-4 Bouwman H .,TU 448, ET11P, WE 300 Bovea M .D .,WE 454, LC02P Bovenschen J .,TU 160, RA06P Bowman S .,MO 045, EC04P Bowman S .R .,MO 244, ET08P Boxall A .,WE 178, EP03P1, EP08C-4,

ET09-4, Boyacioglu M .,TU 019, EP06P Boyle D .,TH 166, EP03P2 Boyle D .,EP03B-2, EP03B, TH 162 Boyle R .L .,WEPC3-3, WEPC3 Bozhilova-Kisheva K .P .,LC02A-2, LC02A,

WE 441, LC02P Bozzini C .,TU 174, RA07P Brabec K .,WE 344, ET15P Bracalente G .,EP04-3, EP04 Brack W .,MO 193, EP05P, MO 200,

EP05P, MOPC3-7, MO 375, EP05-3, MO 211, MO 195, MO 129, TH 003,

Bradley P .,MO 388, ET17P Bradley P .W .,WE 259, ET04P Bradshaw C,SS09-1, SS09, SS09-4 Bramaz N .,TH 025, ET03P Brambilla G .,EP06-4, EP06 Brambilla V .,TH 350, LC06P Bramley Y .,WE 001, RA01P, RA01-5 Branchu P .,MO 171, EP02P Brand W .,EP02C-3, EP02C Brandão F .B .,TU 316, ET01P Brandão R .,MO 243, ET08P Brande-Lavridsen N .,MO 460, RA11P,

MO 172 Brandsma S .,RA02-6, RA02 Brandsma S .H .,EP07B-1, EP07B, EP02B-3,

EP02B Brandt A .,MO 197, EP05P, TU 060 Brandt I .,TU 072, EP08P Brandt J .,TH 078, EC02P

Brandt K .K .,ET12B-3, ET12B, TH 145, TU 051,

Brandt O .,TH 075, EC02P Brankatschk G .B .,MO 100, LC01P Brasfield S .,ET09-6, ET09, MO 045 Brauch H .J .,MO 213, EP05P Braunbeck T,SS11-6, SS11, TH 001, TH

009, TH 012, ET10A-6, ET03A-3, TU 150, TU 152

Braunbeck T .B .,MO 150, EP02P Braunbeck T .H .,ET03A-1, ET03A Bräuner E .V .,EC05B-5, EC05B Bräunig J .,TH 013, ET03P Brazaityte V .B .,WE 370, ET15P Brechignac FM,SS09-1, SS09 Breedveld G .D .,EC06A-2, EC06A Breidenbach R .,TH 113, EC03P Breit T .M .,ET07B-2, ET07B Breitholtz M .,EP08B-5, EP08B, MO 215,

RA21-4, TU 071 Breitholtz M .C .,TU 036, EP08P, TU 080,

EP08P Breivik K .,TH 073, EC02P, MO 055 Brena B .M .,TH 028, ET03P Brendonck L .,TU 346, ET10P Brenna O .,RA08-5, RA08 Bressling J .,TH 330, RA23P, MO 117 Breuer R .,TU 099, EM02P2 Breunig H .B .,MO 110, LC01P Breure A .M .,RA17A-6, RA17A, ET06A-4,

ET06A, TH 261, MO 378 Breward N .,EM01A-5, EM01A Brian J .V .,MO 132, EP02P Bricout J .K .,LC06-2, LC06 Brignon J .M .,TH 314, RA23P Brinch D .S .,TU 230, RA20P Brink A .,MO 178, EP02P Brinke M .B .,TH 036, ET03P Brinkmann M .,RA06-4, RA06, RA06-5 Brion F .,TH 003, ET03P, ET03A-5, MO

156, MO 159, MO 160 Brissuad D .,TU 238, LC04P Brittain J .E .,SS09-12, SS09 Broch O .J .,RA18-6, RA18 Brochier V .,EM02C-3, EM02C, TH 307 Brochu M .J .,MO 319, ET12P Brock T .C .M .,RA21-2, RA21, WE 354,

ET15A-1, ET15A, SS02-5, MO 476, MO 477, WEPC6-2,

Bröder K .,MO 122, EP02P Broeders J .J .W .,TH 031, ET03P Broeg K .,TH 270, RA17P, TU 355 Brogan Iii W .R .,TUPC6-6, TUPC6 Brogat M .A .,MO 028, EC01P Brolinson H .,RA04A-6, RA04A Bromley R .,TU 183, RA19P Brondi C .,TU 236, LC04P Brønner U .,RA18-6, RA18 Brooks B .W .,TU 045, EP08P, RA04B-1 Brooks D .,TU 264, EC05P Brooks M .L .,ET09-5, ET09 Brooks S .J .,TU 373, ET11P, TU 427 Brorström-Lundén E .,TUPC2-2, TUPC2 Broszat M .M .,EP01B-4, EP01B, TH 133,

EP01P, TH 144, Brouwer A .,MOPC3-3, MOPC3 Brouwer B .,EP02C-4, EP02C Brown A .R .,RA21-1, RA21 Brown A .R .,TU 066, EP08P Brown C .,TU 111, EM02P2 Brown C .D .,ET15A-4, ET15A Brown K .C .,MO 462, RA11P

Brown L .E .,ET08-5, ET08 Brown M .,RA16-3, RA16 Brown R .,MO 449, RA11P Brown T .N .,RA12-5, RA12, MO 059,

EM02P1, MO 055, Brownawell B .J .,EP08C-1, EP08C Bruchmann J .,TH 132, EP01P Bruckert H .J .,ET04C-1, ET04C Bruehl C .,TH 054, ET06P Bruensing J .,TH 330, RA23P Brühl C .A .,RA19-1, RA19, RA11-1, TH

249, WE 058, ET06A-3 Brulé N .,TH 262, RA17P Brune J .,ET11C-2, ET11C Brunelli A .,WE 186, EP03P1 Brunn H .,EP06-2, EP06, TU 014, TUPC1-

2, Bruno A .M .,TU 373, ET11P Bruns E .,WEPC6-3, WEPC6, RA15-4 Brunström B .,TU 072, EP08P Bryan E .,TUPC5-8, TUPC5 Bryant J .L .,MO 244, ET08P Bryja J .,RA09-6, RA09 Buchanan L .,MO 085, EM02P1 Bucheli T .D .,ET13A-3, ET13A, MO 333,

ET13P, MO 334, ET13P, MO 332, ET13P, MO 320, WE 240, TH 201, TH 181, EP03P2, RA08-1,

Buchgeister J .B .,MO 102, LC01P Buchinger S .,WE 323, ET07P, MO 212,

EP05P, MO 122, MO 137, RA06-4 Buchler P .M .,TH 102, EC03P Buchwalter D .B .,WE 287, ET04P Buckle A .P .,RA22-1, RA22, WE 168 Buclin T .B .,TU 079, EP08P Budzinski H .,TU 411, ET11P, TU 341,

TU 010, TU 053, EC06B-2, EC01C-4, EP08A-2, ET11C-2

Buée M .,ET12B-1, ET12B Buelna H .R .,WE 073, RA10P Bueno O .C .,WE 371, ET15P Buey D .,ET03B-2, ET03B Buffet P .E .,WE 200, EP03P1 Bugel M .,MOPC5-8, MOPC5 Bühler C .,TH 321, RA23P Bui A .,MO 015, EC01P Buijse-Bogdan L .L .,WEPC6-2, WEPC6 Bulach W .D .,MO 107, LC01P Buleté A .,MOPC3-1, MOPC3, MO 203 Bulle C .,EM03-4, EM03, LC04A-2,

LC01B-1, RA04A-5, WE 465 Bulle S .M .,MO 444, RA04P Bullock S .L .,ET16-3, ET16 Bultelle F .,TU 400, ET11P, TU 401, ET11P Bumane D .,RA09-2, RA09 Bundschuh M .,MO 383, ET17P, TU 470,

RA23A-6, ET14-1, TH 322, WE 232, WEPC5-5, TU 321

Bunke D .,RA03-2, RA03 Buonamici R .,TH 343, LC03P Buono S .,TU 414, ET11P Buque X .,ET07A-4, ET07A Buratti S .,TU 084, EP08P, TUPC2-7 Bureau R .,TU 077, EP08P Burek J .,MO 443, RA04P Burfeindt I .,MO 313, ET12P Burgeot T .,TU 338, ET02P Burger E .B .,MO 216, EP05P, TU 391,

ET11P Burgess R .M .,TU 436, ET11P, MO 005 Burgherr P .,RA18-1, RA18 Bürgmann H .,TH 131, EP01P, EP01B-1

Page 48: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�16 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Burkard M .,WE 295, ET04P Burkhard B .,RA14-1, RA14 Burkhardt-Medicke K .,TU 220, RA20P Burkhardt J .J .,LC03-1, LC03 Burkhardt U .,ET12B-2, ET12B Burkina V .,TU 075, EP08P Burkov N .A .,WE 432, EM01P Burlando B .B .,TH 209, EP03P2 Burlingham J .J .,MO 175, EP02P Burmester V .,ET13B-2, ET13B Burosse V .,TH 288, RA21P, TH 299 Burton G .A .,ET11B-4, ET11B Buruaem M .,WE 402, ET18P Busch W .,WE 204, EP03P1, WE 229 Buser A .M .,EM02A-6, EM02A Bush A .,WE 430, EM01P Busquet F .,ET03A-1, ET03A, TH 012 Busser F .J .M .,TH 022, ET03P Bustamante J .,TU 170, RA07P Bustamante M .A .,MO 298, ET12P Bustamante P .,TU 435, ET11P Bustnes J .O .,EC02B-5, EC02B, EC02A-1,

ET04A-2, TU 012 Butler J .,TU 030, EP07P Butler J .D .,MO 022, EC01P Butnar I .,MO 121, LC01P Butt C .,EC02B-3, EC02B Butt K .R .,WE 267, ET04P Buttol P .,TH 343, LC03P, LC02A-4 Buxmann K .,MOPC4-1, MOPC4 Buyle B .,MO 431, RA04P Byrne H .J .,WE 211, EP03P1 Byrne J .,TU 325, ET01P Byrne J .J .,ET01-5, ET01 Bytingsvik J .,TH 084, EC02P

C Cabanillas J .,TH 303, RA23P Cabecinhas A .S .,TU 386, ET11P, TU 387,

ET11P, TU 392, Cabello F .C .,TH 130, EP01P Cabezudo S .,MO 119, LC01P Cabrera A .,TUPC4-5, TUPC4 Cabrerizo A .,TU 255, EC05P, EC05B-1 Cáceres-Martínez C .,TU 319, ET01P, TU

318, ET01P, TU 153, RA06P Caceres N .,TH 265, RA17P Cachada A .,ET12B-5, ET12B Cachot J .,WE 125, RA15P, ET11C-2, TH

004, TU 411 Caetano A .L .,MO 283, ET12P Cafarella A .,WE 348, ET15P Cafarella M .A .,MO 185, EP02P Caffi A .C .,TU 312, ET01P Cagnat X .,SS09P-3, SS09P Cai M .,TU 242, EC05P Caillat A .,WE 273, ET04P Cailleaud K .,MO 379, ET17P, ET14-2,

ET14 Cailleaud Y .,TH 325, RA23P Cains M .,RA17A-2, RA17A Cajaraville M .P .,TH 175, EP03P2 Calabri L .,EP04-4, EP04 Calado R .,TU 375, ET11P, WE 429, WE

068, Calazans S .H .,MO 342, ET13P Caldwell D .,MO 361, ET16P Caliani I .,ET11C-3, ET11C, ET06B-6, TH

158, Calisto V .,TU 082, EP08P Callegaro S .,WE 187, EP03P1 Callewaert C .,MO 098, LC01P

Calow P .,WE 008, RA01P Calves I .,WEPC2-3, WEPC2 Calvo J .F .,WE 264, ET04P Camarero P .R .,ET08-6, ET08 Camatini M .,WEPC5-7, WEPC5, EP04-4 Cambier P .,EM02C-3, EM02C Cameán A .M .,MO 346, ET13P, MO 347,

ET13P, MO 340, MO 358 Camenzuli L .,TH 181, EP03P2 Camilleri J .,EC01C-3, EC01C, MOPC3-6,

MOPC3, MO 396, ET19P, TU 037, EP08P, MO 203, TU 043, MO 012, MOPC3-1

Camilleri V .,ET03B-3, ET03B, SS09-3 Caminal M .G .,TU 305, EC06P Campana O .,WE 130, RA15P Campani T .,ET11C-3, ET11C, ET06B-6,

TU 032, TH 062, TH 158 Campbell J .,THPC1-6, THPC1 Campbell P .,RA16-3, RA16, SS02-8 Campello E .F .C .,MO 285, ET12P Campiche S .,MO 286, ET12P Campillo J .A .,TU 409, ET11P, EC01B-4,

WE 265, WE 356 Campion M .,ET08-5, ET08 Camporini P .,TU 035, EP08P Campos A .M .,MO 358, ET13P Campos B .,TU 221, RA20P, MO 144 Campos D .M .G .,TU 362, ET11P Campos S .,WE 092, RA12P Camusso M .,WE 271, ET04P Canals C .,TH 089, EC02P Cancelli F .,TU 032, EP07P Candela L .,TU 143, RA06P Candy G .,TU 420, ET11P Cañedo-Argüelles M .,TU 470, ET14P Canesi L .,TH 171, EP03P2 Canfield T .J .,MO 388, ET17P Canhoto C .,TH 266, RA17P Caniça M .C .,TH 140, EP01P Cano-Díaz S .,WE 069, RA10P Cantos M .,TU 287, EC06P Cantwell M .G .,MO 005, EC01P, TU 436 Cao J .I .A .L .A,EC01B-1, EC01B Cao V .,LC05-4, LC05 Caplat C .,TU 371, ET11P, TU 370 Capon F .,WE 045, RA08P Capowiez Y .,WE 268, ET04P Capowiez Y .,WE 372, ET15P, WE 013,

RA05P, MO 044, EC04P Capowiez Y .,MO 293, ET12P Cappuyns V .,LC02B-4, LC02B Capri E .,TU 116, EM03P Capri E .,RA16-3, RA16 Capri E .,EM02C-4, EM02C Capri E .C .,TU 130, RA02P Caquet T .,MO 377, ET17P Caquet T .,MO 379, ET17P, ET14-2, ET14 Caquet T .H .,WE 147, RA15P Carafa R .,WE 002, RA01P Carafa R .,WEPC6-7, WEPC6 Carafa R .,TH 252, RA16P Carbonaro R .F .,RA05-4, RA05 Carbonell G .,MO 279, ET12P, MO 280,

TH 058, ET06P, TH 057 Carboni A .,WE 182, EP03P1, WE 188 Cárdenas B .,MO 079, EM02P1 Cardenas B .C .,WE 437, EM01P Cardoso F .N .,TH 273, RA17P Cardoso M .N .,TU 168, RA07P Cardoso O .,ET03A-5, ET03A Carere M .,MO 193, EP05P

Carey S .,WE 023, RA05P Carini F,SS09-12, SS09 Carletti L .,TH 158, EP03P2, TH 062,

ET11C-4, ET11C, EP07B-2 Carlsson G .C .,TU 017, EP06P Carmeliet J .,WE 091, RA12P Carmona V .,MO 428, RA04P Carneiro M .A .,MO 243, ET08P Carneiro R .L .,MO 352, ET13P Carney Almroth M .,TU 048, EP08P,

EP08C-5, EP08C Carolli M .,TU 469, ET14P Carpanzano E .,TU 236, LC04P Carpenter D .,TU 184, RA19P Carpentier P .C .,TU 112, EM02P2 Carpio J .C .,MO 120, LC01P Carr G .,TH 012, ET03P Carr G .J .,ET03A-1, ET03A Carraschi S .P .,WE 353, ET15P Carratalá A .,TU 251, EC05P Carretero M .A .C .,TH 066, ET06P Carrie J .,TH 091, EC02P Carriger J .,MO 388, ET17P Carriquiriborde P .,WE 382, ET15P Carroll S,SS09-1, SS09 Carstens K .L .D .,MO 406, ET19P Carter L .J .,EP08C-4, EP08C Cartmell E .,MO 186, EP02P Cartmell E .,RA23B-2, RA23B Cartwright P .,WE 169, RA22P, RA16-2,

RA16 Carus M .,TH 348, LC03P Carvalho A .S .,WE 364, ET15P Carvalho C .S .,TH 060, ET06P Carvalho F .P .,MO 283, ET12P Carvalho J .J .,MOPC3-2, MOPC3 Carvalho R .,TU 458, ET11P Carver L .S .,WE 386, ET15P Casademont M .G .,TU 041, EP08P Casadesus J .,SS09P-5, SS09P Casado M .P .,WE 211, EP03P1 Casal J .,WE 004, RA01P, TU 116 Cascaes M .J .,TU 426, ET11P, TU 445 Casellas M .,EP01A-6, EP01A Casellas M .C .,TH 129, EP01P Casey R .E .,EC04-4, EC04 Casini S .,ET11C-3, ET11C, ET06B-6, TH

062, Caspers N .,TH 301, RA21P, WE 135 Cassani S .,MO 198, EP05P, MO 364,

ET16P Cassani S .,MO 368, ET16P Cassano A .,MO 363, ET16P Cassini S .T .A .,TH 316, RA23P Cássio F .,WE 216, EP03P1, TH 185,

EP03P2 Castella G .,TU 209, RA20P Castellani V .,RA08-4, RA08 Castells F .,MO 121, LC01P Castiglioni S .,ET10B-5, ET10B, TU 035 Castillo L .,TH 307, RA23P Castillo L .C .,RA23A-5, RA23A, TH 328,

RA23P Castro-Jimenez J .,ET11A-4, ET11A Castro B .C .,TU 316, ET01P Castro I .B .,TU 363, ET11P Castro K .,ET03B-2, ET03B Castro M .C .D .E .,WE 396, ET18P Castro V .L .,TH 160, EP03P2 Cattan P .C .,TU 112, EM02P2 Cattan P .H .,ET18-4, ET18 Cavalett O .,WE 449, LC02P

Page 49: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�1�SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Cavalheiro J .M .O .,TU 421, ET11P Cavalié I .,ET03B-3, ET03B Cave M .R .,EM01A-5, EM01A Cecilia J .,WE 189, EP03P1 Cederberg H .,RA22-6, RA22 Cedergreen N .,WE 218, EP03P1, WE 328,

TH 287, TH 292, MO 257, ET13A-2 Ceja V .M .,WE 157, RA18P, WE 158 Celis N .,TU 173, RA07P Celis R .,TUPC4-5, TUPC4 Cenijn P .,TU 458, ET11P Cerabolini B .,MO 073, EM02P1 Cerejeira M .J .,ET15B-5, ET15B, RA11-5 Cerezo Sanchez MI,TU 461, ET14P Cervellati D .,WE 186, EP03P1 Cervera M .T .,TU 353, ET10P Ces-Vlep A .,TH 242, RA13P Céspedes R .,TU 470, ET14P Chadwick D .B .,ET11B-4, ET11B Chagas R .C .,TH 316, RA23P Chakraborty P .,TU 447, ET11P Chalon C .,TU 155, RA06P, TH 326 Chambliss C .K .,TU 045, EP08P Champ S .,TU 065, EP08P Champoux L .,WE 172, RA22P Chan C .,WE 301, ET05P Chan C .Y .S .,WE 302, ET05P Chan E .C .,WE 157, RA18P, WE 158 Chan P .,TU 411, ET11P Chan Y .S .,WE 311, ET05P Chancerelle L .,MO 278, ET12P Chandler D,SS07-1, SS07 Chang H .,ET04B-5, ET04B, ET13A-1 Chang I .Y .,WE 141, RA15P Chaplow J .S .,TUPC5-6, TUPC5 Chapman H .F .,EP02B-4, EP02B Chapman P .M .,ET02-2, ET02, ET09-5 Chapman S .S .B .,TH 346, LC03P Chapon V,SS09-6, SS09 Chappell M .,EP03D-5, EP03D Chappert B .,MOPC5-8, MOPC5 Charad J .,TH 358, LC06P Chard J .K .,EC01C-1, EC01C Charge R .,TH 251, RA16P Chariton A .,TU 436, ET11P, TU 443,

ET05-4, WE 309 Charlatchka R .,RA05-5, RA05 Charles C .,TU 335, ET02P Charles R .,RA12-6, RA12 Charles S .,ET02-1, ET02, ET02-4, ET02-6,

TU 337 Charlton A .J .,WE 169, RA22P, RA16-2,

RA16 Charman S .,WE 169, RA22P, RA16-2,

RA16 Chartier J .,EC01C-4, EC01C Chatterjee N .,TH 197, EP03P2 Chaudhuri S .,EC05B-4, EC05B Chaves M .R .M .,TH 102, EC03P Checkai R .T .,MO 063, EM02P1 Checkai R .T .,MO 294, ET12P Chelinho C .J .,ET12B-5, ET12B Chelinho S .,MO 267, ET12P Chemnitzer R .C .H .,TH 115, EC03P Chen B .C .,TU 192, RA19P Chen C .,EC01A-4, EC01A Chen C .S .,MO 425, RA04P Chen C .Y .,MO 184, EP02P Chen H .,MO 208, EP05P Chen S .C .,WE 141, RA15P Chen S .H .,TU 368, ET11P Chen W .,WE 100, RA12P, WE 185

Chen W .L .,MO 184, EP02P Chen W .Y .,TU 368, ET11P Chen W .Y .,WE 275, ET04P Chen Y .,TU 059, EP08P Chen Y .,EC06B-4, EC06B Chen Y .H .,WE 141, RA15P Chen Z .,ET15B-6, ET15B Cheng K .,ET08-4, ET08 Cheng Y .H .,WE 142, RA15P Cheng Z .N .,EC05A-2, EC05A Cheplick J .M .,MO 397, ET19P, MO 056,

EM02P1, TU 099, EM02P2 Cherubini F .,LC01B-2, LC01B Cheung S .G .,WE 311, ET05P Chevalier J .L .,WE 125, RA15P Chèvre N .,WEPC6-1, WEPC6, TU 329,

ET02P, TU 079, MO 214 Chevreuil C .M .,TH 280, RA17P Chevreuil M .C .,TUPC3-7, TUPC3 Cheynier K .,WE 267, ET04P Chèze B .,LC03-4, LC03 Chiaia-Hernandez A .C .,WE 263, ET04P,

MO 210, EP05P Chiang A .,EP02C-1, EP02C Chimuka L .K .,ET05-6, ET05, TU 322 Chin D .W .,TU 216, RA20P Chipman J .K .,ET01-3, ET01, ET01-2 Chirakadze A .A .,WE 012, RA05P Chirico G .,EP04-4, EP04 Chirico N .,MO 362, ET16P Chiron F .,TH 251, RA16P Chiron S .,EP08C-3, EP08C, TU 053, TU

453, Chito D .,EC04-2, EC04 Chiu J .M .Y .,WE 311, ET05P, WE 302 Chiu J .W .,WE 305, ET05P Chiu M .Y .,WE 301, ET05P Cho H .S .,MO 173, EP02P Cho Y .M .,EC06A-5, EC06A Choi H .G .,TU 434, ET11P, TU 433,

ET11P Choi J .,WE 333, ET07P, WE 334, ET07P,

TU 317, ET01P, WE 326, ET07P, TH 038, ET03P, TH 197, EP03P2

Choi K .H .,MO 146, EP02P, MO 145, WE 237,

Choi M .K .,TU 434, ET11P, TU 433, ET11P

Choi S .D .,TU 055, EP08P Chokheli M .G .,WE 012, RA05P Chomkhamsri K .,RA04B-6, RA04B Chon T .S .,WE 326, ET07P, TH 038,

ET03P Chou B .Y .H .,TU 192, RA19P Chouhan S .,SS09-12, SS09 Chow B .K .,MO 138, EP02P Chowdhury J .,MO 046, EC04P Chowdhury J .K .,WE 128, RA15P Chowdhury M .J .,WE 021, RA05P Christ A .,EC06B-1, EC06B Christen R,SS09-6, SS09 Christensen A .C .,RA10-5, RA10 Christensen G .,TU 418, ET11P Christensen G .,EC02A-1, EC02A Christensen J .H .,TU 449, ET11P, TH 078,

EC02P, SS08-1, TU 404 Christensen T .H .,LC04B-2, LC04B Christiansen S .,MO 192, EP02P Christie B .,TU 429, ET11P Christopher H .,ET11B-1, ET11B Chu D .,TU 447, ET11P Chu J .A .,WE 427, EM01P

Chu M .,TU 121, RA02P Chue K .L .,MO 332, ET13P Chuen-Im T .,TH 064, ET06P, TH 065,

ET06P Chung A .P .,MO 276, ET12P Chung B .C .,ET03A-5, ET03A Chung G .W .,WE 333, ET07P Chung S .,EM02C-1, EM02C Chung Y .D .,WE 326, ET07P Churchley J .,RA23B-1, RA23B Ciacci C .,TH 171, EP03P2 Ciesielski T .M .,WE 284, ET04P, TH 084,

WE 207, Ciffroy P .,TU 130, RA02P Ciffroy P .,WE 273, ET04P, RA05-5, TU

331, Cikovani Y .,MO 109, LC01P Cillessen ,WE 034, RA08P Cincinelli A .,TU 262, EC05P, TUPC3-8 Cinelli M .,EP03D-4, EP03D Cinnirela S .,RA10-2, RA10 Ciocan M .,MO 141, EP02P Ciprian E .C .,MO 386, ET17P Cipro C .V .Z .,TU 435, ET11P Ciroth A .,MOPC4-2, MOPC4 Ciuffo B .,TU 234, LC04P Ciupagea C .,SS01-2, SS01 Claessens A .,TH 326, RA23P Claessens M .,WE 425, EM01P, TU 031,

EP07B-4, Claeys F .J .,MO 366, ET16P, MO 369 Clark G .F .,TU 172, RA07P Clark K .E .,WE 135, RA15P Clark M .,TU 444, ET11P Clark R .,TU 444, ET11P Clark R .,WE 191, EP03P1 Clarke P .,EP07B-1, EP07B Clasadonte M .T .,TH 355, LC06P Classens A .,TU 155, RA06P Claude J .,MO 162, EP02P Clausen HCl,SS02-7, SS02 Clavreul J .,LC04B-2, LC04B Clément B .J .P .,TH 284, RA21P, TH 291,

RA21P Clemente Z .,TH 160, EP03P2 Clements W .H .,ET09-3, ET09 Clements W .H .,MO 249, ET09P Clook M .,RA16-1, RA16 Clouzot L .,RA01-6, RA01 Coats J .R .,MO 406, ET19P Coban H .,MO 410, ET19P Cocco E .,MO 135, EP02P Coci M .,TH 124, EP01P Codling G .C .,TH 277, RA17P Coe-Sullivan S .,EP04-6, EP04 Coelho D .,MO 180, EP02P Coelho P .,TH 061, ET06P C?urdassier M .,WE 110, RA14P, WE 171,

RA22-5, TU 124 Cofalla C .,RA06-5, RA06 Cohen E .,LC03-1, LC03 Cohen M .,MO 079, EM02P1 Coke M .,MO 449, RA11P Colabuono F .I .,TU 420, ET11P, TU 243 Colacci A .,TH 281, RA21P Colaço A .,MO 243, ET08P Colaço B .J .,MO 243, ET08P Colbeck I .,WE 195, EP03P1 Colbourne J .K .,ET10B-2, ET10B Cole P .,WE 195, EP03P1 Cole T .,ET15A-4, ET15A Coleman H .,EP02B-4, EP02B

Page 50: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�1� SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Coleman J .G .,MO 045, EC04P Colepicolo P .,MO 371, ET16P Colin F .,ET18-4, ET18 Colin J .C .,TU 352, ET10P Colizza V .,EP08B-3, EP08B Collin A .C .,TUPC3-7, TUPC3 Collinet M .,MO 449, RA11P Collinet M .,ET10A-3, ET10A Collins C .,TU 281, EC06P, TU 293, EC06P Collins C .D .,MO 020, EC01P, TU 282 Colombo F .,TH 246, RA13P, RA18-3,

RA18 Colquhoun D .J .,TH 130, EP01P Combelles A .,LC04B-4, LC04B Comber S .D .,THPC1-5, THPC1, WE 033,

RA08P, MO 085, RA23A-1 Comolli R .,EM02B-6, EM02B Company J .B .,ET11A-4, ET11A Companys E .,EP03B-5, EP03B, EC04-2,

WE 189, Concha C .,EP02C-1, EP02C Conde C .,SS05-3, SS05 Cong Y .,TH 178, EP03P2 Congiu E .C .,TU 289, EC06P Conley J .M .,WE 287, ET04P Connell D .,TU 121, RA02P Connelly M .J .,MO 022, EC01P Connors K .A .,RA04B-1, RA04B Conoan N .H .,TH 011, ET03P Conrad A .C .,TU 112, EM02P2 Constantine L .A .,TU 047, EP08P, TUPC2-

3, TUPC2 Constantine L .A .,TUPC2-4, TUPC2 Constantino C .,MO 085, EM02P1 Constantino M .,THPC1-5, THPC1, WE

033, RA08P Cooper D .G .,MO 218, EP05P Cooper N .L .,MO 406, ET19P Coors A .,MOPC1-2, MOPC1, TH 329,

TH 300, WE 085 Copin P .J .,WEPC6-1, WEPC6 Coppin F,SS09-3, SS09, SS09-6 Coppola D .,ET11C-4, ET11C, EP07B-2,

EP07B, ET06B-6, EP07B-6, TU 440, TH 158

Coquery M .,MO 012, EC01P, MO 090, EC01C-3, TU 010, EP06P, MO 001, EM01A-3

Corada-Fernández C .,TU 143, RA06P Corcellas C .,RA12-4, RA12 Corin C .,TU 155, RA06P, TH 326 Cornejo J .,TUPC4-5, TUPC4 Cornelese A .A .,EM02C-4, EM02C Cornelis F .H .,WE 194, EP03P1 Cornelissen G .,EC06A-2, EC06A, EC06A-

5 Cornut J .,EP03C-2, EP03C Corrêa A .,TH 186, EP03P2 Correia A .,TH 128, EP01P Correia A .,TU 361, ET11P, TU 362,

ET11P Correia A .C .,TU 316, ET01P Correia M .E .F .,MO 285, ET12P, MO 273,

ET12P Corsi I .,EP04-3, EP04, TH 027 Cortet J .,MO 292, ET12P Cortyl A .,TU 056, EP08P Cosio C .,WE 067, RA10P Cosnefroy A .,MO 160, EP02P Cossu-Leguille C .,TH 173, EP03P2, TH

262, TU 338, Costa-Lotufo L .V .,WE 402, ET18P

Costa C .H .,TH 170, EP03P2 Costa M .J .,ET06B-3, ET06B, TH 060 Costa R .J .,WE 088, RA12P, TH 315, TU

229, MO 365 Costil K .,TU 371, ET11P, TU 372 Cotteleer G .,TU 128, RA02P Couderc M .,TU 428, ET11P Couffignal B .,MOPC4-8, MOPC4 Couleau N .,MO 130, EP02P, WE 214 Coulson M .,MOPC6-1, MOPC6, RA11-1 Courilleau D .C .,MO 136, EP02P Cousin X .,TU 341, ET10P, TU 342 Cousins I .,ET09-1, ET09 Cousins I .T .,TUPC1-3, TUPC1, TUPC1-4,

RA21-6, Coutellec M .A .,ET10A-3, ET10A Coutris C .,MO 271, ET12P, EC04-5,

EC04, RA19-3, TU 373 Coutu S .,TU 042, EP08P Couval G .,WE 171, RA22P Covaci A .,WE 338, ET07P, WE 433,

EM01P, MO 183, Covaci A .,ET18-2, ET18, ET04A-2,

TUPC3-5, TUPC3, TU 260, EC05P, TU 012

Cox L .,TUPC4-5, TUPC4 Crane C .,MO 473, RA11P Cravo A .,TU 425, ET11P, WE 429 Crawford E .,WE 279, ET04P Creamer R .,ET12B-1, ET12B Creemers R .,ET06A-4, ET06A Cremazy A .,ET11B-5, ET11B Cren-Olivé C .,TU 043, EP08P Cren-Olivé C .,MO 012, EC01P, MOPC3-

1, MOPC3 Cren-Olivé C .,MO 396, ET19P, MOPC3-

6, MOPC3 Cren-Olive C .C .,TU 037, EP08P Cren-Olivé C .C .,MO 203, EP05P Cren C .,EC01C-3, EC01C Cresswell T .,ET04B-1, ET04B Cresti M .,EP04-3, EP04 Creton S .,TH 014, ET03P, WE 096,

RA12P Creusot G .V .,MO 159, EP02P, EP08A-2,

EP08A Crini N .C .,ET08-3, ET08 Cristale J .,EC01A-4, EC01A Cristobal S .,ET07A-4, ET07A Cristol D .,ET09-2, ET09 Cristoni S .,WE 319, ET07P Critto A .,TH 188, EP03P2, TH 206,

EP03P2, EP03D-4, RA02-5, WE 036 Crocker F .,MO 045, EC04P Crofton K .E .,EP02C-4, EP02C Cronin M .T .D .,WE 238, EP04P Crookes M .,WEPC1-8, WEPC1 Cropp R .,SS08-3, SS08 Crossley A .,TH 213, EP03P2 Crupkin A .,WE 361, ET15P Crutu G .,ET12A-2, ET12A Cruz-González S .,WE 189, EP03P1 Cruz-Hernández P .,TU 151, RA06P Cruz A .,WE 375, ET15P Cruz A .,TU 362, ET11P Cruz C .,THPC1-1, THPC1 Cruz C .,WE 353, ET15P Csisxar S .A .,EC05B-4, EC05B Cubero Leon E .,MO 141, EP02P Cucurachi S .,TU 232, LC04P Cuklev F .,TU 048, EP08P Cukrowska E .M .,ET05-6, ET05, TU 322,

ET01P Cukrowska E .M .,TH 101, EC03P Cunha-Queda A .C .,MO 276, ET12P Cunha P .,WE 449, LC02P Cunha Bastos J .C .,MO 342, ET13P Cunha Bastos V .L .F .,MO 342, ET13P Cupi D .,TH 293, RA21P Cupr P .,MO 277, ET12P, ET12C-4,

ET12C Curcic M .,TU 226, RA20P Curieses S .,WE 357, ET15P Curieses S .,MO 272, ET12P, TH 318,

RA23P Curran L .,EP08A-5, EP08A Curran M .,RA04B-2, RA04B Curry R .,TU 256, EC05P Cusack P .,EP07B-1, EP07B Cuypers A,SS09-11, SS09, TU 194 Cytryn E .J .,EP01B-5, EP01B Czekalski N .,TH 131, EP01P Czerwinski S .,ET19A-2, ET19A

D d’Amato R .A .,WE 202, EP03P1 d’Hollander W .,EP06-4, EP06 d’Innocenzo M .,TUPC6-8, TUPC6, MO

312, ET12P d’Sa I .,TH 079, EC02P Da Silva C .C .,WE 359, ET15P Da Silva M .F .G .F .,WE 371, ET15P Daam M .A .,WEPC4-8, WEPC4, RA11-5,

RA11 Dabrunz A .,WE 232, EP03P1 Dachs J .,TU 255, EC05P, TU 254, TH 090,

EC02P, TH 087, EC05B-1, ET11A-4 Daehmlow D .,WE 119, RA14P Daesslé L .W .,TU 442, ET11P Dafforn K .A .,ET11C-1, ET11C, TU 172 Daglioglu N .D .,WE 260, ET04P Dagnino A .,ET11B-3, ET11B, TU 396 Dagot C .D .,TH 129, EP01P Dagot C .P .A .,EP01A-6, EP01A Daguin-Thiébaud C .,TH 262, RA17P Dahlberg A .K .,TU 458, ET11P Dai L .,TH 190, EP03P2 Dailey A .G .,TU 111, EM02P2 Daldorph P .,MO 085, EM02P1 Dalkmann P .,EP08C-2, EP08C Dallas L .J .,TU 383, ET11P Dallinger R .,ET10A-1, ET10A Dalton R .L .,MO 014, EC01P, TU 185,

RA19P Damme S .,TH 189, EP03P2 Damme S .K .E .,TH 300, RA21P Dandres T .,LC04A-6, LC04A, WE 465 Dang F .,WE 127, RA15P Daniel O .,WE 115, RA14P Daniells L .J .,RA22-1, RA22 Daniels B .,WEPC6-6, WEPC6, TH 159,

EP03C-1, Dantan J .D .,TU 333, ET02P Dantas A .G .,MO 336, ET13P Dao T .S .,TU 351, ET10P Daouk T .,TU 342, ET10P Darbra R .M .,TH 303, RA23P, TU 116,

WE 004, Darnerud P .O .,EP06-5, EP06 Darriet M .,TU 101, EM02P2, TU 107 Dastoor A .P .,TH 094, EC02P Daubenthaler J .,WE 223, EP03P1 Dave R .G .,TH 285, RA21P, TH 286,

RA21P, RA21-5, RA21

Page 51: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�1�SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Davenport R .J .,EC06A-2, EC06A David C .,WE 189, EP03P1 Davidson P .C .,WE 386, ET15P Davies A .,WE 133, RA15P Davies A .,SS01-4, SS01 Davies I .,ET11B-6, ET11B Davies J .,TUPC6-4, TUPC6 Davis W .C .,TU 135, RA03P Daw Quadros T .,WE 367, ET15P Day D .,TUPC5-8, TUPC5 Day R .D .,RA03-3, RA03 de Almeida Neto J .A .,MO 423, RA04P de Baan L .,RA04B-2, RA04B De Baat M .L .,TH 271, RA17P de Boer J .,EP07A-3, EP07A, EP07B-1,

EP07B de Bruille V .C .L .,WE 465, LC05P De Caevel B .,LC05-5, LC05, LC01A-1 de Caro P .D .C .,WE 156, RA18P de Coen W .,ET01-4, ET01 De Coninck D .,MO 250, ET09P, ET10B-2,

ET10B, ET10B-4, de Diego A .,TU 170, RA07P de Dobbeleer M .S .,TU 259, EC05P de Filippis S .,EP06-4, EP06 de Haan L .H .J .,EP03C-4, EP03C De Hoop L .,TU 467, ET14P, RA18-5,

RA18, WE 151, de Jong F .M .W .,MO 461, RA11P, SS06-8,

SS06, MO 476, de Jong L .,WE 219, EP03P1 de Jong M .,ET07B-2, ET07B de Jonge L .W .,TU 293, EC06P de Kermoysan G .K .,MO 168, EP02P, MO

241, ET08P De Klerk M .,TU 028, EP07P de la Caba K .,MO 119, LC01P de la Torre A .,MO 279, ET12P, MO 280 de Laender F .,TU 466, ET14P, TU 467,

ET14P, RA18-5, TU 215, WE 151, MO 253, MO 382, TH 086

de Lange H .J .,RA19-6, RA19, TU 160, RA06P

de Lapuente J .L .,TU 413, ET11P de Leeuw W .C .,ET07B-2, ET07B de Lima R .,WE 236, EP04P de Meester S .,MO 098, LC01P de Meyer T .D .,TU 352, ET10P de Orte M .R .,TU 142, RA06P De Orte M .R .,TU 151, RA06P de Polo A .,THPC1-5, THPC1 de Samber B .,TU 146, RA06P de Saxcé M .G .,LC04B-1, LC04B De Schamphelaere K .A .C .,TU 352, ET10P,

TU 347, ET10P, MO 343, ET09-3, ET10B-4, ET10B, TU 450, ET10A-2, WE 016, TU 475, MO 344, RA17B-6, TU 215, MO 250

de Schryver A .,MOPC5-8, MOPC5, RA04B-2

de Schryver A .M .,ET11A-6, ET11A de Silva A .M .I .L .A,WEPC1-8, WEPC1 de Snoo G .R .,LC04B-6, LC04B, WE 054 de Souza Filho J .S .,WE 359, ET15P de Troch M .,TU 467, ET14P de Troyer F .,WE 460, LC05P De Vaufleury A .,ET15B-2, ET15B,

MOPC1-1, TU 124, De Vivo B .,EM01B-4, EM01B de Voogt P .,EC01A-6, EC01A, MO 008,

EC01P, EP06-4, WE 182, WE 188, TU

008 de Voogt W .P .,TU 456, ET11P, RA21-6,

EP06-3, de Vries F .,MOPC1-7, MOPC1 de Vries P .,WE 151, RA18P de Winter W .,RA14-6, RA14 De Wit A .,SS12-2, SS12 de Wit C .A .,RA21-6, RA21 De Wolf W .,SS10-1, SS10 De Zwart D .,RA17A-6, RA17A, EM03-3 Deacon S .,TH 246, RA13P, MO 387,

ET16-3, WE 315 Deacon S .K .,WE 101, RA12P Debus R .,TH 180, EP03P2 Decaestecker E .,ET10B-4, ET10B Dechesne M .,MO 348, ET13P Decina T .G .T .,MO 288, ET12P Decors A .,TH 253, RA16P Degger N .,TH 167, EP03P2 Degnes K .,RA18-4, RA18 Degrendele C .,TU 250, EC05P Degrendele C .D .,TU 249, EC05P Deguo K .,MO 075, EM02P1, EM02B-2,

EM02B Deison R .,EC02A-5, EC02A Dekiff J .D .,EP07A-6, EP07A Dekker B .,TU 398, ET11P del Rio C .,MO 279, ET12P, WE 117 del Rio C .R .,TH 198, EP03P2 del Valls A .T .,TU 084, EP08P, TU 384,

ET11P del Vento S .,TUPC1-8, TUPC1, EC02B-1 Delalain P .,EP03B-6, EP03B Delaune R .D .,TH 102, EC03P Delbeke K .,RA05-2, RA05, RA05-3, WE

018, WE 023 Deleebeeck N .M .,TU 227, RA20P Delhaye H .E .,TH 284, RA21P, TH 291,

RA21P Delignette-Muller M .L .,TU 337, ET02P,

TU 335, ET02-1, ET02-6, ET02-4 Della Torre C .,EP04-3, EP04, TH 027 Delmaar C .,EP03D-2, EP03D Delorme P .D .,MOPC6-2, MOPC6,

MOPC6-1, MOPC6 Delov V .,TH 016, ET03P Delvalls T .A .,TU 142, RA06P Delvalls T .A .,TU 151, RA06P Demetriades A .,EM01B-1, EM01B,

EM01B-3, EM01B-4, EM0B1-6 Demichelis S .O .,TU 204, RA19P Demir N .,TH 001, ET03P Demirhan O .D .,WE 260, ET04P Demizieux N .,TH 205, EP03P2 Demnerová K .,TH 147, EP01P Den Haan K .,TH 325, RA23P Deneer J .W .,WE 124, RA15P Denier X .,TU 400, ET11P, TU 401, ET11P Denison M .S .,MO 033, EC01P Dentener F .,TU 118, EM03P, WE 458,

LC05P Denton D .,TU 099, EM02P2 Deruytter D .,MO 345, ET13P Dervaux A .,RA22-5, RA22 Deschênes L .,EM03-4, EM03 Deschênes L .,EM03-2, EM03 Deschênes L .,RA04A-1, RA04A Deschênes L .,LC05-4, LC05 Deschênes L .D .,TU 356, ET10P Desmet N .J .S .,EM02D-4, EM02D Deutschmann B .,EP03C-1, EP03C, EP05-

3, TH 159,

Devaux A .,TH 026, ET03P Devaux A .,ET10A-5, ET10A Dévier M .H .,EP08A-2, EP08A Devin S .,MO 390, ET17P, TU 338, TH

262, ET11A-5 Devos J .,TU 370, ET11P Dewulf J .O .,MO 098, LC01P di Benedetto C .,WEPC5-7, WEPC5 di Francia G .,TU 414, ET11P Di Guardo A,SS02-1, SS02, MO 067, MO

073, di Lenola M .,TU 095, EP08P Di Marzio W .D .,MO 272, ET12P, TH 318,

RA23P, WE 357, di Paolo C .,WE 337, ET07P di Toro D .M .,MO 367, ET16P Diamond M .L .,EC05B-4, EC05B, WE 015 Diamond ML,SS12-7, SS12 Dias O .S .,WE 449, LC02P Dias P .S .,TU 243, EC05P, TU 426 Díaz-Cruz M .S .,TU 305, EC06P Díaz-Jaramillo M .J .,TU 477, ET14P Díaz L .,TU 353, ET10P Díaz P .,TU 093, EP08P Diaz S .,WE 075, RA10P Dickinson R .A .,TU 092, EP08P Diepens N .J .,RA21-2, RA21 Dietrich A .,TU 113, EM02P2 Dietrich D .,TU 271, EC05P Dietrich D .R .,TU 209, RA20P Dietz R .,TH 088, EC02P Dietzen C .,TH 051, ET06P, TH 053,

