lec5wangha/ph777/lec05.pdf · 2006. 9. 7. · title: microsoft powerpoint - lec5.ppt author: haimin...

28
Lecture 5 Instability

Upload: others

Post on 28-Jan-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Lecture 5

    Instability

  • • Why can some solar features stay long time like prominences and coronal loops, while some produce quick events such as flares? This is the problem of instability.

    • Basic Methods– Linearization method

    Consider one dimension potential energy waveforce :

    for small displacement

    is first order approximation of F.

    dxdWFxm

    dxdWF −==−=

    ..

    )(10

    2

    2..xF

    dxWdxxm

    x

    =

    −=

    =

    )(1 xF

  • StableNeutrally0Unstable00

    Stablen,Oscillatio00 if

    1

    solution) mode (normal Assume

    2

    2

    02

    2

    02

    22

    0

    =>

    =

    =

    ω

    ω

    ω

    ω

    dxWd

    dxWd

    m

    exx ti

  • • Energy Method

    unstable - point onefor 0stable -nt displaceme small allfor 0

    )(21

    2)0()( 1

    02

    22

    <>

    −=

    =−=

    WW

    xxFdxWdxWxWW

    δδ

    δ

    • Linearized Equations• This is very similar to the study of waves

    ( )

    ( )

    0,0,

    0

    =

    =⋅∇

    ×∇=

    =∇+∂∂

    +×+−∇=

    ××∇=∂∂

    rP

    DtDBBj

    vt

    gBjPdtDv

    BvtB

    ρµ

    ρρ

    ρρ

  • ( )

    ( )

    ( )

    ∇⋅−

    ∂∂∂

    =∂∂

    =∇×∇

    =

    =⋅∇=∂∂

    +×+×+−∇=∂∂

    ××∇=∂∂

    +=+=+==+=

    =⋅∇×∇

    =

    +×+∇=

    γρρ

    ρ

    µ

    ρρ

    ρρ

    ρρρ

    µ

    ρ

    0

    01

    0

    01

    11

    1

    101

    1100111

    0

    011

    101010110

    00

    000

    log10

    0,

    0

    :

    ,,,,

    by mequilibriu thePerturb

    0

    0

    mequilibriuAt

    PvPt

    PtP

    BBj

    vt

    gBjBjPtv

    BvtBThen

    jjjBBBPPPvv

    BBj

    gBjP

    e

  • ( ) ( )

    ( )( )

    ( )( )

    ( ) ( )( )( )( ) ( )( )

    ( ) ( ) tiertr

    BB

    BBgP

    BjBjgPtrF

    trFt

    BBt

    v

    zz

    yy

    xx

    ωξξµ

    ξµ

    ξξρ

    ρξ

    ξξρ

    ξρρξ

    ξ

    00

    00

    0001

    101110

    02

    2

    0

    01001

    1

    0

    , solution

    ,

    ,

    becomesmotion ofEquation

    Define

    ˆˆˆorder lowest To

    vv

    vvv

    vvvvv

    vvvvvv

    vv

    vvvv

    vv

    =

    ××∇××∇+

    ×××∇×∇+∇+−∇=

    ×+×++−∇=

    =∂∂

    ⋅−∇=××∇=∂∂

    =

    ∂∂

    +∂∂

    +∂∂

    =∇

    ( ) ( )( )

    ( ) ( ) ( )( )( )

    unstable0stable - oscillates system0

    constants. are cose special a As

    2

    200

    200

    20

    000

    0002

    <

    >

    ×××∇×∇+∇−⋅∇∇=

    =−

    ω

    ω

    ξρξρξρ

    ρξξρω

    BBvgcF

    BPrFr

    As

    vvvvvv

    v

    ξv

    0rv

    rv

    O

    mequilibriu

  • • Rayleigh-Taylor Instability• See Fig 7.3 interface between two medium

    ( ) ( )

    ( ) ( ) stable

    stable0if

    00

    00

    un

    B−+

    −+

    >

  • ( )

    [ ] [ ][ ] [ ]

    [ ]

    )(0

    )(1

    )(1)(

    02

    2

    011

    02

    2

    12

    01

    1111

    )(1

    )(11

    101

    101

    12

    0

    0

    0

    So

    ,0 7.10from

    0interfaceover integrate

    +++

    +

    −+

    +

    −=

    +

    −=

    −=

    −==+

    ←−=

    +−=

    +−=−

    ρρω

    ρρω

    ωρ

    ρω

    ρω

    ρωωρ

    zz

    zz

    z

    yyz

    z

    zz

    gvdzdv

    k

    gvdzdv

    k

    dzdv

    kiP

    ikPviikvdzdv

    jumpPPP

    vgPi

    vdzdg

    dzdPv

    ( )( )