ET06P, TH 049, ET06P, TH 050, ET06P, ET06A-5, RA09-4, WE 052,

Dieu M .,WEPC2-2, WEPC2 Diez M .,TH 204, EP03P2 Diez Ortiz M .,EP03C-3, EP03C Dijkman T .J .,MOPC4-4, MOPC4 Dimitrov M .R .,WE 354, ET15P Dimitrov S .,WE 252, ET04P, RA02-4,

RA02 Dimitrov S .,ET16-5, ET16 Dimitrova G .,ET16-5, ET16 Dimitrova N .,WE 252, ET04P, RA02-4,

RA02, ET16-5, Dimkic M .D .,TH 310, RA23P Dimock B .,ET04B-3, ET04B Dimond S .,WE 135, RA15P Dimond S .S .,TH 301, RA21P Dinelli E .,EM01B-4, EM01B, EM01B-1 Ding G .,TU 016, EP06P Ding G .C .,ET19A-3, ET19A Dini L .,WE 453, LC02P Dirtu A .C .,TUPC3-5, TUPC3, TU 260,

EC05P Dissanayake A .,WEPC1-3, WEPC1 Dittrich R .,TH 250, RA16P, TH 255,

RA16P, TH 256, Diwakar J .,ET11A-5, ET11A Dixon KR,SS07-4, SS07 Djemel N .,MO 086, EM02P1 Djogo M .D .,TU 306, EC06P Dmytrasz B .,MO 086, EM02P1 Doa M . J .,SS03-2, SS03 Dobrick J .,MO 449, RA11P Dobslaw D .,MO 139, EP02P Dodd M .,EM01B-2, EM01B Doering J .A .,TU 148, RA06P Doering J .P .,WE 248, ET04P Ðogo M .Ð .,TH 310, RA23P Dohmen G .P .,WEPC6-8, WEPC6 Dohmen PD,SS02-9, SS02

Page 52: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�20 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Dohrmann A .,ET12B-6, ET12B Dolan S .L .,LC03-1, LC03 Dolciotti I .,TH 278, RA17P Dollinger M .,TU 186, RA19P, WEPC6-3 Domange N .D .,MO 470, RA11P Domene X .,ET12B-5, ET12B Domenech J .A .,TH 037, ET03P Domingo C .,TU 198, RA19P Domingo J .L .,MO 038, EC01P, TU 268,

EC05P, TU 266, EC05P, TU 267, TU 015, WE 140

Domingues I .,TU 094, EP08P, MO 328, ET13P, WE 392, ET18P, WE 399, ET18P, ET18-1, WE 397, MO 157, TH 018, TH 061,

Domingues I .,TU 402, ET11P, MO 251, TH 019,

Domínguez J .M .,TH 100, EC03P Dominik J .,EM01A-2, EM01A Dominik K .,RA10-4, RA10 Donard O .F .X .,RA03-3, RA03 Dondero F .,TH 213, EP03P2 Dondero F .,WEPC5-6, WEPC5, WE 029 Donlon B .,MO 024, EC01P Dopchiz L .P .,TU 204, RA19P Dörr F .,MO 352, ET13P Dörr F .A .,MO 352, ET13P Dorrington T .S .,WE 365, ET15P, TU 417,

ET11P Dorts J .,ET07A-1, ET07A Dos Santos G .A .P .,TH 036, ET03P Dos Santos T .B .,TU 238, LC04P Dosogne H .M .,MO 453, RA11P Dott W .,TU 272, EC05P, TH 330, MO

117, MO 405 Douay F .,EC04-1, EC04, TU 124 Douben P .,SS10-4, SS10 Doucette W .J .,EC01C-1, EC01C Douville M .D .,RA23B-6, RA23B Dowdall M .,SS08-1, SS08 Doyle J .R .,TU 122, RA02P, WE 139,

RA15P Doyle M .,WEPC2-4, WEPC2 Drebszok K .M .,TUPC3-1, TUPC3 Drevnick P .,TH 092, EC02P, TH 093,

EC02P Dreyer A .,TU 001, EP06P, TU 011 Drieschner C .,TH 025, ET03P Driss M .R .,TU 406, ET11P, TU 413 Drobniewska A .,MO 412, ET19P, WE 210 Droge S .T .J .,TU 304, EC06P, EC06B-4,

EC01A-6, EC01A, MO 008 Drösler M .,MOPC4-3, MOPC4 Drost W .D .,ET04A-1, ET04A Drouhot M .,ET08-3, ET08 Druart C .D .,ET15B-2, ET15B Du B .,TU 045, EP08P Du Feu T .,WE 422, EM01P Duarte A .C .,WE 066, RA10P, WE 077,

RA10P, WE 436, WE 221, ET12B-5 Duarte A .C .,WE 215, EP03P1, WE 364,

TU 193, Duarte D .,TU 425, ET11P Duarte D .,WE 429, EM01P Duarte E .,MO 276, ET12P Duarte G .,MO 267, ET12P Dubois C .,TH 358, LC06P Duboisset A .D .,TU 112, EM02P2 Dubus I .,WE 147, RA15P, TU 103 Duchemin M .D .,TU 126, RA02P Duchet C .,ET13A-4, ET13A, WE 097,

RA12P

Ducrot V .,WEPC6-5, WEPC6, MO 452 Ducrot V .P .,MO 449, RA11P Duering R .A .,ET04C-1, ET04C Duffrene A .V .,LC06-2, LC06 Duffy A .,LC01B-3, LC01B Duffy B .,EP01A-4, EP01A Duis K .,MO 155, EP02P, MO 154, TU

126, WE 212 Duivenvoorden J .F .,TH 271, RA17P Duke S .O .,ET13A-2, ET13A Dulio V .,MO 193, EP05P, MO 194 Dumat C .,WE 268, ET04P Dumat C .,WE 013, RA05P Dünne M .D .,WE 243, ET04P Dunphy N .,TH 344, LC03P Düpmeier C .,MOPC4-2, MOPC4 Dupont J .M .,TU 390, ET11P Dupuis A .,RA01-6, RA01 Dupuy C .,WEPC2-3, WEPC2 Duquesne S .,MO 472, RA11P, MO 467,

ET14-4, TH 287 Durán I .,ET11B-2, ET11B Durand F .,TU 400, ET11P, TU 401, ET11P Durand M .J .,WE 013, RA05P Durandet C .,MO 130, EP02P, WE 214 Durda J .L .,ET09-5, ET09 Durgo K .,TU 226, RA20P Durgut I .,RA18-6, RA18 Durham J .A .,WE 259, ET04P, ET04A-6 Düring R .A .,WE 246, ET04P, TU 161,

RA06P, TU 299, Durnford D .D .,TH 094, EC02P Durou C .,TU 126, RA02P, TH 295 Dutilleul M .,ET10A-4, ET10A, TU 359 Dutrieux E .D .,TU 390, ET11P Dutt M .,MOPC3-5, MOPC3 Dvorská A .,EC05B-3, EC05B Dwivedi S .D .,WE 378, ET15P Dybowska A .,WE 200, EP03P1 Dydowiczova A .,EP02C-2, EP02C Dymak M .,MO 277, ET12P, ET12C-4,

ET12C Dyson B .,MO 388, ET17P Dzhardimalieva G .I .,WE 239, EP04P

E Eadsforth C .,MO 086, EM02P1 Eadsforth C .V .,MO 309, ET12P Ebeling M .,TH 251, RA16P, TU 208, WE

062, WE 057 Ebenizer M .,WEPC2-6, WEPC1 Ebert I .E .,TU 126, RA02P Ebert R .U .,EM02A-4, EM02A, MO 050,

EM02P1, MO 051, EM02P1 Ebinghaus R .,WE 384, ET15P, MO 207,

TU 460, ET11P, TU 242, TU 009, TUPC1-1, TH 074,

Ebsen Morthorst J .,MO 460, RA11P Echenique D .,RA08-5, RA08 Eckbo N .,WE 294, ET04P Eckle P .,RA18-1, RA18, LC02B-2 Ede J .D .,WE 233, EP03P1 Edelmann E .,TU 284, EC06P Edge K .J .,ET11C-1, ET11C Edlund A .,EP08B-5, EP08B Edwards M .,TU 025, EP07P Edwards P .,WE 134, RA15P, SS07-3, SS07,

RA16-1, RA09-4 Edwards P .J .,RA09-5, RA09 Eens M .,ET04A-2, ET04A, TU 013 Efeoglu P .E .,WE 260, ET04P Egeler P .,MO 449, RA11P

Eggen A .,WE 420, EM01P Eggen O .A .,EM01A-6, EM01A Egsmose M .,EM02C-4, EM02C, EM02C-

5 Ehlert A .,WE 204, EP03P1 Ehlert T .,WE 064, RA09P Eichbaum K .,RA06-4, RA06 Eide M .,ET07A-3, ET07A Einax J .W .,MO 211, EP05P Einset J .,TU 373, ET11P Eisemann J .D .,RA22-3, RA22 Eisen-Rupp A .,ET18-3, ET18 Eismann K .,TH 042, ET03P Ek K .,EP08B-5, EP08B, TU 080 Eklund B .,MO 454, RA11P Eklund T .,TU 365, ET11P Ekouma M .,WE 405, ET18P Ekvall T .,MO 099, LC01P El-Din M .G .,MO 161, EP02P El Khoukhi T .,SS09P-4, SS09P El Yamani M .,TH 242, RA13P Ele Abiama P .,SS09P-4, SS09P Eleftheriou G .,SS09-12, SS09 Elger A .E .,RA19-3, RA19 Elia AC,SS09-3, SS09 Eliat M .,WE 011, RA05P Eliat M .,MO 082, EM02P1, MO 084,

EM02P1 Eljarrat E .,RA12-4, RA12, MO 177, MO

187, WE 004 Ellerbrock R .H .,ET19A-6, ET19A Ellers J .,WE 324, ET07P Elliott J .E .,RA22-4, RA22, WE 172, ET08-

4, Ellis S .,TUPC1-5, TUPC1 Ellor B .,RA23A-1, RA23A Ellor B .,TH 332, RA23P Ellwood M .,TH 107, EC03P, TH 108,

EC03P Elmoznino J .A .,MO 179, EP02P Elorriaga Y .,WE 382, ET15P Elorza F .J .,WE 307, ET05P Elosegi A .,SS05-3, SS05 Eltrop L .,MOPC4-2, MOPC4 Embry M .,SS11-2, SS11 Emke E .,WE 182, EP03P1, WE 188, WE

192, Emmanuelle E .V .,MO 203, EP05P Emmerling C .,TH 202, EP03P2 Emourgeon V .,WE 242, ET04P Endo S .,MO 049, EM02P1, ET04C-4 Enekes C .,MO 117, LC01P Enell A .,ET12A-2, ET12A Engelmann P .,TH 193, EP03P2 Englert D .,ET14-1, ET14 Englert D .,TH 322, RA23P Engwall M .,MO 314, ET12P, TU 218,

RA20P, WE 027, RA08P, WE 377 Enoch S .J .,WE 238, EP04P Enuneku A .,WE 394, ET18P Eom H .J .,TU 317, ET01P, WE 326, ET07P,

TH 038, ET03P, TH 197, EP03P2, Epema O .J .,TH 113, EC03P Ephraim J .H .,WE 076, RA10P Erasmus D .V .,TU 200, RA19P Erbslöh B .,TU 430, ET11P Erdinger L .,TH 189, EP03P2 Erger C .,TU 147, RA06P Ericson F .,TU 046, EP08P Eriksson E .,TH 317, RA23P Eriksson K .M .,WEPC2-6, WEPC1,

WEPC2-7

Page 53: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�21SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Erk M .,TU 377, ET11P Erlacher E .,WE 094, RA12P Ernst G .,MO 275, ET12P Ersekova A .,TUPC3-4, TUPC3 Érseková A .,TU 244, EC05P Ertekin E .,MO 410, ET19P Ertel A .M .,TH 124, EP01P Erythropel H .,MO 218, EP05P Erzgräber B .,EM02D-5, EM02D Erzgraeber B .,TU 339, ET02P Escalant F .,TU 103, EM02P2 Eschauzier C .,TU 008, EP06P Escher B .I .,MO 031, EC01P, MO 033,

EC01P, MOPC3-5, MOPC3, SS11-5, RA20-6

Escolà Casas M .,TU 039, EP08P Espaldon M .V .O .,TU 167, RA07P Espín S .,MO 242, ET08P, WE 280 Espindola A .,WE 042, RA08P Espindola E .,WEPC4-5, WEPC4, WE 408,

ET18P, WE 042, RA08P, ET12B-5, WE 411, WE 410, WE 409, MO 288

Espinoza-Orias N .D .,LC06-1, LC06 Essel R .,TH 348, LC03P Esteban E .,WE 117, RA14P Esteves V .,TU 082, EP08P Etxebarria J .,ET03B-2, ET03B Etxebarria N .E .,TU 379, ET11P Eugster J .,RA23B-5, RA23B Eulaers I .,TU 013, EP06P Eulaers I .,ET04A-2, ET04A Evans D .,ET04B-2, ET04B Evans D .W .,WE 072, RA10P Evenset A .,EC02A-1, EC02A Evrard E .,TU 238, LC04P Evseeva TI,SS09-5, SS09 Ezeji E .,WE 346, ET15P Ezemonye L .,WE 394, ET18P, WEPC4-4,

ET06A-1

F Fabbri E .,TUPC2-7, TUPC2, TU 083,

EP08P, TU 084, EP08P, TU 384 Fabbri R .,TH 171, EP03P2 Faber J .H .,ET12B-1, ET12B Fabian K .,EM0B1-6, EM01B Fabrega F .,TU 015, EP06P Facca C .,MO 351, ET13P Faetsch S .,WE 321, ET07P Faggian V .,RA02-5, RA02 Fajardo C .F .,TH 192, EP03P2 Falciani F .,ET01-3, ET01, ET01-5, TU

325, Falcone-Dias M .F .,TH 142, EP01P Faldi A .,LC04B-5, LC04B Faleri C .,EP04-3, EP04 Falis M .F .,WE 053, RA09P Falk S .,TU 014, EP06P, TUPC1-2 Falla J .,MO 130, EP02P, WE 214, TUPC6-

8, TUPC6, MO 312 Famuyibo A .A .,LC01B-3, LC01B Fantke P .,EM02D-1, EM02D, MO 058,

LC04A-3, RA12-6, RA12, WE 098 Farcy E .,TU 077, EP08P Farkas J .,WE 207, EP03P1, WE 197, WE

284, Farley K .J .,RA05-4, RA05 Farlin J .,TU 040, EP08P Farmen E .,WE 151, RA18P Farmen E .F .,TH 029, ET03P Farré M .,EP03A-4, EP03A, SS05-4, SS05,

TU 021, TU 254

Farrelly E .,WE 001, RA01P, RA01-5 Fascio U .,WEPC5-7, WEPC5, EP04-4 Faßbender C .,ET10A-6, ET10A Fastner J .,MO 348, ET13P Fatta-Kassinos D .,TU 076, EP08P Fatta-Kassinos D .,EP01B-1, EP01B Faupel M .,ET12B-6, ET12B Faure O .,TU 124, RA02P Faust M .,TU 130, RA02P, RA12-2, WE

085, RA20-1 Faustino A .,TH 061, ET06P Fava J .,LC07-1, LC07 Fava J .F .,TH 359, LC06P, LC07-5, LC07,

SS01-5, SS01 Favaro N .,RA02-5, RA02 Favas P .J .C .,WE 283, ET04P, TU 197,

RA19P, TH 110, EC03P, WE 282, ET04P,

Favis D .,LC05-4, LC05 Febbo E .F .,TH 020, ET03P Febbo E .J .,MO 367, ET16P, TU 390 Febbo E .R .,TH 017, ET03P Feckler A .,ET14-1, ET14 Feckler A .,TU 321, ET01P Federle T .W .,MO 432, RA04P Fedorenkova A .,ET06A-4, ET06A, TH

261, RA17P Fedorova G .,TU 075, EP08P Feibicke M .,WE 383, ET15P Feiler U .,TU 181, RA19P, WE 323 Feisthauer B .,WE 453, LC02P Feitosa L .O .,TH 160, EP03P2, TH 186 Felix-Henningsen P .,MO 304, ET12P Felizeter S .T .,EP06-3, EP06 Felkel C .,WE 204, EP03P1 Fellin P .,TH 079, EC02P Felten V .,TH 173, EP03P2 Fenández M .D .,TH 182, EP03P2 Fenet H .,EP08C-3, EP08C, TU 053 Fenlon K .A .,WE 385, ET15P Fenner K .,EM02D-1, EM02D Fenniri H .,WE 233, EP03P1 Fenske M .,ET03A-6, ET03A, MO 148,

MO 150, TH 016, TH 180 Fenske R .E .,ET09-4, ET09 Fent G .,TU 102, EM02P2, TU 105 Fent K .,MO 149, EP02P Feo M .L .,MO 177, EP02P, WE 004,

RA01P, RA12-4, Fergus N .,EC05A-5, EC05A Ferguson S .,EC02B-3, EC02B Ferincz Á .,TUPC3-3, TUPC3 Fernandes F,SS03-5, SS03 Fernandes F .C .,MO 342, ET13P Fernandes J .B .,WE 371, ET15P Fernandes M .A .,WE 181, EP03P1, WE

205, EP03P1 Fernandes M .N .,WEPC4-6, WEPC4, WE

353, ET15P Fernandes T . F .,SS03-2, SS03, TH 177 Fernández-Blanco C .,MO 346, ET13P Fernández-Gómez C .,WE 075, RA10P Fernandez-Ortiz de Vallejuelo S .,TU 170,

RA07P Fernandez-Varela R .,TU 404, ET11P, TU

449 Fernandez A .,ET16-6, ET16 Fernández B .,TU 409, ET11P, EP02B-1,

EP02B Fernandez C .,MO 279, ET12P, MO 280,

TH 005, Fernández C .,TH 058, ET06P, TH 057,

ET06P Fernandez M .A .,TU 363, ET11P Fernandez M .D .,TH 198, EP03P2, WE

117 Fernández S .,ET03B-2, ET03B Ferraresso S .,TU 074, EP08P Ferrari A .,WE 186, EP03P1 Ferreira-Cardoso J .,MO 180, EP02P Ferreira A .,MO 284, ET12P Ferreira C .,MO 243, ET08P Ferreira C .M .,WE 412, ET18P Ferreira D .,RA05-5, RA05 Ferreira E .C .,TU 417, ET11P, WE 365,

ET15P Ferreira E .F .,TH 140, EP01P Ferreira N .,WE 396, ET18P, MO 414,

ET19P Ferreira N .G .,ET12A-4, ET12A Ferreira N .G .C .,TU 314, ET01P, WE 327 Ferreira V .,ET12A-4, ET12A Ferreira Da Silva E .,MO 283, ET12P Ferro G .,TH 139, EP01P Fetter E .,TH 003, ET03P, ET03A-5, MO

211, Feurtet-Mazel A .F .M .,WE 347, ET15P Février L,SS09-6, SS09, TH 183 Fiandrino A .,TU 053, EP08P Fick J .,TUPC2-2, TUPC2, TU 036, TU

048, EP08P, EP08C-5, EP08A-1 Fick M .,EP01A-6, EP01A Fickova M .,MO 130, EP02P Fiebig S .,MO 455, RA11P, MO 456,

RA11P Fiedler S .,MOPC4-3, MOPC4 Fiévet J .,TU 370, ET11P Figueira V .F .,TH 140, EP01P Figueiredo K .,MO 060, EM02P1 Fileto C .,WE 411, ET18P Filipovic M .,TUPC1-6, TUPC1 Fillmann G .,TU 026, EP07P, TU 363,

ET11P, TU 307, EC05A-4 Filser J .,MO 313, ET12P, SS06-2, SS06,

WE 227, EP03P1, WE 225, EP03P1, WE 202

Finizio A .,MO 067, EM02P1 Finkbeiner M .F .,MO 100, LC01P Finnegan C .,MO 457, RA11P Finnveden G .,RA04A-6, RA04A Fiorentino A .,EP01B-6, EP01B Fischer A .,EP05-2, EP05, WE 423 Fischer D .,MOPC6-1, MOPC6 Fischer M .,MO 250, ET09P Fischer S .,ET04C-5, ET04C Fisher N .S .,WEPC1-4, WEPC1, SS09-7,

SS09 Fisher P .M .,ET08-5, ET08 Fisher T .,EP08B-6, EP08B, RA23B-4,

RA23B Fisher W .,MO 388, ET17P Fisk A .,WE 294, ET04P Fitzgerald G .,WE 172, RA22P Fjeld E .,ET04A-5, ET04A Flanigan L .F .,LC07-5, LC07 Flannigan M .,TH 093, EC02P Flatman D .I .,WE 061, RA09P Flem B .,EM0B1-6, EM01B Fleming T .J .,TUPC3-6, TUPC3 Flesch A .,MOPC5-8, MOPC5 Fletcher D .,TU 174, RA07P Fletcher T .,MO 473, RA11P Flight D .M .A .,EM01A-5, EM01A Floate K .,MO 402, ET19P

Page 54: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�22 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Floate K .D .,ET19B-4, ET19B Floehr T .,TU 147, RA06P, ET15B-6,

ET15B, WE 258, Flöhr T .,MO 208, EP05P Floredo Y .,RA03-2, RA03 Flores-Cervantes D .X .,WE 201, EP03P1 Floriani M .,ET03B-3, ET03B, TH 183 Floris M .,ET16-1, ET16 Focardi S .,EP04-3, EP04, TH 027 Fochtman P .,MO 151, EP02P Focks A .,MO 066, EM02P1, WE 106,

ET19B-3, ET19B-2 Foekema E .M .,TH 313, RA23P, ET01-2,

ET01-3, Fohrer N .,RA14-1, RA14, TU 113 Foit K .,TH 278, RA17P Foley V .,EP08A-5, EP08A Fones G .,TU 412, ET11P Fong B .M .W .,WE 136, RA15P Fonseca L .,TU 361, ET11P, TU 362,

ET11P, TU 386, ET11P, TU 387, TU 392

Fontainhas-Fernandes A .,MO 180, EP02P Forbes V .E .,RA01-2, RA01, RA01-4, TH

190, MO 468, RA11P, RA08-2, WE 008, SS02-4, SS07-6, TH 176, RA15-3, MO 466

Foreman W .T .,EC05A-6, EC05A Forfait C .,TU 337, ET02P, ET02-6, ET02-

4, Forget-Leray J .,MO 142, EP02P, ET18-4 Förlin L .,TU 048, EP08P, WEPC2-8 Fornasiero R .,TU 236, LC04P Forrer H .R .,ET13A-3, ET13A Forrester S .,TH 279, RA17P Forsgren K .,TU 176, RA07P Forström S .,TH 075, EC02P Forsyth J .,TU 183, RA19P Fort D .J .,MO 163, EP02P, TU 065, EP08P Fortier M .F .,ET13B-4, ET13B Fortino S .,MO 047, EC04P Foß S .,TU 285, EC06P Fossi M .C .,EP07B-6, EP07B, EP02A-5,

ET11C-3, ET11C-4, ET11C, EP07B-2, ET06B-6, TH 062, TH 158, TU 440, TU 032,

Foster I .,TU 162, RA06P Foster S .,TH 107, EC03P, TH 108, EC03P Foucaud L .,MO 130, EP02P Foucault Y .,WE 013, RA05P, WE 268 Foudoulakis M .,WE 063, RA09P, WE 056,

RA09P, WE 059, Fourel I .,RA22-5, RA22, WE 173 Fourie F .,MO 268, ET12P Fournier A .E .,MO 185, EP02P Fournier M .F .,MO 341, ET13P, ET13B-4,

ET13B Fox D .R .,ET02-5, ET02, ET02-1, ET02-4,

TU 335 Fraceto L .F .,TH 160, EP03P2, TH 186,

WE 236, Frampton G .K .,MO 462, RA11P França M .,WE 412, ET18P Francés F .,SS05-3, SS05 Franceschini H .,MO 430, RA04P Franci R .,TH 316, RA23P Francioni E .A .L .,MO 021, EC01P Franco-Uría A .,TU 460, ET11P, MOPC5-

5, MOPC5 Franco A .,TH 334, RA23P Franco A .F .,TU 408, ET11P Francoeur B .,TH 092, EC02P

Frank K .,TU 285, EC06P Frank O .,WE 204, EP03P1 Franquet E .,ET13A-4, ET13A Fransson K .,TH 340, LC03P Franzellitti S .,TUPC2-7, TUPC2 Fraser D .,MO 024, EC01P Fraz S .H .,MO 165, EP02P Frazier J .,MOPC6-1, MOPC6 Freese M .,TU 460, ET11P Frein D .,RA12-2, RA12, RA20-2 Frein D .F .,WE 085, RA12P Freitag M .F .,WE 328, ET07P Freitas A .C .,WE 364, ET15P Freitas F .S .,MO 019, EC01P Freitas J .,WE 412, ET18P Freitas V .,WE 396, ET18P Frelat M .,EC01C-5, EC01C Frelon S,SS09-3, SS09, TH 106 French T .,EC02A-5, EC02A Fresnedo O .,ET07A-4, ET07A Friedrich R .,TU 118, EM03P, LC05-2,

LC05, WE 458, LC05P Fries E .F .,EP07A-6, EP07A Fries N .,MO 115, LC01P Friesen A .,MO 467, RA11P, WE 175 Frische T .,RA20-2, RA20, TU 126 Frische T .B .,WE 085, RA12P Frischknecht R .,LC01A-6, LC01A Fritsch C .,WE 110, RA14P, RA14-6 Fritz A .,MO 249, ET09P Fritz A .,ET09-6, ET09 Frohn L .M .,TH 078, EC02P Fröling M .,TH 340, LC03P Frommholz U .F .,MO 265, ET12P Fryda M .,MO 196, EP05P Fthenakis V .M .,LC03-1, LC03 Fuchs A .,TU 071, EP08P Fuehr M .,RA11-4, RA11 Führ M .,RA03-2, RA03 Fuma S,SS09-1, SS09 Fumega J .,TU 398, ET11P, TU 416 Funk D .H .,WE 287, ET04P Fürkötter J .,WE 030, RA08P Furlong E .,TU 433, ET11P Furtado L .,WE 350, ET15P Furuhagen S .,TU 080, EP08P Furuhagen S .M .,TU 071, EP08P Fuzzen M .,ET07B-1, ET07B

G Gabbert S .G .M .,TU 128, RA02P Gabellieri E .,TH 168, EP03P2 Gabrielsen G .W .,TUPC1-5, TUPC1, SS08-

5, SS08, EC02A-1, Gabsi F .,TH 245, RA13P Gadelha J .,TU 402, ET11P Gagliardi B .S .,WEPC3-1, WEPC3, WE 367 Gagnaire ,WE 009, RA01P Gagné F .,EP08A-6, EP08A, TUPC2-8,

TUPC2 Gagné F .G .,MO 341, ET13P, ET13B-4,

ET13B Gagné F .O .,RA23B-6, RA23B, TH 157,

EP03P2 Gagneten A .M .,WE 345, ET15P, WE 349,

TU 199, Gagnon C .G .,TH 157, EP03P2 Gago-Ferrero P .,TU 305, EC06P Gaiani M .,WE 186, EP03P1 Gaivão I .,WE 362, ET15P, WE 363 Gajewicz A .,WE 193, EP03P1, WE 238 Galante-Oliveira S .,TU 364, ET11P

Galanti L .N .,WE 256, ET04P Galas S .,ET10A-4, ET10A Galatola M .,RA04B-6, RA04B Galay-Burgos M,SS11-6, SS11, MO 309,

MO 457, RA11-3 Galbán-Malagón C .G .M .,TU 254, EC05P Galbán-Malagón C .J .,TH 090, EC02P, TH

087, EC02P Galceran J .,EP03B-5, EP03B, EC04-2, WE

189, Galgani F .,TU 024, EP07P Galic N .,WE 106, RA14P, WE 109, RA15-

4, Galimberti F .G .,TU 312, ET01P, WE 114 Galindo P .S .,MO 328, ET13P, WE 221 Galindo T .P .S .,WE 397, ET18P, TH 018,

ET03P Gallagher S .,MO 162, EP02P Gallampois C .,MOPC3-7, MOPC3 Galland C .,WEPC2-3, WEPC2 Gallé T .,WE 002, RA01P, WEPC6-7, TH

252, RA16P, EC01C-5, TU 040 Gallego J .,WE 208, EP03P1 Gallien P .,MO 094, EM02P1, TU 110 Gallo G .,TH 171, EP03P2 Gallo H .G .,WE 262, ET04P Galloway T .S .,EP07A-5, EP07A Galoski C .E .,WE 159, RA18P, WE 160,

RA18P, WE 161, RA18P Galwik B .,MO 069, EM02P1, MO 070,

EM02P1 Gama M .,TH 266, RA17P Gambrell R .P .,TH 102, EC03P Gamero F .U .,ET06B-3, ET06B Gandhi N .,WE 015, RA05P Gandolfi C .,EM02D-2, EM02D Gandolfi M .,WE 049, RA09P, WE 050,

RA09P Gantner K .,TH 092, EC02P Ganzerla R .,TU 269, EC05P Gao X .,MO 208, EP05P Garanzini D .S .,TU 188, RA19P Garaud M .,TH 173, EP03P2 Garcés J .L .,WE 189, EP03P1 Garcia-Arcos I .,ET07A-4, ET07A García-Diéguez C .,RA04B-4, RA04B García-Fernández A .J .,WE 280, ET04P,

WE 167 Garcia-Franco M,SS11-6, SS11 Garcia-Fuentes A .,TU 405, ET11P Garcia-Gomez C .,WE 117, RA14P, TH

182 Garcia-Gomez C .G .,TH 198, EP03P2 Garcia-Jares C .,WE 174, RA22P Garcia-Kaeufer M .,MO 281, ET12P, TH

006, ET03P Garcia-Käufer M .I .,TU 076, EP08P Garcia-Mauriño J .E .,TH 005, ET03P García-Muñoz E .G .M .,TH 066, ET06P García-Ríos V .Y .,TU 169, RA07P Garcia G .,TH 183, EP03P2 Garcia M .P .,MO 279, ET12P Garcia N .,ET03B-2, ET03B Garcia P .,MO 280, ET12P, TU 198, WE

117, TH 182 Garcia S .,TUPC2-4, TUPC2 García V .,WE 265, ET04P Garcia Alonso J .I .,TH 116, EC03P Garcia Bravo A .,WE 067, RA10P, RA10-4 García Fernandez A .J .,WE 264, ET04P Garcia Sanchez R .,WE 450, LC02P Gardi C .,ET12B-1, ET12B

Page 55: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�2�SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Gardia-Parege C .,EP08A-2, EP08A Gardner M .J .,MO 085, EM02P1, RA23A-

1, THPC1-5, THPC1, WE 033 Garelick H .G .,TH 111, EC03P, TH 146 Garmendia L .,TU 134, RA03P, TU 376,

ET11P Garner T .R .,EP03B-3, EP03B Garner T .W .J .,ET06B-4, ET06B Garnier-Laplace J .,ET03B-3, ET03B Garnier J .M .,WE 273, ET04P Garraín D .,MO 118, LC01P, TH 339,

LC03P Garrevoet J .,TU 146, RA06P, TU 450 Garric J .,MOPC3-1, MOPC3, MO 203 Garrido C .,TU 447, ET11P Garrido R .G .,TU 229, RA20P Garrigues P .P .,RA08-3, RA08 Garrison V .H .,EC05A-6, EC05A Gartiser S .,TH 189, EP03P2, MO 281,

ET12P, TH 006, ET03P, WE 087, RA12P, WE 086

Gascon Diez E .,WE 078, RA10P Gasimzade T .G .,MO 316, ET12P Gauch R .M .,WE 343, ET15P Gaudreault C .,WE 465, LC05P Gauthier-Lafaye F .,SS09P-3, SS09P Gautier A .L .,LC02B-5, LC02B Gavilán-García A .,TH 351, LC06P, WE

069 Gavilán-García I .,TH 351, LC06P, WE 069 Gavina A .C .,WE 366, ET15P Gavina C .,MO 283, ET12P Gaw K .,WEPC3-2, WEPC3 Gawlik B .,MO 128, EP02P, MO 193,

WEPC2-2, Ge W .,MO 134, EP02P Geels C .,TH 078, EC02P Geeraerts C .,WE 433, EM01P Geerts L .,MO 361, ET16P Geerts R .,TH 304, RA23P Geffard A .,TU 338, ET02P, TH 262 Gehrke G .E .,ET04B-3, ET04B Geisler L .,MO 455, RA11P, MO 456,

RA11P Geisthardt M .,TH 249, RA13P Gelencsér A .,TUPC3-3, TUPC3 Gelinas M .G .,MO 341, ET13P, ET13B-4,

ET13B, TH 157, Gelinsky M .,WE 212, EP03P1 Gellersen J .,TU 061, EP08P Gemas Project Team ,EM01B-4, EM01B,

EM01B-1, EM01B-5, EM0B1-6 Gembé C .,WE 030, RA08P Gemechu E .D .,MO 121, LC01P Geng Y .G .,ET19B-3, ET19B Genualdi S .,EC05A-6, EC05A, EC05B-2 Geok Y .B .,TU 027, EP07P George JA,SS09-7, SS09 Georgescu P .D .,ET12A-2, ET12A Georgiadis P .T .H .,RA16-4, RA16, ET15B-

3 Georgieva D .,ET16-5, ET16 Georgieva D .G .,WE 252, ET04P, RA02-4,

RA02 Georgii S .,TU 014, EP06P Georgii S .,TUPC1-2, TUPC1 Gérard C .,MO 356, ET13P Geras’kin SA,SS09-5, SS09 Géraudie P .,ET18-4, ET18 Gerecke A .C .,EP06-1, EP06 Gergs A .,ET14-6, ET14, TU 465 Gerhardt A .E .,ET15A-3, ET15A, WE 026,

RA08P, TH 321, RA23P, MO 139, EP02P,

Gerlach J .,MO 458, RA11P, WE 052, TH 051, ET06P, TH 053

Gerlich M .,EP05-6, EP05 Germ M .,TU 201, RA19P Gerth K .,WE 216, EP03P1 Gervasio S .,TU 199, RA19P Gessler F .,ET12B-6, ET12B Gessner M .O .,EP03C-2, EP03C Geurts M .G .J .,TH 304, RA23P Gfeller H .,WE 249, ET04P Ghekiere A .,MO 453, RA11P, WE 425 Ghonge S .S .,MO 441, RA04P Ghosh R .,MO 133, EP02P Ghosh U .,TUPC4-4, TUPC4, EP07B-3,

EP07B Ghosh U .,EC06A-5, EC06A Giamberini L .,TU 338, ET02P, MO 390,

TH 173, TH 262 Giannetti M .,EP07B-6, EP07B, ET11C-3,

ET06B-6, TU 032, TH 062, TH 158 Giansoldati V .,TU 203, RA19P Giavini M .,TH 350, LC06P Gibas P .,WE 007, RA01P Gibbons M .J .,TU 397, ET11P Gibon T .,LCO1B-4, LC01B Giddings J .M .,RA19-4, RA19 Giebner S .,WE 223, EP03P1 Giefers S .,TH 159, EP03P2, EP03C-1 Gierig M .,TU 006, EP06P Giessing B .,TH 250, RA16P, TH 255,

RA16P, TH 256, Giesy J .G .,TH 277, RA17P Giesy J .P .,MO 161, EP02P, MO 128, MO

327, MO 354, EP02A-2, TUPC3-4, TU 244, TU 148, TU 297, RA06-5, WE 136, WE 138, WE 248, WE 330, ET04B-5

Giesy P .,ET13A-1, ET13A Gil-Allué C .,EP03C-2, EP03C Gil-Diaz M .,TH 194, EP03P2 Gil G .O .,TU 455, ET11P Gilbert D .,EC01B-3, EC01B, TU 291,

EC06P Gilbert M .E .,EP02C-4, EP02C Gilberto F .,TU 415, ET11P Gilbin R,SS09-3, SS09, TH 183, TH 106, Gildemeister D .,RA20-2, RA20, TH 327 Gill A .B .,TH 260, RA17P Gillespie B .,TU 013, EP06P Gilliland D .,TH 190, EP03P2, TH 175 Gillis P .L .,TU 320, ET01P Giltrap M .,EP02B-6, EP02B Gimbert F .,MOPC1-1, MOPC1, TU 124 Gimeno S .,MO 432, RA04P Ginebreda A .,TH 303, RA23P Ginebreda A .G .,RA23A-3, RA23A, TU

254 Gini G .,ET16-1, ET16 Ginkel van C .G .,TH 304, RA23P Ginsberg M .,EP03D-5, EP03D Gioia G .R .,TU 247, EC05P Giorgetti L .,TU 203, RA19P Giralt F .,ET16-6, ET16 Giraudoux P .,WE 110, RA14P, WE 171,

RA22-5, Giraudoux P .G .,ET08-3, ET08 Gish T .J .,TUPC3-2, TUPC3 Githure J .I .,WE 041, RA08P Giubilato E .,RA02-5, RA02 Giuriati C .G .,TH 117, EC03P

Givaudan N .,WE 388, ET15P Gladkova M .M .,TH 195, EP03P2 Glaholt S .,MO 250, ET09P, ET10B-2,

ET10B Glante F .,ET12B-2, ET12B Glass R .,TU 130, RA02P Glatzel S .,MOPC4-3, MOPC4 Gledhill A .,TU 446, ET11P Glenn E .,MOPC3-5, MOPC3 Glennon Y .C .,TU 097, EP08P Glynn A .,TUPC1-3, TUPC1, TUPC1-4,

EP06-5, Gobas F .A .P .C .,WEPC1-1, WEPC1 Gobbo L .,TU 423, ET11P Göbel M .O .,MO 303, ET12P Gocht T,WE 025, RA08P, MO 043 Godal B .F .,TU 381, ET11P Godding B .,WE 308, ET05P Gode D .,MO 417, ET19P Gode J .,MO 099, LC01P Godula M .,MO 065, EM02P1, TU 273,

EC05P, TU 030, EP07P Goedkoop M .,MOPC5-6, MOPC5 Goedkoop W .,ET04A-3, ET04A, RA17A-5 Goeritz I .,WE 241, ET04P Goffin A .,WE 425, EM01P Gogos A .,TH 201, EP03P2, WE 240 Goins A .B .,WE 190, EP03P1, WE 251,

ET04P Goksøyr A .,ET07A-3, ET07A Golbamaki N .,TH 281, RA21P Gold-Bouchot G .,TU 169, RA07P Gold G .B .,WE 157, RA18P, WE 158 Golden R .J .,TU 209, RA20P Golding L .A .,WEPC3-1, WEPC3, WE 367 Golla B .,WE 107, RA14P, WE 118, WE

119, Golsteijn L .,ET08-1, ET08, TU 028,

EP07P Gomà-Camps J .,MO 121, LC01P Gomes A .M .,WE 364, ET15P Gomes D .L .,TU 392, ET11P Gomes J .M .F .,WE 088, RA12P, TH 315,

RA23P, MO 365, Gomes N .C .,TU 193, RA19P Gomes N .C .,WE 131, RA15P Gomes N .C .M .,WE 429, EM01P Gomes S .I .L .,TH 196, EP03P2, EP03C-5 Gomes T .,TU 424, ET11P Gómez-Canela C .,TU 004, EP06P Gomez-Parra A .,ET07B-5, ET07B Gómez-Ramírez P .,WE 167, RA22P Gomez E .,TU 053, EP08P Gómez E .,EP08C-3, EP08C Gomiero A .,TU 396, ET11P Gonçalves F .,TU 156, RA06P, TU 193, TU

316, TU 078 Gonçalves F .,WE 436, EM01P, WE 364,

ET15P, WE 366, WE 215, WE 131 Gonçalves F .J .,MO 283, ET12P Gonçalves F .J .M .,WE 088, RA12P, TH

315, TU 229, MO 365 Gonçalves G .F .,MO 266, ET12P Gonçalves J .,TU 474, ET14P Gonçalves R .A .,WE 159, RA18P, TH 044,

ET03P, TH 170, EP03P2, WE 160, RA18P, WE 161

Gonçalves S .,TH 169, EP03P2, TU 314, ET01P, WE 429, EM01P

Gondelle F .,TH 331, RA23P Gondran N .,MO 114, LC01P Gonella Diaza R .,MO 363, ET16P, ET16-1

Page 56: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�24 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Gong P .,WE 324, ET07P Gonsior G .,WE 355, ET15P Gonsior G .G .,TUPC6-2, TUPC6 Gonzalez-Doncel M .,TH 005, ET03P Gonzalez-Gago A .,TH 116, EC03P Gonzalez-Mazo E .,ET07B-5, ET07B González-Mazo E .,TU 143, RA06P, TU

393, TU 298, González-Mazo E .G .M .,EP08C-1, EP08C Gonzalez-Rey F .,WE 429, EM01P, TU 425 Gonzalez-Rey M .,WE 318, ET07P González-Sapienza G .,TH 028, ET03P González A .,WE 098, RA12P González A .G .,MO 347, ET13P González E .,WE 265, ET04P, EC01B-4 Gonzalez M .,TU 303, EC06P, TU 307,

EC05A-4, González J .,TU 436, ET11P Gonzalez P,SS09-3, SS09, WE 347 Gonzalez S .,TH 033, ET03P González González P .D .,TU 394, ET11P Gooneratne R .,TH 205, EP03P2 Goosey E .R .,EC05B-4, EC05B Gorbunova N .V .,WE 239, EP04P Gorga M .,MO 182, EP02P Görlitz G .,TU 102, EM02P2, RA19-2 Gorm Hansen A .,TU 449, ET11P Gorokhova E .,TU 071, EP08P, TU 080,

EP08B-5, Gorsuch J .W .,RA20-5, RA20 Gorzerino C .,MO 379, ET17P Gosewinkel Karlson U .,MO 064, EM02P1,

TU 294 Goss G .,TH 208, EP03P2, WE 191, WE

233, Goss K .U .,MO 049, EM02P1, TU 304, TU

452, ET04C-4, RA12-5 Gottardo S .,TH 206, EP03P2, EP03D-4,

EP03D Gottesbueren B .,MO 094, EM02P1 Gottesbüren B .F .F .,EM02D-5, EM02D,

WEPC3-5 Göttlicher G .,MO 112, LC01P Gottschalk F .,TU 336, ET02P Gottschalk G .S .,WE 180, EP03P1 Gouali S .G .,TU 455, ET11P Gouin T .,ET09-1, ET09, SS12-8, SS12,

MO 249, Goulaouic S .,MO 130, EP02P Gouliarmou V .,TU 281, EC06P, TU 293,

EC06P, TU 282, Gourlay-Francé C .,MO 017, EC01P, WE

242 Gourlay V .,TU 102, EM02P2, TU 105 Gourmelon A .,ET03A-1, ET03A, SS11-2,

SS11, RA11-2, RA11, TH 012 Goussen B .,ET10A-4, ET10A, TU 359 Gouveia A .,MO 180, EP02P Gouzy A .M .J .,TH 314, RA23P Govender S .,MO 193, EP05P Grabic R .,TU 075, EP08P, TU 036 Graham N .D .,WE 078, RA10P Gramatica P .,MO 198, EP05P, MO 364,

ET16P, MO 362, MO 368 Grammatika N .,MO 052, EM02P1 Grau R .,WE 062, RA09P Gravato C .G .,MO 255, ET09P Gravell A .,MO 024, EC01P, TH 332 Gray E .,WE 181, EP03P1 Gray J .,TH 298, RA21P Gredilla A .,TU 170, RA07P Green A .J .,TH 063, ET06P

Green C .,RA23B-1, RA23B Green C .J .,TH 305, RA23P Green T .A .,RA02-1, RA02 Green W .,MO 189, EP02P, EP02C-5,

EP02C Greenberg M .,ET11B-4, ET11B Greene G .,WE 101, RA12P Greene J .P .,TU 022, EP07P Greener M .,RA22-1, RA22 Greenfield B .K .,ET04B-3, ET04B Greenfield R .,WE 314, ET05P Greenwood R .,MO 307, ET12P Gregorio V .G .,TU 329, ET02P Grehn A .,EP08B-4, EP08B Grenni P .,MO 391, ET17P, MO 298,

ET12P, ET19A-5, TU 095 Grenouillet G .,MO 381, ET17P Griffin W .M .,MO 422, RA04P Griffiths B .,ET12B-1, ET12B Griffiths R .I .,ET12B-1, ET12B Grifoll M .,TU 287, EC06P Grilli S .,TH 281, RA21P Grillitsch B .,WEPC4-7, WEPC4 Grillo R .,WE 236, EP04P Grimalt J .O .,EC02B-6, EC02B, EC05B-6,

TH 089, Grimm V .,RA01-1, RA01, RA01-2, SS02-

3, SS07-1, RA15-5, WE 006, WE 105, Grimmer A .,MO 122, EP02P Grisolia C .K .,WE 397, ET18P, MO 157,

EP02P, TH 018, ET03P, MO 414 Griswold J .,ET04B-3, ET04B Groenenberg J .E .,TUPC6-5, TUPC6 Groeneweg J .,ET19A-1, ET19A Groeneweg J .G .,ET19A-4, ET19A Groenke K .G .,LC02A-6, LC02A Groh K .,WE 337, ET07P Grohmann E .,TH 133, EP01P, TH 144,

EP01P, EP01B-4, Grondona S .I .,TU 303, EC06P Grooneweg J .,ET19A-3, ET19A Groothuis F .,EP02C-3, EP02C Gros M .,THPC1-1, THPC1, TH 265, TH

122, Groß R .,WE 086, RA12P Gross A .,TH 078, EC02P Gross E .M .,TUPC6-1, TUPC6 Gross M .,MO 177, EP02P, TU 126,

RA02P, RA11-3, Gross R .,RA03-2, RA03 Großmann D .,TU 106, EM02P2 Grosso M .,TH 350, LC06P Grøsvik B .E .,ET11A-2, ET11A, WE 151 Grote M .,WE 125, RA15P, WE 273, MO

375, TU 331 Grotenhuis J .T .C .,TUPC4-1, TUPC4 Grotenhuis T .,TUPC4-2, TUPC4 Grottker M .,WE 046, RA08P Gruber B .,WE 309, ET05P Grujic N .N .,TU 096, EP08P Grung M .,MO 209, EP05P, TU 427 Gruszka K .D .,TU 224, RA20P Gu B .,WE 072, RA10P Guardans R .,TH 082, EC02P Guardans R .G .,EM01A-1, EM01A Guardo A .D .,TU 248, EC05P Guazzoni N .,EM02B-6, EM02B, TU 100,

EM02P2, WEPC5-7, Gubbins M .,ET11B-6, ET11B Gueguen C .,WE 015, RA05P Guendel U .,ET07A-2, ET07A, WE 321,

ET07P

Guereca P .,MO 120, LC01P Guerniche D .,TU 104, EM02P2, TU 106 Guerniche G .D .,EM02B-5, EM02B Guernion M .,TU 124, RA02P Guérold F .,MO 390, ET17P Guerranti C .,EP07B-6, EP07B Guerreiro N .,TU 189, RA19P Guerrero P .,MO 119, LC01P Guerrini A .,TH 281, RA21P Guertin D .A .,ET08-4, ET08 Guevara M .A .,TU 353, ET10P Guglielmo F .,MO 071, EM02P1 Guibbolini M .,WE 200, EP03P1 Guido G .S .,LC07-2, LC07 Guignard C .,MOPC5-8, MOPC5 Guignard C .,MO 135, EP02P Guilhem M .,MO 052, EM02P1 Guilherme S .,WE 362, ET15P, WE 363 Guilhermino L .,TU 178, RA07P, TU 376,

TU 400, TH 057, TH 266 Guilhermino L .M .,MO 255, ET09P, MO

413 Guilhermino L .M .C .,TH 267, RA17P Guilizzoni P .,WE 079, RA10P, WE 080 Guillaume B .,WE 445, LC02P Guillén-Gosálbez G .,MO 106, LC01P Guillén D .,TH 303, RA23P Guimarães A .,TH 273, RA17P Guimarães L .,TU 400, ET11P, TH 057 Guimarães L .M .,MO 413, ET19P Guinea J,SS11-6, SS11 Guinée J .B .,LC04B-6, LC04B Guiney P .D .,MO 163, EP02P Guinn R .,TU 345, ET10P Guitiérrez C .,TU 470, ET14P Guiton M .,LC06-5, LC06 Gulmen M .,WE 260, ET04P Gummersbach J .,TU 259, EC05P Gündüz G .,TU 019, EP06P Gunnarsson L .,ET07B-3, ET07B, TU 070,

EP08P Gunold R .,RA14-3, RA14 Gunsch C .,TU 436, ET11P Guo J .,MO 022, EC01P Gupta B .G .,TH 095, EC02P Gusev A .,TH 082, EC02P Gust M .,EP08A-6, EP08A, TUPC2-8,

TUPC2, MO 341, ET13B-4 Gustafsson M .,RA22-6, RA22 Gustafsson Ö .,EC02B-4, EC02B Gustavson L .,TH 084, EC02P Gustavsson B .M .,TU 213, RA20P Gustavsson M,SS12-5, SS12 Gutiérrez-Galindo E .A .,TU 442, ET11P Gutierrez-Praena D .,MO 358, ET13P Gutiérrez-Praena D .,MO 340, ET13P Gutierrez C .,TH 265, RA17P Gutiérrez G .,TU 436, ET11P Gutiérrez I .R .,TU 271, EC05P Gutiérrez L .G .,MO 386, ET17P Gutierrez M .F .,WE 349, ET15P Gutierrez R .,WE 335, ET07P Gutleb A .C .,MO 135, EP02P Gutsche V .,WE 119, RA14P Gutsell S .,ET16-4, ET16 Guy E .,TU 429, ET11P Guy K .,EP03D-5, EP03D Guyomarch J .G .,WE 156, RA18P Guyoneaud R .,WE 084, RA10P Guyonnet D .,LC04B-2, LC04B Guzmán-Guillén R .,MO 346, ET13P, MO

347, ET13P

Page 57: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�2�SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Guzy M .,RA02-1, RA02 Guzzi L .,WE 079, RA10P Guzzo M .,WE 294, ET04P Gwo J .C .,MO 184, EP02P

H Habibi H .,WE 148, RA15P Hack M .J .D .,MOPC1-7, MOPC1 Haddad T .,TU 052, EP08P Haddioui A .,MO 287, ET12P, TU 193,

WE 131, Hadjamberdiev I .B .,WE 424, EM01P Haeba M .H .,MO 330, ET13P Hafner C .,MO 281, ET12P, TH 006,

ET03P Haftka J .,TU 292, EC06P Hage M .,WE 051, RA09P Hagemann U .,MOPC4-3, MOPC4 Hagenaars A .,TU 018, EP06P, TH 268 Hagenbuch M .,RA23B-5, RA23B Hagget B .,TH 323, RA23P Haglund K .A .,WE 164, RA22P Haglund P .,RA03-4, RA03 Hahn M .,TH 249, RA13P Hahn S .,MO 471, RA11P, ET04C-3 Haiba E .,MO 310, ET12P, MO 311 Hakanson L,SS09-1, SS09 Hala D .,WE 296, ET04P Halayko A .,EP06-6, EP06 Halder M .,ET03A-1, ET03A, TH 012,

ET03P, SS11-3, Hale S .E .,EC06A-2, EC06A Haley M .V .,MO 063, EM02P1 Hall J .C .H .R .I,WE 350, ET15P Hall P .,EC05A-5, EC05A Hallanger I .G .,EC02A-1, EC02A Hallare A .V .,MO 129, EP02P Hallikainen A .,ET11C-5, ET11C Hallin-Sørensen B .,TU 060, EP08P Halling-Sørensen B .,MO 191, EP02P, MO

197 Halm M .P .,TU 077, EP08P Halog A .,WE 448, LC02P, TH 341,

LC03P, TH 345, LC03P, WE 445 Halsall C .,EP08B-2, EP08B Halsall C .J .,EC02B-1, EC02B, TUPC1-8 Hamada F .,MO 173, EP02P Hamda N .T .,RA01-4, RA01, MO 080,

EM02P1, WE 006, RA01P, SS07-6 Hamdoun H .H .,TU 431, ET11P Hamer M .,RA15-3, RA15 Hamers T .,EP02B-1, EP02B, EP05-1, MO

127, TU 141 Hamilton P .B .,RA21-1, RA21 Hammel K .,EM02C-6, EM02C Hammer J .,TH 086, EC02P Hammers-Wirtz M .,MO 193, EP05P Hammers-Wirtz M .,ET12A-6, ET12A, TH

245 Hammesfahr U .,ET12B-4, ET12B Hammond P .,TH 347, LC03P Hamon L .,MOPC5-8, MOPC5 Hampel M .,TU 074, EP08P, TU 085 Han L .,TU 258, EC05P Han S .Y .,WE 352, ET15P Hanauer T .,MO 304, ET12P Hanberg A .,TH 296, RA21P Handoh I .C .,ET07A-6, ET07A Handy D,SS03-5, SS03 Handy R .D .,EP03C-4, EP03C, EP03B-2,

TH 162, TH 166 Hanel R .,TU 460, ET11P

Hanke G .,MO 194, EP05P, TU 024, EP07P

Hanna S .,MOPC2-8, MOPC2 Hannah R .,EP08A-3, EP08A Hänsch J .M .,TH 202, EP03P2 Hansen A .B .,TH 078, EC02P Hansen A .G .,TU 404, ET11P Hansen B .H .,WE 151, RA18P, WE 152,

RA18P, RA18-4, Hansen I .T .,TH 084, EC02P Hansen K .M .,TH 078, EC02P Hansen L .H .,ET12B-3, ET12B Hansen M .,MO 191, EP02P, MO 408,

ET19P, MO 197, TU 039, TU 051, TU 060, TH 084,

Hanson N .,MO 380, ET17P, RA01-3 Hanssen O .J .,MO 421, RA04P Hanssen S .A .,TUPC1-5, TUPC1 Hansson S .O .,RA21-4, RA21 Hanzel J .,EC06B-5, EC06B Hao C .,TU 367, ET11P Hapeman C .J .,TU 256, EC05P, TU 257 Hapeshi E .,TU 076, EP08P Hara S .,WE 154, RA18P Harbourt C .M .,WE 386, ET15P Harder S .H .,TU 241, EC05P Hardy D .,RA05-1, RA05, WE 020 Häring T .,EM02D-5, EM02D Harlang Olsen G .,WE 151, RA18P Harman-Fetcho J .A .,TU 256, EC05P Harman C .,EC01C-6, EC01C, TU 427,

ET11P, TU 381, MO 025, MO 209 Harms H .,TU 285, EC06P Harms H .,EC06B-5, EC06B, TU 295 Harms K .,EP01A-5, EP01A Harmsen J .,EC06A-1, EC06A Harner T .,EC05B-2, EC05B, TH 082 Harper B .,EP02B-4, EP02B Harras M .,WE 011, RA05P Harrod C .,WE 170, RA22P Harrold K .,ET04B-3, ET04B Hart C .H .,MOPC6-2, MOPC6 Hartikainen H .,TH 356, LC06P Hartl G .J .,ET11A-3, ET11A Hartmann J .,RA21-6, RA21 Hartmann N .I .,WE 218, EP03P1 Haruhiko K .H .,TH 210, EP03P2 Hashizume N .,WEPC1-8, WEPC1 Hasjlova J .,EP06-4, EP06 Haskins J .,MO 133, EP02P Hass U .,MO 192, EP02P Hassellöv M .,WE 194, EP03P1, WE 208,

TH 213, Hasselov M .,WE 187, EP03P1 Hassold E .,RA20-2, RA20, TU 207, WE

034, Hatfield J .L .,TUPC3-2, TUPC3 Hatfield T .,WE 252, ET04P Hauck M .,LC04B-5, LC04B Haudin C .,EM02C-3, EM02C Hauke H .,WE 354, ET15P Haumann D .,MO 112, LC01P Haurie A .,LC01A-3, LC01A Hauschild M .Z .,MOPC4-4, MOPC4, MO

424, EM03-5, TH 187 Havsland M .C .,TU 060, EP08P Hawker D .W .,EC01A-3, EC01A, MO 031,

EC01P, SS08-3, SS08 Hayakawa Y .,MO 029, EC01P Hayase D .,TU 177, RA07P Hayashi T .I .,WE 111, RA14P Hayashi Y .,TH 193, EP03P2

Hayglass K .,EP06-6, EP06 Hayward S .,TU 325, ET01P He J .,TU 242, EC05P He Y .,MO 161, EP02P, WE 330 Healey J .,ET12C-5, ET12C Heath G .A .,LC03-1, LC03 Heberer T .,EP01B-3, EP01B Hebert A .,TU 052, EP08P Hecker M .,WE 330, ET07P, WE 248,

ET04P, ET04B-5, ET03A-6, MO 129, MO 140, MO 148, MO 161, RA06-5, EP02A-2, TU 148

Hecker N .M .N .,ET13A-1, ET13A Heckmann L .H .,EP03C-4, EP03C, TH 193 Hectors T .H .,EP02A-4, EP02A Hedde M .,MO 293, ET12P Hedegaard G .B .,TH 078, EC02P Hedgespeth M .L .,MO 384, ET17P Hedman J .,RA03-4, RA03 Hegemann B .,WE 335, ET07P, MO 322 Heger S .,MO 252, ET09P Heier L .S .,WE 322, ET07P Heijerick D .,WE 430, EM01P, MO 463,

RA11P, WE 023, Heijungs R .,MOPC5-2, MOPC5, TU 232,

LC04B-6, RA04B-5 Heil A .,EC05B-3, EC05B Heilmeier H .,RA17A-3, RA17A, TU 315 Heimbach U .,RA16-4, RA16, WE 376,

ET15P, TH 257, RA16P, ET15B-3 Heimstad E .,EC02A-1, EC02A Heimstad E .S .,EC02B-1, EC02B Hein A .,MO 096, EM02P1, MO 395,

EP08B-1, Hein S .,WE 057, RA09P Heine S .,RA19-2, RA19 Heinecke A .,MO 083, EM02P1 Heino-Motelica M .,TU 167, RA07P Heintze G .,MOPC4-3, MOPC4 Heipieper H .J .,MO 303, ET12P Heise H .S .,TU 157, RA06P Heise S .,TU 116, EM03P, TU 140, RA06P,

WE 046, RA06-3 Heiß C .H .,MO 474, RA11P Heiss C .,RA11-4, RA11 Heister S .,WE 380, ET15P Helgesson J .,RA22-6, RA22 Helin T .,MOPC5-7, MOPC5, MO 440,

RA04P Hellweg S .,MO 115, LC01P, MO 104,

MO 106, TU 117, WE 196, RA04B-2, EM03-1,

Hellweger F .L .,TH 148, EP01P Helm A .,EC05B-4, EC05B Helm R .,ET09-6, ET09, MO 249 Helm S .,WE 216, EP03P1 Helmholz H .,TU 377, ET11P, WE 317,

ET07P Helmholz H .H .,TU 430, ET11P Hémart M .,TH 326, RA23P Hémart M .H .,TU 155, RA06P Henderson A .D .,EM02C-1, EM02C, MO

078 Henderson S .,WE 148, RA15P Hendriks A .J .,TU 028, EP07P, TU 467,

ET14P, RA18-5, MO 062, EM02P1, WEPC1-5, WE 250, EM03-3, EM02A-2, TH 086, TH 261, ET06A-4

Hendriks H .,RA02-6, RA02 Hendriks H .S .,RA21-6, RA21 Hendriks H .W .M .,ET08-1, ET08 Hendriks J .,ET11A-6, ET11A, WE 151

Page 58: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�26 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Henkelman B .,EC01A-1, EC01A, MO 018 Henkes G .,MO 297, ET12P Henkes K .,MO 297, ET12P Henn K .,WE 094, RA12P Hennecke D .,EP03A-3, EP03A, MO 404 Henner H .,TH 300, RA21P Henner P .,WE 277, ET04P Hennig M .P .,RA06-5, RA06 Henriksson J .,LC04B-6, LC04B Henriques I .,TH 128, EP01P Henry S .,TUPC6-8, TUPC6, MO 312,

ET12P, MO 130, WE 214 Henry T .B .,TH 162, EP03P2, TH 166,

EP03B-2, Henshaw A .,RA23B-1, RA23B Hentati H .O .,MO 266, ET12P Hentati O .,WE 131, RA15P Hentges S .,WE 135, RA15P Hentges S .G .,TH 301, RA21P Herbert P .,TU 252, EC05P Hercher C .,MO 281, ET12P Herger G .H .,TH 285, RA21P Heringa M .,MOPC3-3, MOPC3 Heringa M .B .,EP02C-3, EP02C Herkelrath A .,TH 278, RA17P Hermann A .,WE 086, RA12P Hermann G .,MO 467, RA11P Hermanson M .H .,EC02A-6, EC02A, TH

075, EC02P Hermens J .L .M .,TH 031, ET03P, TH 022,

TU 292, EC06B-4, MO 033 Hermosin M .C .,TUPC4-5, TUPC4 Hernán G .,TH 087, EC02P Hernandez Vargas N .A .,TU 339, ET02P Heroldová M .,RA09-6, RA09 Herr R .,TU 110, EM02P2 Herranz Montes F .J .,RA09-1, RA09 Herrchen M .,MO 404, ET19P Herrenknecht C .,TU 428, ET11P Herrera-Silveira J .,TU 169, RA07P Herrera I .,MO 118, LC01P, TH 339,

LC03P Herrero-Hernández E .,EP08C-3, EP08C Herrmann S .,ET13A-2, ET13A Hertel-Aas T .,EC04-5, EC04 Hertel O .H .,EC05B-5, EC05B Hertwich E .G .,LCO1B-4, LC01B Herva M .,MO 446, RA04P, TU 093,

EP08P Herva M .,RA04B-4, RA04B Herve S .,MO 013, EC01P Herzke D .,TU 013, EP06P Herzke D .,EP06-4, EP06, TU 012, EP06P Herzke D .,EC02B-1, EC02B Heskett M .,TU 027, EP07P Hesterberg D .L .,WE 287, ET04P Heuer H .,ET19A-3, ET19A Heuer H .H .,TH 143, EP01P Hewitt L .M .,MO 126, EP02P Hewitt M .H .,RA23B-6, RA23B Heyn J .,EP06-2, EP06 Hickey C .,MO 249, ET09P Hickey W .,ET09-6, ET09 Hickmann S .,MO 395, ET19P Hidalgo M .M .,TU 041, EP08P Higgins C .,WE 176, EP03P1 Higley E .,EP02A-2, EP02A, MO 129, MO

140, Hilber I .,MO 320, ET12P Hild P .,MOPC5-3, MOPC5 Hildenbrand J .H .,LC02A-1, LC02A Hill A .H .,TH 277, RA17P

Hill E .M .,ET07B-5, ET07B Hill F .C .,WE 251, ET04P Hillaire-Buys D .,TU 053, EP08P Hilscherova K .,MO 337, ET13P, MO 338,

ET13P, MO 354, TU 089, TH 024 Hiltrop R .,TH 042, ET03P Hindmarch S .H .,RA22-4, RA22 Hines A .,ET01-5, ET01 Hinfray N .,MO 156, EP02P, MO 160 Hintelmann H .,ET04B-3, ET04B Hinton T .G .,RA08-5, RA08 Hipólito M .H .,WE 412, ET18P Hirai T .,TH 211, EP03P2, TH 212 Hirai Y .H .,MO 464, RA11P, SS10-8, SS10 Hiraldo F .,MO 187, EP02P Hiromi N .H .,TH 210, EP03P2 Hisae A .H .,TH 210, EP03P2 Hischen F .,TH 159, EP03P2 Hitchcock K .,MO 436, RA04P Hites R .A .,EC05A-3, EC05A Hitmi A .,TU 124, RA02P Hjort M .,WE 151, RA18P Ho K .K .Y .,EP02B-5, EP02B Ho K .L .,WE 138, RA15P, WE 136 Ho T .,TU 436, ET11P Hoang T .C .,TH 276, RA17P Hoberg J .,TU 186, RA19P Hobson H .,WE 096, RA12P Hobson K .A .,RA03-3, RA03 Hochmuth J .D .,TU 347, ET10P, MO 343,

ET13P Höckner M .,ET10A-1, ET10A Hodges G .,ET16-4, ET16 Hodges J,SS12-8, SS12 Hodges J .E .N .,TU 067, EP08P, MO 068,

EM02P1 Hodgkin J .,ET15A-5, ET15A Hodson M .E .,ET10B-1, ET10B, MO 269 Hodson P .H .,TH 277, RA17P Hoeger G .C .,TU 283, EC06P Hoeger S .,TH 054, ET06P Höfer H .,ET12B-2, ET12B Hofer M .,TH 321, RA23P Hoffmann A .A .,WEPC3-3, WEPC3 Hoffmann D .,WE 115, RA14P Hoffmann K .,WEPC6-8, WEPC6, TUPC6-

4, TUPC6 Hoffmann L .,MO 135, EP02P Hofman-Caris R .C .H .M .,EC01A-6,

EC01A Hofman J .,MO 277, ET12P, ET12C-4,

ET12C Hofmann D .H .,ET19A-4, ET19A Hofmann L .,MO 071, EM02P1 Hofmann T .,EP03A-2, EP03A, EP03A-3,

EM02D-3, EM02D, WE 199 Höger S .,WE 308, ET05P Hogstrand C .,ET07A-3, ET07A Höher N .,TH 270, RA17P Hoke R .,WEPC1-8, WEPC1 Hokkinen J .,EP03D-3, EP03D Holah D .,WE 062, RA09P Holbech H .,MO 172, EP02P, MO 449,

ET19B-5, Holbech H .H .,MO 150, EP02P, MO 192 Holden P .A .,MO 264, ET12P, MOPC2-8 Holdt G .,MO 094, EM02P1, TU 108 Holland M .,WE 045, RA08P Hollander A .,MO 053, EM02P1, TU 063 Holleder J .,WE 201, EP03P1 Hollender J .,WE 263, ET04P, MO 210,

EP05P, MO 193, RA23A-2, EP05-6,

EP05-4 Hollert H .,ET03A-6, ET03A, TH 024,

MO 193, MO 252, MO 140, MO 208, MO 281, TH 006, TU 147,

Hollert H .,RA06-5, RA06, WE 222, EC06B-1, EP03C-1, EP05-3, ET15B-6, ET15B, WE 258, WE 030, WE 027,

Hollert H .,TH 013, ET03P, TH 199, TH 203, TH 015, TU 149, TU 150, MO 129, MOPC2-6, WE 377, RA06-4,

Holling N .,MO 031, EC01P Holm P .E .,ET12B-3, ET12B Holmes C .,TU 067, EP08P, MO 068,

EM02P1 Holmes C .M .,MO 397, ET19P, WE 386 Holmes C .M .,MOPC2-7, MOPC2 Holmes J .,WE 039, RA08P Holmstrup M .,EC01B-2, EC01B Holt M .S .,MO 309, ET12P, MO 457 Holten Lützhøft H .C .,TH 317, RA23P Hölzel C .S .,EP01A-5, EP01A Hommen U .,ET12A-6, ET12A, ET14-6,

ET15A-2, RA11-4, TU 106 Hong J .,MO 026, EC01P Hong S .S .,WE 369, ET15P Honório G .,TU 228, RA20P Hontela A .,WE 126, RA15P Hoogeweg C .G .,TU 099, EM02P2 Hoogewerff J .,EM0B1-6, EM01B Hoogland T .,MOPC1-7, MOPC1 Hooper M .,ET09-2, ET09, MO 249 Hoppenbrouwens M .,ET12A-2, ET12A Hoque M .E .,TH 311, RA23P Horak F .,ET12B-2, ET12B Horak K .E .,RA22-3, RA22 Horemans N,SS09-11, SS09 Horemans N .M .,WE 278, ET04P, SS09-9,

SS09, TU 194, Horiguchi K .,MO 427, RA04P Horiguchi T .,MO 173, EP02P Hörlin E .H .,TU 390, ET11P Horney P .,WE 119, RA14P Hornung M .E .,EP02C-4, EP02C Hortellani M .A .,WE 402, ET18P Horvat M .,WE 082, RA10P, RA10-3 Horvat M .H .,RA10-2, RA10, WE 071,

RA10P, WE 434, EM01P Horvath A .,LC04A-5, LC04A Horvath A .,RA04A-3, RA04A Hosoya K .,MO 032, EC01P, MO 029 Höss S .,ET12B-6, ET12B Hötker H .,WE 064, RA09P Hotopp I .,EM02A-3, EM02A Hou J .,TU 147, RA06P Houben A .,EC02A-5, EC02A Houot S .,EM02C-3, EM02C, TU 124 Houtman C .J .,EP05-2, EP05, WE 423,

MO 123, Houtman J .,TH 207, EP03P2, ET11A-5 Howe P .,TU 444, ET11P Howell C .,EC06A-6, EC06A Howell D .,WE 150, RA18P Hoy S .,RA11-1, RA11 Hristozov D .R .,TH 188, EP03P2, TH 206,

EP03P2, EP03D-4, Hsu D .D .,LC03-1, LC03 Hsu L .C .,WE 287, ET04P Hsu P .,TU 140, RA06P Huang H .,TU 257, EC05P Huang Q .H .,TU 441, ET11P Huang Q .H .,TUPC5-3, TUPC5 Huber C .G .,MO 417, ET19P

Page 59: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�2�SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Huber D .H .,TU 241, EC05P Huber S .,EP06-4, EP06, EC02B-1 Hübler L .,WE 212, EP03P1 Hübner J .,TH 133, EP01P Hudjetz S .,RA06-5, RA06 Huebner J .,EP01B-4, EP01B, TH 144 Huebschmann H .J .,TU 259, EC05P Huerta B .,TH 122, EP01P Huertas D .,EC02B-6, EC02B Hufenbach C .,MO 467, RA11P Hug C .D .,MO 195, EP05P, MO 211,

MOPC3-7, EP05-3 Huggett B .,MO 217, EP05P, WE 296,

ET04P, TUPC2-4, TUPC2 Huggett D .,RA01-5, RA01, WE 001, TH

289, Huggett D .B .,TUPC2-3, TUPC2 Hughes D .,RA03-1, RA03 Hughes J .M .,WE 166, RA22P Hugrel C .,MOPC4-8, MOPC4 Huguier P .,MO 278, ET12P, ET12C-6,

ET12C Huiberse A .,TH 271, RA17P Huijbregts M .,MOPC5-6, MOPC5 Huijbregts M .A .J .,ET08-1, ET08, RA17A-

6, LC04A-4, TU 063, MO 062, EM02P1, WEPC1-5, EM03-3, RA18-5, WE 250, EM02A-2, TU 120, EM03-2, RA04A-1, ET11A-6, LC04B-5,

Huiyan P .H .,TH 210, EP03P2 Hultman M .T .,TH 029, ET03P, TH 023,

ET03P, ET03B-4, Humbert S .,MO 430, RA04P, MO 431,

MO 444, MOPC5-8, RA04A-5, TH 358, WE 453,

Humpenöder F .,MO 109, LC01P Hund-Rinke K .,TU 278, EC06P, TH 180,

EP03C-6, RA11-4, ET12A-6 Hundt M .,RA14-3, RA14 Huneau F .,TU 167, RA07P Hung H .,TH 079, EC02P, TU 245, EC05P,

TH 082, Hungerbuhler K .,EC02B-2, EC02B,

EP03D-6, EP06-1, EM02A-6, ET13A-3, MO 334, MO 333, RA17B-1, WE 180, WE 253,

Hunka A .D .,MO 468, RA11P, RA08-2, RA08

Hunkeler D .,MO 365, ET16P Hünken A .,WE 184, EP03P1 Hunting E .R .,MO 378, ET17P Huntsman-Mapila P .,WE 022, RA05P Huo J .,ET15B-6, ET15B, WE 258, ET04P Huppes G .,RA04B-5, RA04B Hur J .H .,WEPC5-1, WEPC5 Hurel C .,EC06B-2, EC06B Hussain S .M .,WE 193, EP03P1 Hutchinson T .,EP08B-6, EP08B, MO 132 Hutchinson T .H .,MO 449, RA11P Hutchison J .E .,EP04-1, EP04, EP04-5 Huteau V .H .,TUPC3-7, TUPC3 Huynh H .P .V .,ET05-3, ET05 Hwang J .W .,MO 465, RA11P Hylland K .,WE 294, ET04P, MOPC2-1 Hyne R .V .,ET18-6, ET18, MO 007 Hynninen A .,EP01A-3, EP01A Hynynen J .,MO 440, RA04P

I Iaccino F .,WE 430, EM01P, MO 369, MO

366, Ian C .T .,MO 075, EM02P1, EM02B-2,

EM02B Ibáñez Forés V .,WE 454, LC02P Ibrahim L .,ET15A-2, ET15A Ichihashi K .,TH 211, EP03P2, TH 212 Iero A .,TU 443, ET11P Igos E .,LC05-3, LC05 Iguchi T .,WE 358, ET15P, SS11-2, SS11 Ilijin L .,WE 257, ET04P Illyane I .S .M .,TU 362, ET11P Imaizumi Y .,RA14-2, RA14, SS12-6, SS12,

WE 111, WE 254 Imakado C .,WE 154, RA18P Imbahale S .S .,WE 041, RA08P, WEPC4-1 Imre M .I .,MO 258, ET09P Inaba A .,MO 439, RA04P Inaba A .I .,LC05-1, LC05 Inandiklioglu N .I .,WE 260, ET04P Ince B .,MO 410, ET19P Ince O .,MO 410, ET19P Ingrand V .,EC01C-4, EC01C Inoue Y .,WEPC1-8, WEPC1 Inzolia F .,TUPC2-7, TUPC2 Ioppolo G .,TH 355, LC06P Iosjpe M .,SS09-12, SS09 Ippolito A .,TU 469, ET14P Iqaluk D .,TH 085, EC02P, TH 092,

EC02P, TH 093, EC02P Iqbal Zafar M .,WE 093, RA12P Irizar A .I .,ET03B-2, ET03B Isaksen K .,WE 051, RA09P Isaksson E .,EC02A-6, EC02A, TH 075,

EC02P Ishii N,SS09-10, SS09 Ishimatsu A .,WEPC1-3, WEPC1 Isobe T .,MO 183, EP02P Itai T .,TU 177, RA07P, WE 089 Ito D .,EP04-5, EP04 Ito K .,ET07A-6, ET07A Ito N .,WE 254, ET04P Itoh M .,TU 027, EP07P Itsubo N .,MO 427, RA04P Itsubo N .I .,MO 433, RA04P, LC05-1, WE

442, Itten R .,LC01A-6, LC01A Iturburu F .G .,WE 361, ET15P Ivankovic D .,TU 377, ET11P Ivanov P .,TU 080, EP08P Iwafune T .,TU 301, EC06P, TU 302 Iwai H .,TU 020, EP06P Iwuoha E .I .,WE 293, ET04P Izagirre I .,TU 134, RA03P, TU 376, ET11P Izagirre U .,TU 170, RA07P, TH 269 Izosimov A .,TU 309, EC06P Izosimov A .A .,TH 104, EC03P

J Jaber M .,MO 162, EP02P Jablonowski N .D .,WE 387, ET15P Jabouille F .J .,MO 113, LC01P Jacevic V .,TU 226, RA20P Jach A .,MO 449, RA11P Jack R .F .,MO 349, ET13P, TH 117,

EC03P Jäckel B .,WE 373, ET15P Jackson K .,TH 030, ET03P Jackson L .J .,WE 148, RA15P Jacobsen C .S .,MO 191, EP02P Jacobson B .R .,WE 386, ET15P Jacquemin L .,MO 101, LC01P Jacquet R .,MO 001, EC01P Jacquot M .,RA22-5, RA22, WE 171 Jaeger S .,RA12-3, RA12

Jäger J .I .,WE 087, RA12P Jäger M .,WE 461, LC05P Jäger S .,MO 404, ET19P Jager T .,WE 121, RA15P, WEPC6-5,

WEPC6, WE 006, RA01-1, MO 452, ET02-3

Jagiello K .M .,TUPC2-1, TUPC2 Jagtap R .U .,TH 107, EC03P, TH 108,

EC03P Jahn A .,ET04B-3, ET04B Jahn B .,WE 175, RA22P Jahn T .,WE 064, RA09P Jahnke A .,EC01A-2, EC01A Jake J .G .,ET07B-6, ET07B Jakobsen H .H .,EC01B-3, EC01B, TU 291,

EC06P Jakobsson K .,MO 125, EP02P Jalova V .,TU 089, EP08P James K .J .,TU 222, RA20P Jamieson D .,MO 026, EC01P Jancula D .J .,TU 196, RA19P Janik L .,TU 284, EC06P, TH 279 Jankovic S .,TU 226, RA20P Jankovic Tomanic M .,WE 257, ET04P Janmar L .,TU 091, EP08P Janova E .,RA09-6, RA09 Jänsch S .,ET12B-2, ET12B Jansen J .,ET01-5, ET01 Jansen J .P .,RA11-1, RA11 Jansen M .,ET10B-4, ET10B Jansen M .A .K .,TU 191, RA19P Janssen C .,WE 151, RA18P, WE 425,

EM01P, SS02-2, MO 366, MO 345, ET10A-2, RA17B-6,

Janssen C .R .,TU 467, ET14P, TU 466, TU 347, TU 146, TU 031, TU 215, TU 475, TU 450

Janssen C .R .,MO 253, ET09P, MO 382, ET17P, TH 086, EC02P, MO 250, ET09P, ET10B-2, ET10B-4, EP07B-4, WE 016

Janssen J .M .,MO 474, RA11P Janssen M .L .,TUPC4-8, TUPC4 Jardim W .F .,TU 033, EP08P Järnberg U .,TUPC5-7, TUPC5 Jarolimek C .,ET11B-5, ET11B Jarošová B .,TH 008, ET03P, MO 128 Jarrett I .,TU 447, ET11P Jartun M .,EM01A-6, EM01A Jasa L .,MO 036, EC01P Jaspers V .L .B .,ET04A-2, ET04A, TU 012,

TU 013, Jastorff B .J .,WE 243, ET04P Jaworska A,SS09-1, SS09 Jeambrun M .,SS09P-3, SS09P Jechalke S .,ET19A-3, ET19A, TH 143 Jeffries M .K .,TH 011, ET03P Jehle J .,ET12B-6, ET12B Jeliazkova N .,MO 368, ET16P Jene B .,MO 094, EM02P1 Jenkins C .A .,MO 175, EP02P, TH 298,

RA21P, ET15A-5, ET15A, TU 092 Jenkins W .R .,ET15A-5, ET15A, TU 092,

EP08P, WE 381, ET15P Jenner K .J .,WE 249, ET04P Jensen A .A .,MO 188, EP02P, TH 359 Jensen J,SS06-9, SS06 Jensen L .S .,MO 191, EP02P Jensen S .,MO 335, ET13P Jensen S .S .J .,EC05B-5, EC05B Jenssen B .M .,TH 084, EC02P, WE 284 Jeon H .P .,MO 465, RA11P

Page 60: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�2� SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Jeon J .,EP05-4, EP05 Jeong M .H .,WE 369, ET15P Jeong S .W .,WEPC5-1, WEPC5 Jeong T .Y .,TU 357, ET10P Jeppesen M .M .,MO 172, EP02P Jepson P .,RA11-1, RA11 Jepson P .C .,RA02-1, RA02 Jesenská S .,MO 353, ET13P, MO 374,

ET17P, WE 003, RA01P Jéssica J .C .L .,TU 094, EP08P Jessick A .M .,MO 406, ET19P Jessing K .,ET13A-2, ET13A Jesus D .F .,WE 449, LC02P Jevtic D .M .,RA01-4, RA01, TH 274 Jevtic J,SS07-6, SS07 Jewell K .S .,MO 199, EP05P Jha A .N .,TU 383, ET11P, TH 030 Ji K .H .,MO 145, EP02P, MO 146 Jiang Q .,TU 202, RA19P Jihyun L .J .H .,TH 248, RA13P Jimenez-Sanchez C .J .S .,TU 290, EC06P Jimeno-Romero A .,TH 175, EP03P2 Joachim S .,MO 241, ET08P Joachimsmeier I .P .,WE 376, ET15P, TH

257, RA16P Joas R .,RA03-2, RA03 Jobling S .,TH 305, RA23P, RA23B-1 Joe N .,WE 315, ET05P Johansson C .H .,TU 091, EP08P Johansson H .,WEPC2-6, WEPC1 Johansson J .H .,TUPC1-4, TUPC1 Johansson L .,MO 454, RA11P Johansson P .O .A .,TU 206, RA20P John A .J .,ET10B-1, ET10B Jöhncke U .,MO 467, RA11P, ET04C-3 Johnsen T .V .,ET04A-2, ET04A Johnson A .,EP08B-2, EP08B, TH 213 Johnson A .C .,EM03-6, EM03, RA03-1,

WE 039, Johnson C .C .,EM01A-5, EM01A Johnson C .S .,SS07-2, SS07 Johnson D .,EP03D-5, EP03D Johnson D .R .,WE 190, EP03P1, WE 336,

ET07P, WE 251, ET04P Johnson M .J .,RA14-4, RA14 Johnson P .,ET09-6, ET09 Johnston A .S .,MO 269, ET12P Johnston E .L .,ET11C-1, ET11C, TU 172 Johnston J .J .,RA22-3, RA22 Johnston R .K .,TU 175, RA07P Johst K .,TU 285, EC06P Joimel S .,MOPC1-6, MOPC1 Jokela J .,ET10B-5, ET10B Jolley D .F .,ET11B-5, ET11B, EC01A-5 Jolliet O .,MO 081, EM02P1, MO 058,

MO 078, MO 087, MO 444, EM02C-1, EM02D-1, LC02B-6, LC04A-3, LC04A-1, RA12-6, TH 187,

Jolynn J .,WE 150, RA18P Jonáš A .,TH 008, ET03P Jonas S .,WE 081, RA10P Joner E .,TU 373, ET11P Joner E .J .,EC04-5, EC04 Jones A .,WE 169, RA22P, RA16-2, RA16 Jones D .,RA18-2, RA18, WEPC1-3,

WEPC1 Jones D .,ET13A-1, ET13A, TH 277 Jones D .M .,MO 302, ET12P Jones E .A .,WE 162, RA18P Jones H .J .,TH 111, EC03P Jones J .K .,TU 247, EC05P Jones K .C .,EC01A-4, EC01A, MO 039,

EC01P, TUPC3-8, TU 248, TU 255, TU 262, ET11B-1, EP03C-1, RA03-1,

Jones P .D .,MO 161, EP02P, ET04B-5, WE 330,

Jones R .,MO 045, EC04P Jones S .,MOPC4-1, MOPC4 Jones Z .,RA08-5, RA08 Jong Guk K .,WE 428, EM01P Jongbloed R .H .,WE 153, RA18P Jonker M .J .,ET07B-2, ET07B Jonker M .T .O .,TU 292, EC06P, WE 199 Jonsson C .M .,TH 160, EP03P2, WE 399,

ET18P, ET18-1, Jönsson J .A .,MO 384, ET17P, TUPC2-5 Jordá M .,TH 207, EP03P2 Jordaan M .S .,WE 341, ET15P Jordan J .,WE 148, RA15P Jordão R .,TU 402, ET11P Jorens J .P .,EP02A-4, EP02A Jorge M .B .,TU 320, ET01P Jørgensen L .,TU 051, EP08P Jørgensen S .V .,MO 424, RA04P Joris L .G .,EM02D-6, EM02D Jorobekova S .H .J .,WE 239, EP04P Jos A .,MO 340, ET13P, TH 207 José Manuel S .,TH 100, EC03P Jou L .J .,TU 378, ET11P, TU 368 Jouenne T .,TH 262, RA17P Journel B .,TH 295, RA21P, TU 126 Jovcic N .S .,TU 263, EC05P Ju Y .R .,WE 275, ET04P Juang K .W .,TU 192, RA19P Juffernholz T .,RA20-2, RA20, TU 207 Juffernholz T .J .,MOPC2-3, MOPC2 Juffernholz T .V .,TH 327, RA23P, MOPC2-

5, MOPC2 Julich S .,EC01C-5, EC01C Julliard R .,TH 251, RA16P Jun-Young J .,RA17B-5, RA17B Jun L .J .,TU 247, EC05P Jung H .R .,MO 146, EP02P Junge T .,MO 399, ET19P Junghans M .,TU 126, RA02P, TU 214, TU

329, WE 343, MO 475 Jungmann D .,TH 007, ET03P Junker T .,MO 404, ET19P Junqueira L .,WE 449, LC02P Juraske R .,EM02D-1, EM02D, RA12-6,

RA12, WE 098, TU 117, LC04A-3 Jürgens M .D .,EP08B-2, EP08B Jürgens M .D .,RA03-1, RA03 Jurkevitch E .,EP01B-5, EP01B Jurkovic Mlakar S .,RA10-3, RA10 Jurkschat K .J .,WE 230, EP03P1 Jürling H .,WE 241, ET04P, EP06-3 Jury C .,MOPC5-3, MOPC5 Juselius J .,RA18-6, RA18

K Kadota K .K .,WE 331, ET07P Kafka A .,RA16-3, RA16 Kage H .,MOPC4-3, MOPC4 Kageyama S .,RA14-2, RA14 Kägi R .,EP03A-6, EP03A Kah M .,EM02D-3, EM02D, WE 199,

EP03P1 Kah O .,TH 003, ET03P, ET03A-5, MO

160, Kahru A .,TU 219, RA20P Kai F .,MOPC5-2, MOPC5 Kai S .,ET11B-1, ET11B Kais B .,ET03A-3, ET03A, TH 009

Kaiser M .,TU 106, EM02P2 Kaj L .,TUPC2-2, TUPC2 Kakasi B .,TUPC3-3, TUPC3 Käkelä R .,MO 060, EM02P1 Kalbitz K .,WE 182, EP03P1 Kalkhof S .,ET07A-2, ET07A Kallenborn R .,SS08-1, SS08, EC02B-6 Kallenborn R .P .,EC02A-4, EC02A Kamata R .,RA14-2, RA14 Kameda K .Y .,MO 204, EP05P Kameda Y .K .,MO 010, EC01P, MO 009,

EC01P, TU 034, Kamikawa A .,TU 436, ET11P Kammann U .,RA06-5, RA06 Kamo M .,TH 241, RA13P Kamo M .K .,WE 017, RA05P Kamstra J .,EP02B-1, EP02B Kan J .,WE 287, ET04P Kanarbik L .,TU 219, RA20P Kanazawa A .K .,WE 209, EP03P1 Kanda R .,RA23B-1, RA23B Kandlikar M .,LC03-5, LC03 Kang S .E .,MO 146, EP02P, WE 237 Kang T .F .,MO 131, EP02P, MO 042,

EC01P Kaniskin A .,TH 034, ET03P, TU 309,

EC06P Kaplan H .,MO 304, ET12P Kaplan J .,RA02-1, RA02 Kaplan P .,MO 218, EP05P Kapustka L,SS09-1, SS09, SS01-1, SS01 Karaaslan M .A .,TU 019, EP06P Karacik B .,TU 439, ET11P, MO 018,

EC01P, MO 416, EC01A-1 Karhu E .,WE 035, RA08P Karkman A .,EP01A-3, EP01A, TH 126 Karkman A .V .,TH 138, EP01P Karlsen O .A .,ET07A-3, ET07A Karlson U .G .,EC06A-4, EC06A, TUPC4-6,

TUPC4 Karman C .,WE 151, RA18P Karman C .C .,WE 153, RA18P Karolak S .,EC01C-2, EC01C, TU 428 Karolak S .K .,RA23A-5, RA23A, TH 328,

RA23P Karraker N .E .,TH 264, RA17P, ET06B-1,

ET06B Karuppiah R .,LC04B-5, LC04B Kase R .K .,MO 474, RA11P, TU 126 Kaserzon S .L .,EC01A-3, EC01A, MO 031,

EC01P Kashiwada S .,TH 164, EP03P2, TH 163,

TH 161, WE 209 Kasiotis K .,RA16-3, RA16 Kaske O .,RA14-3, RA14 Kasper M .,RA20-2, RA20, WE 086 Kasprzyk-Hordern B .,RA23A-4, RA23A Kaßner F .,WE 034, RA08P Kaßner F .K .,MOPC2-5, MOPC2 Kästner M .,MOPC1-3, MOPC1, MO 064,

MO 303, EC06B-6 Katajajuuri J .M .K .,TH 356, LC06P Katatani N .,WE 431, EM01P Katsiadaki I .,MO 132, EP02P Katsoyiannis A .,EC01A-4, EC01A, MO