    ( )

    unstable h wavelengtsmall --- stable

    form general more

    like grow

    00

    0,0,00

    uniform are,, valuemequilibriu initial if

    2)(0

    )(0

    )(0

    2)(0

    22

    )(1

    2

    112

    21

    2

    21

    11

    000

    critical

    critical

    criticalx

    ykxkti

    tgk

    kz

    kz

    zzz

    kkkk

    BgkBkgk

    ezve

    egk

    zeze

    vvkdzvd

    vvtt

    BPB

    yx

    <>

    =+−=

    −=

    <>

    =+=

    =∇=×∇=∂∂

    =∂∂

    +

    +

    +−

    µρµρ

    ω

    ω

    ρρ

    ω

    vv

  • Case 2: Uniform field (Fig. 7.3)It can be shown that

    ( )( )

    c

    c

    c

    x

    kk

    kkB

    gk

    kBgk

    21 mode growingfastest

    0 unstable is interface2

    2

    20

    )(0

    )(0

    )(0

    )(0

    220

    )(0

    )(0

    )(0

    )(02

    =

  • • Energy Method Applications

    ( ) ( )

    ( )

    ( )[ ]

    ( ) ( )( ) ( ) ( ) dVgPBjBdVBjBjgP

    dVF

    dVgzUPBW

    ertrBBPP

    WstableW

    ti

    ⋅∇⋅+∇⋅∇+×−=

    ×+×⋅−⋅−∇⋅=

    ⋅−=

    ++=

    =+++

    <>

    +

    ξρξξξρρ

    γξµ

    ξρξξ

    ξ

    ρµ

    δ

    ξξρρ

    δδ

    ω

    vvvvvvv

    vvvv

    000

    010

    21

    10011

    000

    20

    00101010

    2121

    212

    ,,,,above ason perturbati

    unstable point,oneleastatin00

  • • Kink instability• Consider a cylindrically symmetric magnetic flux tube. If it is

    kinked, point A has stronger field than point B. ---- perturbation can go further.In polar coordinate system

    ( ) ( )

    ( )

    ( )( ) ( )( )01

    02

    11

    202

    020

    00

    00

    0

    000

    & ignore2

    2

    0 condition free force

    ˆ1ˆ

    ˆˆ

    BB

    PgdVBBBWRB

    BBdRd

    Bj

    zRBdRd

    RdRdBj

    zRBRBB

    z

    zz

    z

    ××∇=

    ×∇×⋅−=

    −=+

    +−=

    +=

    ∫−ξ

    ξµδ

    φ

    φ

    φφ

    φ

    vvv

    vv

    v

    v

    ( ) ( )

    ( ) ( )( )( ) ( ) ( )( )[ ] ( )

    ( )

    +++

    −+

    ++−

    ++−

    −+

    −=

    ++++

    =

    −++

    +−

    = ∫

    222

    20

    22202

    02

    222

    20

    2

    222

    200

    200

    222

    20

    32200

    0

    20

    2222

    2

    1

    11

    1

    1W

    steps dcomplicate several

    RhkBRhB

    dRdRBh

    RhkRBh

    RhkRkRBB

    RRkBB

    RG

    RhkBRhkRBBR

    RF

    dRHBRRhkRG

    dRdF

    zz

    z

    R

    φ

    φφ

    φ

    ξξξδ

  • ( ) ( ) ( )

    ( )

    7.8 & 7.7 Figsin shown assuch results numerical gettingby done becan This

    0

    solvecan we,conditionsboundary with

    2

    1,,

    0

    22

    0000222

    =+

    =

    ∝=

    +−−⋅

    ++=

    ∫∞

    RR

    RR

    kz

    z

    R

    z

    RRR

    GdRdF

    dRd

    dRGdRdFW

    eL

    h

    BkRBR

    BBkRdRd

    RhkR

    dRdRH

    ξξ

    ξξδ

    ξπ

    ξξξξ φ

  • • Summary of Instabilities1. Interchange instability

    An interface between two plasma with different P&B. If two neighboring bundle can be interchanged, if the wrinkles have a wavenumber k, radius of curvature Rc interface, then

    unstable :Short wavestable : waveLong

    2L. distance

    a with ends in twodown anchored are fields magnetic if

    2

    2

    22

    2

    Lv

    RPk

    RPk

    A

    c

    c

    +−=

    −=

    ρω

    ρω

  • 2. Reyleigh-Taylor instability (Fig 7.3)

    ( )

    ( )