039, EC01P, TUPC3-8, TU 262, RA03-1

Katsumata M .,TH 319, RA23P, TU 210, RA20P

Kattwinkel M .,ET14-5, ET14, WE 113, RA14P, WEPC4-1, TH 278, TH 287

Kaumanns J .,TU 261, EC05P

Page 61: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�2�SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Kavkova N .,TU 089, EP08P Kawaguchi I,SS09-1, SS09 Kawai T .,TUPC2-1, TUPC2, SS12-6 Kawakami S .K .,TU 422, ET11P Kay D .P .,TU 029, EP07P Kazumura K .,TH 319, RA23P, TU 210,

RA20P Kazuya N .K .,TH 210, EP03P2 Ke Y .P .,WE 100, RA12P Kefford B .,TU 470, ET14P Kefford B .J .,MO 383, ET17P, ET15B-4,

ET15B, ET14-4, Kegley S .E .,RA02-1, RA02 Kehrein N .,EM02A-3, EM02A, EM02B-4 Kehrer A .,RA12-2, RA12, RA20-2, MO

467, WE 175 Kei K .,RA17B-5, RA17B Keilert B .,WE 418, EM01P Keiter S .H .,MO 281, ET12P, TH 006,

ET03P, TH 013, TH 015, RA06-4 Kelaher B .P .,TU 172, RA07P Kellar C .,WEPC3-4, WEPC3 Kellar C .R .,WEPC3-1, WEPC3 Kelleher B .,MO 205, EP05P Keller C .,WE 277, ET04P Keller J .M .,TUPC5-2, TUPC5 Keller M .,TUPC5-8, TUPC5 Keller V .D .J .,EM03-6, EM03 Kelly E .K .,TH 277, RA17P Kemppainen S .K .,TUPC5-4, TUPC5 Ken K,SS09-7, SS09 Kennedy A .,EP03D-5, EP03D Kennedy K .,EC01A-3, EC01A, MO 031,

EC01P, TU 429, Kennedy PJ,SS07-1, SS07 Kern S .,WE 249, ET04P Kersbaum M .A .,TU 061, EP08P Kershaw J .,TU 023, EP07P Kesova A .,ET16-5, ET16 Kessen B .,LC02B-4, LC02B Kestemont P .,WEPC2-2, WEPC2 Ketzel M .K .,EC05B-5, EC05B Kevin K .C .,WEPC3-6, WEPC3, WE 385,

ET15P, WE 387, ET15P Kezunovic M .S .,TUPC6-3, TUPC6, TU

182 Khan F .,MO 466, RA11P Khanijo I .K .K .,MO 397, ET19P Khatikarn J .,MO 415, ET19P Khazenzi A .,TU 478, ET14P Kholodkevich1 S .V .,TU 388, ET11P Khrycheva P .,RA14-3, RA14 Kidd K .,TH 085, EC02P, TH 092, EC02P,

RA01-6, Kidd K .A .,WEPC1-1, WEPC1 Kienle C .,RA23B-5, RA23B, WE 337 Kientz-Bouchart V .,TU 372, ET11P Kienzler A .E .,TH 026, ET03P Kierkegaard A .,TH 073, EC02P, TU 050,

EP08P, TU 253, RA02-3, EM02A-6 Kierkegaard K .,ET04A-5, ET04A, EC05B-

2 Kille P .,ET10B-1, ET10B, SS06-6, SS06,

WE 286, WE 327, ET07B-6 Kille P .K .,WE 230, EP03P1 Kim C .M .,WE 237, EP04P Kim D .,MO 442, RA04P Kim D .S .,MO 443, RA04P Kim H .,TH 038, ET03P Kim H .,TU 357, ET10P Kim H .C .,LC03-1, LC03 Kim H .Y .,TU 055, EP08P

Kim H .Y .,WEPC5-1, WEPC5 Kim J .,MO 057, EM02P1, MO 077,

EM02P1 Kim J .H .,TH 320, RA23P Kim J .W .,MO 465, RA11P, TU 231,

RA20P Kim J .Y .,TU 434, ET11P Kim K .K .S .,WE 428, EM01P Kim M .K .,WE 369, ET15P Kim S .D .,TU 357, ET10P Kim S .H .,MO 465, RA11P, TU 231,

RA20P Kim S .M .,WE 237, EP04P, MO 145, MO

146, Kim S .W .,MOPC1-4, MOPC1 Kim Tiam S .,WE 347, ET15P Kimmel S .,WE 308, ET05P Kimpe L .E .,EC02A-5, EC02A Kimura K .K .,TU 034, EP08P, MO 010,

MO 204, Kindler R .K .,MO 401, ET19P King D .,MO 086, EM02P1 King H .,RA04A-4, RA04A King K .,TU 420, ET11P Kingston J .,ET13A-6, ET13A Kinnberg K .,ET19B-5, ET19B Kinnberg K .L .,MO 172, EP02P, MO 449 Kinoshita K .,WE 254, ET04P Kirby J .,EC04-3, EC04, TH 279 Kirby JK,SS03-4, SS03 Kirchen S .,TH 132, EP01P Kirchgeorg T .,TU 001, EP06P Kirchner W .,WE 376, ET15P, TH 257,

RA16P Kirin M .,TU 388, ET11P Kirk G . K .G .S .,TH 103, EC03P Kirkwood A .,TU 186, RA19P Kiryushin P .A .,WE 031, RA08P Kisand V .,TH 125, EP01P Kiss A .,MOPC3-1, MOPC3 Kiss F .E .,WE 457, LC05P Kitamura S .,ET07A-6, ET07A Kiurski J .S .,THPC1-3, THPC1 Kiviranta H .,ET11C-5, ET11C Klaas P .,TU 108, EM02P2 Klaine J,SS03-5, SS03 Klaine S .J .,EP03B-3, EP03B, WE 206 Klanova J .,TUPC3-4, TUPC3, TU 244, TU

250, TU 145, MO 023, WE 137 Klánová J .K .,TU 249, EC05P, TU 270 Klaschka U .,WE 044, RA08P Klasmeier J .,MO 053, EM02P1, MO 066,

EM02P1, MO 398, EM02B-4, ET19B-2

Klawonn T .,WE 019, RA05P Klecka G .M .,TH 301, RA21P, WE 135 Klee K .,MO 456, RA11P Kleihauer S .,RA03-2, RA03, RA11-4 Kleijn R .,LC04B-6, LC04B Klein A .K .,MOPC2-3, MOPC2 Klein A .K .,LC02A-6, LC02A Klein M .,TU 110, EM02P2, TU 108, TU

106, EM02C-5, ET12A-6 Klein R .,TUPC5-5, TUPC5, TU 136 Klein S .V .,TU 123, RA02P Kleine T .,WE 159, RA18P, TH 044, ET03P,

TH 170, EP03P2, WE 160, RA18P, WE 161

Klepikov A .V .,SS08-2, SS08 Kling P .,WE 320, ET07P Klitzke S .,TUPC1-1, TUPC1 Kloas W .,MO 355, ET13P, TU 195

Klok C .,RA18-6, RA18, WE 151 Klos V .,EM01B-1, EM01B Kløverpris J .H .,MO 424, RA04P Kluever N .,TH 007, ET03P Klumb M .,MO 212, EP05P Klungsøyr J .,ET11A-2, ET11A Klüver N,SS11-6, SS11 Knacker T .,MO 154, EP02P, MO 155, TH

300, Knaebe S .,MO 290, ET12P, MO 291,

ET12P, MO 296, Knag A .C .,MO 169, EP02P Knapen D .,EP03B-5, EP03B, TU 018, TH

268, Knauer A .,EC01B-1, EC01B Knauer K .,WE 240, EP04P, TH 181,

EP03P2, RA08-1, Knezevic V .Z .,TUPC6-3, TUPC6, TU 182 Knigge T .,MO 166, EP02P, MO 167,

EP02P Knight D .,SS11-1, SS11 Knillmann S .,TU 468, ET14P, TU 463,

ET14P, WEPC4-1, Knöbel M .,TH 022, ET03P Knopf B .,RA12-3, RA12, WE 019 Knopperts F .,MO 415, ET19P Knowles S .K .,WE 381, ET15P Knulst J .,RA22-6, RA22 Knuteson S .L .,TU 410, ET11P, TU 458 Kobayashi J .,RA14-2, RA14, WE 254 Kobayashi Y .,TH 319, RA23P, TU 210,

RA20P Koçbas F .,TU 158, RA06P Koch W .,MO 096, EM02P1, RA20-2 Kochev N .,MO 368, ET16P Köck G .,TH 085, EC02P, TH 092, EC02P,

TH 093, EC02P Köck M .,WE 095, RA12P Kocman D .,WE 082, RA10P Koehler A .,TU 117, EM03P, LC07-4 Koellner T .,RA04B-2, RA04B Koelmans A .A .,TUPC4-2, TUPC4, TUPC4-

1, EP03A-5, RA21-2 Koenig W .,MO 094, EM02P1 Koeppchen S .T .,ET19A-4, ET19A Koerner A .,TUPC5-5, TUPC5 Koerting L .,ET11A-5, ET11A Kogevinas M .,TU 021, EP06P Köhler A .,TH 270, RA17P Kohler H .P .E .,WE 201, EP03P1 Köhler J .M .,EC01B-1, EC01B Kohli J .,MO 052, EM02P1 Kohn T .,TU 057, EP08P, MOPC3-4,

MOPC3 Kohoutek J .,MO 337, ET13P, MO 353,

ET13P, WE 344, Koike T .,TH 319, RA23P, TU 210, RA20P Koike T .,TU 058, EP08P Koiso H,SS09P-2, SS09P Kokelj S .V .,EC02A-5, EC02A Kokovic J .,MO 020, EC01P Kokushi E .,ET07A-6, ET07A Kolasinska J .,MO 412, ET19P Kolkman A .,WE 188, EP03P1, WE 192 Kolychalow O .,TU 113, EM02P2 Komyakova V .,TU 172, RA07P Konecny A .,RA09-6, RA09 Kong D .,RA21-6, RA21 König W .,TU 108, EM02P2 Könnecker G .,MO 471, RA11P Kons S .,TU 279, EC06P Kooijman S .A .L .M .,WE 121, RA15P, WE

Page 62: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

��0 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

009 Kool J .,TU 456, ET11P Kools S .A .E .,MO 216, EP05P, TU 391,

ET11P, RA21-6, Kooman H .,MO 216, EP05P Koops W .,WE 153, RA18P Koormann F .,MO 083, EM02P1 Kopf W .,MO 196, EP05P Kopmann C .,TH 143, EP01P, ET19A-3 Koponen I .,EP03D-3, EP03D Körner A .,TU 136, RA03P Körner O .,TH 051, ET06P, TH 053,

ET06P, ET06A-6, ET06A, TH 049, ET06P, TH 050, ET06A-5

Körner W .K .,TU 241, EC05P Korsgaard B .,MO 460, RA11P Korte F .,WE 418, EM01P Kortenkamp A .,EP02B-2, EP02B Köser J .K .,WE 202, EP03P1 Koshio M .,WE 358, ET15P Koskinen W .C .,TUPC4-5, TUPC4 Kosol S .,WE 354, ET15P Kost E .,TU 336, ET02P Kostas K .A .,WEPC3-6, WEPC3, WE 385,

ET15P, WE 387, ET15P Koster D .,LC01A-3, LC01A Koster M .,ET15A-3, ET15A Kostich M .,TUPC1-7, TUPC1 Kotnik J .,RA10-2, RA10 Kotov S .,ET16-5, ET16 Kotte M .C .,TH 113, EC03P Kottwitz M .,TU 140, RA06P Kotzerke A .,ET12B-4, ET12B, MO 401 Koukalová K .,TH 147, EP01P Kounina A .,MO 081, EM02P1, MO 430,

RA04P, MO 431, Kovacevic S .K .,TH 310, RA23P Kovács A .,TUPC3-3, TUPC3 Kovalkovicová N .K .,WE 053, RA09P Kovalova L .,RA23B-5, RA23B Kovarich S .,MO 198, EP05P, MO 364,

ET16P, MO 368, Kováts N .,TUPC3-3, TUPC3 Koyama J .,WE 154, RA18P, ET07A-6 Koyunbaba N .C .,TH 336, RA23P, TU 439 Kozerski G .E .,ET04B-6, ET04B Kozhabaeva K .E .,TH 280, RA17P Kraak H .S .,MO 378, ET17P Kraak M .H .S .,RA21-6, RA21, ET07B-2,

TU 398, TH 271 Krabbenhoft D .P .,WE 072, RA10P Kraft F .,MO 303, ET12P Kragten S .,WE 054, RA09P Kramarz K .,TU 345, ET10P Kramarz P .,WE 007, RA01P Kramer V .,MOPC6-5, MOPC6 Krauss G .J .,WE 216, EP03P1 Krauss M .,MO 193, EP05P, MO 195, MO

211, MOPC3-7, EP05-3, TH 003 Kreutzinger N .,EP01B-1, EP01B Krieg H .,WE 461, LC05P Kriehuber R .,ET03A-6, ET03A, MO 148 Kriete C .,EM01B-3, EM01B Kriews M .,TH 270, RA17P Krikowa F .,TH 107, EC03P, TH 108,

EC03P, WE 309, Krinulovic K .,WE 032, RA08P Krippner J .,TUPC1-2, TUPC1 Krishnamurthy V .,ET06A-2, ET06A Kristiansson E .,ET07B-3, ET07B, WEPC2-

7, WEPC2-8, Kristofco L .A .,TU 045, EP08P

Kristoffersen A .B .,WE 007, RA01P Kroesbergen J .,WE 423, EM01P Krögerrecklenfort E .,TH 143, EP01P,

ET19A-3 Krogerus K .,MO 013, EC01P Krogh K .A .,MO 191, EP02P, MO 408,

ET19P, MO 197, TU 051, TU 060, TU 039

Krogseth I .S .,TH 073, EC02P Kroll A .,EP03A-6, EP03A Kroll A .,WE 295, ET04P Kronberg J .,ET01-5, ET01 Kropidlo A .J .,TU 224, RA20P Kroupova H .,TU 075, EP08P Krsnik M .,RA10-3, RA10 Krstic J .D .,THPC1-3, THPC1 Krueger H .O .,MO 162, EP02P Krug H .F .,TH 214, EP03P2 Krüger H .U .,TU 258, EC05P Krystek P .,EP07B-1, EP07B Ksibi M .,MO 287, ET12P, TU 193, WE

131, Kübel W .,WE 030, RA08P Kubiak R .,TU 105, EM02P2, TU 106 Kubin E .J .,TUPC5-4, TUPC5 Kubincova P .,EP02C-2, EP02C Kubo T .,MO 032, EC01P, MO 029 Kubo T .K .,MO 433, RA04P Kuch B .,MO 139, EP02P Kuckelkorn J .,MOPC2-6, MOPC2, RA06-

5 Kucklick J .R .,RA03-6, RA03, TUPC5-2 Kucklick R .,TUPC5-8, TUPC5 Kuehne R .B .,ET15B-4, ET15B Kuhlbusch T .A .J .,TH 189, EP03P2 Kuhn A .,LC05-2, LC05 Kühne R .,EM02A-4, EM02A, MO 050,

EM02P1, MO 051, EM02P1 Kühne R .,ET04C-3, ET04C Kühnel D .,WE 204, EP03P1 Kühnel D .,TH 214, EP03P2, WE 229 Kühnert A .,ET03A-2, ET03A Kuik O .,WE 459, LC05P Kukkonen J .V .K .,TH 172, EP03P2,

TUPC4-3, EC06A-3, WE 213, WE 255 Kukucka P .,WE 137, RA15P, TU 249, TU

250, Kulakowska K .A .,RA14-5, RA14, WE 108 Kulakowski T .M .,RA14-5, RA14, WE 108 Kulkarni D .,WEPC6-6, WEPC6 Kulkarni D .P .,ET14-6, ET14 Kumar A .,TH 305, RA23P Kumar R .K .,TH 095, EC02P Kumblad L .,TU 081, EP08P Kummer S .K .,ET19A-4, ET19A Kümmerer K .,TU 076, EP08P, TU 052 Kun N .,WE 435, EM01P Kunkel U .,TU 044, EP08P Kunz P .,WE 337, ET07P Kunz P .Y .,TU 214, RA20P Kuperman R .G .,MO 294, ET12P Kupiainen J,SS08-4, SS08 Kupny J .L .,TU 224, RA20P Kupryianchyk D .,TUPC4-1, TUPC4 Kupryianchyk D .,TUPC4-2, TUPC4 Kuriyama K .K .,LC05-1, LC05 Kuroda T .,WE 154, RA18P Kürsten D .,EC01B-1, EC01B Kurt-Karakus P .B .,TH 081, EC02P, MO

040, EC01P Kurth D .,EP05-4, EP05 Kurtz J .,TH 299, RA21P

Kusk K .O .,ET04C-2, ET04C, WE 244, ET04P

Kusk K .O .,TH 292, RA21P, TH 293, RA21P

Kussatz C .,WE 184, EP03P1, TH 010, ET03P, TU 088,

Kustas W .P .,TUPC3-2, TUPC3 Küster A .K .,TU 126, RA02P Küster E .,ET03A-2, ET03A, ET07A-2,

ET07A, WE 321, ET07P, TH 010 Kuta J .,TH 112, EC03P, TU 145 Kutlakhmedov Y .,SS09P-1, SS09P Kutscher D .K .,TH 114, EC03P Kuznetsova T .,TU 388, ET11P Kwaansa-Ansah E .E .,WE 076, RA10P Kwak J .I .,MO 264, ET12P Kwan M .,EC02B-3, EC02B Kwet Yive R .C .,TU 448, ET11P Kwon D .W .,WE 237, EP04P Kwon H .Y .,TU 055, EP08P Kwon J .H .,TU 055, EP08P Kwon JH,SS11-5, SS11 Kydralieva K .A .,TH 104, EC03P, TH 034,

WE 239, Kylin J .H .,TU 448, ET11P

L l ‘Abée-Lund T .M .L .,TH 130, EP01P Labadie P .,TU 010, EP06P Labadie P .L .,TH 280, RA17P Lacirignola M .,WE 452, LC02P Lacorte S .,EC01A-4, EC01A, ET11C-6,

TU 004, TU 252, TH 308, WE 075 Ladegaard Pedersen K .L .,ET19B-5, ET19B Ladenberger A .,EM0B1-6, EM01B Ladewig J .C .L .,WE 393, ET18P, TU 374,

ET11P Lafaye E .,RA08-3, RA08 Lafontaine A .,ET18-4, ET18 Laforest V .,MO 114, LC01P Lagadic L .,MO 377, ET17P, MO 379,

ET17P, ET14-2, MO 452, MO 449, ET13A-4, ET10A-3, ET18-4, WEPC6-5,

Lagadic L .L .M .,WE 147, RA15P, ET18 Lagneau C .,ET13A-4, ET13A, WE 097,

RA12P Lago C .,MO 118, LC01P, TH 339, LC03P Lahive E .C .,TU 191, RA19P Lahr J .,ET19B-4, ET19B, TU 160 Lai H .Y .,TU 192, RA19P Lam H .,ET07B-4, ET07B Lam H .W .,WE 136, RA15P Lam J .C .W .,EP02B-5, EP02B Lam M .,WE 301, ET05P Lam M .H .W .,WE 138, RA15P, WE 248 Lam P .,TU 447, ET11P Lam P .,TU 447, ET11P Lamarche V .,LC06-2, LC06 Lambert J .C .,WE 110, RA14P, ET08-3 Lami A .,WE 080, RA10P Lammel G .,EC05B-3, EC05B, MO 072,

EM02P1, MO 071, TH 082 Lamon L .L .,MO 091, EM02P1 Lamoree M .,EP02B-1, EP02B, MO 193 Lamoree M .H .,TU 052, EP08P, TU 456,

MO 127, EP05-1 Lampi A .,WEPC1-8, WEPC1 Lampi M .,TU 345, ET10P Lampi M .A .,MO 022, EC01P Lamshöft M .,ET19A-2, ET19A, MO 400,

MO 399, MO 398

Page 63: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

��1SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Lana J .,MO 277, ET12P, ET12C-4, ET12C Lance E .,MO 356, ET13P Landis G .,RA17A-2, RA17A, TH 259,

RA17P Landis W .G .,ET02-2, ET02, ET09-5, MO

249, Landlová L .,TU 250, EC05P Landlová L .L .,TU 249, EC05P Laneiro C .,WE 269, ET04P Lang F .R .,ET15A-3, ET15A Lang S .C .,EC01B-6, EC01B, TU 159 Lange F .T .,MO 213, EP05P Lange T .,WE 072, RA10P Langford K .,MO 411, ET19P, MO 209,

TU 427, WEPC1-7 Langston J .,MO 141, EP02P Lanno R .P .,MO 045, EC04P, MO 046,

EC04P, MO 244, WE 128 Lapczynski A .,TU 129, RA02P, WE 008 Lapen D .L .,MOPC1-2, MOPC1 Lapied E .,EC04-5, EC04 Laporte-Saumure A .,MO 319, ET12P Laqua A .,TH 041, ET03P Lara-Martin P .A .,EP08C-1, EP08C, TU

143, TU 298, TU 393 Larcher T .,TU 342, ET10P Larnaudie Lopez L .M .,RA16-5, RA16,

MO 265, ET12P Laroche J .,WEPC2-3, WEPC2 Laros I .,TU 160, RA06P Larras F .,WE 067, RA10P Larras F .A .,ET15B-1, ET15B, TU 211,

RA20P Larroze S .,ET06B-4, ET06B, TH 059 Larsen H .F .,RA04A-2, RA04A Larsen H .F .,TH 353, LC06P Larssen T .,RA10-6, RA10 Larsson D .G .J .,ET07B-3, ET07B, TU 070,

EP08P, TU 048, EP08P, EP08C-5, WEPC2-8

Larsson E .,TUPC2-5, TUPC2 Larsson M .,WE 377, ET15P Larsson M .E .,MO 314, ET12P, TU 218,

RA20P Larue H .L .,MO 470, RA11P Laskowski R,SS06-4, SS06, SS07-6, TH

274, Laskowski R .L .,RA01-4, RA01, WE 006,

RA01P Lassen S .,WE 317, ET07P Lassen S .L .,TU 430, ET11P Laszlo V .,TU 146, RA06P Latire T .,TU 371, ET11P Latres S .,TH 037, ET03P Lattimore A .,WE 061, RA09P Latvala S .,ET16-4, ET16 Lau T .C .,RA17A-1, RA17A Lau T .C .E .,TH 264, RA17P, ET06B-1,

ET06B Lau Y .T .,TU 414, ET11P Laue H .,WE 249, ET04P Laugsch C .,TU 044, EP08P Launay M .,MO 090, EM02P1, EM01A-3 Launiainen S .,MO 440, RA04P Laura A .,MO 133, EP02P Laurent A .,TH 187, EP03P2 Laurenzi I .J .,LC04B-5, LC04B Lautenbach S .,WE 113, RA14P Laval-Gilly P .,MO 130, EP02P, MO 312,

TUPC6-8, WE 214 Lavin S .,MO 243, ET08P Law S .,MO 385, ET17P

Lawlor A .,WE 075, RA10P Lawlor A .J .,RA03-1, RA03 Lawrence A .J .,MO 462, RA11P, WE 062,

RA09P Laxander M .,MO 037, EC01P Lazarus R .S .,RA22-3, RA22 Lazorchack J .,EP02C-4, EP02C Lazorchak J .,TUPC1-7, TUPC1 Le Bihanic F .,TH 004, ET03P Le Bizec B .,TU 010, EP06P, TU 168, TU

428, Le Boulch D .,MO 114, LC01P, MOPC4-8,

LC03-3, Le Bozec A .,WE 464, LC05P Le Coustumer P .,TU 167, RA07P Le Coz J .,MO 090, EM02P1, EM01A-3 Le Faucheur S .,WE 074, RA10P Le Féon S .,MO 114, LC01P Le Hecho I .,TH 306, RA23P Le Marrec C,SS09-6, SS09 Le Menach K .,TU 341, ET10P Le Meur P .,RA23B-2, RA23B Le Page G .,MO 449, RA11P Le Page Y .,ET03A-5, ET03A Le Rohic L .R .,EP02A-3, EP02A Leach N .,TU 412, ET11P Lead J .,WE 195, EP03P1 Lead J .R .,WE 177, EP03P1 Lead J .R .L .,WE 226, EP03P1 Leat E .H .K .,ET08-2, ET08, TUPC1-5,

TUPC1 Lebel J .M .,TU 371, ET11P, TU 372, TU

077, Lebot B .,WE 388, ET15P Leboulenger F .,TU 400, ET11P, TU 401,

ET11P Leca N .,RA08-3, RA08 Leceta I .,MO 119, LC01P Lechón Y .,MO 118, LC01P, TH 339,

LC03P Lecomte A .,TH 306, RA23P Lecomte C .,TU 359, ET10P Ledbetter M .,ET16-4, ET16 Leder C .,TU 052, EP08P Ledo L .,WE 095, RA12P Lee A .,WE 332, ET07P, MO 170 Lee G .W .,MO 145, EP02P Lee H .,ET12C-2, ET12C Lee J .S .,MO 152, EP02P Lee K .T .,TU 434, ET11P Lee L .M .N .,WE 428, EM01P Lee M .I .,MO 264, ET12P, WE 203,

EP03P1 Lee S .J .,TH 038, ET03P Lee S .W .,MO 145, EP02P Lee W .M .,EP03B-4, EP03B Lee Y .I .,TU 192, RA19P Lee Steere C .,MOPC6-1, MOPC6 Leeves S .A .,WE 284, ET04P Legáth J .L .,WE 053, RA09P Legeay A,SS09-3, SS09 Legind C .N .,EM02C-3, EM02C Legler J .,TU 458, ET11P Legradi J .,TU 458, ET11P Legras M .,TU 124, RA02P Legros S .,EP03A-2, EP03A, EP03A-3 Leguay D .,TU 341, ET10P, TU 342 Lehmann A .,MOPC3-2, MOPC3 Lehmann R .,MO 054, EM02P1 Lehtonen K .K .,TU 400, ET11P Lei K .I .,WE 141, RA15P Lei N .Y .,ET07B-4, ET07B

Lei Y .D .,EC05A-1, EC05A Leib V .,ET15A-3, ET15A Leicher T .,EM02C-6, EM02C Leicher T .L .,RA16-5, RA16, MO 265,

ET12P Leitão P .A .S .,ET15B-5, ET15B Leitão S .,RA11-5, RA11 Lek S .,MO 381, ET17P Leleyter L .L .,TU 455, ET11P, TU 431,

ET11P Lemay J .C .,TU 068, EP08P Lemenach K .,TU 411, ET11P Lemke F .,ET16-1, ET16 Lemkine G .,MO 193, EP05P Lemoine L .M .,TU 455, ET11P, TU 431,

ET11P Lemoine S .,ET18-4, ET18 Lemonceau P .,ET12B-1, ET12B Lemos F .L .,TU 386, ET11P, TU 387,

ET11P, TU 361, ET11P, TU 362 Lemos M .F .L .,TU 082, EP08P, TU 348, TU

392, Lenders H .J .R .O .B,ET06A-4, ET06A, TH

261, RA17P Lenhardt P .,TH 249, RA13P Lenihan H .,MOPC2-8, MOPC2 Lenoir S .,MO 348, ET13P León M .,WE 265, ET04P León V .M .,TU 409, ET11P, EP02B-1,

EP02B, EC01B-4, WE 356, TU 251 Leon Paumen M .,MO 086, EM02P1 Leonards P .,RA21-6, RA21, RA02-6,

RA02, EP07B-1, Leonards P .E .G .,EP05-1, EP05, EP02B-3,

EC02A-6, TU 456, MO 127, WEPC1-2 Leonel J .,TU 426, ET11P Leonel J .,TU 415, ET11P Leonzio C .,MO 047, EC04P Leopold A .,MO 162, EP02P Lepelletier P .L .,TU 333, ET02P Leppänen M .T .,WE 255, ET04P, WE 213,

MO 060, TH 172, TUPC4-3, EC06A-3 Lepper P .,WE 035, RA08P Leray J .,TU 411, ET11P Leroy G .,EC01C-4, EC01C, TH 307 Lesage N .L .,WE 156, RA18P Lesage P .,LC04A-2, LC04A, MOPC4-1 Lescord G .,TH 085, EC02P, TH 092,

EC02P, TH 093, EC02P Leskinen P .J .,LC02B-1, LC02B, LC06-6,

LC06 Leslie H .A .,TU 023, EP07P, EP07A-3,

EP07A, WEPC1-2, Lesnikov E .,MO 313, ET12P Lessard I .L .,TU 356, ET10P Lesske F .,MO 196, EP05P Lester J .N .,MO 186, EP02P Lesueur T .L .,MO 142, EP02P Leszczynska D .,WE 238, EP04P Leszczynski J .,WE 238, EP04P, WE 193 Letendre J .,TU 400, ET11P, TU 401,

ET11P, TU 411, Letinski D .,MO 086, EM02P1 Letinski D .J .,WEPC1-8, WEPC1, MO 309,

ET12P, MO 022, MO 367 Letzel M .,MO 196, EP05P, TU 006 Letzel T .,MO 196, EP05P Leung K .M .Y .,TH 264, RA17P, ET06B-1,

ET06B, EP02B-5, MO 143, EP02P, MO 152, MO 256, MO 259,

Leung K .S .Y .,WE 138, RA15P Leung M .Y .,RA17A-1, RA17A, TU 205,

Page 64: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

��2 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

RA20P Leung P .T .Y .,MO 143, EP02P, MO 256,

MO 259, Leung S .Y .,WE 136, RA15P Leung Y .S .,WE 311, ET05P Leusch F .D .,MOPC3-5, MOPC3, EP02B-4,

EP02B, ET06B-2, Leuven R .S .E .W .,EM03-3, EM03, RA18-5,

TH 261, Lev S .M .,EC04-4, EC04, EC04-6 Leva P .,TUPC3-8, TUPC3 Levasseur A .,MOPC5-4, MOPC5 Leveque T .,MO 044, EC04P, WE 013, WE

268, Leverett D .H .,MO 473, RA11P, TH 332,

RA23P, WE 422, EM01P, WE 045, RA08P, WE 018

Levi Y .,TU 428, ET11P, RA23A-5, RA23A, TH 328, EC01C-2, TUPC3-7, MO 136

Levin-Edens E .,EP01A-1, EP01A Levine S .L .,MOPC2-7, MOPC2 Levy W .,TH 028, ET03P Lewis G .,MOPC6-4, MOPC6, RA11-1 Lewis R .A .,MO 133, EP02P Li A .J .,MO 256, ET09P Li A .L .,WE 302, ET05P Li B .,ET15B-6, ET15B, WE 258, ET04P,

TU 147, Li D .S .,MO 078, EM02P1, EM02C-1 Li H .,TH 311, RA23P Li J .,TH 264, RA17P Li J .,RA17A-1, RA17A Li J .,EC05A-2, EC05A Li J .,MO 259, ET09P Li J .H .,TU 441, ET11P Li K .,TU 166, RA07P Li K .,MO 416, ET19P Li K .S .,WE 305, ET05P Li L .,WE 305, ET05P Li L .,WE 311, ET05P Li L .X .,TU 247, EC05P Li P .,ET01-3, ET01 Li S .,WE 301, ET05P Li W .,WE 351, ET15P Li W .,WE 325, ET07P Li X .,WE 419, EM01P Li Y .F .,TH 082, EC02P Li Y .P .,MO 425, RA04P Li Z .,WE 351, ET15P Li Z .,MO 202, EP05P Li Z .,EP08C-3, EP08C Liao C .M .,WE 142, RA15P, WE 275, TU

225, RA20P, TU 368 Liao W .,RA04B-5, RA04B Liber K .,WE 279, ET04P Libralato G .,TU 454, ET11P, TH 174,

EP03P2, WE 187, Licht O .,MO 471, RA11P Lie E .,TH 084, EC02P Lie Ugaya C .L .,WE 447, LC02P Lieshke J .,WE 367, ET15P Liess M .,TH 287, RA21P, WE 104, RA14P,

TU 468, ET14P, ET15B-4, MO 374, TH 278, TU 463, WE 113, WEPC4-1, ET14-5, ET14-4, ET09-3, RA14-3,

Lietuvninkas A .,WEPC1-6, WEPC1 Lignell S .,EP06-5, EP06 Liipo J .,RA05-3, RA05 Liiri M .,MO 295, ET12P Lillebø I .,WE 068, RA10P Lillenberg M .,MO 310, ET12P, MO 311 Lillicrap A .,WEPC1-7, WEPC1, WEPC1-8,

ET03A-1, TH 012 Lillicrap A .D .,MO 411, ET19P Lim D .Y .,TU 317, ET01P, TH 197, EP03P2 Lim R .,EP02B-4, EP02B Lima M .P .,TH 272, RA17P, TH 273 Lima N .C .D .E .,MO 288, ET12P, WE 409,

ET18P Lima R .,TH 186, EP03P2 Lima R .,TH 160, EP03P2 Limbourg Q .,EM02D-6, EM02D Lin B .L .,TH 244, RA13P Lin C .J .,WE 275, ET04P Lin C .W .,WE 141, RA15P Lin J .M .,MO 409, ET19P Lin M .C .,WE 276, ET04P Lin Y .J .,TU 225, RA20P Lind O .C .,WE 322, ET07P Lindauer U .,TH 179, EP03P2 Lindberg R .H .,EP08C-5, EP08C, TUPC2-2 Lindner J .P .,WE 461, LC05P Lindqvist D .C .,MO 335, ET13P Ling M .P .,TU 225, RA20P Lingoth-Becerra C .,MOPC4-3, MOPC4 Liping L .P .,MO 425, RA04P Lippiatt S .M .,EP07A-1, EP07A Liskova H .,WE 137, RA15P Lissinger Peitz JLP,SS12-9, SS12 Lister T .R .,EM01A-5, EM01A Little B .,MO 045, EC04P Liu C .,RA15-5, RA15 Liu F .Y .,WE 248, ET04P, ET04B-5, ET04B,

ET13A-1, Liu G .C .,TU 441, ET11P Liu J .,EP03A-2, EP03A Liu L .,WE 112, RA14P Liu X .,WEPC4-2, WEPC4, EC05A-2, TU

248, Liu Y .,TUPC5-3, TUPC5 Llewellyn N .,EP08B-2, EP08B Llompart M .,TU 093, EP08P, WE 174 Llompart M .P .,WE 421, EM01P Llorca-Porcel J .,MO 321, ET12P, EC01B-4 Llorca-Pórcel L .,MO 016, EC01P Llorca J .,MO 001, EC01P Llorca M .,TU 021, EP06P, SS05-4, SS05 Lo Giudice A .,TH 355, LC06P Loayza-Muro R .A .,TH 271, RA17P Lobo M .C .,TU 198, RA19P, TH 097, TH

192, TH 194 Lobo M .G .,WE 159, RA18P, WE 160,

RA18P, WE 161, RA18P Lobscheid A .B .,LC04A-5, LC04A Lodi M .,TH 281, RA21P Loewen D .,EP06-6, EP06 Löf M .,TU 355, ET10P Loft S .L .,EC05B-5, EC05B Lohmann R,SS12-7, SS12, MO 043 Lõhmus A .,EP01A-3, EP01A Loi E .,TU 447, ET11P Loibel L .,TH 013, ET03P, WE 030 Loibner A .P .,TU 281, EC06P, TU 284 Loizeau J .L .,WE 078, RA10P Loizeau V .,WEPC2-3, WEPC2, TU 342 Lombardo A .,TH 281, RA21P, EM02A-4,

ET16-1, Lombardo A .L .,MO 437, RA04P Lomenech C .,EC06B-2, EC06B Long S .,WEPC3-3, WEPC3, WEPC3-4 Long S .,RA03-3, RA03 Long S .M .,WEPC3-1, WEPC3, WE 367 Longrée P .,RA23A-2, RA23A Loos M .,EP05-6, EP05, RA23A-2

Loos R .,MO 128, EP02P, MO 002, WEPC2-2,

Lopes C .,ET02-4, ET02 Lopes C .,MOPC5-5, MOPC5 Lopes G .,TH 061, ET06P Lopes I .,TU 474, ET14P Lopes I .,WE 221, EP03P1, ET12B-5, MO

251, WE 215 Lopes I .,TU 349, ET10P, TU 402, TH 061,

TH 019, TH 066 Lopes L .,WE 042, RA08P Lopes S .F .,WE 231, EP03P1 Lopes Da Silva T .,WE 068, RA10P López-Antia A .,MO 242, ET08P, MO 246 Lopez-Roldan R .,TH 033, ET03P López A .,WE 307, ET05P López de Alda M .J .,WE 095, RA12P Lord J .,TU 264, EC05P Lorentz P .,MO 449, RA11P Lorenz C .,MO 355, ET13P Lores M .,WE 174, RA22P Loreto F .,MO 298, ET12P Lörks J .,TU 149, RA06P Lorne D .,LC01A-2, LC01A Loro V .L .,TU 320, ET01P Loseto L .L .,EC02A-3, EC02A Losso C .,TU 454, ET11P, TH 174, EP03P2 Lottermoser G .,WEPC4-3, WEPC4 Loureiro S .,WE 230, EP03P1, WE 231,

WE 220, WE 327, WE 375, WE 429, TU 314, TU 375

Loureiro S .,ET12A-4, ET12A, MO 263, TH 200, TH 213, TH 272, TH 273, TH 275, TH 039, TH 169,

Lourenço J .,TH 273, RA17P Lourenco R .A .,MO 021, EC01P, TU 421 Louvandidni H .D .,MO 336, ET13P Lowe C .N .,WE 267, ET04P Loyen J .,SS09P-3, SS09P Lu Y .F .,TH 309, RA23P Lubinski L .,WE 238, EP04P Luca N .,WE 081, RA10P Lucas J .,TU 344, ET10P Luckenbach T .,TU 220, RA20P, TU 221 Luckenbach T .J .,ET04C-5, ET04C Ludwigs J .D .,RA09-5, RA09, RA09-4, TH

049, ET06P, TH 050, ET06P, ET06A-5, ET06A-6, ET18-3, WE 052, MO 458,

Lugli F .,TH 098, EC03P Luglietti R .,TH 350, LC06P Luini M .L .,WE 114, RA14P Lukaszewicz G .,WE 329, ET07P Lukhele L .P .,WE 228, EP03P1 Lumaret J .P .,ET19B-4, ET19B, MO 402 Lundquist L .,TH 358, LC06P Lundqvist A .,ET04A-3, ET04A Lundström E .,TU 071, EP08P Luo C .L .,EC05A-2, EC05A Luoma S .N .,MO 466, RA11P Lupi S .,WE 037, RA08P Lupo A .,TH 124, EP01P, TH 123 Lusilao-Makiese J .,ET05-6, ET05 Luthy R .G .,TUPC4-8, TUPC4, EC06A-5 Luttik R .,MO 476, RA11P, MO 477,

RA11P Luttik R .L .,MOPC6-3, MOPC6 Lutz I .,MO 355, ET13P Lützhøft H .C .H .,MO 035, EC01P Lutzmann N .,TH 051, ET06P, TH 053,

ET06P, TH 052, ET06P, ET06A-6, ET06A, TH 049, TH 050, ET06A-5,

Lv C .,MO 131, EP02P

Page 65: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

���SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Lyche J .L .,WEPC2-5, WEPC2 Lynch N .R .,TH 276, RA17P Lyng F .,WE 211, EP03P1 Lyng K .A .,MO 426, RA04P Lyons B .,ET11A-1, ET11A, MO 024 Lyons B .P .,TU 383, ET11P Lyphout L .,TU 341, ET10P, TU 342 Lyyränen J .,EP03D-3, EP03D Lyytikäinen M .,WE 255, ET04P

M Ma H .,MO 140, EP02P Ma J .,MO 385, ET17P Ma J .,TH 082, EC02P Maack G .,MO 155, EP02P, MO 154,

EP02P, SS11-2, EP08B-1 Maack G .M .,TU 126, RA02P Maage A .,ET11A-2, ET11A Maboeta M .S .,MOPC1-5, MOPC1 Mabury S .,EC02B-3, EC02B Mabury S .A .,RA03-5, RA03 Macdonald R .,TH 082, EC02P Macdonald R .W .,EC02A-3, EC02A Machado-Neto L .,WE 406, ET18P, WE

407 Machado A .,TU 417, ET11P, WE 365,

ET15P Machado H .M .,MO 273, ET12P Machát J .,TH 112, EC03P Machera K .,RA16-3, RA16, TU 130 Macías-Mayorga D .,TU 424, ET11P Macías-Zamora J .V .,MO 318, ET12P Macías Z .,TU 436, ET11P Maciaszek D .,WE 379, ET15P Maciel Filho ,WE 449, LC02P Macíková P .,TU 297, EC06P Mack P .,MO 296, ET12P Mackay D .,TH 294, RA21P Mackay D .,WE 122, RA15P, MO 061,

EM02P1 Mackechnie C .J .,TUPC5-6, TUPC5 Macken A .L .,WE 211, EP03P1, WE 224,

EP03P1, MO 411, Mackenzie K .,WE 204, EP03P1 Maclatchy D .L .,MO 126, EP02P Macleod M .,EP06-1, EP06, EM02A-6,

EC05B-2, EC02B-2, WE 245 Macova M .,MOPC3-5, MOPC3 Macrae K .J .,TU 280, EC06P Madariaga J .M .,TU 170, RA07P Madden J .C .,WE 238, EP04P Madsen S .S .,ET19B-5, ET19B Madureira D .J .,WE 247, ET04P, TU 323 Mäenpää K .,EC06A-3, EC06A, MO 060 Maes H .M .,WE 179, EP03P1, WE 222,

TH 159, TH 199, TH 203, EP03C-1 Maes T .,ET11A-1, ET11A, ET11B-6,

EP07A-2, EP07A, WE 040 Magallanes-Ordóñez V .R .,TU 154, RA06P Magee B .H .,TU 283, EC06P, TU 216,

RA20P Maggi C .,TU 144, RA06P Maghirang R .,TU 257, EC05P Magnelli V .,ET11B-3, ET11B Magnusdottir E .,TUPC1-5, TUPC1 Magrez A .,TH 181, EP03P2 Mahaut M .L .,TU 371, ET11P Maher W .A .,TU 366, ET11P, TU 443, WE

309, TH 107, EC03P, TH 108 Mai H .,ET11C-2, ET11C Maier C .,WE 148, RA15P Maier M .,MO 202, EP05P

Mailahn W .,TH 010, ET03P, WE 383 Mainero G .,TU 204, RA19P Maiorino L .,MOPC4-7, MOPC4 Maisto G .,MO 292, ET12P Maitte B .,WE 084, RA10P Majewski M .S .,EC05A-6, EC05A Majewsky M .,TU 040, EP08P Majima T .,WE 154, RA18P Major G .M .,MO 136, EP02P Mak Y .P .,TU 447, ET11P Makowski D .,MOPC1-6, MOPC1 Malagnoux L .,WE 372, ET15P Malaj E .,MO 375, ET17P Malandrino O .,TH 355, LC06P Malarvannan G .,TUPC3-5, TUPC3, TU

260, EC05P, WE 433, EM01P, MO 183 Malchow S .,MO 400, ET19P Malcomber I,SS12-8, SS12 Maletz S .,MO 140, EP02P, MOPC2-6 Maletzki D .,TU 088, EP08P Mallard P .M .,EM02C-2, EM02C Malm O .,RA12-4, RA12 Malmquist L .,TU 404, ET11P Malmquist M .V .,TU 449, ET11P Maltby L .,WE 354, ET15P Maltese S .,EP07B-6, EP07B, ET06B-6,

ET11C-4, ET11C, EP07B-2, TU 440, TH 158, TH 062,

Malysheva A .,TH 027, ET03P Mamba B .B .,TH 165, EP03P2 Mamilov N . M .N .,TH 280, RA17P Mammadov G .M .,MO 315, ET12P Mammadov Z .R .,MO 317, ET12P Mammadova S .Z .,MO 315, ET12P Manageiro V .M .,TH 140, EP01P Manaia-Rodrigues C .M .,EP01B-1, EP01B Manaia C .M .,TH 127, EP01P, TH 141,

TH 142, TH 134 Manaia C .M .,TH 135, EP01P, TH 136,

EP01P, TH 139, EP01P, TH 137, TH 140

Manco S .,WE 429, EM01P Mancusi C .,TU 032, EP07P Manente S .,WE 288, ET04P, TU 382,

ET11P, TU 269, TU 423 Manfredi S .,RA04B-6, RA04B Manganaro A .,ET16-1, ET16 Manier N .,EP03B-6, EP03B, WE 219,

EP03P1, MO 278, ET12P, TH 331, ET12C-6

Manik Y .M .,TH 345, LC03P Mann M .K .,LC03-1, LC03 Mann R .M .,ET02-5, ET02 Manning R .G .,MO 022, EC01P, MO 367,

ET16P Mannio J .,MO 013, EC01P Mano H .,TU 343, ET10P Manodori L .,WEPC5-2, WEPC5, TH 174 Mansell J .E .,EC01A-6, EC01A Manson P .,TH 250, RA16P Mantecca P .,WEPC5-7, WEPC5, EP04-4 Mänz J .S .,TU 061, EP08P Manzano M .A .,THPC1-4, THPC1 Manzo S .,TU 414, ET11P Mao L .,TH 205, EP03P2 Marandua H .L .,MO 423, RA04P Maranger R .,ET13A-6, ET13A Maranho L .,WE 406, ET18P Maranho L .A .,WE 360, ET15P, WE 407 Marazzi F .,THPC1-2, THPC1 Marc J .,RA10-3, RA10 Marcantônio S .,WE 412, ET18P

Marcé R .M .,TH 122, EP01P Marchal G .,EC06A-4, EC06A, TUPC4-6,

TUPC4, MO 064, Marchand M .M .,EM02C-2, EM02C Marchand P .,TU 168, RA07P Marchese G .,WE 080, RA10P Marchetti R .,WE 310, ET05P Marchetto F .M .,TU 312, ET01P Marchis A .,RA16-3, RA16 Marco-Urrea E .,THPC1-1, THPC1 Marcomini A .,MO 351, ET13P, TH 171,

TH 188, TH 206, EP03D-4 Marcomini A .,RA02-5, EP03P2, WE 186,

WE 187, WE 036 Marcomini A .M .,MO 091, EM02P1 Maréchal A .,MO 181, EP02P Marfil-Vega M .V .,TUPC1-7, TUPC1 Marfil-Vega R .,EP02C-4, EP02C Margiotta-Casaluci L .,EP08A-3, EP08A Margni M .,MO 081, EM02P1, MO 444,

MOPC5-4, LC05-4, LC01B-1 Margni M .,LC04A-2, LC04A, RA04A-5,

RA04A-1, EM03-2 Mari M .,TU 266, EC05P, TU 267, EC05P María-Mojica P .,WE 280, ET04P, WE 167 Maria V .L .,WE 318, ET07P Mariani D .B .,TU 426, ET11P Mariani L .,TU 337, ET02P, ET02-6,

ET02-4, Marigomez I .,TU 170, RA07P, TU 134,

RA03P, TU 376, TH 269, TH 175, ET03B-2

Marin-Morales M .M .,TU 152, RA06P Marin M .G .,TUPC2-6, TUPC2 Marinkovic M .,ET07B-2, ET07B Marino D .J .,WE 382, ET15P Marinov D .T .,EM02B-1, EM02B, MO

069, EM02P1, MO 070, EM02P1, TU 115

Mariottini M .,TH 027, ET03P Marisa M .N .,TH 060, ET06P Maristella M .R .,WE 163, RA22P Mariuz M .,RA10-3, RA10 Marjan P .L .,TUPC6-3, TUPC6, TU 182 Markelic M .M .,MO 389, ET17P Märker N .,MO 287, ET12P Markiewicz A .J .,RA17A-2, RA17A Markovic Z .M .,MO 389, ET17P Markwart B .E .,TU 222, RA20P Marmier N .,EC06B-2, EC06B Marmolejo-Rodríguez A .J .,TU 154,

RA06P Marneffe Y .,TU 155, RA06P Marneffe Y .P .,TH 326, RA23P Marques B .,WE 068, RA10P Marques C .P .,TU 078, EP08P Marques C .R .,TU 193, RA19P, WE 131,

WE 366, Marsalek B .,MO 036, EC01P Marsalek B .M .,TU 196, RA19P Marsano F .,TU 326, ET01P Marsh G .,MO 125, EP02P Marshall S .,WEPC3-3, WEPC3, SS12-8 Marshall S .J .,TH 260, RA17P, SS03-1,

SS03 Marsili L .,EP07B-6, EP07B, EP02A-5,

ET11C-3, ET06B-6, ET11C-4, EP07B-2, TU 440, TU 032, TH 062, TH 158,

Mart V .,WE 032, RA08P Martel A .,MO 319, ET12P Martellini T .,TU 262, EC05P Marti E .M .,TH 122, EP01P

Page 66: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

��4 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Marticorena-Ruíz J .K .,TH 271, RA17P Martín-Díaz M .L .,TU 084, EP08P, TU

384, ET11P Martin-Garin A,SS09-6, SS09 Martin B .T .,RA01-1, RA01, WE 006 Martin F .,ET12B-1, ET12B Martin F .L .,EP03C-1, EP03C Martin J .W .,MO 161, EP02P Martin K .,EC01B-1, EC01B Martin M .,TH 194, EP03P2 Martin M .,MO 417, ET19P Martín M .,TH 192, EP03P2 Martin P .A .,WE 172, RA22P Martin T .,ET16-1, ET16 Martin Diaz L .,TUPC2-7, TUPC2 Martínez-Arkarazo I .,TU 170, RA07P Martinez-Chois C .,TUPC6-8, TUPC6, MO

312, ET12P Martinez-Gómez C .,TU 409, ET11P,

EP02B-1, EP02B Martinez-Haro M .,TU 403, ET11P, TH

063, ET06P, MO 047, MO 242 Martinez-Jeronimo F .F .,MO 350, ET13P,

WE 404, ET18P Martinez-Jeronimo L .,WE 404, ET18P Martínez-López E .,WE 280, ET04P, WE

167 Martinez-Madrid M .,WE 274, ET04P Martínez-Soriano E .,MO 321, ET12P Martínez E .,TH 303, RA23P Martínez F .,WE 265, ET04P Martinez G .,TU 394, ET11P Martínez J .E .,WE 264, ET04P Martinez M .A .,MO 279, ET12P, MO 280 Martínez López E .,WE 264, ET04P Martinho F .,MO 180, EP02P Martini F .,TH 058, ET06P Martinotti S .M .,TH 209, EP03P2 Martins A .S .,MO 413, ET19P Martinsson F .,MO 099, LC01P Martrat M .G .,ET11C-6, ET11C Marty M .S .,TH 043, ET03P, MOPC2-7,

MOPC2 Martyniuk C .,ET07B-1, ET07B, WEPC2-4 Martz V .,MO 241, ET08P Maruyama C .,TH 186, EP03P2, WE 236 Marvuglia A .,MO 445, RA04P, TH 344,

LC03P, LC01A-3, Marx J .,LC03-2, LC03 Maryoung L .,ET09-2, ET09 Masanet E .R .,LC04A-5, LC04A Mascolo M .G .,TH 281, RA21P Masner P .,TU 145, RA06P Masoni P .,MO 103, LC01P, TH 343,

LC02A-4, Massarin S .,WE 002, RA01P, WEPC6-7,

TH 252, Mastrocco F .,TU 068, EP08P Masunaga S .M .,WE 017, RA05P, MO 204 Matarazzo A .,TH 355, LC06P Mateo R .,MO 247, ET08P, MO 246,

MO 242, MO 245, MO 047, TH 063, ET08-6,

Materu S .F .,TU 157, RA06P Matezki S .,MO 472, RA11P, WE 064 Mathes B .,TH 214, EP03P2 Mathieu O .,TU 053, EP08P Mathis M .,EM02B-3, EM02B Matias W .G .,WE 159, RA18P, TH 044,

ET03P, TH 170, EP03P2, WE 160, RA18P, WE 161

Matic D .,WE 257, ET04P

Matozzo V .,TUPC2-6, TUPC2 Matser A .,WE 093, RA12P Matser A .M .,WE 146, RA15P Matsuyama K .,TH 212, EP03P2 Matthew M .,MO 075, EM02P1, EM02B-

2, EM02B Matthews H .S .,MO 422, RA04P Matthias V .,TU 001, EP06P Matthies M .,MO 053, EM02P1, MO 398,

EM02A-3, EM02B-4, ET19B-2 Matthiessen P .,RA11-2, RA11 Matthiessen P .,MO 449, RA11P, SS11-2,

SS11 Mattila T .,MOPC5-7, MOPC5 Mattioli M .,TU 384, ET11P Mattos J .,TU 417, ET11P, WE 365, ET15P Mattoso L .,TH 186, EP03P2 Mattsoff L .,RA09-2, RA09 Matus K .J .,EP04-1, EP04 Matveeva I .,SS09P-1, SS09P Matzke M .,WE 208, EP03P1 Maurer-Troxler C .,MO 286, ET12P Maurer E .I .,WE 193, EP03P1 Maus C .,RA16-3, RA16 May E .,THPC1-6, THPC1 May I .V .,TU 123, RA02P May R .C .,TU 325, ET01P Mayer A .,MO 065, EM02P1, TU 273,

EC05P Mayer A .G .,TU 259, EC05P Mayer B .,EM02B-3, EM02B Mayer I .,MO 169, EP02P Mayer P .,TU 288, EC06P, TU 282, TU

281, EC06P, TU 293, TU 284, TU 291 Mayer P .,MO 367, ET16P, MO 034, MO

064, EC01A-2, EC01B-2, EC01B-3 Mayer P .,MO 035, EC01P Maylin E .,MOPC3-5, MOPC3 Mayo A .M .,WE 190, EP03P1 Mayu T .M .,TH 210, EP03P2 Mazej D .,RA10-3, RA10 Mazumder D .,ET04B-1, ET04B Mazzella N .M .,WE 347, ET15P Mazzi L .,TH 158, EP03P2 Mazzia C .,WE 372, ET15P Mazzia C .J .,MO 293, ET12P Mcadam E .J .,MO 186, EP02P Mcardell C .S .,RA23B-5, RA23B Mcatee B .L .,WE 427, EM01P Mccarty L .S .,TH 290, RA21P, TH 294,

RA21P, TU 209, RA20P Mccarty L .S .,WE 122, RA15P Mccauley E .,MOPC2-8, MOPC2 Mcconnell L .L .,TU 256, EC05P, TU 257,

TUPC3-2, Mcdonald J .,EP02B-4, EP02B Mcdonald R .A .,WE 170, RA22P Mcdonnel T .W .,WE 413, ET18P Mcdonough S .,TU 094, EP08P, WE 392 Mceldowney S .,TU 162, RA06P Mceneff G .,TU 369, ET11P, WEPC2-1,

WEPC2, EP08A-5, Mceneff G .L .,MO 205, EP05P Mcgarrigle B .P .,MO 177, EP02P Mcgawley C .,MO 329, ET13P Mcgovern E .,EP02B-6, EP02B Mcgowan T .,RA23B-4, RA23B Mcgrath J .A .,MO 367, ET16P Mchugh B .,EP02B-6, EP02B Mckee L .G .,TUPC3-2, TUPC3 Mckee M .,TU 344, ET10P Mckone T .E .,MO 110, LC01P, EM02A-1,

LC04A-5, RA04A-3, ET09-4 Mclachlan M .S .,TH 073, EC02P, ET04A-

5, EC01A-2, WE 245, RA02-3 Mclachlan M .S .,TU 050, EP08P, TU 253,

EC05P, TUPC1-6, EP06-3, MO 055 McLagan D .,SS08-3, SS08 Mclaughlin M .J .,EC04-3, EC04, SS06-3,

SS06, TH 279, McLaughlin MJ,SS03-4, SS03 Mcmanus C .,TH 347, LC03P Mcmanus J .,WE 350, ET15P Mcmaster M .E .,EP02C-1, EP02C, ET07B-

1, RA23B-3, Mcmaster M .M .,RA23B-6, RA23B Mcneill K .P .,MOPC3-4, MOPC3 Mcnett D .A .,WE 259, ET04P Meas Y .,TUPC6-7, TUPC6 Mechora Š .,TU 201, RA19P Medeiros J .,TH 056, ET06P Medeiros K .R .,WE 399, ET18P, ET18-1,

ET18 Mehdi T .,TUPC3-5, TUPC3, TU 260,

EC05P Mehdipour M .,WE 303, ET05P Meier S .,ET11A-2, ET11A, MO 169 Meijer A .,TH 354, LC06P Meili N .,MO 149, EP02P Meinecke S .,WE 383, ET15P Meißner T .,WE 212, EP03P1 Meißner T .M .,WE 229, EP03P1 Meister-Werner A .,TH 199, EP03P2 Meisterjahn B .,EP03A-3, EP03A Mekenyan O .,WE 252, ET04P, RA02-4,

RA02, ET16-5, Melato A .M .,WE 285, ET04P Melegari S .P .,TH 170, EP03P2 Meléndez-Zempoalteca A .,TU 405, ET11P Meli M,SS07-6, SS07, MO 468, RA01-2, Meline C .,ET12C-6, ET12C Melis M .,TU 035, EP08P Melvin S .,ET06B-2, ET06B Melwani A .R .,ET04B-3, ET04B Melymuk L .,EC05B-4, EC05B Memmert U .,WEPC1-8, WEPC1, TU 038 Mendel N .,MO 455, RA11P, MO 456,

RA11P Mendes L .,MO 371, ET16P Mendes L .B .,WE 411, ET18P Mendes L .F .,MO 299, ET12P Mendes R .L .,MO 019, EC01P Mendez L .,WE 274, ET04P Mendo S .,TH 273, RA17P, TU 193, MO

263, WE 375, WE 131 Meneghini C .,TU 204, RA19P Menezes-Oliveira V .B .,ET12A-5, ET12A Meng X .Z .,TUPC5-3, TUPC5 Menger P .M .,MO 386, ET17P Meniconi M .F .G .,TU 421, ET11P Menone M .L .,TU 188, RA19P, SS05-5,

SS05, SS05-2, WE 361, WE 329 Menten F .,LC03-4, LC03 Menten F .M .,LC01A-2, LC01A Menzie C .A .,ET09-5, ET09 Mercat C .,SS09P-3, SS09P Mercier ,MO 319, ET12P Merckel D .,WEPC1-8, WEPC1, SS10-2,

SS10 Merckx R .,TH 035, ET03P Meringer M .,EP05-6, EP05 Merlin C .M .R .,EP01A-6, EP01A Merlina G .,RA19-3, RA19 Mermer S .,WE 374, ET15P

Page 67: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

���SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Merrettig-Bruns U .,MO 404, ET19P Merrifield R .C .,WE 177, EP03P1 Merrington G .,EM01A-4, EM01A Merrington G .,WE 018, RA05P Merritt C .,TH 271, RA17P Mertens B .,MO 361, ET16P Méry Y .M .,TH 352, LC06P Mery Y .,LC05-3, LC05 Meschke J .S .,EP01A-1, EP01A Messiaen M .,ET10A-2, ET10A Messias T .G .,TU 313, ET01P Mestiri A .,TU 193, RA19P Métais I .,WE 405, ET18P Metcalfe C .D .,TH 311, RA23P Metzeling L .,WE 367, ET15P Metzger J .,MO 139, EP02P Mewburn B .,MO 033, EC01P, MOPC3-5,

MOPC3 Mey M .,MOPC5-3, MOPC5 Meyabeme Elono A .L .,WEPC4-1, WEPC4 Meyer–Plath A .,WE 179, EP03P1 Meyer J .N .,TU 354, ET10P, TH 191,

EP03P2 Meyer J .S .,RA20-5, RA20 Meyer T .,EC02A-2, EC02A Meyer W .,TU 279, EC06P, EC06B-1,

EC06B Meynet P .,EC06A-2, EC06A Mezzanotte V .,THPC1-2, THPC1 Mhadhbi L .,TU 398, ET11P Michael S .,TU 272, EC05P Michaelis K .,WE 086, RA12P Michaelis M .K .,WE 087, RA12P Michala M .M .,RA16-5, RA16 Michaux E .,RA18-1, RA18 Michel A .,MO 213, EP05P Michelini L .,ET12B-4, ET12B Michelova M .,TU 089, EP08P Michelsen O .M .,MO 438, RA04P Micheluz A .,TU 269, EC05P Michihiko A .M .,TH 210, EP03P2 Miege C .,TU 010, EP06P, MO 001, EC01P Miège C .,MO 012, EC01P, EC01C-3 Mieiro L .,WE 066, RA10P, WE 077,

RA10P Mietelska M .I .,TH 274, RA17P Miglietta M .L .,TU 414, ET11P Miglioranza K .S .B .,WEPC3-4, WEPC3,

ET05-2, ET05, SS05-5, SS05, TU 303, SS05-2, EC05A-4, TU 307,

Mignone F .,TU 326, ET01P Miguet P .,MO 241, ET08P Mihaich E .M .,TH 043, ET03P, MOPC2-7,

MOPC2, TH 301, RA21P, WE 135, RA15P,

Mikkelsen P .S .,TH 317, RA23P, MO 035 Miklavcic A .,WE 434, EM01P Miklavcic A .,RA10-3, RA10 Mikula P .M .,TU 196, RA19P Milà I Canals L .,RA04A-4, RA04A Milan C .,MO 363, ET16P Milan M .,TU 074, EP08P Milani F .,MO 442, RA04P Milanovic M .L .J .,TU 096, EP08P Miles J .,WE 132, RA15P, MOPC6-5,

MOPC6, MOPC6-6, MOPC6 Miles M .,RA16-3, RA16 Miles M .J .,WE 116, RA14P Milestone C .B .,MO 126, EP02P Milic N .B .,TU 096, EP08P Miller A .A .,RA03-4, RA03 Miller B .M .,TH 103, EC03P

Miller G .M .,TU 121, RA02P Miller L .,WE 126, RA15P Miller P .S .,WE 386, ET15P Miller R .,MOPC2-8, MOPC2 Miller W .,EP01A-2, EP01A Millet M .M .,ET15B-2, ET15B Mills G .A .,MO 307, ET12P Mills M .,EP02C-4, EP02C Mills M .A .,TUPC1-7, TUPC1 Miloradov M .B .,TU 306, EC06P Miloradov M .M .,TU 306, EC06P Miloradov M .V .,TH 310, RA23P Miloslavich P .,TU 363, ET11P Milovanovic D .M .,TH 310, RA23P, TU

306 Miltner A .,MO 303, ET12P, MOPC1-3 Miltner A .M .,EC06B-6, EC06B Mineau P .,WE 172, RA22P, RA02-1,

RA02 Minello F .,TU 423, ET11P Minestrini S .,MOPC4-7, MOPC4 Minetto D .,WE 187, EP03P1, TH 174 Ming L .L .,WEPC4-2, WEPC4 Minguez L .,MO 390, ET17P, TU 338, TH

262, Minier C .,MO 181, EP02P, MO 141, MO

166, EP02P, MO 167, EP02A-3 Mink J .,MOPC3-3, MOPC3 Minutoli R .,EP07B-6, EP07B Miqueletto B .,TH 316, RA23P Miranda F .P .,MO 164, EP02P Mirtskhulava M .B .,WE 012, RA05P Misato K .,TH 211, EP03P2 Miseljic M .M .,MO 434, RA04P, MO 088,

EM02P1, WE 183, Misra S .K .,TH 176, EP03P2 Mistrik R .,MO 193, EP05P Mistry R .,WE 045, RA08P Miszczak E .,TH 099, EC03P Mitchell J .,THPC1-6, THPC1 Mitchell M .O .,TU 245, EC05P Mitrano M .,WE 176, EP03P1 Mitsui N .,ET06B-5, ET06B Mitsuko O .,TH 126, EP01P, EP01A-3 Mitton F .,EC05A-4, EC05A, TU 303 Miyamoto H,SS09-7, SS09 Miyasaka N .M .,MO 464, RA11P, SS10-8,

SS10 Mizukami-Murata M .M .S .,WE 331,

ET07P Mizukawa K .,WE 254, ET04P Moccia A .,TH 188, EP03P2 Modahl I .S .,MO 426, RA04P, MO 421 Möder M .,RA14-3, RA14 Modrzynski J .,TH 145, EP01P Moe S .J .,WE 150, RA18P, TU 334, ET02P,

WE 007, RA01P, ET09-3, ET09, MO 249

Moeckel C .,TU 264, EC05P Moeller A .,TH 074, EC02P, TU 009 Moen M .,TUPC2-4, TUPC2 Moenickes S .,MO 097, EM02P1 Moens T .M .,TH 036, ET03P Moermond T .A .,TH 297, RA21P, RA21-3,

RA21 Moest M .,WE 263, ET04P Mohammed A .,EC05A-6, EC05A Mokwe Ozonzeadi U .,TU 162, RA06P Mol G .,TH 247, RA13P Molander S .,SS12-3, SS12, SS12-7, TH

340, Molander L .,TH 296, RA21P

Moll J .,TH 201, EP03P2 Mollaret M .E .,WE 464, LC05P Möller A .,TU 242, EC05P, TH 083,

EC02P, TUPC1-1, TU 460, MO 207, WE 384

Møller F .,WE 463, LC05P Molloy D .P .,MO 390, ET17P Mompelat S .,TU 052, EP08P Monaci F .,EP04-3, EP04 Monaghan K .,TH 056, ET06P Monchamp M .E .,ET13A-6, ET13A Mondon A .,TU 420, ET11P Mondy C .P .,MO 373, ET17P Monferran M .V .,WE 289, ET04P Monferrán M .V .,TH 109, EC03P Mongin S .,WE 189, EP03P1 Monné J .,WE 189, EP03P1 Monperrus M .,WE 084, RA10P Monsinjon T .,MO 166, EP02P, MO 167,

EP02P Montag M .,TU 272, EC05P Montagner C .,TU 033, EP08P Montalbán B .,TH 097, EC03P Montaño M .M .,MO 135, EP02P Monte L,SS09-1, SS09, SS09-12 Monteiro L .M .,TH 036, ET03P Monteiro M .,WE 397, ET18P, MO 157,

EP02P, TH 018, ET03P Monteiro M .S .,TH 039, ET03P, TH 056,

TH 061, Monteiro R .,TU 361, ET11P, TU 362,

ET11P Montenegro R .,ET13B-1, ET13B Monteyne E .,WE 425, EM01P Monti D .,ET18-4, ET18 Montone R .C .,TU 420, ET11P, TU 243,

TU 435, TU 426 Montone R .M .,WE 262, ET04P Montone R .,TU 445, ET11P Montory P .,WE 261, ET04P Montrejaud-Vignoles M .V .,WE 156,

RA18P Montuelle B .,ET15B-1, ET15B, TU 211,

RA20P Moody J .,ET12C-1, ET12C Mooney T .J .,MO 289, ET12P Moore C .,WE 422, EM01P Moore E .R .B .,TH 127, EP01P Moorman T .B .,MO 406, ET19P Moors A .,RA03-3, RA03 Moors A .J .,RA03-6, RA03, TUPC5-2, TU

135, Moors J .,TUPC5-8, TUPC5 Mor C .,WE 300, ET05P Mora A .,WE 073, RA10P Moraes P .,TH 357, LC06P Moragas L .,TH 303, RA23P Morais P .,MO 276, ET12P Moral R .,MO 298, ET12P Morales-Ojeda S .M .,TU 169, RA07P Morales M .P .,ET11C-6, ET11C Moraru P .,RA16-3, RA16 Moreau X .,WE 219, EP03P1 Moreau Guigon M .G .E .,TH 280, RA17P Moreira-Santos M .,MO 284, ET12P, TU

403, ET15B-5, TU 474 Morel S .,LC04B-4, LC04B Morel S .M .,MO 093, EM02P1, LC06-4 Morelli E .,TH 168, EP03P2 Moreno-González M .G .,EC01B-4, EC01B Moreno-González R .,WE 265, ET04P Moreno-González R .,TU 251, EC05P

Page 68: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

��6 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Moreno I .M .,MO 347, ET13P Moreno R .,WE 356, ET15P Moretto A .M .,TU 312, ET01P, WE 114 Morgado F .,WE 393, ET18P, WE 281, TU

402, Morgado R .,ET12A-4, ET12A Morgado R .G .C .,TH 275, RA17P Morgan J .M .,WE 230, EP03P1 Mori T .,TH 211, EP03P2 Moriarty T .,MOPC6-1, MOPC6 Morin B .,TH 004, ET03P, ET11C-2 Morin N .,MO 012, EC01P Morin N .A .,EC01C-3, EC01C Morin S .,WE 347, ET15P Morman S .A .,EC05A-6, EC05A Moro S .,ET16-1, ET16 Morón S .E .,WE 414, ET18P Morselli M .,MO 067, EM02P1, MO 073 Morthorst E .,MO 172, EP02P Morthorst J .,ET19B-5, ET19B Morzillo A .T .,WE 165, RA22P Moschini E .,EP04-4, EP04 Moser R .,EP03D-5, EP03D Moser T .,MOPC1-2, MOPC1 Moshenberg K .L .,RA06-3, RA06 Mosinger J .,MO 353, ET13P Moskovchenko D .V .,TH 080, EC02P Mosquera-Vazquez M .,TU 282, EC06P Motoki M .Y .,TU 302, EC06P Motoki Y .,TU 301, EC06P Motoshita M .,MO 439, RA04P Mottier A .,TU 371, ET11P Mottier C .,TU 372, ET11P Mottin E .,TU 371, ET11P Mougel C .,ET12B-1, ET12B Mouneyrac C .,TU 428, ET11P Mouneyrac C .N .,WE 200, EP03P1, WE

405 Mounicou S .,WE 084, RA10P Mounicou S .,TH 106, EC03P Moura A .M .,WE 399, ET18P, ET18-1,

ET18 Mourier B .,WE 110, RA14P Moustafa A .,MO 161, EP02P Mozaffari R .,WE 303, ET05P Mrdakovic M .,WE 257, ET04P Mrozik W .,TU 054, EP08P Mrzyk I .E .,TU 224, RA20P Mubiana V .K .,TU 374, ET11P Muchada A .N .,TU 120, EM03P Muehlbach M .M .,LC02A-6, LC02A Mueller F .,TU 429, ET11P Mueller J .F .,RA17B-2, RA17B Mueller J .M .,EC01A-3, EC01A, MO 031,

EC01P Mueller T .,MO 398, ET19P Mugica M .,TH 269, RA17P Mühling K .H .,MOPC4-3, MOPC4 Muir C .G .,TH 085, EC02P, TH 092,

EC02P, TH 093, EC02P, EC02B-3, EC02B,

Muir D .C .G .,TH 081, EC02P, TH 075, ET09-1, WEPC1-1

Mukabana R .W .,WEPC4-1, WEPC4, WE 041

Mulder C .,ET12B-1, ET12B Mulder M .,MO 378, ET17P Mullen K .,MO 092, EM02P1 Müller A .,TU 106, EM02P2 Müller C .E .,EP06-1, EP06 Muller E .,MOPC2-8, MOPC2 Müller F .,RA14-1, RA14

Muller J .,MO 445, RA04P Müller J .,EP06-3, EP06 Müller J .F .,MO 332, ET13P Müller P .,TUPC5-1, TUPC5 Müller R .,MO 254, ET09P Müller W .,LC05-2, LC05, WE 458, LC05P Mulliner D .,MO 370, ET16P Munari M .,TUPC2-6, TUPC2 Munaron D .,TU 053, EP08P Munasinghe H .H .,TU 325, ET01P Münderle M .,WE 055, RA09P Munkittrick K .,ET07B-1, ET07B, WEPC2-

4 Munkittrick K .R .,EP02C-1, EP02C Muñoz-Barbosa A .,TU 442, ET11P Muñoz B .,TU 436, ET11P Munoz I .,MO 430, RA04P Muñoz I .,RA04A-4, RA04A, SS05-3 Münze R .,RA14-3, RA14 Murakami K .,WE 028, RA08P Murata M .M .,MO 464, RA11P, SS10-8,

SS10 Murfitt R .,TUPC6-4, TUPC6 Murfitt R .C .,WE 055, RA09P Murguìa M .C .,WE 345, ET15P Murk A .,ET01-3, ET01, ET11A-5 Murk A .J .,MO 135, EP02P, WE 153,

EP02C-3, TH 313 Murk T .,ET01-2, ET01 Murphy B .,TU 447, ET11P Murphy J .,TU 049, EP08P Murphy M .B .,WE 138, RA15P Murrell K .,MO 085, EM02P1 Murrenhoff H .,MO 117, LC01P Musaraat J .,ET13A-1, ET13A, WE 378 Musee N .,TH 165, EP03P2 Muselet A .,WE 464, LC05P Musibono D .E .,ET18-2, ET18 Musset L .,RA11-2, RA11 Mutel C .,RA04B-2, RA04B Mutel C .L .,EM03-1, EM03 Muth-Koehne E .,TH 180, EP03P2 Muth-Köhne E .,TH 016, ET03P Muusse M .,MO 209, EP05P Muyssen B .,TU 146, RA06P Muziasari I .,TH 126, EP01P Muziasari W .,EP01A-3, EP01A

N Nabeshi H .,TH 211, EP03P2, TH 212 Nadal M .,MO 321, ET12P, MO 038,

EC01P, TU 268, TU 266, EC05P, TU 267, TU 116, WE 140,

Nadal N .,TU 015, EP06P Nadzifah Y .,WE 403, ET18P Næs K .,TU 280, EC06P Nagasaka S .,TH 163, EP03P2, TH 161 Nagasaka S .N .,WE 209, EP03P1 Nagata K .,LC02A-5, LC02A Nagel M .,TH 270, RA17P Nagy S .Z .T .,TUPC3-3, TUPC3 Naik Y .S .,WE 299, ET05P, WE 342,

ET15P Nair P .M .G .,WE 333, ET07P, WE 334,

ET07P Naito W .,TH 241, RA13P Naito W .N .,WE 017, RA05P, MO 464,

RA11P, SS10-8, SS10 Najib F .,SS09P-4, SS09P Nakada N .,TU 058, EP08P Nakaew N .,MO 261, ET12P Nakagame N .Y .,TH 163, EP03P2

Nakagame Y .N .,TH 164, EP03P2, TH 161 Nakajima D .,RA14-2, RA14 Nakano K .N .,MO 009, EC01P Nakayama K .,ET07A-6, ET07A Nakayama S .F .,TUPC1-7, TUPC1, MO

124, EP02C-4, Nakazato Y .,TH 212, EP03P2 Nakhaee H .,WE 303, ET05P Nalecz-Jawecki G .,MO 412, ET19P, WE

210 Nam D .,WE 076, RA10P Nam S .H .,TH 184, EP03P2, WE 217,

EP03P1 Nande M .,TH 192, EP03P2 Naport P .,TU 155, RA06P, TH 326 Narciso Da Rocha C .A .,TH 127, EP01P Nasci C .,TU 396, ET11P Nascimento I .,MO 423, RA04P Näslund M .,TU 036, EP08P Natal-Da-Luz T .,MO 284, ET12P, MO

276, ET12B-5, TU 472 Nathanail C .P .,MO 092, EM02P1 Natsch A .,WE 249, ET04P Nau K .,TH 214, EP03P2 Navalón-Madrigal P .,MO 321, ET12P Navarra-Ortega A .,SS05-3, SS05 Navarro I .,MO 279, ET12P, MO 280 Navarro L .,RA16-3, RA16 Navis S .,TU 346, ET10P Neal B .H .,TH 043, ET03P, MOPC2-7,

MOPC2 Neale P .,MOPC3-5, MOPC3 Nebo L .,WE 371, ET15P Nedelcheva D .,ET16-5, ET16 Neels H .,TUPC3-5, TUPC3, TU 260,

EC05P, WE 433, Nefau T .N .,RA23A-5, RA23A, TH 328,

RA23P Negreanu Y .,EP01B-5, EP01B Negrel P .,EM0B1-6, EM01B Negri A .,ET11B-3, ET11B Negri A .N .,TH 209, EP03P2 Negri A .P .,RA17B-2, RA17B Nehls A .,MO 094, EM02P1 Nei L .,MO 310, ET12P Nelson C .J .,ET08-4, ET08 Némethová S .,WE 003, RA01P Nendza M .,WE 253, ET04P, EM02A-4,

ET04C-3, MOPC2-2 Nepstad R .,RA18-6, RA18 Nerman O .,ET07B-3, ET07B Nestor G .,MO 125, EP02P Netzeva T .,SS11-1, SS11 Neubert C .N .,MOPC2-3, MOPC2 Neugebauer F .,TU 133, RA03P, TU 011,

EP06P Neukampf R .,WE 118, RA14P Neumann M .,MO 467, RA11P, RA03-2 Neumann P .,RA11-1, RA11 Neumann S .,EP05-6, EP05, MOPC3-7 Neves P .A .,TU 422, ET11P Neves Sousa C .C .N .,WE 359, ET15P Newsted J .L .,TU 029, EP07P Newton S .R .,TH 076, EC02P Ng C .A .,RA17B-1, RA17B Ng C .A .,ET09-1, ET09 Ngpan R .,WE 405, ET18P Nguyen L .T .H .,TU 146, RA06P, TU 450 Ni J .,EC06B-3, EC06B Ni J .R .,TH 309, RA23P Nickel C .,TH 189, EP03P2 Nicol E .,RA23B-1, RA23B

Page 69: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

���SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Nicolaus E .,EP07A-2, EP07A Nicolaus E .,ET11B-6, ET11B Nicolette J .,WE 101, RA12P, MO 387 Nicolette P .,TH 246, RA13P, RA18-3,

RA18 Nicosia C .,EP02A-5, EP02A Niederstätter H .,TH 093, EC02P Niehus N .C .,TU 149, RA06P Nielsen P .H .,MO 424, RA04P Nierzedska E .W .A .,MO 151, EP02P Nieto O .N .,TU 379, ET11P Nikoobakht N .,EP06-6, EP06 Nilsen H .,TU 373, ET11P Nilsson S .,MO 368, ET16P Nimpuno N,SS12-10, SS12, SS10-5, SS10 Nisbet R .M .,RA01-1, RA01, MOPC2-8 Nishikawa J,SS09-7, SS09 Nissen S .N .,LC06-3, LC06 Niwa N .T .,TH 164, EP03P2 Niwa T .,TH 161, EP03P2 Nizzetto L .,ET10B-5, ET10B, WEPC4-2,

RA19-5, TH 289, WE 197, MO 074, EM02P1, ET11B-1

Nizzetto N .L .,TU 248, EC05P Noack U .,MO 455, RA11P, MO 456,

RA11P Noble H .,MO 309, ET12P Noble H .L .,TU 066, EP08P Noeh I .,RA12-3, RA12 Noelia R .,TH 100, EC03P Nogueira A .J .A .,MO 328, ET13P, WE 392,

ET18P, WE 181, EP03P1, WE 205, WE 089, TU 094, TU 177, WE 399, ET18-1,

Nogueira I .J .O .,WE 215, EP03P1 Nogueira V .I .,WE 131, RA15P Nogues I .,MO 298, ET12P Nöh I .,WE 086, RA12P, WE 175 Nord P .,TU 206, RA20P Nord P .,RA22-6, RA22 Nordberg A .,RA22-6, RA22 Nordén M .,WE 377, ET15P Norder A .,EP08A-1, EP08A Nordstad T .,EC02B-1, EC02B Nordtug T .,WE 151, RA18P, RA18-4 Nordtug A .,WE 152, RA18P Norhave N .J .,MO 257, ET09P Norman S .M .,ET15A-5, ET15A, WE 381,

ET15P, WE 101, WE 116, RA16-1 Norman S .M .,TH 255, RA16P, TH 256,

RA16P, TH 250, WE 315 Norrgren L .N .,TU 017, EP06P Norris G .,MO 442, RA04P Norte C .,ET12B-5, ET12B Northcott G .L .,WEPC3-2, WEPC3 Noskov Y .A .,TU 463, ET14P Nøst T .,TU 418, ET11P Nouvian C .,TU 447, ET11P Novais S .C .,ET01-4, ET01 Novak J .,EP02C-2, EP02C, TUPC3-4, TU

244, WE 137 Novakova K .,MO 337, ET13P, MO 338,

ET13P, MO 354, Novelli A .,WEPC4-5, WEPC4, WE 408,

ET18P, WE 410, Novo A .,WE 079, RA10P Novo A .,TH 137, EP01P Nowack B .,TU 336, ET02P, TH 181 Nowack B .D .,WE 180, EP03P1 Nowak C .,TU 348, ET10P Nowak M .,EC06B-6, EC06B Noyes P .,ET09-2, ET09

Nriagu J .O .,WE 076, RA10P Nuelle M .N .,EP07A-6, EP07A Nugegoda D .,ET04B-1, ET04B, ET05-3,

EP02B-4, MO 383, MO 164 Nunes B .A .,TU 078, EP08P Nunes B .N .,TU 316, ET01P Nunes B .S .,TU 229, RA20P Nunes K .R .A .,MOPC4-6, MOPC4 Nunes M .E .T .,MO 288, ET12P, WE 409,

ET18P Nunes O .C .,TH 141, EP01P, TH 134, TH

135, TH 137 Nunes T .,WE 042, RA08P Nunez R .A .,TUPC6-7, TUPC6 Nüsser L .,EP05-3, EP05 Nutter D .,MO 442, RA04P Nyathi C .B .,WE 299, ET05P Nybom E .,TUPC4-3, TUPC4 Nybom I .,EC06A-3, EC06A Nybroe O .,ET12B-3, ET12B, TH 145 Nyembe D .W .,TH 165, EP03P2 Nyman A .M .,RA15-2, RA15, ET15A-6,

ET15A, RA15-4, Nys C .,WE 016, RA05P, TU 475, ET14P

O O’ Halloran J .,TU 191, RA19P O’Brien G .C .,ET05-1, ET05, TH 258,

RA17P O’Connor S .M .,ET16-4, ET16 O’Donoughue P .R .,LC03-1, LC03 O’Driscoll K .T .A .,EM02B-3, EM02B O’Rourke K .,EP08A-5, EP08A O’Rourke S .A .,TH 177, EP03P2 O`Connor I .A .,MO 062, EM02P1,

WEPC1-5, WEPC1, WE 250, EM02A-2

O’Connell S .G .,TUPC5-2, TUPC5 Öberg T .,MO 368, ET16P Obernolte M .,TU 006, EP06P Obersteiner M .,TU 120, EM03P Obrador A .N .A .,TH 182, EP03P2 Obrador A .O .,TH 198, EP03P2 Ocampo-Duque W .,WE 004, RA01P,

RA12-4 Oceguera I .V .,WE 158, RA18P Odendaal J .,TH 105, EC03P, TU 389,

ET11P Odendaal J .P .,WE 129, RA15P, TU 200,

WE 285, Odland J .Ø .,SS08-1, SS08 Odum J .,RA11-2, RA11 Odzak N .,TH 179, EP03P2 Odziomek K .,TUPC2-1, TUPC2 Oehlmann J .,MO 122, EP02P, MO 254,

MO 451, MO 450, MO 449, ET03B-1, WE 223,

Oen A .M .P .,EC06A-5, EC06A Oetken M .,WE 223, EP03P1 Ogbomida T .,WEPC4-4, WEPC4, WE 394 Oger R .,EM02D-6, EM02D Ogino S .,TH 319, RA23P, MO 147, WE

358, Ogino Y .,MOPC2-4, MOPC2 Ogo ,EP01A-2, EP01A Ogrinc N .,RA10-2, RA10 Ogura T .,MO 124, EP02P Oh J .E .,TU 055, EP08P Ohiozebau E .H .,TH 277, RA17P Ohizumi Y .,MO 032, EC01P Ohki K .O .,MO 009, EC01P Ohta Y .,MO 173, EP02P

Ojeda M .J .,TH 090, EC02P, TH 087, EC02P

Oka T .,MO 147, EP02P, WE 358, ET06B-5,

Okay O .S .,MO 018, EC01P, MO 416, ET19P, MO 066, TH 336, TU 439, EC01A-1

Okocha R .O .,WE 292, ET04P Okonski K .O .,TU 249, EC05P, TU 250 Olafsdottir K .,TUPC1-5, TUPC1 Olaveson M .,ET12C-3, ET12C Oldenburg C .M .,MO 110, LC01P Oldenkamp R .,TU 063, EP08P Olesen A .O .,TH 353, LC06P Olguin E .,TUPC6-7, TUPC6 Oliveira C .,TU 178, RA07P Oliveira C .A .,MO 255, ET09P Oliveira E .L .C .,MO 153, EP02P Oliveira F .F .,MO 021, EC01P Oliveira I .B .,TU 364, ET11P Oliveira M .C .,MO 331, ET13P Oliveira M .M .,MO 342, ET13P Oliveira P .,MO 243, ET08P Oliveira P .C .,TU 464, ET14P Oliveira P .F .,TU 402, ET11P Oliveira R .,TU 094, EP08P, MO 328,

ET13P, WE 392, ET18P, WE 397, ET18P, MO 157, TH 018

Oliveira R .,WE 205, EP03P1, WE 399, ET18P, ET18-1,

Oliveira T .M .N .,WE 159, RA18P, TH 044, ET03P, TH 170, EP03P2, WE 160, RA18P, WE 161

Oliveira Filho L .C .I .,MO 284, ET12P Oliver R .,MO 309, ET12P Oliver R .,TU 066, EP08P Oliveri C .O .,TH 209, EP03P2 Olivier S .,TU 411, ET11P Olivier S .,MO 167, EP02P Olivieri S .,MO 274, ET12P Olsen A .J .,WE 152, RA18P, RA18-4,

RA18 Olsen G .H .,RA18-5, RA18 Olsen J .,TU 060, EP08P, MO 408 Olsen S .I .,LC02A-2, LC02A, WE 441,

LC02P, WE 183, EP03P1, WE 444, TH 187, MO 434, MO 088,

Olson J .R .,MO 177, EP02P Olsvik P .A .,ET11A-2, ET11A, WEPC2-5 Olu-Owolabi B .I .,TU 299, EC06P Olvera-Ramirez R .,MO 350, ET13P Omlin J .,TU 057, EP08P Ondarza M .,TU 307, EC06P Ondarza P .,EC05A-4, EC05A Ong K .J .,WE 191, EP03P1, WE 233 Ono Y .,MO 427, RA04P Onoda H .,LC02A-5, LC02A Onwurah I .N .E .,WEPC4-4, WEPC4, WE

346, WE 394, MO 300 Oorthuizen W .,WE 423, EM01P Oorts K .,MO 463, RA11P, MO 046 Oorts K .J .,TU 223, RA20P, MO 262,

ET12P, WE 128, RA15P, EM01B-5, EM01B,

Oosterhuis M .,TU 090, EP08P Opazo M .,RA05-2, RA05, RA05-3 Opel M .,TU 133, RA03P Oppermann R .,WE 064, RA09P Oral R .,TU 158, RA06P Oral R .O .,MO 258, ET09P Orbe D .,TU 218, RA20P Ordoñez-del Pazo T .,TU 460, ET11P

Page 70: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

��� SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Ordóñez T .O .,TU 408, ET11P Ordoñez Gómez B .,TU 394, ET11P Orem W .H .,WE 072, RA10P Oriaku T .O .,MO 302, ET12P Oris J .T .,TH 011, ET03P Orjollet D,SS09-3, SS09 Orlans P .,LC06-2, LC06 Ormaechea A .,WE 345, ET15P Orn O .S .,TU 017, EP06P Ornek H .,WE 099, RA12P Oros I .B .,THPC1-3, THPC1 Orozco-Borbón M .V .,TU 442, ET11P Orozco B .,TU 436, ET11P Ortega-Calvo J .J .,TU 287, EC06P, TU 288,

EC06P, TU 289, TU 290, TU 286 Ortega A .,TH 208, EP03P2 Ortega V .,WE 233, EP03P1 Ortego L .S .,TH 043, ET03P, MOPC2-7,

MOPC2, TH 301, RA21P Ortinez A .,MO 079, EM02P1 Ortinez A .O .,WE 437, EM01P Ortiz-Rodriguez R .,TU 351, ET10P Ortiz-Santaliestra M .,TH 061, ET06P Ortiz-Santaliestra M .E .,MO 246, ET08P,

MO 242, MO 245, Ortíz L .,TH 192, EP03P2 Ortmann J .,ET03A-4, ET03A Orton F .,EP02B-2, EP02B, ET06B-4,

ET06B Osano O .,TU 478, ET14P Osborne JL,SS07-1, SS07 Oscarsson H .,TU 081, EP08P Osire P .,WE 041, RA08P Osorio V .O .,RA23A-3, RA23A Osredkar J .,RA10-3, RA10 Osset P .C .F .,MOPC4-8, MOPC4 Osswald K .,MO 139, EP02P Österlund T .,ET07B-3, ET07B Osterwald A .,MO 094, EM02P1 Otani T .,TU 301, EC06P Otero P .,ET13A-5, ET13A Ottermanns R .,ET15B-6, ET15B, WE 258,

ET04P Ottesen R .T .,EM01A-6, EM01A, WE 420 Otto C .,MO 332, ET13P Oudalova AA,SS09-5, SS09 Oughton D,SS09-1, SS09, SS09-2, SS09 Oughton D .,TU 373, ET11P Oughton D .H .,MO 271, ET12P, EC04-5,