    ( )20

    )(0

    )(0

    )(0

    )(0

    220

    )(0

    )(0

    )(0

    )(02

    000

    )(0

    )(0

    )(0

    )(02

    )(0

    )(0

    )(0

    )(02

    2

    condition critical

    2yinstabilit changecan field horizontal uniform

    0

    yinstabilit changenot dobut rategrowth modify fields, verticaluniform

    rateat growon Perturbati

    Bgk

    kBgk

    Bg

    ik

    gkk

    gk

    e

    c

    x

    ti

    µρρ

    ρρµρρρρω

    ρρµ

    ω

    ρρρρω

    ρρρρω

    ω

    −+

    −+−+

    −+

    −+

    −+

    −+

    −+

    −+

    −=

    ++

    +−

    −=

    −=∞=

    +−

    −==

    +−

    −=

    ( )

    stable are wavesLong

    restore tories tension tmagnetic ,00 unstablemost

    : thenbelow, fields magneticby supported is plasma if

    2

    2

    0

    20

    22

    gLvk

    kgkik

    PBkgk

    A

    x

    x

    x

    <

    ==

    +−= +−

    ω

    ρµω

  • 3. Pinched dischargevertical current produces azimuthal fields plasma is confined –pinched

    inwards is balanced by pressure gradient outwardsIf there is no magnetic fields inside plasma the growth rate of sausage instability is

    for disturbance

    The pinch can be stabilized by large enoughaxial field

    modified dispersion relation

    for stability, if requires

    Bjvv

    ×

    radius :221

    0 aakPi

    =

    ρω

    a

    P

    iak

    21

    0

    0

    12

    ,

    =≈ −ρ

    ω

    µµφ

    22

    220

    0

    BBPB zz =+

    20

    20

    0

    02 2a

    BaP z

    µρρω +−=

    220 2

    1φBB z >

  • 4. Flow InstabilityLaminar viscous flow between rigid boundaries such as walls of Lab channels becomes unstable and develop into a turbulent flowit occurs when critical Reynolds number*ee RR >

    ( )

    ( )( ) ( )( )2

    *e

    21

    00

    *e

    22

    if unstable

    yinstabilit Helmhotz -Kelvin - speeds flow 2 baring flow inviscid uniform have weIf

    Ha500RflowB//

    numberHartman :LBHa

    Ha000,50Rflow

    −++−

    +−

    −>

    =

    =

    =

    UUgk

    v

    B

    ρρρρ

    ρσ

  • 5. Resistive Instability

    ( )

    ( )

    ( )

    ( )21

    0

    0

    12

    31

    44

    22

    20

    1

    2

    A

    ,,,

    rateGrowth

    on.straficatidensity produce sheet tocurrent totransverseˆn gravitatio - moden gravitatio

    stable ifˆ force restoring

    force drivingydiffusivit magnetic

    scale timeaon plasma

    throughdiffused width ofsheet current ain field

    −−

    −====

    =

    >−=×=

    =

    =

    dxdgl

    vl

    kli

    xgFF

    xBvBjF

    F

    llB

    GdA

    A

    Gd

    A

    dL

    xc

    d

    ρρ

    τµσηη

    ττ

    τττω

    ρ

    εσ

    µση

    ητ

    vv

  • ( )

    ( )

    ( )[ ]beating. coronal on,reconnecti leadcan rategrowth fastest hasvelength longest wa

    1,

    ,requirenot does

    1 when occursonly :mode tearing

    ˆ

    y diffusivit magneticin sheet theacross variationspatial a is there:mode rippling

    41

    51

    223

    0

    51

    32

    24

    0

    0

    200

    0

    0

  • 6. Convective Instability

    yinstabilit convective0if

    frequency Vaisala-Brunt

    37.4

    only Consider 4.chapter in thisdiscussed have We

    200

    00

    0

    2

    →>

    >

    =

    −=

    ω

    ω

    ad

    ad

    dzdT

    dzdTN

    dzdT

    dzdT

    TgN

    g

  • 7. Radiatively driven thermal instabilityIf thermal conduction were in effective, thermal instabilities would occur in the corona and upper atmosphere, due to the radiative loss term in energy equation.

    Suppose plasma is initially in equilibrium with balance between mechanical heating (per unit volume) and opticallythin radiation leads to

    00 ,ρTρh

    αχρT αχρ 00Th =

    yinstabilit thermal- continues,on perturbati

    ,0tT makes)T(T T,in decrease small a 1, if

    1

    pressureconstant at on perturbati afor

    0

    10

    1

    00

    0

    <∂∂

  • ( )

    ( )

    instable

    length critical

    stabalized

    timeconduction

    fields. magnetic along conductionheat by prevented isy instabilit Thermal7.1 Table see10Tfor 1 Typically,

    scale Time

    max

    max

    21

    20

    2/700

    2/500

    2

    2/50////

    1-

    5

    100

    LL

    LTkL

    TkcL

    kkTk

    K

    Tc

    radc

    Pc

    Prad

    >

    =

    =

    <=

    =∇∇

    ><

    =

    χρ

    ττρτ

    ρ

    α

    γρτ

    α

    α

  • Homework

    • Try to use normal mode method to analyze the kink instability.