EC04, WE 322, Outa M .,WE 041, RA08P Outridge P .,TH 091, EC02P Outridge P .M .,EC02A-3, EC02A Ovaskainen M .,MO 440, RA04P Overjord I .,EC02A-1, EC02A Owen F .,TH 030, ET03P Owen S .F .,RA21-1, RA21 Ownby R .,EC04-4, EC04 Owojori O .J .,WE 400, ET18P, ET12C-5,

ET12C, TU 350, ET10P Owono Ateba P .,SS09P-4, SS09P Owsianiak M .,EM03-5, EM03 Øxnevad S .,TU 280, EC06P Oziol L .O .,TUPC3-7, TUPC3

P Pablos M .V .,TH 058, ET06P, TH 057,

ET06P Pacaud S .,EP01A-6, EP01A Paccou A .,MO 006, EC01P Pacheco M .,WE 066, RA10P, WE 077,

RA10P, WE 362, WE 363

Pacholski A .,MOPC4-3, MOPC4 Padey E .,LC03-3, LC03 Paepke O .,TU 133, RA03P Páez M .,WE 004, RA01P Page M .,EP03D-5, EP03D Pagel-Wieder S .,ET12B-6, ET12B Paggi J .C .,WE 349, ET15P Pagnocca F .C .,WE 371, ET15P Pagotto C .,MO 348, ET13P Pain-Devin N .M .,TH 262, RA17P Pain-Devin S .,TH 173, EP03P2, TU 338 Paiva C .B .,WE 412, ET18P Pajula T .,MO 440, RA04P Pakarinen K .,TH 172, EP03P2 Pakarinen K .M .,WE 213, EP03P1 Pakdel F .,MO 160, EP02P Palchik V .,TU 265, EC05P Palm W .U .,MO 301, ET12P, TU 061, TU

258, TH 335 Palma P .,MO 276, ET12P, WE 269, ET04P,

TU 189, RA19P, WE 095 Palmer S .,MO 162, EP02P Palmqvist A,SS07-6, SS07, MO 468,

RA11P, RA08-2, RA01-2, RA15-3 Palomino D .,WE 198, EP03P1 Palomino E .J .,TH 271, RA17P Palos-Ladeiro M .,ET10A-5, ET10A Pampanin M .,TU 381, ET11P Pamplaniyil K .,MO 398, ET19P Pan Y .,MO 142, EP02P Panasiuk D .,LC02A-3, LC02A Panchout F .,TU 400, ET11P, TU 401,

ET11P Pandard P .,EP03B-6, EP03B, WE 219,

EP03P1, MO 278, ET12P, TH 331, ET12C-6

Pandyaswargo A .H .,LC02A-5, LC02A Pang C .,TH 176, EP03P2 Panko J .M .,WE 427, EM01P, MO 436 Pannier F .,WE 084, RA10P Pant R .,RA04B-6, RA04B Panter G .H .,TU 097, EP08P Panti C .,EP07B-6, EP07B, EP02A-5, TU

440, Pantoja Munoz L .P .,TH 111, EC03P Panzeri A .,WE 361, ET15P Papa E .,MO 198, EP05P, MO 364, ET16P,

MO 368, MO 362 Parant M .,TH 262, RA17P Pardal M .A .,TU 168, RA07P Pardossi A .,EM02C-4, EM02C Pareja J .L .,MO 279, ET12P, WE 117 Pareja J .L .P .,TH 198, EP03P2 Parera J .,ET11A-4, ET11A Park J .E .,WE 369, ET15P Park K .H .,WE 369, ET15P Park M .,EP03D-2, EP03D Park P .S .U .,WE 428, EM01P Park S .,WE 178, EP03P1 Park S .Y .,WE 333, ET07P, WE 334, ET07P Parkerton F .,MO 367, ET16P Parkerton T .,WEPC1-8, WEPC1, MO 086 Parkerton T .F .,MO 022, EC01P Parlak H .,TU 019, EP06P Parolini M .,THPC1-2, THPC1, TU 100 Parolini M .P .,EP08A-4, EP08A, TU 086,

EP08P, TU 087, EP08P Parrott J .P .,RA23B-6, RA23B Parsons J .R .,RA21-6, RA21, WE 182,

RA02-6, Parthasarathy S .,EM02A-1, EM02A Paschke A .,RA14-3, RA14, TH 040, TH

041, TH 042 Pascoal C .,WE 216, EP03P1, TH 185,

EP03P2 Pascual J .,RA16-1, RA16 Pascual U .,ET12B-1, ET12B Pasquarè F .A .,WE 083, RA10P Passuello A .,MO 321, ET12P, WE 307,

ET05P Passuello A .C .,WE 306, ET05P Pasteris A .,TU 083, EP08P Pasteris A .P .,WE 202, EP03P1 Pasternak Z .,EP01B-5, EP01B Pastorinho M .R .,WE 089, RA12P Pastorinho M .R .D .,TU 177, RA07P Pastorok A .,WE 001, RA01P Pastorok R .,WE 008, RA01P Pastorok R .A .,RA01-5, RA01 Pastukhov M .V .,WE 284, ET04P Patel A .,TU 097, EP08P Patel P .,EP07B-1, EP07B Paterson G .,WE 224, EP03P1 Paterson M .,RA01-6, RA01 Patouillard L .,LC03-4, LC03 Patrolecco L .,TU 095, EP08P Patroncini D .,TH 323, RA23P Patzelt D .,ET19A-6, ET19A Pauget B .,MOPC1-1, MOPC1, TU 124 Paul K .,EP02C-4, EP02C Paulino M .G .,WEPC4-6, WEPC4, WE

353, ET15P Paulissen M .P .C .P .,RA19-6, RA19 Paull B .,MO 205, EP05P Paull G .C .,RA21-1, RA21 Paulus M .,TU 136, RA03P, TUPC5-1,

TUPC5-5, Pavan M .,MO 366, ET16P Pavlaki M .D .,TH 169, EP03P2, TU 314,

ET01P Pavlov T .,ET16-5, ET16 Pawlak J .F .,SS08-1, SS08 Pawlowski S .,TU 065, EP08P Pawsey J .B .,MO 175, EP02P Payet J .,TU 237, LC04P, TU 235 Paz-Villarraga C .A .,TU 363, ET11P Pazlarová J .,TH 147, EP01P Péan S .,TU 341, ET10P, TU 342 Pease A .P .,MOPC6-2, MOPC6 Pech D .,TU 169, RA07P Peck R .,MO 141, EP02P Peddinghaus S .,MO 281, ET12P, TH 013,

TH 015, Pedersen S .,RA15-3, RA15 Pedrazzini S .,TH 358, LC06P Pedrero Z .,WE 084, RA10P Pedriali A .,WE 319, ET07P Pedriali A .P .,EP08A-4, EP08A, TU 086,

EP08P Pedrosa J .,TU 348, ET10P Peel R .G .P .,EC05B-5, EC05B Pehkonen H .,WE 255, ET04P Pehlken A .,LC04B-3, LC04B Pehlken A .,WE 450, LC02P Peijnenburg J .G .M .,EP03D-2, EP03D, TU

016, EP06P Pelé N .,ET12B-1, ET12B Pelfrêne A .Y .,EC04-1, EC04 Pell JK,SS07-1, SS07 Pelletier M .C .,TU 436, ET11P Pelletier N .,RA04B-6, RA04B, SS01-2,

SS01 Pelosi C .,MOPC1-6, MOPC1 Peña A .,TU 303, EC06P

Page 71: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

���SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Pena C .P .,MO 428, RA04P Peñalosa J .M .,WE 117, RA14P Pennington D .W .,MOPC5-1, MOPC5, TU

115, EM03P Peoples R .,EP04-1, EP04 Perales-Vargas-Machuca J .A .,MO 034,

EC01P, WE 426, EM01P, TU 447, ET11P

Perazzolo C .P .,MO 214, EP05P Perceval O .,TH 331, RA23P Pereira-Fernandes A .P .F .,EP02A-4, EP02A Pereira C .D .,WEPC4-6, WEPC4 Pereira C .G .,TU 425, ET11P, TU 424,

ET11P, WE 429, Pereira C .M .S .,ET10B-3, ET10B Pereira C .S .R .,MO 284, ET12P Pereira E .,WE 436, EM01P, TH 061 Pereira E .A .,MO 336, ET13P Pereira J .L .,WE 088, RA12P, TU 156, TU

229, MO 365, TH 315 Pereira M .E .,WE 066, RA10P, WE 077,

RA10P Pereira M .G .,WE 040, RA08P, RA22-2 Pereira M .G .,WE 075, RA10P, TU 264,

EC05P Pereira P .R .,MO 266, ET12P Pereira R .,WE 221, EP03P1, WE 436, WE

364, WE 131, WE 366, WE 215 Pereira R .,MO 283, ET12P, MO 284, MO

287, MO 267, TU 193, TH 061 Pereira S .M .,ET03B-3, ET03B Pereira S .P .P .,WE 181, EP03P1, WE 205,

EP03P1 Pérès G .,TU 124, RA02P Peres G .P .,TU 333, ET02P Peret A .M .,TU 151, RA06P Peretti A .,TU 010, EP06P Perez-Feas S .,WE 174, RA22P Pérez-Sanz A .,TH 097, EC03P, TU 198 Perez F .,TU 021, EP06P, SS05-4, SS05 Perez L .A .,MO 161, EP02P Pérez S .P .,RA23A-3, RA23A Perez T .,TU 167, RA07P Pérez de la Lastra J .M .,MO 245, ET08P Pérez Sanz A .,TH 194, EP03P2 Peric Mataruga D .,WE 257, ET04P Perin S .,ET13A-6, ET13A Perkins E .J .,WE 336, ET07P Perlinger J .A .,MO 074, EM02P1 Pernille P .,MO 468, RA11P, RA08-2,

RA08 Perreault F .,TH 170, EP03P2 Perron M .M .,TU 436, ET11P, MO 005 Persat H .,TU 010, EP06P Persoons R .,TH 242, RA13P Perwuelz A .,LC04B-1, LC04B Péry A .,TU 359, ET10P, TU 130 Péry A .R .R .,MO 168, EP02P, MO 241,

ET08P Pery A .R .R .P .,TU 330, ET02P Pescara I .,TU 033, EP08P Pesce M .,WE 036, RA08P Pesce S .P .,WE 347, ET15P Pestana J .L .T .,TU 348, ET10P, TU 386,

ET11P, TU 387, TU 392, TU 362 Pestana L .T .,TU 082, EP08P Pestanudo S .,WE 059, RA09P Peter H .,WE 207, EP03P1 Peters A .,EM01A-4, EM01A, TH 332 Peters A .J .,RA05-6, RA05 Petersen A .,TUPC1-5, TUPC1 Petersen E .J .,TH 172, EP03P2, WE 213

Petersen K .,WE 322, ET07P, TH 003, MOPC2-1,

Petersen K .L .,MO 172, EP02P Petersohn E .,WE 175, RA22P Petersohn P .E .,WE 087, RA12P Petit F .P .,MO 142, EP02P Petkov P .,ET16-5, ET16 Petrie B .,MO 186, EP02P Petrovic M .,MO 182, EP02P Petrucci A .,MO 284, ET12P Petti L .,TH 355, LC06P Petti L .P .,WE 447, LC02P Pettigrove V .,MO 015, EC01P, MO 164,

EP02P, MO 383, EP02B-4, WEPC3-4 Pettigrove V .J .,WEPC3-1, WEPC3,

WEPC3-3, WE 367, Pettis J .,MOPC6-1, MOPC6 Petto R .,TH 199, EP03P2 Peysson W .P .,TU 037, EP08P Pfister S .,LC07-4, LC07, TU 233, LC04P,

TU 119, EM03P, MO 429, RA04P, RA04B-2

Pflugfelder J .,MOPC6-1, MOPC6 Pflugmacher S .,MO 355, ET13P, TU 195 Pham T .H .,TU 163, RA06P Philipp P .,RA19-1, RA19 Philipp R .,TH 116, EC03P Philippot L .,ET12B-1, ET12B Phillips C .T .,MO 063, EM02P1, MO 294 Phillips J .E .,TU 029, EP07P Phillips R .A .,TUPC1-5, TUPC1 Phillips W .,MO 065, EM02P1, TU 273,

EC05P, TU 030, EP07P Phung T .,TU 121, RA02P Piazza C .E .,WE 365, ET15P Piazzalunga A .,RA08-4, RA08 Piccapietra F .,TH 179, EP03P2 Piccini B .,ET03A-5, ET03A, MO 159, MO

160, Pichardo S .,TH 207, EP03P2, MO 340 Pichereau V .,WEPC2-3, WEPC2 Pichon A .,TH 004, ET03P Pick F .R .,MO 014, EC01P, TU 185,

RA19P Pick R .,ET13A-6, ET13A Pickering F .,ET15A-5, ET15A Pickford B .,TH 059, ET06P, ET06B-5,

ET06B Picó Y .,SS05-3, SS05 Pieper S .,ET06A-3, ET06A, ET12A-6, TH

054, Pieri F .,TU 262, EC05P Pieroni C .,TU 415, ET11P Pierrard M .A .,WEPC2-2, WEPC2 Pieters B .J .,MO 216, EP05P Pieters R .,WE 300, ET05P Pietila M .,MO 133, EP02P Pietsch M .,ET04C-5, ET04C Piette L,SS09-6, SS09 Pignata M .L .,WE 289, ET04P Pignatello J .J .,EC06B-3, EC06B Pigot T .,TH 306, RA23P Pigozzo A .,WEPC5-2, WEPC5 Pilgrim L .,WE 126, RA15P Pilière A .F .H .,RA17A-6, RA17A Pillai S .,TU 324, ET01P Pimsee P .P .,WE 156, RA18P Piña B .,MO 144, EP02P, SS10-7, SS10 Piña B .,MO 153, EP02P Pineda-Mendoza R .M .,MO 350, ET13P Pinelli E .,RA19-3, RA19 Pinheiro J .N .C .,TU 193, RA19P

Pini J .,TU 412, ET11P Pini J .M .,WE 291, ET04P Pinkerton K .,ET09-2, ET09 Pintado-Herrera M .G .,TU 393, ET11P Pinto E .,MO 352, ET13P Pinto E .P .,MO 357, ET13P Pinto G .,TU 193, RA19P Pinto P .M .,TH 267, RA17P Pinxten R .,ET04A-2, ET04A Piotrowicz-Cieslak A .,MO 412, ET19P Pires J .,TU 103, EM02P2 Pires M .J .,MO 243, ET08P Pirilli M .,MOPC4-7, MOPC4 Pirotte R .,TU 155, RA06P Pirovano A .,MO 062, EM02P1, WEPC1-5,

WEPC1, WE 250, EM02A-2 Pirrone N .P .,RA10-2, RA10 Pisaric M .L .,EC02A-5, EC02A Pistocchi A .,EM02B-1, EM02B, MO 069,

EM02P1, MO 070, EM02P1 Pistorius J .,TH 254, RA16P, RA16-4,

RA16, WE 376, ET15P, TH 257, RA16P, ET15B-3, RA16-3, MOPC6-4,

Pitkänen L .,EP01A-3, EP01A Pitois F .,MO 348, ET13P Pittois P .,EC01C-5, EC01C Pizzol L .,WE 036, RA08P, RA02-5 Pizzol M .,WE 463, LC05P Pizzol M .P .,TH 248, RA13P Planes S .,WE 405, ET18P Planojevic I .,MO 449, RA11P Plassart P .,ET12B-1, ET12B Platzbecker F .,MO 405, ET19P Plaza A .,TH 097, EC03P Ploteny M .,MO 036, EC01P Plouffe G .,EM03-4, EM03 Ploy M .C .,EP01A-6, EP01A Ploy M .C .P .,TH 129, EP01P Plumlee G .,EC05A-6, EC05A Po B .,WE 301, ET05P Po H .K .,WE 305, ET05P Po H .K .,WE 311, ET05P Podd G .L .,TU 092, EP08P, WE 381,

ET15P Pogacnik M .,MO 407, ET19P, MO 403,

ET19P Poganietz W .R .,MO 108, LC01P, TH 342 Pogliaghi A .,THPC1-2, THPC1 Pohl C .A .,MO 026, EC01P Pohl M .,MOPC4-3, MOPC4 Pohlert T .,TU 161, RA06P Pohlmann J .D .,TU 460, ET11P Pohlmann T .,EM02B-3, EM02B Poikolainen J .P .,TUPC5-4, TUPC5 Poirier L .,TU 428, ET11P Pojana G .,MO 351, ET13P, TH 171, WE

186, WE 187 Pola A .,WE 080, RA10P Poláková Š .,MOPC1-8, MOPC1 Polder A .,TU 448, ET11P Poleksic V .P .,MO 389, ET17P Polesello S .,TU 007, EP06P, WE 271, MO

194, Poleza F .,TU 026, EP07P Polleichtner C .U .,WE 184, EP03P1, TH

010, ET03P Pollman C .,WE 072, RA10P Pollmann H .,MO 212, EP05P Pollmeier T .,ET19B-2, ET19B Pomati F .,ET10B-5, ET10B Pomogailo A .D .,WE 239, EP04P Pomogailo S .I .,WE 239, EP04P

Page 72: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�40 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Ponce-Velez G .,TU 171, RA07P Pons A .,MO 121, LC01P Pons A .C .,TU 056, EP08P Pontal L .,MO 052, EM02P1, TU 101, TU

107, Pontalier P .Y .,MO 101, LC01P Ponti B .P .,WE 083, RA10P, WE 080,

RA10P Poole J .G .,WE 195, EP03P1 Pope N .,MO 141, EP02P Popovic O .,MO 191, EP02P Popovic R .,TH 170, EP03P2 Porcel M .A .,MO 279, ET12P Porcher J .M .,MO 168, EP02P, MO 241,

ET08P, MO 156, MO 159, MO 160, EP08A-2, EP02A-3, ET10A-5

Poremski H .J .,WE 451, LC02P Poret S .P .,MOPC6-2, MOPC6 Porretta D .,MO 047, EC04P Porsbring T .,RA12-1, RA12 Portilla Castillo C .E .,WE 074, RA10P Portis L .M .,TU 436, ET11P Posarelli M .,TH 168, EP03P2 Poßberg C .,ET12A-6, ET12A Possberg C .,MO 308, ET12P Posthuma L .,RA17A-6, RA17A, TH 247 Pott A .C .,TH 015, ET03P Potter E .D .,RA22-2, RA22 Potter T .L .,TU 256, EC05P Potthoff A .,WE 212, EP03P1 Potting J .,TU 239, LC04P Potts J .,WE 309, ET05P Poulsen A .,MOPC3-5, MOPC3 Poulsen V .,RA09-3, RA09, TU 112, MO

470, Pourcelot L .,SS09P-3, SS09P Powell D .E .,WE 259, ET04P, ET04B-6,

WEPC1-1, WEPC1, ET04A-6 Powell K .P .,WE 230, EP03P1 Pradas del Real A .E .,TH 097, EC03P, TU

198 Pradella N .,RA17B-3, RA17B Pradère P .,WE 013, RA05P Pradhan A .,WE 216, EP03P1, TH 185,

EP03P2 Prado B .,TH 144, EP01P Prados E .A .,WE 059, RA09P Praetorius A .,EP03D-6, EP03D Prange A .,TU 377, ET11P, WE 317,

ET07P, TH 116, Prange A .P .,TU 430, ET11P Prasad M .N .V .,TU 197, RA19P Prat N .,TU 470, ET14P Pratas J .M .S .,WE 283, ET04P, TU 197,

RA19P Prats E .,EP02A-1, EP02A Preiss P .,TU 118, EM03P, LC05-2, LC05,

WE 458, LC05P Prescott C .V .,WE 168, RA22P, RA22-1 Presley L .,RA02-1, RA02 Preuß T .G .,RA19-2, RA19 Preuss T .G .,TU 465, ET14P, TU 106, TU

462, TH 245, RA01-1, WEPC6-6, ET15A-2, ET14-6

Preziosi D .V .,WE 001, RA01P, RA01-5 Pribylova P .,WE 137, RA15P Price A .E .,TU 045, EP08P Price H .L .,ET11B-5, ET11B, EC01A-5 Price O,SS12-8, SS12 Price O .R .,TH 334, RA23P, TH 260, TU

067, EP08P, MO 068, MO 083 Price P .N .,MO 110, LC01P

Priessnitz J .,MO 277, ET12P, ET12C-4, ET12C

Priester J .,MOPC2-8, MOPC2 Priestly S .,TU 183, RA19P Prieto A .I .,MO 340, ET13P, MO 346,

ET13P, MO 347, Primost J .,WE 382, ET15P Princz J .,ET12C-1, ET12C Pro J .,MO 279, ET12P Prochazkova T .,MO 338, ET13P Proestou D .,TU 436, ET11P Pröfrock D .,TU 377, ET11P, WE 317,

ET07P, TH 116, Pröfrock D .P .,TU 430, ET11P Prokeš R .,MO 002, EC01P Pronschinske W .D .,RA02-1, RA02 Proto M .,TH 355, LC06P Provins A .,WE 045, RA08P Prudent A .S .,ET08-3, ET08 Prudente M .,MO 183, EP02P Prueger H .,TUPC3-2, TUPC3 Prutz I .,MO 467, RA11P Pryce S .,EP02A-2, EP02A Psaltaki M .,SS09-12, SS09 Psillakis E .,TU 252, EC05P Puerto M .,TH 207, EP03P2 Pugh R .,TUPC5-2, TUPC5 Pugh R .S .,TU 135, RA03P, RA03-6,

RA03-3, TUPC5-8 Puijker L .,MO 206, EP05P Pujolasus E .,WE 004, RA01P Pukalchik M .A .,TH 104, EC03P Pukalov O .,MO 368, ET16P Pulkkinen H .I .M .,TH 356, LC06P Punt A .,EP02C-3, EP02C Puntervoll P .,ET07A-3, ET07A Purcell M .,TH 030, ET03P Purchase D .P .,TH 111, EC03P Purkrtová S .,TH 147, EP01P Purvina S .,WE 090, RA12P Pussila S .,TH 138, EP01P Putna I .,WE 090, RA12P Püttmann W .,EC06B-1, EC06B, TU 006 Puy J .,EC04-2, EC04, WE 189 Puzyn T .,TUPC2-1, TUPC2, WE 193, WE

238

Q Qi S .H .,WE 100, RA12P Qian P .,WE 301, ET05P Qiu J .W .,WE 305, ET05P Qiu Y .L .,TUPC5-3, TUPC5 Quade S .,MO 207, EP05P Quast L .,TUPC3-6, TUPC3 Queloz P .,MO 089, EM02P1 Querini F .Q .,MO 093, EM02P1 Quik J .T .K .,EP03A-5, EP03A Quiniou L .,WEPC2-3, WEPC2 Quinn B .,TU 369, ET11P, WEPC2-1,

WEPC2, MO 205, EP08A-5 Quinn C .L .,EM02A-5, EM02A Quintaine T .,WE 005, RA01P, TH 253,

RA16P Quiros A .L .,LC07-2, LC07 Quiroz R .,WE 261, ET04P

R Ra J .S .,MO 465, RA11P Raadal H .L .,MO 421, RA04P, MO 426 Raaschou-Nielsen O .,EC05B-5, EC05B Raat K .J .,TU 008, EP06P Rabenasolo B .,LC04B-1, LC04B

Rabova Z .,WE 344, ET15P Raburu P .,TU 478, ET14P Rader K .J .,RA05-4, RA05, WE 021 Radford J .,ET11B-4, ET11B Radix P .,TH 253, RA16P Radke M .,MO 202, EP05P, TU 044 Radonic J .R .,TU 096, EP08P, TU 263, TU

306, EC06P, TH 310 Raes M .,WEPC2-2, WEPC2 Ragas A .M .J .,ET08-1, ET08, EM02A-2,

TU 063, MO 062, EM02P1, WEPC1-5, WE 250

Raggi A .,TH 343, LC03P, TH 355 Rahmberg M .,MO 368, ET16P Rahn J .,ET12C-2, ET12C Raina R .,EC05A-5, EC05A Rainville L .C .,TU 369, ET11P, WEPC2-1,

WEPC2 Rakowska I .,TUPC4-2, TUPC4 Rakowska M .I .,TUPC4-1, TUPC4 Raldúa D .,EP02A-1, EP02A Rallo R .,ET16-6, ET16 Rametta G .,TU 414, ET11P Ramírez-Alvarez N .,MO 318, ET12P Ramirez A .J .,TU 045, EP08P Ramón Vaquero L .,WE 264, ET04P Ramos C .A .,WEPC4-6, WEPC4 Ramos F .,TU 168, RA07P Ramos R .C .,WE 411, ET18P Ramsden C .S .,EP03B-2, EP03B Rand-Weaver M .,TU 097, EP08P Randak T .,TU 075, EP08P Randall M .,RA09-2, RA09 Randall M .E .,WE 051, RA09P Randjelovic J .S .,WE 032, RA08P Rangjaroen C .,MO 261, ET12P Rani M .R .,TH 095, EC02P Ranjard L .,ET12B-1, ET12B Ranke J .,MO 054, EM02P1, WEPC6-4 Ranneklev S .,MO 209, EP05P Ranneklev S .B .,MO 025, EC01P Ranogajec J .G .,THPC1-3, THPC1 Ranville J .,SS03-3, SS03 Ranville J .F .,WE 181, EP03P1, WE 205,

EP03P1, WE 176, RA20-5 Ranzato E .R .,TH 209, EP03P2 Rao A .M .,EP03B-3, EP03B Rao P .S .C .,MO 089, EM02P1 Raoul F .,RA22-5, RA22, WE 171 Raoul F .R .,ET08-3, ET08 Rappe K .,WE 425, EM01P Raptis C .,RA04B-2, RA04B Raptis C .E .,TU 117, EM03P Raquel R .,TH 100, EC03P Rasgelener C .,LC05-3, LC05 Raskovic B .R .,MO 389, ET17P Rasmussen B .,WE 126, RA15P Rasmussen J .,ET15B-4, ET15B Rasmussen M .N .,TH 353, LC06P Rasp S .,ET19B-5, ET19B Rassy F .,TU 445, ET11P Rasteiro M .,WE 215, EP03P1 Rasteiro M .G .,MO 365, ET16P, WE 221 Ratering S .,MO 304, ET12P Ratola N .,MO 039, EC01P, TU 252 Ratte H .T .,WEPC6-6, WEPC6, WEPC6-8,

TH 159, TH 300, ET15A-2, ET14-6 Rattner B .A .,RA22-3, RA22 Rattray A .G .M .,MO 469, RA11P Rauch U .,WE 418, EM01P, EM01B-1,

EM01B Rauert C .,ET04C-1, ET04C

Page 73: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�41SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Rauert C .A .,MO 467, RA11P, WEPC1-8 Rault M .,WE 372, ET15P Ravagnan E .,WE 151, RA18P Ravagnan G .,WE 288, ET04P, TU 382,

ET11P, TU 269, TU 423 Rawlings J .,TH 012, ET03P Rawlings J .M .,ET03A-1, ET03A Rawson D .M .,TH 323, RA23P Razote E .,TU 257, EC05P Réal B .,WE 147, RA15P Réale D .,ET10A-4, ET10A Rebbah H .,MO 030, EC01P Rebelo D .,WE 029, RA08P Rebelo M .,TH 136, EP01P Redecker M .A .,LC04B-3, LC04B Redman A .,MO 086, EM02P1 Redman A .D .,MO 367, ET16P Reed M .,RA18-6, RA18 Reese T .,WE 251, ET04P Regaldo L .M .,WE 345, ET15P Regaldo L .R .,TU 199, RA19P Rege S .,LC01A-3, LC01A Regelmann J .,MO 471, RA11P Reggio J .,ET10A-5, ET10A Regier N .,WE 067, RA10P Regoli F .,TH 270, RA17P Regoli L .,WE 023, RA05P Reichel R .,ET12B-4, ET12B, ET19A-6 Reichelt-Brushett J .,TU 444, ET11P Reichenberger S .,TU 106, EM02P2, TU

103, EM02P2 Reichlin T .S .,WE 049, RA09P, WE 050,

RA09P Reid L .,MO 061, EM02P1 Reider K .,TU 315, ET01P Reiersen L .O .,SS08-1, SS08 Reiff N .,ET12B-6, ET12B Reifferscheid G .,WE 323, ET07P, MO 212,

EP05P, MO 122, MO 137, RA06-4 Reihlen A .,TU 207, RA20P Reimann C .,TH 279, RA17P, EM0B1-

6, EM01B-3, EM01B-5, EM01B-4, EM01B-1

Reimann S .,EC02A-4, EC02A Rein A .,EM02C-3, EM02C, EC06A-4,

EC06A, TUPC4-6, MO 064, TU 294 Reinecke A .,WE 341, ET15P, MO 268,

ET12P Reinecke A .J .,WE 341, ET15P, MO 268,

ET12P, TU 350, Reinecke S .A .,TU 350, ET10P Reinel S .,EP05-3, EP05 Reiner J .L .,TUPC5-2, TUPC5 Reininghaus M .,EC06B-1, EC06B Reip P .,MO 466, RA11P Reis A .,WE 068, RA10P Reis A .C .,TH 134, EP01P Reist J .,TH 093, EC02P Reitsema T .,EP02B-4, EP02B Relyea R .A .,TUPC6-6, TUPC6 Remenyi V .,MO 417, ET19P Remnant V .A .,WE 381, ET15P Remy D .R .,EP07A-6, EP07A Renaud J .M .,TU 472, ET14P Rencz A .,EM01B-2, EM01B Rendal C .,ET04C-2, ET04C, WE 244,

ET04P Rendón-von Osten J .,WE 393, ET18P Renieri T .,TH 158, EP03P2 Renner P .,TH 007, ET03P Rennie M .,RA01-6, RA01 Reno U .,WE 345, ET15P

Reno U .R .,TU 199, RA19P Resende A .S .,MO 285, ET12P Resseler H .,MO 094, EM02P1 Resve A .,EP03B-6, EP03B Rettigheri L .,EP04-4, EP04 Rettinger K .,TH 300, RA21P Reub G .,WE 101, RA12P Reub G .,WE 315, ET05P Reumann-Schwichtenberg J .,LC05-2,

LC05 Reveret J .P .R .,EM02C-2, EM02C Revitt M .,TH 146, EP01P Rey-Castro C .,WE 189, EP03P1 Reynaldi S .,WE 229, EP03P1 Reynauld A .,LC05-3, LC05 Rhiem S .,WE 179, EP03P1 Rhiem S .,EP03C-1, EP03C Riar N .,TU 176, RA07P Riba I .,TU 454, ET11P, TU 142 Ribeiro F .A .,WE 230, EP03P1, WE 231,

WE 220, Ribeiro R .,TU 228, RA20P Ribeiro R .,TU 472, ET14P, TU 474, TU

349, TU 403, ET12B-5, ET15B-5, MO 284, MO 251

Ribo M .,TH 032, ET03P, TH 033, ET03P, TH 037, ET03P

Ricart M .,TH 265, RA17P Rice C .P .,TU 256, EC05P Richard C .R .,TU 390, ET11P Richard M .K .,WE 313, ET05P Richards K .H .,MO 186, EP02P Richardson M .,EM01B-2, EM01B Richert M .,MO 293, ET12P Richter E .,TH 329, RA23P Richter M .,MO 097, EM02P1 Richter R .A .,RA16-5, RA16, MO 265,

ET12P Richter V .,TH 214, EP03P2 Rickerby D .G .,EP03D-3, EP03D Ricking M .,TU 137, RA03P Ricks B .,MO 083, EM02P1 Rico A .,ET18-5, ET18, WE 392 Rico A .R .,ET19B-3, ET19B, MO 415,

ET19P Riding M .,EP03C-1, EP03C Ridolfi K .,ET04B-3, ET04B Riedhammer C .,RA12-2, RA12, WE 175 Riedl V .,TUPC2-6, TUPC2 Rieffel R .D .,ET08-3, ET08 Rieker E .,WE 317, ET07P Rieradevall M .,TU 470, ET14P Rietjens I .M .C .M .,EP03C-4, EP03C Riffel M .,WE 055, RA09P Riffel M .,ET18-3, ET18 Riga F .,EM02D-6, EM02D Rigamonti L .,TH 350, LC06P Rigarlsford G .,RA04A-4, RA04A Rigét F .F .,TH 088, EC02P Righi S .R .,WE 183, EP03P1, WE 202 Rinaldo A .,MO 089, EM02P1 Rinfreschi S .,TU 262, EC05P Rinklebe J .R .,RA10-1, RA10 Rinn A .,RA08-6, RA08 Riopelle C .,TH 208, EP03P2 Rios G .,MO 445, RA04P, TH 344, LC03P Ripollés Vidal C .,EP05-6, EP05, RA23A-2 Risso C .,WE 200, EP03P1 Ritter A .M .,MO 397, ET19P, MO 056,

EM02P1 Riva C .,WE 319, ET07P Riva C .R .,EP08A-4, EP08A, TU 086,

EP08P Riva M .C .,TH 032, ET03P, TH 033,

ET03P, TH 037, ET03P Rivero-Wendt C .,WE 397, ET18P, MO

157, EP02P, TH 018, ET03P Rizzo E .,WE 036, RA08P Rizzo L .,EP01B-6, EP01B, TH 139 Roach A .C .,ET11C-1, ET11C Roach P .,TH 079, EC02P, TU 245, EC05P Robarge T .,MO 065, EM02P1, TU 273,

EC05P, TU 030, EP07P Robert J .,WE 422, EM01P Roberts C .,EP01A-1, EP01A Roberts C .,MO 457, RA11P Roberts G .C .,MO 307, ET12P, TU 066,

THPC1-6, Roberts H .,TUPC3-8, TUPC3 Roberts K .,WE 422, EM01P Robinson J .A .,TH 357, LC06P Robinson P .F .,TU 066, EP08P Robinson S .J .,RA03-5, RA03 Robra S .,MO 423, RA04P Robusté J .,TH 303, RA23P Roca E .,MO 446, RA04P, TU 093, EP08P,

RA04B-4, Rocha-Santos T .,TU 193, RA19P Rocha-Santos T .A .P .,WE 221, EP03P1 Rocha-Santos T .,WE 215, EP03P1 Rocha-Santos T .P .A .,WE 364, ET15P Rocha E .,MO 180, EP02P Rocha J .R .,MO 255, ET09P Rocha M .J .,MO 180, EP02P Rocha R .J .,TU 078, EP08P Rochas-Bracho L .,TU 440, ET11P Roche L .,TH 260, RA17P Roche P .,TU 052, EP08P Rocher B .,TU 400, ET11P, TU 401, ET11P,

TU 411, Rochford H .,EP02B-6, EP02B Rockel M .L .,MO 387, ET17P Rodius F .,TU 338, ET02P, TH 262 Rodrigues A .P .,TU 400, ET11P Rodrigues B .K .,MO 288, ET12P, WE 409,

ET18P Rodrigues D .,TU 392, ET11P Rodrigues M .L .,MO 164, EP02P Rodrigues S .R .,TU 316, ET01P Rodríguez-Cruz M .S .,EP08C-3, EP08C Rodríguez-Estival J .,MO 247, ET08P Rodriguez-Iruretagoiena A .,TU 170,

RA07P Rodríguez-Membibre M .L .,TH 192,

EP03P2 Rodríguez-Mozaz S .,THPC1-1, THPC1,

TH 265 Rodríguez-Mozaz S .R .M .,TH 122, EP01P Rodríguez-Navarro A .B .,MO 247, ET08P Rodríguez-Rodríguez C .E .,TU 305, EC06P Rodríguez-Romero A .,TU 142, RA06P Rodriguez A .,TU 424, ET11P Rodriguez P .,WE 274, ET04P Rodriguez P .,MO 326, ET13P, ET13A-5,

ET13A Rodriguez P .H .,RA05-2, RA05, RA05-3,

WE 021, Rodríguez V .R .,MO 357, ET13P Rodríguez Romero A .,TU 454, ET11P Roe S .,MO 473, RA11P Roelofs D .,WE 324, ET07P Roembke J,SS06-5, SS06, MO 402, MO

287, Roessink I .,TU 090, EP08P

Page 74: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�42 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Roessink I .R .,WE 146, RA15P Roex E .W .M .,MO 476, RA11P, TH 312,

TH 313, ET01-2 Roger S .,RA06-5, RA06 Rogevich-Garman E .C .,WE 022, RA05P Roggeman S .,RA14-6, RA14 Roh ,TU 317, ET01P Rohr J .,ET09-6, ET09 Rohrer R .J .,MO 349, ET13P, TH 117,

EC03P Rohwer M .,MOPC4-3, MOPC4 Roig B .,MO 028, EC01P, TU 052 Roig J .,TU 471, ET14P Roig N .,WE 140, RA15P Rojas L .,MO 130, EP02P Rojo-Nieto E .,MO 034, EC01P, WE 426,

EM01P, TU 447, ET11P Roland K .R .,WEPC2-2, WEPC2 Rollin V .,TU 155, RA06P Rollin V .,TH 326, RA23P Romano E .,TU 144, RA06P Rombke J .,TU 193, RA19P Römbke J .,MOPC1-2, MOPC1, ET19B-4,

ET12B-2, ET12A-6, WE 131 Rombke R .J .,MO 266, ET12P Romer I .,WE 177, EP03P1 Romer I .R .,WE 226, EP03P1 Romero A .C .,WE 098, RA12P Römkens P .F .A .M .,TUPC6-5, TUPC6 Ronan J .M .,EP02B-6, EP02B Roncaglioni A .,MO 363, ET16P Ronco A .E .,WE 382, ET15P Roncz J .R .,LC02B-3, LC02B Rönnefahrt I .,EP08B-1, EP08B Roos A .M .,TUPC5-7, TUPC5 Roos J .,LC05-2, LC05 Roose P .,WE 425, EM01P Roquetti R .,WE 310, ET05P Rosa A .,WE 236, EP04P Rosa I .C .,WE 088, RA12P, TH 315, MO

365, Rose G .,MO 015, EC01P Rose G .,WE 367, ET15P Rosen G .,ET11B-4, ET11B Rosenbaum R .,MO 444, RA04P Rosenbaum R .K .,EM03-5, EM03, LC04A-

1 Rosenblad M .A .,WEPC2-7, WEPC2 Rosendahl I .,ET19A-1, ET19A Rosendahl I .,ET19A-3, ET19A Rosendfeldt R .R .,WE 232, EP03P1 Roseneau D .G .,TU 135, RA03P Roseneau D .G .,RA03-3, RA03 Rosenfeldt R .R .,WEPC5-5, WEPC5 Rosenkrantz R .T .,TH 292, RA21P, TH

293, RA21P Rosivatz E .,EP02B-2, EP02B Roß-Nickoll M .,TU 147, RA06P, WE 258,

ET12B-2, ET12A-6, ET15B-6 Ross T .,MO 162, EP02P Rosseland B .O .,TH 023, ET03P, ET03B-4,

ET03B, WE 322, Rossi L .,TU 042, EP08P Rotchell M .,MO 141, EP02P Rothaupt K .O .,MO 139, EP02P Rotllant G .,ET11A-4, ET11A Rotondo F .,TH 281, RA21P Rotter S .,RA17A-3, RA17A Rotz C .,LC02B-6, LC02B Roucaute A .,MO 379, ET17P Roucaute M .,WE 147, RA15P, ET14-2,

MO 377, MO 379

Rougé L .R .,TU 333, ET02P Roupsard F .,TU 342, ET10P Rousseaux P .R .,MO 113, LC01P Rousseaux P .R .,MO 093, EM02P1 Roussel C .,TU 237, LC04P, TU 235 Rousselle P .,TH 262, RA17P, TH 173 Roux L .,EM01A-3, EM01A Rovira J .,WE 140, RA15P, TU 116, TU

266, EC05P, TU 267 Rowland S .J .,RA18-2, RA18, WEPC1-3,

WEPC1, WE 162, EP07A-5 Rowles T .K .,RA03-6, RA03 Roy P .O .,EM03-2, EM03, RA04A-1 Roy P .P .,MO 368, ET16P, MO 364 Rozier Y .,WE 097, RA12P Rubio-Piña J .,TU 405, ET11P Ruck W .K .L .,MO 301, ET12P, TU 061,

TH 335, Rüdel H .,WE 019, RA05P Rudén C .,RA21-4, RA21, TH 296 Rudolph I .,WE 004, RA01P Rueda-Márquez J .J .,THPC1-4, THPC1 Ruedel H .,RA12-3, RA12, TUPC5-5 Ruess L .,ET13B-2, ET13B Ruff M .,EP05-6, EP05, RA23A-2 Rufino C .,ET12B-5, ET12B Rufli H .,TH 002, ET03P Rugani B .,LC02A-3, LC02A, MOPC5-3,

MOPC5, MO 445, RA04B-3 Ruhnau C .R .,TU 430, ET11P Rumbold D .G .,WE 072, RA10P, WE 401,

ET18P Rung R .,EP04-1, EP04 Ruokojärvi P .,ET11C-5, ET11C Ruoss J .,WE 035, RA08P Ruppert K .,MO 450, RA11P, MO 449 Rusconi M .,TU 007, EP06P, WE 271 Rushton K .R .,EM02D-2, EM02D Rusina P .,MO 023, EC01P Russell D .,ET12B-2, ET12B Rutgers M .,ET12B-1, ET12B, SS06-7,

SS06 Rutler R .,TU 057, EP08P Ruus A .,TU 280, EC06P, SS08-1, SS08,

EC02A-1, Ruyters S .,MO 262, ET12P Ryan A .C .,RA20-5, RA20 Ryan J .,EP08C-4, EP08C Ryan T .A .,RA21-1, RA21 Rydberg TV,SS12-1, SS12 Rydén A .,MO 125, EP02P Ryu B .H .,MO 465, RA11P Ryu M .H .,EP06-6, EP06 Ryzhkov A .R .,TH 094, EC02P Rzodeczko H .,MO 151, EP02P

S Saarinen M .,TH 356, LC06P Saarivuori E .,MO 440, RA04P Sabater S .,TH 265, RA17P, SS05-3, SS05 Sabbe K .,TU 467, ET14P Sabbioni E .,WEPC5-2, WEPC5, TH 174 Sablayrolles C .,MO 101, LC01P Sablayrolles C .S .,WE 156, RA18P Sabo R .S .,WE 053, RA09P Sabourin L .,ET19A-5, ET19A Sabová L .S .,WE 053, RA09P Saccà M .L .,TH 192, EP03P2 Sadauskas-Henrique H .,WEPC4-6,

WEPC4 Sadilek J .,MO 036, EC01P Sadri S .S .,TU 025, EP07P, TU 024, EP07P

Saeed S .S .,TH 017, ET03P, TH 020 Saenen E,SS09-11, SS09, TU 194 Saenz M .E .,WE 357, ET15P Sáenz M .E .,MO 272, ET12P, TH 318,

RA23P Sáez R .,MO 118, LC01P, TH 339, LC03P Säfholm M .,EP08A-1, EP08A, MO 176,

EP02P Saggese I .,WEPC5-6, WEPC5 Sagristà E .P .,TU 041, EP08P Sahl Y .M .,WE 286, ET04P Saija G .,TH 355, LC06P Sakagami M .S .,LC05-1, LC05 Sakai Y .,MO 032, EC01P Sakka Y .,WE 225, EP03P1 Sakuragui M .M .,WEPC4-6, WEPC4 Sakurai T .,RA14-2, RA14, SS12-6, SS12,

WE 254, Sala S .,TU 234, LC04P, MOPC5-1,

MOPC5, TU 115, EM03P, SS01-2, SS01, RA08-4

Salamanca M .J .,TU 151, RA06P Salamova A .N .,EC05A-3, EC05A Salatas J .,MO 385, ET17P Salbu B .,WE 322, ET07P Salerno F .,WE 080, RA10P Sales D .,WE 426, EM01P Salieri B .,MO 434, RA04P Salieri B .S .,WE 183, EP03P1, WE 202,

EP03P1 Salinas C .,WE 395, ET18P Salla R .F .,ET06B-3, ET06B Sallaberry R .R .,MOPC4-6, MOPC4 Salmaso N .,WE 080, RA10P Salomone R .,TH 355, LC06P Salvadó J .A .,TH 089, EC02P Salvadó V .M .,TU 041, EP08P Salvador J .,WE 189, EP03P1 Salvadori E .,TH 168, EP03P2 Salvia M .V .,MO 396, ET19P, MOPC3-6,

MOPC3 Salvito D .,WE 133, RA15P Salvito D .,WE 008, RA01P Samara F .,TU 410, ET11P, TU 458 Samson B .,MO 133, EP02P Samson R .,LC04A-2, LC04A, MOPC5-4,

WE 465, Samuel A .,ET15A-5, ET15A San-Segundo L .,TH 005, ET03P, TH 058,

ET06P, TH 057, TU 353 Sanchez-Arguello P .,TU 353, ET10P Sánchez-Avila J .,TH 308, RA23P Sánchez-Barbudo I .S .,ET08-6, ET08 Sanchez-Bayo F .,ET18-6, ET18, MO 007,

WE 144, Sanchez-Canales M .,WE 307, ET05P Sánchez-Martín M .J .,EP08C-3, EP08C Sánchez-Osorio J .L .,MO 318, ET12P Sanchez-Pardo B .,WE 117, RA14P Sanchez-Prado L .,WE 421, EM01P, WE

174 Sanchez-Vila X .,SS05-3, SS05 Sanchez C .,ET11A-4, ET11A Sanchez W .,EP02A-3, EP02A, ET10A-5 Sanchez Ramirez P .S .,WE 447, LC02P Sanchís J .,EP03A-4, EP03A Sanchís J .S .,TU 254, EC05P Sander K .,MO 456, RA11P Sanders G .,MO 457, RA11P Sandheinrich M .B .,ET04B-3, ET04B Sandra C .,TH 100, EC03P Sanei H .S .,TH 091, EC02P

Page 75: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�4�SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Saner D .,MO 104, LC01P Sanka M .,MO 277, ET12P, ET12C-4,

ET12C Sanli K .,WEPC2-7, WEPC2 Sanni S .,WE 151, RA18P Sansoni B .T .,MO 435, RA04P Santana F .,TU 445, ET11P Santín G .,WE 004, RA01P Santo N .,WEPC5-7, WEPC5 Santo N .,EP04-4, EP04 Santoni J .B .,WE 097, RA12P Santore R .C .,RA20-5, RA20 Santoro S .,WE 037, RA08P Santorufo L .,MO 292, ET12P Santos-Santos E .,WE 069, RA10P Santos B .,TH 061, ET06P Santos B .,TH 019, ET03P, MO 251 Santos C .S .A .,TH 039, ET03P, TU 375,

ET11P Santos F .J .,ET11C-6, ET11C Santos J .C .P .,MO 284, ET12P Santos M .A .,WE 362, ET15P, WE 363 Santos M .J .G .,ET12A-4, ET12A Santos N .,MO 243, ET08P Santos N .,WE 236, EP04P Santos R .,ET10A-5, ET10A Saouter E .S .,MO 214, EP05P Sapiets A .,RA16-6, RA16 Sapp M .,WE 195, EP03P1 Sappin-Didier V .,MOPC1-1, MOPC1 Saquib Q .S .,WE 378, ET15P Saraiva P .M .,WE 088, RA12P Saravia A .,RA04B-4, RA04B Sardella G .,TH 092, EC02P Sargent E .V .,TU 209, RA20P Sarkis J .E .S .,WE 402, ET18P Sarmiento A .,TU 142, RA06P Sarmiento A .M .,TU 151, RA06P Sarotte L .,TU 331, ET02P Sarrà M .,THPC1-1, THPC1 Sarret G .,WE 268, ET04P Sarriá A .L .F .,WE 371, ET15P Sartorius K .P .,MO 108, LC01P Sas Paszt L .,EM02C-4, EM02C Sasaki S .T .,WE 266, ET04P Sastre S .,TH 005, ET03P Satapornvanit K .,MO 415, ET19P Sato Y .,TH 319, RA23P, TU 210, RA20P Sauer A .,ET12B-6, ET12B Saulnier N .,EP02C-5, EP02C Sauras T .,SS09P-5, SS09P Sauvé S .S .,TU 356, ET10P Sawyer P .,LC03-1, LC03 Sayers L .E .,MO 185, EP02P Sazykina T,SS09-1, SS09 Scanferla P .,RA02-5, RA02 Scarlett A .G .,RA18-2, RA18, WEPC1-3,

WEPC1, WE 162, Schaanning M .T .,TU 280, EC06P Schabacker J .,MO 458, RA11P, WE 052 Schaefer R .B .,MO 383, ET17P, ET15B-4,

ET15B Schaefers C .,ET03A-6, ET03A Schaeffer A .,MO 308, ET12P, TH 199,

EP03C-1, Schaeublin N .M .,WE 193, EP03P1 Schäfer K .,RA19-1, RA19 Schäfer R .,TU 470, ET14P Schafer R .B .,MO 015, EC01P Schäfer R .B .,MO 375, ET17P, ET14-4 Schäfers C .,TH 180, EP03P2, TH 016,

MO 154, MO 155

Schäffer A .,WE 179, EP03P1, WE 222, WE 380, TH 159, TH 203, TU 147, TH 245, MO 399

Schäffer A .,RA06-5, RA06, RA19-2, EC06B-6, ET15B-6, ET15B, WE 258, ET12A-6, TH 300, MO 252

Schaffer B .A .,TU 256, EC05P Schaffrath G .,EC01B-6, EC01B Schaldach R .,MO 109, LC01P Schatz S .,TU 355, ET10P Schaumann G .E .,TU 231, RA20P Schebek L .,MOPC4-6, MOPC4, MOPC4-

2, MO 108, MO 109, TH 342 Scheffczyk A .,MO 402, ET19P Scheffler A .,RA06-1, RA06 Scheib A .,EM01A-5, EM01A Scheib C .,EM01A-5, EM01A Scheider J .,ET03B-1, ET03B Scheifhacken N .,TH 124, EP01P Scheifler R .,MOPC1-1, MOPC1, RA14-6,

WE 110, Scheifler R .S .,ET08-3, ET08 Scheifler S .R .,ET15B-2, ET15B Schenk L .,WE 043, RA08P Schenke D .,WE 373, ET15P, WE 376,

ET15P, TH 257, ET15B-3 Schenker U .W .,LC06-1, LC06, TH 358 Schenten J .,RA03-2, RA03 Schenzel J .,ET13A-3, ET13A, MO 333,

ET13P, MO 334, ET13P, MO 332, ET13P,

Scheringer M .,WE 038, RA08P, SS12-4, SS12, SS12-7, WE 253, EM02A-4, EP06-1, EP03D-6, EM02A-6, EC05B-2,

Scherr F .,EM02C-6, EM02C Scherr K .E .,TU 284, EC06P Schiedek T .,MO 208, EP05P, MO 037 Schiel D .,TH 116, EC03P Schiesari L .,WEPC4-7, WEPC4 Schiller V .,TH 016, ET03P Schiller V .S .,MO 148, EP02P, MO 150 Schipper A .M .,RA18-5, RA18, RA17A-6 Schipper M .,EM02A-2, EM02A Schirmer K,SS11-6, SS11, SS11-4, TU 323,

TH 025, TH 022, TH 023, TU 324, Schirmer K .,WE 337, ET07P, WE 247,

RA15-2, RA15, ET15A-6, ET04C-5, ET03B-5, MO 193, MO 332

Schiwy A .H .,WE 222, EP03P1 Schlabach M .,TH 073, EC02P, SS08-3,

SS08 Schlechtriem C .,WEPC1-8, WEPC1 Schlechtriem C .,ET04C-3, ET04C Schlechtriem C .,WE 246, ET04P, WE 241,

ET04C-1, Schlekat C .,WE 018, RA05P Schlekat C .E .,WE 022, RA05P Schlenk K .,TU 176, RA07P Schlich K .,EP03C-6, EP03C, TH 180 Schlosser D .,WE 216, EP03P1 Schloter M .,ET19B-1, ET19B Schlünssen V .S .,EC05B-5, EC05B Schlüsener M .,MO 122, EP02P Schlüter C .,MO 096, EM02P1 Schlüter C .,MO 395, ET19P Schmelz R .,MOPC1-2, MOPC1 Schmid E .,TU 120, EM03P Schmidbauer R .,EC02A-4, EC02A Schmidt B .,MO 308, ET12P, MO 399, WE

380, ET15B-6, ET12A-6 Schmidt C .K .,TU 300, EC06P

Schmidt H .P .,MO 320, ET12P Schmidt K .,TU 149, RA06P, TU 159 Schmidt K .M .,EC01B-6, EC01B Schmidt R .,WE 383, ET15P, TH 010,

ET03P Schmidt S .N .,EC01B-2, EC01B Schmidt T .,ET06A-3, ET06A, WE 308 Schmidt T .W .,TH 054, ET06P Schmidt W .,TU 369, ET11P, WEPC2-1,

WEPC2, MO 205, EP08A-5 Schmidt W .F .,TU 256, EC05P, TU 257 Schmitt-Jansen M .,WE 204, EP03P1,

RA17A-3, TU 315, Schmitt C .,EP03B-5, EP03B Schmitt C .,MO 449, RA11P Schmitt H .,ET12B-2, ET12B, EP08B-3 Schmitt W .,TU 102, EM02P2, RA19-2,

WEPC6-3, Schmitz J .,RA19-1, RA19, TH 249 Schnee D .,TH 010, ET03P Schneider A .J .,TH 199, EP03P2 Schneider J .,MOPC3-2, MOPC3 Schneider L .,WE 309, ET05P Schneider S .,MO 162, EP02P Schneider S .C .,RA19-5, RA19 Schneider S .,EC01B-1, EC01B Schnell S .,MO 304, ET12P Schoeters I .,TU 223, RA20P, EM01B-5,

EM01B Scholz-Starke B .,ET12A-6, ET12A,

ET15B-6, ET15B, WE 258, TU 147 Scholz N .,TU 345, ET10P Scholz S,SS11-6, SS11, TH 003, TH 007,

TH 022, TH 214, ET03A-5, ET03A-4, Scholz S .,WE 204, EP03P1 Scholze M .,EP02B-2, EP02B Schönborn A .,MO 122, EP02P Schönfeld J .,MO 467, RA11P Schönlau C .,MO 129, EP02P Schotthöfer A .,TH 249, RA13P Schowanek D .R .,MO 083, EM02P1 Schramm K .W .,TH 028, ET03P, MO 018,

EC01A-1, Schreck E .J .,WE 268, ET04P, WE 013 Schreiber A .,LC03-2, LC03, MO 112 Schriks M .,MO 193, EP05P, EP02C-3 Schröder T .,MO 097, EM02P1 Schröter-Kermani C .,TU 137, RA03P, TU

133 Schubert S .,TUPC1-2, TUPC1 Schudoma D .S .,TU 126, RA02P, MO 474 Schueth C .,MO 037, EC01P Schuhmacher M .,WE 140, RA15P, SS05-3,

SS05, TU 015, MO 321, ET12P, WE 307, WE 306

Schuhmacher M .,MO 038, EC01P, TU 268, EC05P, TU 266, EC05P, TU 267, TU 116

Schulte-Oehlmann U .,MO 451, RA11P, MO 450, MO 449,

Schulte C .,TH 300, RA21P Schultz M .,TU 049, EP08P Schulz-Bull D .,TU 159, RA06P, EC01B-6 Schulz R .,MO 383, ET17P, ET15B-4,

ET15B, WE 232, WEPC5-5, TU 321 Schulz R .,RA23A-6, RA23A, ET14-1, TH

322, Schulz R .W .,MO 156, EP02P Schulz W .,MO 196, EP05P Schulze K .,MO 094, EM02P1 Schulze T .,MO 193, EP05P, MOPC3-7,

MO 211, MO 129, EP05-3

Page 76: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�44 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Schurig C .,MO 303, ET12P Schüßler W .,TU 088, EP08P Schüth C .,MO 208, EP05P Schüttrumpf H .,RA06-5, RA06 Schüürmann G .,ET15B-4, ET15B, SS10-6,

SS10 Schüürmann G .,EM02A-4, EM02A, MO

050, EM02P1, MO 051, EM02P1, TU 130, ET04C-3, MO 370

Schüürmann G .,TH 040, ET03P, TH 041, TH 042,

Schwab F .,TH 181, EP03P2, RA08-1, RA08

Schwabe F .,WE 196, EP03P1 Schwabe K .,ET15B-3, ET15B, RA16-4 Schwaiger K .,EP01A-5, EP01A Schwartz T .,TH 132, EP01P, RA23B-5 Schwarz-Schulz B .,RA12-2, RA12, WE 175 Schwarzbauer J .,EC06B-1, EC06B Schwenk K .,TU 321, ET01P Schwietzke S .,MO 422, RA04P Schwikowski M .,EC02A-6, EC02A Schymanski E .L .,EP05-6, EP05, RA23A-2,

MOPC3-7, Scott-Fordsmand J .J .,TH 193, EP03P2, TH

196, ET12A-5, EP03C-5 Scott A .,TU 444, ET11P Scott A .,ET19A-5, ET19A Scott P .D .,EP02B-4, EP02B Scott P .K .,MO 436, RA04P Scott P .M .,MO 126, EP02P Scott W .C .,TU 045, EP08P Scown C .,RA04A-3, RA04A Scown C .D .,LC04A-5, LC04A Scrimshaw M .D .,THPC1-5, THPC1 Scroggins R .,ET12C-1, ET12C, ET12C-2 Scroggins RP,SS06-5, SS06 Sebastiani E .,MO 351, ET13P Sebire M .,MO 132, EP02P Sedlak R .I .,MO 435, RA04P Seeland A .S .,MO 254, ET09P Seemann D .,MO 051, EM02P1 Seemann F .H .,MO 166, EP02P, MO 167,

EP02P, MO 141, EP02P Seena S .,WE 216, EP03P1, TH 185,

EP03P2 Seery C .R .,MO 406, ET19P Seery R .,RA17B-3, RA17B Segner H .S .,MO 150, EP02P Segovia-Zavala J .A .,TU 442, ET11P Segui X .,TU 116, EM03P, WE 004 Segura P .A .,MO 218, EP05P Seidel A .,MOPC4-3, MOPC4 Seike N .,TU 301, EC06P Seiler C .,TH 123, EP01P Seiler T .B .,RA06-4, RA06, EP05-3, EP05,

TU 149, Seiler T .B .,WE 030, RA08P, WE 027,

RA08P, MOPC2-6, MO 252, EC06B-1 Seiter J .,MO 045, EC04P Seiterle-Winn N .,TU 109, EM02P2 Seitz F .,WE 232, EP03P1 Seitz F .,WEPC5-5, WEPC5 Sejling I .,MO 172, EP02P Sejourne V .S .,LC06-3, LC06 Sela E,SS11-6, SS11 Selck H .,TH 190, EP03P2, TH 176, TH

178, TU 449, MO 466 Selonen S .,MO 295, ET12P Semenzin E .,TU 331, ET02P Semple K .T .,WEPC3-6, WEPC3, WE 385,

ET15P, WE 387, ET15P, EP03C-1

Semple K .T .,TUPC4-7, TUPC4, EC06A-6, EC06A

Sengl M .,TU 006, EP06P, MO 196 Seppälä J .,LC06-6, LC06 Serena F .,TU 032, EP07P Sergeant C,SS09-6, SS09 Sergio F .,MO 187, EP02P Seriki K .,TH 307, RA23P Serizawa S .,RA14-2, RA14, WE 254 Serpentini A .,TU 371, ET11P, TU 372, TU

077, Serre J .,EM02C-3, EM02C, MOPC5-8 Servos M .,ET07B-1, ET07B, RA23B-3 Seston R .M .,WE 259, ET04P, WEPC1-1,

WEPC1, ET04A-6, Setälä H .,MO 295, ET12P Seth H .,EP08C-5, EP08C Sett A .,TH 092, EC02P, EC02B-3, EC02B Seuntjens P .,EM02D-6, EM02D, EM02D-4 Seymour P .,WE 241, ET04P Sfiligoj B .J .,TU 420, ET11P Sforzini S .,ET11B-3, ET11B, TU 396, MO

274, Sfriso A .,MO 351, ET13P Sha S .,WE 304, ET05P Shah Q .A .,TH 130, EP01P Shahzad Q .,TU 410, ET11P, TU 458 Shalakmethova S .T .,TH 280, RA17P Shang H .W .,WE 313, ET05P Sharp E .A .,WE 166, RA22P Sharp R .J .,RA09-1, RA09 Sharpe A .D .,RA21-1, RA21, TU 332, MO

307, Shatalov V .,TH 082, EC02P Shaw J .,MO 250, ET09P, ET10B-2, ET10B Shea K .,TU 447, ET11P Sheehan D .,TU 369, ET11P, WEPC2-1,

WEPC2, WE 319, Shen J .,SS09-12, SS09 Shimizu A .,EP01A-2, EP01A, TU 058 Shimizu K .S .,WE 209, EP03P1 Shin-Ichi S .,RA17B-5, RA17B Shin-Ichi T .S .,TH 210, EP03P2 Shin K .S .,WE 305, ET05P Shinn H .,MO 381, ET17P Shintoyo A .,ET07A-6, ET07A Shiogiri N .S .,WE 353, ET15P Shiraishi F .,RA14-2, RA14 Shiraishi H .,RA14-2, RA14, MO 173, MO

147, WE 254 Shirota H .,WE 154, RA18P Shore R .F .,RA22-2, RA22, WE 170,

RA22P, WE 040, RA08P, WE 172, WE 075, TU 264, TUPC5-6,

Short J .S .,TH 277, RA17P Shrive J .,ET12C-3, ET12C Shuhaimi-Othman M .,WE 403, ET18P Shuping H .S .,WE 017, RA05P Sibley K .,TU 344, ET10P Sibly R .M .,WE 134, RA15P, SS07-3, SS07,

MO 269, RA15-5, RA14-5, WE 108 Siciliano S .D .,TU 222, RA20P, ET12C-5 Siddiqua K .A .,TH 055, ET06P Sié M .,TU 237, LC04P Siebe C .,EP08C-2, EP08C, TH 144 Siegrist H .,RA23B-5, RA23B Siemens J .,TU 002, EP06P, TH 144,

ET19A-3, ET19A-1, EP08C-2 Siemers A .K .,TU 061, EP08P Sieratowicz A .J .,MO 451, RA11P, MO

450, MO 449, Sierra J .,WE 140, RA15P

Sievers M .,EP05-3, EP05 Sigdel R .,TH 131, EP01P Sigg L .,WE 343, ET15P, TH 179, TU 324,

EP03A-6, WE 295, TH 181 Sigovini M .,RA10-4, RA10 Sigsgaard T .S .,EC05B-5, EC05B Siimes K .,MO 013, EC01P Silcock P .,TU 259, EC05P Silva-Zacarin E .C .M .,MO 174, EP02P,

ET06B-3 Silva A .R .,MO 263, ET12P, WE 375 Silva B .,WE 310, ET05P Silva C .,TU 384, ET11P Silva E .S .,MO 342, ET13P Silva J .,TU 445, ET11P Silva M .,MO 326, ET13P, ET13A-5,

ET13A Silva P .V .,MO 263, ET12P, WE 375 Silva R .M .,TH 061, ET06P Silva T .,TH 186, EP03P2 Silva Filho M .V .,MO 342, ET13P Silvenius F .,TH 356, LC06P Silvestre F .,WEPC2-2, WEPC2, ET07A-1 Silvestre J .,RA19-3, RA19 Silwana B .,WE 293, ET04P Sim W .J .,TU 055, EP08P Simanovska J .,WE 090, RA12P Simini M .,MO 063, EM02P1, MO 294 Simoes F .A .P .,RA23B-2, RA23B Simon A .,TH 203, EP03P2 Simon A .,EP03C-1, EP03C Simon B .S .,TH 349, LC03P Simon E .,EP05-1, EP05, MO 127 Simon O,SS09-3, SS09 Simon O .,TH 106, EC03P Simon S .,MOPC4-2, MOPC4 Simona M .,WE 080, RA10P Simonich S .,EC05A-6, EC05A Simons A .B .,MO 116, LC01P Simpson L .,ET11B-5, ET11B Simpson P .C .,EM01A-4, EM01A, WE 045,

RA08P, WE 018, RA05-6 Simpson S .,ET05-4, ET05, TU 436 Simpson S .L .,ET04B-1, ET04B, ET11C-1,

TU 172, WE 130 Sims I .,TUPC6-4, TUPC6 Sindelarova L .,MO 277, ET12P, ET12C-4,

ET12C Singer A .C .,EP08B-3, EP08B Singer C .,WE 039, RA08P Singer H .,EP05-6, EP05, RA23A-2, MO

210, Sinisgalli A .,WE 310, ET05P Sior S .,TH 326, RA23P Siracusa F .,RA08-5, RA08 Sircar T .,MO 165, EP02P Siringan A .T .,EP01A-2, EP01A Sisinno L .S .,MO 282, ET12P Sjollema S .,TU 456, ET11P Sjollema S .B .,TU 398, ET11P, TU 394,

ET11P Skahill B .E .,TU 175, RA07P Skakkebaek N .E .,MO 192, EP02P Skeaff J .M .,RA05-1, RA05 Skeaff J .M .,WE 020, RA05P, WE 022 Skipperud L .,WE 322, ET07P Skirrow R .S .,TH 157, EP03P2 Skjøth C .A .,EC05B-5, EC05B, TH 078 Skouloudis A .N .,EP03D-3, EP03D Skovgaard T .,TH 353, LC06P Skulcová L .,MO 277, ET12P, ET12C-4,

ET12C

Page 77: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�4�SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Slabber Y .,TH 105, EC03P Slagstad D .,RA18-6, RA18 Slaveykova V .,WE 074, RA10P Slaveykova V .I .,TH 183, EP03P2 Slenzka K .S .,WE 243, ET04P Sletta H .,RA18-4, RA18 Slim P .A .,RA19-6, RA19 Slingsby R .W .,MO 026, EC01P Slobodnik J .,MO 194, EP05P, MO 193,

MOPC3-7, Slobodnik J .S .,TU 306, EC06P Sloman K .A .,EP03B-2, EP03B Slootweg T .,EP05-2, EP05, MO 123 Slotton D .G .,ET04B-3, ET04B Smagghe G .,RA17B-6, RA17B, MOPC6-4 Smalla K .,ET19A-3, ET19A, TH 143 Smedes F .,MO 023, EC01P, MO 003, MO

002, MO 001, EC01B-5, ET01-2, TH 312,

Smernik R .,TH 332, RA23P Smidt H .,RA21-2, RA21 Smit C .E .,TH 282, RA21P Smit C .E .,MO 476, RA11P, MO 477,

RA11P, TH 283, RA21P, RA21-3 Smit J .,ET05-5, ET05 Smit M .G .D .,RA18-5, RA18 Smit N .J .,ET05-1, ET05, TH 258, RA17P Smith A .,WE 057, RA09P Smith A .J .,MO 132, EP02P, MO 449,

EP08B-6, EP08B, RA23B-4 Smith D .S .,MO 126, EP02P Smith E .,EC05A-5, EC05A Smith K .E .C .,TU 294, EC06P, TU 295,

EC06P, TU 293, MO 064, EC01B-2, MO 034

Smith K .E .C .,EC06A-4, EC06A, TUPC4-6, TUPC4

Smith R .E .W .,ET04B-1, ET04B, ET02-5 Smittenberg R .,MO 303, ET12P Smol J .P .,EC02A-5, EC02A Smolders E .,MO 262, ET12P, WE 128,

RA15P, TH 332, MO 463, TH 035 Smolders V .,WE 278, ET04P, SS09-9, SS09 Snape J .R .,TU 066, EP08P Snelling Berg M .,TU 398, ET11P Snider J .,TU 049, EP08P Snodgrass J .W .,EC04-4, EC04 Snoj Tratnik J .,RA10-3, RA10 Snyman R .G .,TH 105, EC03P, TU 389,

ET11P, TU 200, WE 129, WE 285 So M .Y .,WE 304, ET05P Soares A .,RA23B-2, RA23B Soares A .M .V .M .,TU 358, ET10P, TU 156,

TU 349, TU 082, TU 348, TU 094, TU 375,

Soares A .M .V .M .,MO 153, EP08P, MO 328, ET13P, MO 157, ET18P, MO 251, TU 386, TU 387, TU 402, TU 362

Soares A .M .V .M .,WE 230, EP03P1, WE 392, WE 231, WE 220, WE 221, WE 393

Soares A .M .V .M .,ET12A-4, ET12A, ET01-4, ET12A-5, EP03C-5, ET18-1

Soares A .M .V .M .,TH 196, EP03P2, TH 018, TH 039, TH 275, TH 066, TH 019

Soares A .M .V .M .,TH 200, EP03P2, TH 273, TH 056, TH 272, TH 061

Soares A .M .V .M .,WE 397, ET18P, WE 327, EP02P, WE 429, ET03P, WE 215, WE 281

Soares F .L .F .,MO 336, ET13P

Soares Carolla J .,MO 180, EP02P Soave C .,THPC1-2, THPC1 Sobanska S .,WE 268, ET04P Sobek A .,EC02B-4, EC02B Sobrino-Figueroa S .,TU 319, ET01P, TU

318, ET01P, TU 154, RA06P, TU 153, RA06P, TU 171, RA07P

Soeiro V .,MO 243, ET08P Soeltl T .M .,WE 396, ET18P Soetaert K .,TH 086, EC02P Soeter A .M .,RA21-6, RA21 Sofianou K .,RA10-3, RA10 Sofield R .,TH 179, EP03P2 Sofowote U .M .,TH 079, EC02P Soge O .O .,EP01A-1, EP01A Soimakallio S .,MO 440, RA04P Sokka L .,MO 440, RA04P Sokull-Kluttgen B,SS03-2, SS03 Solga A .,TU 186, RA19P Somerset V .S .,WE 293, ET04P Sommaruga R .,WE 207, EP03P1 Song Y .,WE 322, ET07P Song Y .,ET03B-4, ET03B Sonnack L .,TH 180, EP03P2 Sonne C .,TU 012, EP06P Sonnemann G .,LC07-1, LC07 Sonnemann W .,LC02A-1, LC02A Soprani C .M .,TH 316, RA23P Sorensen M .,TH 246, RA13P, ET09-3 Sørensen M .S .,EC05B-5, EC05B Sørensen S .J .,ET12B-3, ET12B Soria M .E .,MO 347, ET13P Soriano I .M .,TH 060, ET06P Sörme C .M .,RA04A-6, RA04A Sornat R .E .,TU 224, RA20P Sørum H .S .,TH 130, EP01P Sosa R .B .,WE 310, ET05P Sosak-Swiderska B .S .,MO 306, ET12P Soto M .,TU 134, RA03P, TU 170, TH 175,

ET03B-2 Souissi A .S .,MO 142, EP02P Souissi S .S .,MO 142, EP02P Soulier C .,EC06B-2, EC06B Sousa A .C .A .,WE 089, RA12P, TU 364,

TU 177, Sousa J .A .,MO 336, ET13P Sousa J .P .,RA11-5, RA11, ET12B-5, TU

472, ET15B-5, WE 131, TU 193 Sousa J .P .,MO 285, ET12P, MO 276, MO

283, MO 267, MO 284, MO 287 Sousa S .C .D .E .,MO 414, ET19P Souza K .B .,WE 320, ET07P Sovadinova I .,EP02C-2, EP02C, TH 008 Sowig P .,TU 186, RA19P, WEPC6-3 Soyka T .,MO 471, RA11P Spaak P .,WE 263, ET04P Spangenberg J .,RA10-4, RA10 Spanik I .S .,TH 310, RA23P Spann N .,WE 270, ET04P Sparks C .,TU 389, ET11P Spasic S .M .,MO 389, ET17P Spence W .J .,WE 070, RA10P Spickermann G .,MO 095, EM02P1 Spijker J .,TH 247, RA13P Spinosa H .S .,MO 357, ET13P Spinsanti G .,EP02A-5, EP02A Spira D .,MO 122, EP02P Spiric Z .,RA10-3, RA10 Spiro S .B .,TU 247, EC05P Spiteller M .,ET19A-2, ET19A, MO 400,

MO 457, Spitzner E .C .,WE 159, RA18P, TH 044,

ET03P, TH 170, EP03P2, WE 160, RA18P, WE 161

Spokas K .,TUPC4-5, TUPC4 Spotorno M .,TU 204, RA19P Springer A .,EP02C-5, EP02C Springer A .,WE 212, EP03P1 Springer T .,MO 162, EP02P Sprovieri F .S .,RA10-2, RA10 Spurgeon D .,MO 257, ET09P, SS06-6,

SS06, TH 213, Spurgeon D .J .,ET10B-1, ET10B, ET07B-6 Spurgeon D .S .,TH 204, EP03P2 Sribuddhachart K .,TH 064, ET06P, TH

065, ET06P Srivastava C .,ET16-6, ET16 St .John T .S .,RA10-5, RA10 Stachel B .,RA06-4, RA06 Stackelberg von K .E .,RA14-4, RA14 Stadnicka J .,ET03B-5, ET03B Städtler T .,RA09-6, RA09, MO 297,

ET12P Städtler T .,TH 255, RA16P, TH 256,

RA16P Stafford J .,TH 208, EP03P2 Stafford J .,WE 233, EP03P1 Stahl R .,TU 174, RA07P Stahl R .G .,ET09-5, ET09 Stahl T .,EP06-2, EP06, TU 014, TUPC1-2, Stahl, Jr . R .G .,MO 249, ET09P Stähler M .,ET15B-3, ET15B, RA16-4 Stahlschmidt P .,WE 058, RA09P Stalder S .T .,EP01A-6, EP01A Stalder T .S .,TH 129, EP01P Stampfli N .C .,TU 468, ET14P, TU 463 Stan I .S .,WE 243, ET04P Standaert S .,LC05-5, LC05, LC01A-1 Stanghellini C .,EM02C-4, EM02C Stankovic S .,TU 226, RA20P Stanton K .L .,MO 435, RA04P Staples A .,WE 135, RA15P, TU 345,

ET10P Staples C .A .,TH 301, RA21P Stark J .,RA01-3, RA01 Stark J .D .,MO 380, ET17P, SS07-2, SS07 Stark J .S .,RA01-4, RA01 Stark K,SS09-4, SS09 Stasinakis A .S .,TU 003, EP06P, TU 005,

EP06P Stathi A .,MO 165, EP02P Stauber J .L .,ET05-4, ET05, ET09-5 Steber J .,TH 300, RA21P Steckel S .,EP04-6, EP04 Steeger T .,MOPC6-1, MOPC6 Steevens A .,EP03D-5, EP03D Steevens J .A .,WE 190, EP03P1 Stefan S .,ET04C-2, ET04C, WE 244,

ET04P Stefani S .,TH 124, EP01P Stefania S .,EP01B-1, EP01B Stefaniak S .,TH 099, EC03P Stefanska J .,TU 054, EP08P Steffens S .,TH 013, ET03P Steinbach C .,TH 214, EP03P2 Steinbach C .,TU 075, EP08P Steiner F .,MO 417, ET19P Steiniger D .,MO 065, EM02P1, TU 273,

EC05P Steinmann Z .,LC04B-5, LC04B Stemmler I .,EC05B-3, EC05B, MO 072,

EM02P1, MO 071, Stencel A .,TU 049, EP08P Stenseth N .C .,WE 007, RA01P

Page 78: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�46 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Stenzel A .,MO 049, EM02P1 Stepankova T .,MO 354, ET13P Stephenson G .L .,TU 222, RA20P Stephenson L .,ET12C-3, ET12C Stepien K .,MO 201, EP05P Stermann R .,LC01A-5, LC01A Stern G .,TH 091, EC02P Stern G .A .,EC02A-3, EC02A Steurbaut W .,EM02C-4, EM02C Stevani C .,MO 371, ET16P Stevani C .V .,MO 299, ET12P Stevens S .,TU 174, RA07P Stevenson L .,MOPC2-8, MOPC2 Stewart A .,RA22-6, RA22 Stewart K .M .,TU 066, EP08P Stibany F .,TH 159, EP03P2, EP03C-1 Stibilj V .,TU 201, RA19P Stichnothe H .,MOPC4-3, MOPC4 Stinson J .,RA17A-2, RA17A Stintz M .,TH 189, EP03P2 Stöckli S .,WE 115, RA14P Stockton T .,MO 388, ET17P Stoks P .,EP05-2, EP05 Stoll S .,WE 198, EP03P1 Stolpe B .,WE 195, EP03P1 Stolz V .,ET15A-5, ET15A Stone V .,TH 177, EP03P2 Storch S .,TU 150, RA06P Storck F .R .,TU 300, EC06P Storm P .,MOPC5-6, MOPC5 Størseth T .R .,RA18-4, RA18 Strachan P .,LC01B-3, LC01B Stråe D .,TU 036, EP08P Straka J .,WE 252, ET04P Straker C .J .,TH 101, EC03P Strakova L .,MO 036, EC01P Strand P,SS09-1, SS09, SS09-2, SS09 Strand S .,TU 049, EP08P Stransky C .,ET11B-4, ET11B Strassemeyer J .,WE 107, RA14P, WE 119 Straub J .O .,TU 064, EP08P Strauch K .,ET15B-6, ET15B, WE 258,

ET04P Strauss T .,ET14-6, ET14, TU 462 Stravs M .,EP05-6, EP05, RA23A-2 Streck G .,MO 129, EP02P Streck H .G .,MO 011, EC01P Strecker R .,TH 001, ET03P, TH 009, TH

012, Strecker R .,ET03A-1, ET03A Streissl F .,MOPC6-1, MOPC6, RA09-1,

TH 243, MOPC6-3 Strempel S .,WE 253, ET04P, EM02A-4 Stresius I .,WE 046, RA08P Stringer R .G .,MO 469, RA11P Strittmatter R .,WE 107, RA14P Strižak Ž .,TU 377, ET11P Strobel B .W .,ET13A-2, ET13A Strogen B .,LC04A-5, LC04A Strøm H .,TUPC1-5, TUPC1 Strømman A .,LC01B-2, LC01B Struijs J .,RA20-4, RA20, EM03-3 Stubblefield W .A .,WE 020, RA05P Stuckey V .,WE 169, RA22P, RA16-2,

RA16 Stummeyer J .,WE 418, EM01P Sturdy L .A .,TU 125, RA02P Sturm R .,TH 074, EC02P, TU 242, TU

009, TU 460, MO 207, WE 384 Sturve E .L .,ET07A-5, ET07A Sturve J .,MO 165, EP02P, MO 158,

EP02P, WE 320,

Stutt E .,WE 045, RA08P Stuyfzand P .J .,TU 008, EP06P Styrishave B .,TH 084, EC02P Su Y .,TH 079, EC02P Suares Rocha P .,TU 150, RA06P, TU 152,

RA06P Suarez P .,TH 357, LC06P Suarez S .,WE 069, RA10P Subedi B .,TU 308, EC06P Suchail S .,WE 372, ET15P Suciu N .,TU 116, EM03P Sugaya Y .,TH 319, RA23P, TU 210,

RA20P Suh S .,LCO1B-4, LC01B Suh S .,TU 119, EM03P, MO 429, RA04P Sühring F .R .,TU 460, ET11P Suidan M .T .,TU 296, EC06P Sumida P .Y .G .,MO 019, EC01P Summers H .M .,RA17A-2, RA17A, TH

259, RA17P Sumpter J .P .,TU 097, EP08P, EP08A-3 Sun L .,EC05A-5, EC05A Sun M .Y .,TH 263, RA17P Sun T .Y .,WE 180, EP03P1 Sundberg H .,TU 206, RA20P Sundelin B .,TU 355, ET10P Sundt R .C .,TU 381, ET11P Sungthong R .,MO 261, ET12P, TU 286 Supino S .,TH 355, LC06P Sur R .,TU 102, EM02P2, MO 094 Surdyk N .,WE 147, RA15P Süßenbach D .,RA11-1, RA11 Suter M .,TU 324, ET01P Suter M .J .F .,TU 364, ET11P Sutherland D .S .,TH 193, EP03P2 Suuberg E .M .,MO 005, EC01P Suutari A .,ET11C-5, ET11C Suzuki G .,EP02C-4, EP02C, TU 163 Suzuki N .,RA14-2, RA14, SS12-6, SS12,

TUPC2-1, WE 111, WE 254 Suzuki S .,TH 126, EP01P, TU 058, EP01A-

3, EP01A-2 Svanes E .,MO 421, RA04P Svanström M .,TH 340, LC03P Svendsen C .,MO 257, ET09P, TH 200, TH

213, Svendsen C .S .,TH 204, EP03P2 Svensson-Stadler L .,TH 127, EP01P Svensson U .J .,TU 072, EP08P Sverko E .,TH 079, EC02P, TH 085,

EC02P, EC02B-3, Swarowsky K .,TH 243, RA13P Swart C .,TH 116, EC03P Sweeney P .,TU 111, EM02P2 Sweeney P .J .J .,RA16-6, RA16 Sweet L .I .,SS10-3, SS10 Sweetman A .J .,EC01A-4, EC01A, MO

039, EC01P, TUPC3-8, Swierkot A .,MO 151, EP02P Syberg K .,MO 466, RA11P Syberg K .,TH 190, EP03P2 Sychrova E .,MO 354, ET13P, MO 338 Szalinska E .,EM01A-2, EM01A Szegedi K .,WEPC3-5, WEPC3 Szentes C .,RA09-1, RA09 Szentes C .S .,MOPC6-3, MOPC6 Szewczyk A .M .,TU 224, RA20P Szita Toth K .,LC02B-3, LC02B Szoecs E .,MO 383, ET17P

T Taborda-Barata L .,WE 089, RA12P

Tacão M .,TH 128, EP01P Tachibana L .,WE 412, ET18P Tacita J .,WE 097, RA12P Tack K .,WE 013, RA05P Tadele K .,TUPC1-7, TUPC1 Tadele K .,EP02C-4, EP02C Tadeu D .,WE 310, ET05P Tagami K,SS09-10, SS09, SS09P-2 Tagliapietra D .,RA10-4, RA10 Tagun R .T .,TU 212, RA20P Tahara K .,MO 439, RA04P Taibi S .T .,TU 333, ET02P Tailliez A .P .F .,WE 277, ET04P Taisen I .,MOPC2-4, MOPC2 Takada H .,EP07B-5, EP07B, TU 058,

EP08P, TU 027, EP07P, EP01A-2 Takahashi H .,TH 211, EP03P2 Takahashi S .,MO 183, EP02P, WE 089,

TU 364, TU 177, TU 163 Takanobu H .,MO 147, EP02P, WE 358 Takasu H .,EP01A-3, EP01A, TH 161, TH

163, Takei H .T .,WE 209, EP03P1 Takeshita A .,TU 058, EP08P Takeuchi A .,TH 319, RA23P, TU 210,

RA20P Takigami H .,EP02C-4, EP02C Takuto T .,TH 163, EP03P2 Talbot A .T .,RA23B-6, RA23B Talbot G .,ET19A-5, ET19A Talinli I .T .,RA02-2, RA02 Tallini K .T .,TU 476, ET14P Tallkvist J .T .,TU 017, EP06P Talva R .,TU 103, EM02P2 Tam S .,WE 136, RA15P Tamborrini P .T .,WE 443, LC02P Tamis J .E .,WE 153, RA18P Tamminen M .,EP01A-3, EP01A Tamtam F .A .T .I .M,TU 453, ET11P Tamura I .,WE 368, ET15P Tan-Un K .C .,WE 304, ET05P Tanabe S .,MO 183, EP02P, WE 089, TU

364, TU 177, TU 163 Tanaka K .,EP07B-5, EP07B Tanaka Y .,TU 343, ET10P, RA17A-4,

RA17A Tang J .,MOPC3-5, MOPC3 Tang J .,TU 059, EP08P, ET11B-1, MO

207, WE 384 Tangermann L .,TH 335, RA23P Tanguay L .,EP04-2, EP04 Tanguay R .,EP04-1, EP04 Tanigawa T .,MO 029, EC01P Taniguchi S .,TU 420, ET11P, TU 243, TU

435, TU 426, TU 422, TU 445, MO 019,

Taniguchi S .T .,WE 262, ET04P, WE 266, WE 402,

Tanneberger K,SS11-6, SS11, TH 022 Tao S .,ET09-1, ET09 Tappe W .T .,ET19A-4, ET19A Tarazona J . V .,SS02-6, SS02 Tarazona Jose,SS11-1, SS11 Tardif F .,WE 186, EP03P1 Tarnowska K .,TH 262, RA17P Tarricone K .,TUPC5-5, TUPC5, TU 136 Tashiro Y .T .,MO 010, EC01P Tatarazako N .,TH 319, RA23P, TU 210,

RA20P, WE 111, WE 358, MO 147 Tate S .P .,WE 381, ET15P Tatsuta H .,TU 343, ET10P Taub F .,MO 382, ET17P

Page 79: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�4�SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Taugbøl A .,MO 169, EP02P Tauler R .,TH 308, RA23P, EC05B-6 Taylor A .,WE 143, RA15P, TU 183,

RA19P Taylor A .M .,WE 130, RA15P Taylor I .,MO 175, EP02P Taylor M .,TU 366, ET11P Taylor M .J .,WE 166, RA22P Taylor R .J .,WE 073, RA10P Taylor T .J .,WE 459, LC05P Tchung-Ming S .,LC01A-2, LC01A Teasdale P .R .,EC01A-5, EC01A Tebbe C .C .,ET12B-6, ET12B Techer D .,WE 214, EP03P1 Técher D .E .,TUPC6-8, TUPC6, MO 312,

ET12P Tedesco S .,ET07A-4, ET07A Tediosi A .,EM02D-2, EM02D Teehan P .L .,LC03-5, LC03 Tehrani -Sharif M .,WE 303, ET05P Teien H .C .,WE 322, ET07P Teigeler M .,MO 154, EP02P, MO 155 Teixeira C .,TH 075, EC02P Teixeira C .,WE 412, ET18P Teixeira E .,TH 186, EP03P2 Teixeira de Sabóia-Morais S .M .T .,WE 359,

ET15P Teixido M .,EC06B-3, EC06B Tejamaya M .T .,WE 226, EP03P1 Tejeda-Agredano M .C .,TU 287, EC06P,

TU 288, EC06P Telfer T .C .,EP01B-2, EP01B Tellier S .,TU 103, EM02P2 Tello A .,EP01B-2, EP01B Telscher M .,MO 309, ET12P ten Brink M .,MO 388, ET17P ten Broek R .,MO 123, EP02P ten Hulscher T .E .M .,MO 476, RA11P, MO

477, RA11P Tendall D .,RA04B-2, RA04B Tendler B .J .,TU 148, RA06P Tendler B .T .,TH 277, RA17P Tennekes H .A .,WE 144, RA15P Teodorovic I .S .,TUPC6-3, TUPC6, TU 182 ter Laak T .,WE 192, EP03P1 Ter Laak T .L .,EC01A-6, EC01A, MO 008,

EC01P Teran D .,MO 091, EM02P1 Terekhova A .,TH 034, ET03P, TU 309,

EC06P Terekhova V .A .,TH 104, EC03P, TH 195 Terezan A .P .,WE 371, ET15P Ternes T .,TH 329, RA23P Terrado M .,TH 265, RA17P, WE 307 Terytze K .,EP03C-6, EP03C, TU 278 Terzaghi E .,MO 073, EM02P1 Terzuoli G .,TH 158, EP03P2 Tessier E .,ET05-6, ET05 Tessmann M .,EC02A-4, EC02A Teta C .,EP02A-6, EP02A Tête N .P .M .,WE 110, RA14P Tetreault G .,ET07B-1, ET07B Tetreault R .,RA23B-3, RA23B Teubner D .,TUPC5-5, TUPC5, TUPC5-1,

TU 136, Thaens D .,TH 040, ET03P Thain J .,ET11B-6, ET11B Thain J .,ET11A-1, ET11A Thas O .,ET10A-2, ET10A Theißen B .,RA16-5, RA16, MO 265,

ET12P, EM02C-6, Thenie J .,LC01A-3, LC01A

Theodorakis C .W .,WE 413, ET18P Theodorakopoulos N,SS09-6, SS09 Thepsithar C .,TH 064, ET06P, TH 065,

ET06P Thera J .C .,WE 401, ET18P Thiebat F .,WE 462, LC05P Thiele-Bruhn S .,ET12B-4, ET12B, ET19A-

6 Thiele B .T .,ET19A-4, ET19A Thielsch A .,TU 321, ET01P Thienpont B .,EP02A-1, EP02A Thienpont J .R .,EC02A-5, EC02A Thijs N .,TU 398, ET11P Thingaud-Sequeira A .,EP02A-1, EP02A Thit A .,TH 178, EP03P2 Thoeni L .,WE 196, EP03P1 Thoisy-Dur F .C .D .,TU 333, ET02P Thoma G .,MO 443, RA04P Thoma G .J .,MO 442, RA04P Thomaidis N .S .,TU 003, EP06P, TU 005,

EP06P Thomas D .,TU 174, RA07P Thomas J .,TUPC4-7, TUPC4, EC06A-6,

EC06A Thomas K .,TU 364, ET11P, WE 207, MO

193, Thomas K .V .,MO 209, EP05P, TU 427,

WE 224, WE 197 Thomas L .,TU 174, RA07P Thomas O .,MO 028, EC01P Thomas P .C .,TU 126, RA02P, TH 288, TH

295, TH 299 Thomas P .J .,WE 172, RA22P Thomas T .E .,EC05B-5, EC05B Thomé J .P .,ET18-4, ET18 Thompson H .,RA16-1, RA16, RA16-3 Thompson H .M .,MOPC6-4, MOPC6 Thompson J .,EC01A-3, EC01A Thompson R .C .,TU 024, EP07P, TU 025,

EP07A-5, Thomsen M .,TH 248, RA13P, WE 463 Thomsen M .T .,MO 437, RA04P Thomson B .C .,ET12B-1, ET12B Thorbek P .,RA15-3, RA15, RA15-4,

RA22-1, RA01-5, RA15-5, MO 269 Thorbek P .,WE 001, RA01P, WE 134,

RA15P, SS07-3, SS07-1 Thorsén G .,TU 081, EP08P Thorsen M .K .,ET12B-3, ET12B Thoustrup Saber A .,EP03D-3, EP03D Thouvenot T .,EC01C-4, EC01C Thullner M .,EC06B-5, EC06B, TU 295 Thumm E .,MO 395, ET19P Tiede K .,EM02D-3, EM02D Tien H .,TU 116, EM03P Tietjen L .,RA03-2, RA03 Tieyu W .T .,WE 419, EM01P, WE 435 Tigistu-Sahle F .,MO 060, EM02P1 Tiktak A .,EM02C-5, EM02C Timmer N .,TH 031, ET03P Tin K .,MOPC2-8, MOPC2 Tindall A .,MO 193, EP05P Tiruta-Barna L .,TH 352, LC06P, MO 445,

LC05-3, RA04B-3 Tixier C .,MO 001, EC01P Tixier T .,ET19B-4, ET19B Tlili A .,EP03C-2, EP03C Tobias T .H .,WE 263, ET04P Tobor-Kaplon M,SS11-6, SS11 Tochigi S .,TH 212, EP03P2 Todd T .L .,TH 103, EC03P Todorov M .,ET16-5, ET16

Todorovic D .,WE 257, ET04P Toefy R .,TU 397, ET11P Togola A .,WE 147, RA15P, MO 001 Toledo-Silva G .,TU 417, ET11P, WE 365,

ET15P Tollefsen K .E .,TH 003, ET03P, WE 322,

TU 373, TH 289, RA21P, MOPC2-1, RA18-4

Tollefsen K .E .,TH 029, ET03P, TH 023, ET03P, ET03B-4, TU 427, MO 271

Tompsett A .R .,EP02A-2, EP02A Tong S .K .,ET03A-5, ET03A Tongo I .,ET06A-1, ET06A, WEPC4-4, WE

394, Tooi O .,ET06B-5, ET06B Topcu A .,MO 040, EC01P Topp E .,MOPC1-2, MOPC1, ET19A-5 Topping CJ,SS07-5, SS07 Topuz E .T .,RA02-2, RA02 Tornés E .,TH 265, RA17P Tornisielo V .,WE 406, ET18P Tornisielo V .L .,WE 360, ET15P, WE 407 Torras Ortiz S .,LC05-2, LC05 Torre A .,WE 318, ET07P Torrents A .,TU 257, EC05P Torres J .P .M .,RA12-4, RA12 Torres Z .,WE 073, RA10P Torres de Miranda C .T .,WE 359, ET15P Torrijos M .,MO 280, ET12P, MO 279 Tortajada R .,EC01B-4, EC01B Tortelli T .S .,TH 044, ET03P Toschki A .,ET12B-2, ET12B Toschki A .,ET12A-6, ET12A Tosh D .G .,WE 170, RA22P Toshinobu O .T .,TH 210, EP03P2 Toso D .T .,WE 443, LC02P Totaro S .,WEPC5-2, WEPC5 Tourinho S .,TH 200, EP03P2 Tournier M .,TU 043, EP08P, MOPC3-1,

MOPC3 Tournier M .T .,MO 203, EP05P Traas T .,WEPC1-8, WEPC1 Trabue S .,TU 257, EC05P Track T .,ET12A-2, ET12A Tracy B .,SS09-12, SS09 Tran L .,EP03D-4, EP03D Tranvik L .,WE 207, EP03P1 Trapp J .,TH 173, EP03P2 Trapp M .,TU 104, EM02P2, TU 106 Trapp M .T .,EM02B-5, EM02B Trapp S .A .J .,EM02C-3, EM02C, EM02B-

5, ET16-2, EC06A-4, EC06A, TUPC4-6, TU 294, MO 064,

Traunspurger W .,ET12B-6, ET12B, TH 036

Travis K .Z .,TU 111, EM02P2 Tremblay L .A .,EP02B-4, EP02B Tremolada P .,EM02B-6, EM02B, TU 100,

EM02P2, WEPC5-7, Trenti I .,ET10B-4, ET10B Trenti I .T .,TU 352, ET10P Trevisan M .,TU 116, EM03P Trevors J .T .,ET12C-2, ET12C Triffault-Bouchet G .E .,TH 284, RA21P,

TH 291, RA21P Trimbos K .B .,WE 054, RA09P Trischitta F .,WE 318, ET07P Trobajo R .,TU 470, ET14P Troiani H .T .,TU 199, RA19P Trollope H .T .,TU 097, EP08P Trombetti M .,EM02B-1, EM02B, MO

069, EM02P1, MO 070, EM02P1, TU

Page 80: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�4� SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

115 Trombini C .,TU 085, EP08P Tronchère X .,TH 026, ET03P Tronczynski J .,TU 010, EP06P, MO 001,

EC01P Truchetet D .,WE 171, RA22P Trudewind C .A .,MO 112, LC01P Trümper M .,EC02A-4, EC02A Trusevich V .V .,TU 388, ET11P Tsai J .W .,WE 275, ET04P Tschiersch J .,SS09-12, SS09 Tse A .,TH 167, EP03P2 Tse A .C .K .,TU 414, ET11P, MO 134 Tsuda N .,TU 020, EP06P Tsutsumi Y .,TH 211, EP03P2, TH 212 Tucca F .,WE 261, ET04P Tuckwell R .J .,TH 146, EP01P Tue N .M .,TU 163, RA06P Tuhvatshin R .R .,WE 424, EM01P Tunic T .O .,TU 182, RA19P Tunic T .T .,TUPC6-3, TUPC6 Tuoriniemi J .,WE 194, EP03P1 Turcanu C .,SS09-12, SS09 Turcotte P .T .,TH 157, EP03P2 Turgut C .T .,WE 099, RA12P, WE 374 Turk Sekulic M .M .,TU 306, EC06P, TU

263, TU 096, Turker G .,MO 410, ET19P Turner A .,TU 383, ET11P Turóczi B .,TUPC3-3, TUPC3 Tusseau-Vuillemin M .H .,MO 017, EC01P,

WE 242 Tutu H .,ET05-6, ET05, TH 101 Twardowska I .,TH 099, EC03P Twining J .,ET04B-1, ET04B Tyler C .R .,RA21-1, RA21 Tysklind M .,TH 076, EC02P

U Ubani S .,MO 300, ET12P Uchenna O .,TUPC4-7, TUPC4, EC06A-6,

EC06A Uchida S,SS09-10, SS09, SS09P-2 Udaka A .,TH 211, EP03P2 Uebers U .,MO 313, ET12P Ugaya C .M .,LC02A-1, LC02A Uher E .I .,MO 017, EC01P Uji M .,TH 211, EP03P2, TH 212 Ulhaq M .U .,TU 017, EP06P Ullah S .,EP06-5, EP06 Ullmann D .A .,EC01B-6, EC01B Ulrich N .,MO 200, EP05P, EP05-3 Ulrich R .,MO 442, RA04P Ulrich U .,TU 113, EM02P2, RA14-1 Umbuzeiro G .A .,TU 228, RA20P, TU 033 Umirah N .S .,WE 403, ET18P Umlauf G .,RA06-4, RA06 Unice K .M .,WE 427, EM01P, MO 436 Uno S .,ET07A-6, ET07A Unrine J .,SS03-3, SS03 Unuabonah E .I .,TU 299, EC06P Urban J .,TU 440, ET11P Urbaszek P .,WE 238, EP04P Urrestarazu P .F .,RA05-2, RA05, RA05-3 Urrutia R .,EP02C-1, EP02C Urushitani H .,MO 173, EP02P Usluy M .U .,WE 374, ET15P Usseglio-Polatera P .,MO 373, ET17P Usva K .,TH 356, LC06P Uthicke S .,RA17B-2, RA17B Uytterhaegen L .,MO 453, RA11P

V Vaccari M .,TH 281, RA21P Vacchi I .,TU 228, RA20P Vacha R .,MO 277, ET12P, ET12C-4,

ET12C Vadenbo C .O .,MO 106, LC01P Vahcic M .,WE 071, RA10P Vaj C .,TUPC1-8, TUPC1 Vakra L,SS02-6, SS02 Valdés J .,TU 409, ET11P Valdés M .E .,TH 109, EC03P Valdés N .J .,WE 356, ET15P Valdivia S .,LC07-1, LC07 Valdivia S .M .,LC02A-1, LC02A, LC07-2,

LC07, LC07-5, Valent F .,RA10-3, RA10 Valentini M,SS11-1, SS11 Vallejo R .,SS09P-5, SS09P Vallverdú N .,MO 245, ET08P Valor-Herencia I .,MO 321, ET12P Valor I .,MO 001, EC01P Valsami-Jones E .,WE 200, EP03P1, TH

176, MO 466, Valsami-Jones E .V .A .,TU 162, RA06P Valsaraj K .T .,TH 102, EC03P Valsecchi S .,TU 007, EP06P, WE 271 Valters K .,WE 090, RA12P Vamshi R .,TU 067, EP08P, MO 068,

EM02P1 van Ael E .,ET04A-4, ET04A van Aggelebn G .V .A .,TH 157, EP03P2 van Assche F .,WE 018, RA05P van Beinum W .,TU 111, EM02P2 Van Bemmel M .,RA06-2, RA06 van Cauwenberghe L .,TU 031, EP07P,

EP07B-4 van Dam J .W .,RA17B-2, RA17B van de Meent D .,MO 053, EM02P1,

EP03A-5 van de Plassche E .,RA12-1, RA12 Van den Akker J .J .H .,MOPC1-7, MOPC1 van den Berg J .H .J .,EP03C-4, EP03C Van den Brink N .W .,EP03C-4, EP03C,

RA14-6 Van den Brink P .J .,WE 146, RA15P, WE

124, RA15P, WEPC4-8, WE 106, WE 354, WE 105, RA15-4, RA21-2

Van den Brink P .J .,ET09-3, ET09, ET15B-5, ET14-3, ET19B-3, ET19B, MO 415, MO 462, TU 466, TU 473

Van den Dries J .,TU 391, ET11P van den Heuvel-Greve M .J .,RA21-2, RA21 van den Heuvel H .,TH 113, EC03P van der Gaag A .,MOPC3-3, MOPC3 van der Geest H .G .,TU 394, ET11P van der Grinten E .V .D .,RA20-4, RA20 van der Harst E .,TU 239, LC04P van der Heijden M .G .A .,TH 201, EP03P2 van der Horst C .,WE 293, ET04P van der Hout A .,EP03C-4, EP03C van der Kamp J .,LC01A-5, LC01A Van der Linden A .M .A .,EM02C-4,

EM02C van der Meulen M .D .,EP07A-3, EP07A van der Meulen M .J .,TU 398, ET11P Van der Oost R .,ET01-3, ET01, ET01-2,

TH 313, Van der Ploeg M .J .C .,EP03C-4, EP03C van der Velde M .,TU 120, EM03P van der Zwaag N .,TU 398, ET11P van Dijk J .,TUPC5-7, TUPC5 van Dingenen R .,TU 118, EM03P, WE

458, LC05P van Drooge L .,EC05B-6, EC05B Van Egmond R,SS12-8, SS12 Van Gemert M .,TH 271, RA17P Van Genderen E .,SS01-3, SS01 van Gestel C .A .M .,EP03C-3, EP03C,

ET12A-3, WE 324, TH 200, TH 204, TH 213

van Gils J .,TU 141, RA06P van Ginneken I .,MO 361, ET16P van Hattum A .G .M .,TU 141, RA06P van Hees M .,WE 278, ET04P, SS09-9,

SS09, SS09-11, TU 194 van Herwijnen R .,TH 297, RA21P Van Heusden B .,ET12A-2, ET12A van Hoof G .,MO 431, RA04P Van Langenhove H .,MO 098, LC01P van Leerdam T .,MO 206, EP05P Van Leeuwen H .P .,EC04-2, EC04 Van Leeuwen L .,TH 282, RA21P van Leeuwen L .C .,RA21-3, RA21 van Ommen Kloeke A .E .E .,WE 324,

ET07P Van Overbeke E .,LC05-5, LC05, LC01A-1 Van Riemsdijk W .H .,EC04-2, EC04 van Sprang A .J .,TU 127, RA02P, WE 011,

RA05P van Sprang P .,MO 366, ET16P, WE 018 Van Sprang P .A .J .,MO 082, EM02P1, MO

084, EM02P1 van Tongeren M .,EP03D-4, EP03D van Veen H .,ET12B-1, ET12B van Velzen M .,EP02B-1, EP02B van Vlaardingen P .L .A .,RA21-3, RA21 van Vliet P .J .M .,MO 476, RA11P, MO

477, RA11P, RA11-1, van Vuren J .H .,MO 178, EP02P van Vuren J .H .J .,WE 314, ET05P van Wensem J .,ET12A-1, ET12A, SS06-1,

SS06 van Wezel A .P .,WE 188, EP03P1, WE 192,

EP03P1, MO 206, EP02C-3 Van Wijngaarden R .P .A .,WE 146, RA15P,

WE 124, RA15P, WE 093, WE 354, ET15A-1

Van Zelm R .,ET08-1, ET08, EM03-3, LC04A-4, TU 120, RA04A-1

Vanclooster M .,EM02D-6, EM02D Vandegehuchte M .B .,ET10B-4, ET10B,

TU 450, ET11P, TU 352, TU 146, MO 345, EP07B-4

Vandendael L .,EM02D-6, EM02D Vandenhove H .,WE 278, ET04P, SS09-9,

SS09, SS09-11, TU 194 Vandenhove HA,SS09-13, SS09 Vander Pol S .,TUPC5-8, TUPC5 Vander Pol S .S .,TU 135, RA03P, RA03-3 Vander Straeten M .,WE 045, RA08P Vanderborght J .,EM02C-5, EM02C Vanegas C .,TH 166, EP03P2 Vangheluwe M .,MO 369, ET16P Vangronsveld J,SS09-11, SS09, TU 194 Vanhiesbecq S .,EM02D-6, EM02D Vanhoudt N,SS09-11, SS09, TU 194 Vanhoutte Brunier A .,TU 053, EP08P Vanparys C .,WE 338, ET07P, EP02A-4 Vanrolleghem P .A .,RA01-6, RA01 Varanaviciene Z .,RA09-2, RA09 Varano V .,TU 083, EP08P Vardy W .,TU 148, RA06P Varela A .R .,TH 135, EP01P, TH 136,

EP01P, TH 139, EP01P

Page 81: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

�4�SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Varolo E .,TU 469, ET14P Vasconcelos A .M .,WE 410, ET18P Vasconcelos M .,WEPC4-5, WEPC4, WE

408, ET18P Vasconcelos T .,TU 052, EP08P Vasconcelos V .,MO 358, ET13P, MO 340,

MO 326, ET13P, ET13A-5 Vasconcelos V .M .,MO 346, ET13P, MO

347, ET13P Vasickova J .,MO 277, ET12P, ET12C-4,

ET12C Vasilev K .,WE 252, ET04P, ET16-5 Vasilev R .,ET16-5, ET16 Vasileva V .,TU 281, EC06P Vasko-Bennett M .,MO 045, EC04P Vasquez M .I .,TU 076, EP08P Vassart A .,TU 227, RA20P Vassaux D .,ET18-4, ET18 Vaudry D .,TU 411, ET11P Vaughan M .,WEPC1-8, WEPC1 Vaughan M .,MOPC6-1, MOPC6 Vaz-Moreira I .,TH 127, EP01P, TH 141,

TH 142, Vaz C .,WE 159, RA18P, TH 044, ET03P,

TH 170, EP03P2, WE 160, RA18P, WE 161

Vazquez-Botello A .,TU 171, RA07P Vega A .,MO 388, ET17P Vein J .V .,WE 173, RA22P Veinot J .,WE 191, EP03P1 Veith M .,TU 136, RA03P Velinsky D .J .,TUPC3-6, TUPC3 Velisek J .,TU 075, EP08P Velthuis M .,TU 394, ET11P Velzeboer I .,EP03A-5, EP03A Venâncio C .A .R .,TU 349, ET10P Venier M .V .,EC05A-3, EC05A Venisseau A .,TU 168, RA07P Venizelos N .,WE 377, ET15P Venosa A .D .,TU 296, EC06P Ventura F .F .,MO 299, ET12P Verbruggen E .M .J .,TU 217, RA20P, RA21-

3 Vercaigne M .J .,WE 430, EM01P Verdonck A .M .,MO 369, ET16P Verdonck F .,WE 018, RA05P, WE 425,

MO 366, Verdonck F .A .M .,MO 453, RA11P, MO

463 Vereecken H .V .,ET19A-4, ET19A Vergauwen L .,TU 018, EP06P, TH 268 Vergnoux A .,TU 428, ET11P Verhaar H .J .M .,ET16-3, ET16 Verhaert V .,ET18-2, ET18 Verheyen E .,ET18-2, ET18 Verheyen L .,TH 035, ET03P Vermeirssen E .,WE 337, ET07P, EC01C-6,

EC01C Vermeirssen E .L .M .,EC01A-3, EC01A Vermeulen F .,TU 227, RA20P Vernez D .,TH 242, RA13P Verones F .,RA04B-2, RA04B Veronesi C .,TH 316, RA23P Veronesi M .,WE 080, RA10P Verougstraete V .,TU 223, RA20P Verschuren D .,MO 253, ET09P Verslycke T .,TU 068, EP08P Versonnen B .,SS02-6, SS02 Versteeg D .J .,MO 432, RA04P Verzat B .,WE 453, LC02P Vestergren R .,TUPC1-3, TUPC1 Vestergren R .,TUPC1-4, TUPC1

Vestin J .,ET12A-2, ET12A Vethaak A .D .,TU 456, ET11P, TU 394,

EP07A-3, Vethaak D .,TU 409, ET11P, EP02B-1,

EP02B Vey D .V .,WE 173, RA22P Vezzoli L .,WE 080, RA10P Viaene K .P .,TU 466, ET14P Vian J .F .,TU 124, RA02P Viana P .,TH 137, EP01P Viant M .,TU 325, ET01P Viant M .R .,ET01-5, ET01 Viard F .,TH 262, RA17P Viarengo A .,MO 274, ET12P, TU 326,

ET01P, TU 396, ET11B-3 Viarengo A .V .,TH 209, EP03P2 Vicent T .,THPC1-1, THPC1, TU 305 Vicente J .,ET11C-6, ET11C Vicquelin L .N .,TU 411, ET11P Vidal-Liñán L .V .,TU 379, ET11P, TU 416,

ET11P Vidal D .,MO 242, ET08P Vidal D .S .,TU 156, RA06P Viebahn P .,MOPC4-2, MOPC4 Vieira B .H .,WE 410, ET18P Vieira F .H .C .,WE 371, ET15P Vieira H .,WEPC4-5, WEPC4, WE 408,

ET18P Vieira H .C .,WE 281, ET04P Vieira M .D .M .,MOPC5-6, MOPC5 Vieira M .N .R .,TH 267, RA17P Vieira P .C .,WE 371, ET15P Vierke L .,RA03-2, RA03 Vierke L .V .,TUPC1-1, TUPC1 Vighi M .,TU 469, ET14P, TU 214, TUPC1-

8, Vignati D .A .L .,WE 083, RA10P, WE 080,

RA10P, WE 079, WE 271 Vignet C .,TU 341, ET10P, TU 342, ET10P Vigon B .V .,LC07-5, LC07 Vigon B .W .,LC07-1, LC07 Vikebø F .,RA18-6, RA18 Vilares P .,TU 178, RA07P Vilares P .V .,MO 255, ET09P Vilavert L .,MO 038, EC01P, TU 268,

EC05P Villa S .,MO 067, EM02P1 Villa V .S .,TU 069, EP08P Villalobos-Zapata G .J .,TU 169, RA07P Villanueva-Fragozo S .,TU 171, RA07P Villanueva J .D .,TU 167, RA07P Villeret M .,EP02A-3, EP02A Vincent R .,TH 242, RA13P Vincze L .,TU 450, ET11P Vineyard B .T .,TU 257, EC05P Vingen S .,TU 381, ET11P Vinggaard A .,MO 192, EP02P Vionnet S .,MO 430, RA04P Vipparla N .,MO 441, RA04P Virta M .,TH 126, EP01P, TH 138 Virta M .P .J .,EP01A-3, EP01A Vítecková Wünschová A .,TH 008, ET03P Vítová M .,TH 112, EC03P Viuf P .V .,EC05B-5, EC05B Vlaeminck A .,TU 173, RA07P Vlahos P .,MO 179, EP02P Vlahovic M .,WE 257, ET04P Voelker C .,WE 223, EP03P1 Voet T .,TU 346, ET10P Vogel G .,TH 049, ET06P, TH 050, ET06P,

TH 051, ET06P, TH 053, ET06P, TH 052, ET06A-6

Vogelgsang S .,ET13A-3, ET13A Vögelin A .,EP03A-6, EP03A Vogs C .,ET03A-2, ET03A, RA15-1 Vogt D .,MO 149, EP02P Voigt A .,WE 019, RA05P Voiseux ,TU 370, ET11P Vojinovic Miloradov M .B .,TU 263, EC05P,

TU 096 Volkart K .,LC02B-2, LC02B Vollertsen J .,WE 091, RA12P Volpi Ghirardini A .,TU 454, ET11P, TH

174, EP03P2, WE 187, Voltz M .,ET18-4, ET18 Voltz M .V .,TU 112, EM02P2 Von Arb S .,MO 475, RA11P Von Bergen M .,ET07A-2, ET07A von Blanckenhagen F .,RA09-6, RA09, WE

052 von Danwitz B .,MO 137, EP02P von der Assen N .,MO 111, LC01P von der Kammer F .,EP03A-3, EP03A,

EP03A-2 Von der Kammer G .,SS03-3, SS03 Von der Ohe P .C .,MO 383, ET17P,

ET15B-4, ET15B, RA17A-5, MO 375, MO 211

von der Trenck K .T .,TU 011, EP06P Von Tümpling W .,TH 123, EP01P Vonk J .,ET06A-4, ET06A, TH 261,

RA17P Voolaid V .,TH 125, EP01P Vorkamp K .,TU 010, EP06P, TH 088 Voronina L .P .,TU 187, RA19P Vorum M .,LC03-1, LC03 Voua-Otomo P .,TU 350, ET10P, MOPC1-

5 Voutchkova A .M .,RA04B-1, RA04B Vrana B .,MO 002, EC01P Vredenburg J .,TH 139, EP01P Vucinic S .,TU 226, RA20P Vulliet E .,TU 043, EP08P, MOPC3-1,

MOPC3, MO 396, ET19P, MOPC3-6, ET10A-5, EP02A-3

Vulliet E .V .,TU 037, EP08P Vulpe C .,ET01-1, ET01 Vuori K .M .,MO 013, EC01P Vuorinen P .J .,ET11C-5, ET11C Vyas N .B .,RA22-3, RA22

W Waaijers S .,RA02-6, RA02 Waaijers S .L .,RA21-6, RA21, TU 398 Waalewijn-Kool L .,EP03C-3, EP03C Wada S .,EP01A-3, EP01A Wadeskog A .,RA04A-6, RA04A Waeterschoot H .,WE 021, RA05P Wagelmans M .H .A .B .,ET12A-2, ET12A,

RA06-2 Wagenmakers A .,TU 325, ET01P Wagner B .,MO 051, EM02P1 Wagner G .,TU 136, RA03P Wagner G .E .,TUPC5-5, TUPC5 Wagner M .,MO 122, EP02P, MO 137 Wagner P .,TH 173, EP03P2 Wagner, H .-J . H .J .,MOPC4-2, MOPC4 Wahl M .,MO 043, EC01P Waichman A .V .,WE 409, ET18P Waichman V .,WE 092, RA12P, WE 310,

ET18-5, Waissi-Leinonen G .,WE 213, EP03P1 Waissi-Leinonen G .C .,TH 172, EP03P2 Wakhisi J .,TU 478, ET14P

Page 82: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

��0 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Walachovicz F .,WE 444, LC02P Walker D .W .,LC06-3, LC06 Walker L .A .,RA22-2, RA22, TUPC5-6, TH

213, Walker P .,MO 024, EC01P Wallace R .J .,TH 344, LC03P Wallner K .,MOPC6-4, MOPC6 Walser T .,WE 196, EP03P1 Walsh M .,EP01A-4, EP01A Walter-Rohde S .,ET03A-1, ET03A, TH

012 Walters C .R .,WE 293, ET04P Walton H .,TU 183, RA19P Wan Y .,WE 138, RA15P, WE 248, ET04P,

ET04B-5, WE 136 Wan Y .I .,ET13A-1, ET13A Wang C .H .,TU 192, RA19P Wang F .,WE 185, EP03P1 Wang F .,TH 091, EC02P Wang G .S .,MO 184, EP02P Wang L .,TU 367, ET11P Wang M .,TU 109, EM02P2 Wang P .F .,TU 175, RA07P Wang R .,ET04B-4, ET04B Wang W .X .,WE 127, RA15P, ET04B-4,

ET04B-2, Wang X .,TH 085, EC02P, TH 092, EC02P,

TH 093, EC02P, EC02B-3, EC02B, Wang Y .,EC05A-2, EC05A Wang Z .,EP06-1, EP06 Wang Z .,WE 351, ET15P, WE 325 Wang Z .W .,WE 177, EP03P1 Wangel A .,LC07-3, LC07 Wangler T .,WE 091, RA12P Wania F .,TU 246, EC05P, TH 079, EC02P,

TU 245, EC05P, TH 021, ET03P, TH 077, EM02A-5

Wania F .,EC05A-1, EC05A, MO 041, EC01P, EC02A-2, MO 061, EM02P1, MO 055

Wania F .W .,MO 076, EM02P1 Wannaz C .,MO 058, EM02P1 Wannijn J,SS09-11, SS09, TU 194 Waridel P .W .,TU 079, EP08P Warley A .,TH 175, EP03P2 Warner A .,TU 418, ET11P Warner E .S .,LC03-1, LC03 Warner N .,EC02A-1, EC02A Wassenberg J .,WE 060, RA09P, MOPC6-4 Watabe Y .,MO 124, EP02P Watabe Y .W .,MO 029, EC01P Watanabe H .,MO 147, EP02P, WE 358 Watanabe M .W .,WE 442, LC02P Watanabe W .S .,MO 204, EP05P Watanuki Y .,EP07B-5, EP07B Waterkeyn A .,TU 346, ET10P Waterlot C .,EC04-1, EC04 Watson G .J .,WE 291, ET04P Watson J .,TU 412, ET11P Watson P .A .,WE 116, RA14P Wätterbäck P .,MO 165, EP02P Weber B .,ET06A-3, ET06A Weber D .,WE 123, RA15P Weber J .,RA12-1, RA12 Weber K .,TUPC6-2, TUPC6, WE 355 Weber W .,MO 196, EP05P Wedemeier A .,MO 094, EM02P1, TU 339 Weeks J .A .,MO 163, EP02P Wege K .,WE 175, RA22P Wei L .W .,WE 419, EM01P Wei X .Y .,MO 327, ET13P Weichelt V .,ET19A-3, ET19A

Weiersbye I .M .,TH 101, EC03P Weil M .,WE 212, EP03P1 Weimann C .,TUPC5-5, TUPC5 Weimann T .,TUPC5-5, TUPC5, TU 136 Weinberg I .,TU 001, EP06P Weinfurtner K .,TU 137, RA03P Weiss C .,EP03D-5, EP03D Weiss F .,WE 247, ET04P Weiss J .,WE 038, RA08P, TU 052 Weiss J .M .,EP05-1, EP05, MO 127 Weiss K .,MO 196, EP05P Weiss K .P .,TU 088, EP08P Weljie A .,WE 148, RA15P Wellby M .,TH 205, EP03P2 Wellner P .,ET04C-5, ET04C Weltje L .,MO 459, RA11P, RA11-3,

RA11, MO 449, WE 096 Wendt C .L .G .,MO 414, ET19P Weng L .,EC04-2, EC04 Wenning R .,TH 246, RA13P, RA18-3,

RA18 Wenzel A .,MOPC2-2, MOPC2 Wepener V .,ET05-1, ET05, TH 258,

RA17P, ET05-5, WE 314, TH 165 Werneck M .,TU 445, ET11P Werner A .,MOPC4-3, MOPC4 Werner D .,EC06A-2, EC06A, EC06A-5 Werner I .,WE 343, ET15P, TU 329, ET02P,

TU 214, WE 337, MO 286, MO 475 Werner I .W .,TU 126, RA02P Wesenberg D .,WE 216, EP03P1 Wessman H .,MO 440, RA04P West C .E .,RA18-2, RA18, WEPC1-3,

WEPC1, WE 162, Westerhoff P .,WE 176, EP03P1 Westerink R .,RA02-6, RA02 Westerink R .H .S .,RA21-6, RA21 Westgate J .N .,TU 246, EC05P, TH 079,

EC02P, TU 245, EC05P Westman H .O .,WE 377, ET15P Westman O .,MO 314, ET12P Westrup S .,TH 324, RA23P Wetzel T .,EC01C-1, EC01C Weyers A .,MO 459, RA11P, RA11-3,

RA11, TU 208, RA20P Weyhenmeyer G .,WE 207, EP03P1 Weyman G .,TH 250, RA16P Weyman G .A .,WE 143, RA15P Whale ,TH 325, RA23P Whalley P .,WE 241, ET04P Whalley W .R .,TU 111, EM02P2 Wheeler C .,WE 448, LC02P Wheeler J .R .,MO 459, RA11P, RA11-3,

RA11, SS11-2, SS11, TH 014, ET03P, WE 096

Whelan M .J .,TH 260, RA17P, EM02D-2 Whitaker M .,LC03-1, LC03 Whitby C .,WE 195, EP03P1 White P .A .,TU 122, RA02P, WE 139,

RA15P White S .,MO 132, EP02P, MO 004 Whitehouse P .,MO 475, RA11P, MO 024,

TU 125, Whitehouse P .W .,TU 126, RA02P Whitley D .C .,MO 307, ET12P Whitmore A .P .,TU 111, EM02P2 Whittaker L .,TH 347, LC03P Wiberg K .,RA03-4, RA03, TH 076 Wichmann A .,TH 016, ET03P Wichmann A .F .M .,ET03A-6, ET03A, MO

148 Wick A .,TH 329, RA23P

Wick L .Y .,TU 285, EC06P Wick L .Y .,EC06B-5, EC06B, TU 295 Wick L .Y .,TH 287, RA21P Wickwire T .,MO 385, ET17P Wickwire W .T .,RA14-4, RA14 Widmer F .,TH 201, EP03P2 Wieck S .,RA12-3, RA12, WE 175 Wieck W .S .,WE 087, RA12P Wiedemann G .,TU 109, EM02P2 Wiedner C .,ET13A-6, ET13A Wiegand C .,TU 351, ET10P, ET13B-2,

ET13B, WE 388, MO 356 Wieland P .,LC04A-3, LC04A Wiemann A .,MO 467, RA11P Wiest L .,TU 043, EP08P, MOPC3-1,

MOPC3, MO 396, ET19P, MOPC3-6, EP02A-3

Wiest L .W .,MO 203, EP05P Wigh A .,MO 451, RA11P Wightwick A .M .,MO 015, EC01P Wikklund A .K .E .,MO 215, EP05P, TU

081, EP08P Wiliams T .W .,ET01-2, ET01 Wilke B .M .,MO 401, ET19P Wilkinson H .M .,TU 125, RA02P Wilks M .,TU 130, RA02P Will V .,LC05-2, LC05 Willaschek E .,EP08C-2, EP08C Wille K .,WE 425, EM01P Willet K .,SS11-2, SS11 Willhaus K .,MO 467, RA11P Williams J .,THPC1-6, THPC1 Williams R .J .,EM03-6, EM03 Williams T .D .,ET01-3, ET01 Williams W .M .,MO 397, ET19P, MO 056,

EM02P1, TU 099, EM02P2 Williamson M .,TH 085, EC02P, EC02B-3,

EC02B Willink P .W .,WE 413, ET18P Willis J .,TH 114, EC03P Wilson J .,EP02B-6, EP02B Wilson L .K .,WE 172, RA22P Wilson S .,SS08-1, SS08 Wilson S .P .,ET06B-2, ET06B, EP07A-4,

EP07A, TH 055, Winding A .,EC06A-4, EC06A, TUPC4-6,

TUPC4, EC01B-3, EC01B, TU 291, ET12B-1

Wings T .K .,MO 405, ET19P Winkens K .,RA06-4, RA06 Winter P .,ET03B-1, ET03B Wirska B .,RA06-1, RA06 Wise A .,TUPC5-8, TUPC5 Wiseman B .,ET13A-1, ET13A Wiseman S .,EP02A-2, EP02A Wiseman S .B .,WE 330, ET07P, WE 248,

ET04P, ET04B-5, MO 161 Wisk J .,MOPC6-1, MOPC6 Witt G .,TU 159, RA06P, TU 149, EC01B-

6, Witters H,SS11-6, SS11 Witters N .,ET12A-2, ET12A Wittholt J .,WE 323, ET07P Wittmer A .,RA23B-5, RA23B Woche S .K .,MO 303, ET12P Wogram J .,MO 472, RA11P Wöhrnschimmel H .,EC02B-2, EC02B Woldehawariat M .D .,MO 271, ET12P, TU

373 Wolf A .,TU 147, RA06P, MO 208 Wolf C .,WE 055, RA09P Wolf C .,TH 255, RA16P, TH 256, RA16P,

Page 83: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

��1SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

RA09-4, RA09-5, RA16-1, TH 250 Wolf M .A .,LC01A-4, LC01A Wolf S .,EP05-6, EP05 Wollenweber M .,MO 140, EP02P Wolschke H .,TH 083, EC02P Won H .,WE 332, ET07P, MO 170 Wong C .,EP06-6, EP06 Wong C .K .C .,TU 172, RA07P Wong W .Y .,WEPC5-4, WEPC5, RA17A-1 Woo S .,WE 332, ET07P, MO 170 Wood C .M .,TU 320, ET01P Wood R .,LCO1B-4, LC01B Woodburn K .B .,WE 259, ET04P, WEPC1-

1, WEPC1, ET04A-6, ET04B-6, WEPC1-8

Woodhall J .,WE 178, EP03P1 Woodhead L .,TU 445, ET11P Worch E .,MO 213, EP05P Worden J .O .Y .,MO 457, RA11P Wortham R .,RA23B-4, RA23B Wouterse M .,EP03A-5, EP03A Woutersen M .,MOPC3-3, MOPC3 Wray T .,WE 206, EP03P1 Wrede J .D .,TU 195, RA19P Wright S .W .,EP07A-5, EP07A Wrona V .,TU 155, RA06P, TH 326 Wu L .,ET15B-6, ET15B, WE 258, ET04P Wu L .H .,TU 111, EM02P2 Wu L .L .,TU 147, RA06P Wu R .,TU 414, ET11P, WE 301 Wu R .S .,MO 138, EP02P Wu R .S .S .,MO 327, ET13P, TH 167, WE

302, MO 134, WE 311 Wu S .S .,WE 313, ET05P Wu S .S .,WE 304, ET05P Wu S .Z .,TH 309, RA23P Wülser R .,TU 300, EC06P Wund P .W .,EC01C-4, EC01C Wunderlin A .,SS05-1, SS05, SS05-5, SS05 Wunderlin D .A .,WE 256, ET04P, ET05-2,

TH 109, TU 274, WE 289, SS05-2 Wyllie J .,ET15A-5, ET15A Wyrsch V .,TU 042, EP08P Wyrwa A .,TUPC3-1, TUPC3

X Xie Z .,TH 074, EC02P, TU 242, TU 009,

TU 460, MO 207, WE 384 Ximenes D .S .,TU 421, ET11P Xinbin F .,WE 081, RA10P Xu S .,MO 076, EM02P1 Xu W .X .,TU 059, EP08P Xu X .Q .,MO 349, ET13P Xu Y .,TU 247, EC05P Xue R .,MO 131, EP02P, MO 042, EC01P Xuereb B .,MO 181, EP02P

Y Yacoob S .,WE 015, RA05P Yadetie F .,ET07A-3, ET07A Yakan S .D .,TU 439, ET11P, MO 066 Yakimenko O .S .,TH 104, EC03P Yakimenko S .,TU 309, EC06P Yamamoto H .,MO 219, EP05P Yamashita K .Y .,TH 210, EP03P2 Yamashita R .,EP07B-5, EP07B, TU 027,

EP07P Yamawaki P .,TH 186, EP03P2 Yamazaki K .,MO 190, EP02P Yang C .,MO 439, RA04P Yang G .,RA04A-2, RA04A Yang J .,TU 138, RA03P

Yang X .G .,MO 425, RA04P Yanik M .,TH 139, EP01P Yargeau V .,MO 218, EP05P Yargeau V .,TU 030, EP07P Yassine M .H .,TU 296, EC06P Yasuhiro A .Y .,TH 210, EP03P2 Yasuo T .Y .,TH 210, EP03P2 Yasuo Y .Y .,TH 210, EP03P2 Yediler A .,MO 416, ET19P Yee S .,MO 388, ET17P Yelderman J .C .,TU 045, EP08P Yeung C .M .,MO 138, EP02P Yeung L .W .Y .,RA03-5, RA03 Yi A .X .L .,MO 143, EP02P, MO 152,

EP02P Yi X .L .,TH 264, RA17P Yilmaz A .,TH 336, RA23P, TU 439 Yin D .,ET15B-6, ET15B, WE 258, ET04P,

TU 147, Yin D .Q .,TUPC5-3, TUPC5 Ying G .G .,TH 121, EP01P Ying L .,WEPC3-2, WEPC3 Ying Y .D .,TU 245, EC05P Ylstra B .,WE 324, ET07P Yokomizo H .,TH 241, RA13P Yonglong L .Y .,WE 419, EM01P, WE 435 Yoon S .J .,WE 217, EP03P1, MO 264,

ET12P Yoon S .J .,EP03B-4, EP03B Yoon T .H .,WE 237, EP04P Yoshida T .,TH 211, EP03P2 Yoshida T .,WEPC1-8, WEPC1 Yoshida T .Y .,TH 212, EP03P2, TH 210 Yoshikawa T .,TH 211, EP03P2, TH 212 Yoshioka Y .,TH 211, EP03P2 Yoshioka Y .,TH 212, EP03P2 You A .S .,WE 369, ET15P You S .H .,TU 368, ET11P Young D .,ET16-1, ET16 Yp-Tcha M .M .,WE 097, RA12P Yrjänäinen H .,TH 356, LC06P Ytreberg P .,MO 454, RA11P Yuan X .,ET15B-6, ET15B, WE 258,

ET04P, WE 112, TU 147 Yuan Y .,WE 380, ET15P, ET15B-6 Yum S .,WE 332, ET07P, MO 170 Yurishcheva A .A .,WE 239, EP04P Yuyama M .,TU 027, EP07P Yverneau H .,ET11B-5, ET11B

Z Zabeo A .,TH 206, EP03P2, EP03D-4,

EP03D Zacchi F .,TU 417, ET11P, WE 365, ET15P Zafar M .I .,WE 146, RA15P, WE 124,

RA15P Žagar D .,RA10-2, RA10 Zaghi C .,WE 037, RA08P Zahraa O .,TU 056, EP08P Zaitseva N .V .,TU 123, RA02P Zajdlik M .,ET12C-3, ET12C Zakharova G .,TH 034, ET03P Zakharova N .G .,WE 239, EP04P Zaldibar B .,TU 170, RA07P Zaltauskaite J .Z .,WE 370, ET15P Zamagni A .,MO 103, LC01P, TH 343, TH

355, LC02A-4 Zandvliet L .,WE 423, EM01P Zanella M .,TU 454, ET11P Zapata-Perez O .,TU 405, ET11P Zapata-Pérez O .,TU 169, RA07P Zapp P .,LC03-2, LC03

Zare A .,WE 148, RA15P Zareitalabad P .,TU 002, EP06P Zarfl C .,EM02A-3, EM02A Zastepa A .,ET13A-6, ET13A Zedda M .,EP05-5, EP05 Zeise L .,ET09-4, ET09 Zejda J .,RA09-6, RA09 Zenker A .K .,EP08C-6, EP08C Zetzsch C .,TU 258, EC05P Zezulka S .Z .,TU 196, RA19P Zha J .,WE 351, ET15P, WE 325 Zhang G .,WEPC4-2, WEPC4, EC05A-2,

MO 207, WE 384 Zhang G .Z .,TU 059, EP08P Zhang H .Z .,WE 081, RA10P Zhang J .Q .,WE 100, RA12P Zhang P .,MO 015, EC01P Zhang R .,WE 305, ET05P Zhang R .,TU 059, EP08P Zhang X .,WE 199, EP03P1 Zhang X .,EC05A-1, EC05A, MO 041,

EC01P Zhang X .H .,WE 100, RA12P Zhang X .,ET13A-1, ET13A Zhang X .W .,ET04B-5, ET04B Zhang Y .,TU 367, ET11P Zhang Y .,WE 100, RA12P Zhang Z .G .,TU 247, EC05P, TU 248 Zhang Z .Y .,TU 247, EC05P Zhao G .F .,TU 166, RA07P Zhao J .F .,TU 441, ET11P, TUPC5-3 Zhao L .,TH 309, RA23P Zhao Z .,TH 074, EC02P, TU 009, MO

207, Zhe L .,MO 075, EM02P1 Zheng B .,TU 367, ET11P Zheng J,SS09-10, SS09 Zhong G .,TH 074, EC02P, MO 207, WE

384, Zhong H .,ET04B-2, ET04B Zhou B .S .,WE 313, ET05P Zhou H .D .,TU 166, RA07P Zhu D .,WE 185, EP03P1 Zhu L .,WE 351, ET15P, WE 325 Zicchinella M .,THPC1-2, THPC1 Zidar P .,MO 407, ET19P, MO 403, ET19P Ziegler K .,WE 086, RA12P Zielke H .,WE 030, RA08P Zikova A .,MO 355, ET13P Zimmer A .Z .,TH 103, EC03P Zimmer E .I .,WE 121, RA15P, WEPC6-5,

WEPC6, ET02-3, ET02 Zimmerling U .,TH 143, EP01P, ET19A-3 Zimmerman J .B .,RA04B-1, RA04B Zitzkat D .,TH 007, ET03P, WE 085,

ET07A-2, Žižek S .,MO 407, ET19P, MO 403, ET19P Zlabek V .,TU 075, EP08P Zmudzki S .,WE 007, RA01P Zok S .,WEPC1-8, WEPC1 Zonta R .,RA10-4, RA10 Zoric D .B .,THPC1-3, THPC1 Zoschke A .,TU 147, RA06P, ET15B-6 Zou S .Z .,TU 059, EP08P Zschunke T .,MOPC4-2, MOPC4 Zubrod J .P .,ET14-1, ET14, TH 322 Zuccato E .,TU 035, EP08P Zucchi S .,MO 149, EP02P Zühlke S .,ET19A-2, ET19A, MO 400 Zuin A .,WE 288, ET04P, TU 382, ET11P Zuin S .,WE 186, EP03P1 Zunker I .,MO 301, ET12P

Page 84: LC05P - Monetisation for weighting and aggregation in Life ...berlin.setac.eu/embed/Berlin/Abstractbook3_Part2.pdf · the EU FP6 NEEDS research project and on observable “political”preferences

��2 SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting

Zuo P .,TU 202, RA19P Zwiener C .,EP05-5, EP05 Zwiernik M .J .,WE 259, ET04P Zwintscher A .,ET04C-3, ET04C